repo_id
stringlengths 15
89
| file_path
stringlengths 27
180
| content
stringlengths 1
2.23M
| __index_level_0__
int64 0
0
|
---|---|---|---|
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/sew_d/modeling_sew_d.py
|
# coding=utf-8
# Copyright 2021 ASAPP Inc. and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch SEW model."""
import math
import warnings
from collections.abc import Sequence
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss, LayerNorm
from ...activations import ACT2FN
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import softmax_backward_data
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_sew_d import SEWDConfig
logger = logging.get_logger(__name__)
_HIDDEN_STATES_START_POSITION = 1
# General docstring
_CONFIG_FOR_DOC = "SEWDConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "asapp/sew-d-tiny-100k-ft-ls100h"
_EXPECTED_OUTPUT_SHAPE = [1, 292, 384]
# CTC docstring
_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTIL OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'"
_CTC_EXPECTED_LOSS = 0.21
# Audio class docstring
_SEQ_CLASS_CHECKPOINT = "anton-l/sew-d-mid-400k-ft-keyword-spotting"
_SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'"
_SEQ_CLASS_EXPECTED_LOSS = 3.16
SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST = [
"asapp/sew-d-tiny-100k",
"asapp/sew-d-small-100k",
"asapp/sew-d-mid-100k",
"asapp/sew-d-mid-k127-100k",
"asapp/sew-d-base-100k",
"asapp/sew-d-base-plus-100k",
"asapp/sew-d-mid-400k",
"asapp/sew-d-mid-k127-400k",
"asapp/sew-d-base-plus-400k",
# See all SEW models at https://huggingface.co/models?filter=sew-d
]
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
attention_mask: Optional[torch.LongTensor] = None,
min_masks: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
CPU as part of the preprocessing during training.
Args:
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
the first element is the batch size and the second element is the length of the axis to span.
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
independently generated mask spans of length `mask_length` is computed by
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
actual percentage will be smaller.
mask_length: size of the mask
min_masks: minimum number of masked spans
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
each batch dimension.
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
f" and `sequence_length`: {sequence_length}`"
)
# epsilon is used for probabilistic rounding
epsilon = np.random.rand(1).item()
def compute_num_masked_span(input_length):
"""Given input length, compute how many spans should be masked"""
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
num_masked_span = max(num_masked_span, min_masks)
# make sure num masked span <= sequence_length
if num_masked_span * mask_length > sequence_length:
num_masked_span = sequence_length // mask_length
# make sure num_masked span is also <= input_length - (mask_length - 1)
if input_length - (mask_length - 1) < num_masked_span:
num_masked_span = max(input_length - (mask_length - 1), 0)
return num_masked_span
# compute number of masked spans in batch
input_lengths = (
attention_mask.sum(-1).detach().tolist()
if attention_mask is not None
else [sequence_length for _ in range(batch_size)]
)
# SpecAugment mask to fill
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
spec_aug_mask_idxs = []
max_num_masked_span = compute_num_masked_span(sequence_length)
if max_num_masked_span == 0:
return spec_aug_mask
for input_length in input_lengths:
# compute num of masked spans for this input
num_masked_span = compute_num_masked_span(input_length)
# get random indices to mask
spec_aug_mask_idx = np.random.choice(
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
)
# pick first sampled index that will serve as a dummy index to pad vector
# to ensure same dimension for all batches due to probabilistic rounding
# Picking first sample just pads those vectors twice.
if len(spec_aug_mask_idx) == 0:
# this case can only happen if `input_length` is strictly smaller then
# `sequence_length` in which case the last token has to be a padding
# token which we can use as a dummy mask id
dummy_mask_idx = sequence_length - 1
else:
dummy_mask_idx = spec_aug_mask_idx[0]
spec_aug_mask_idx = np.concatenate(
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
)
spec_aug_mask_idxs.append(spec_aug_mask_idx)
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
# expand masked indices to masked spans
spec_aug_mask_idxs = np.broadcast_to(
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
)
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
# add offset to the starting indexes so that indexes now create a span
offsets = np.arange(mask_length)[None, None, :]
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
batch_size, max_num_masked_span * mask_length
)
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# ensure that we cannot have indices larger than sequence_length
if spec_aug_mask_idxs.max() > sequence_length - 1:
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
# scatter indices to mask
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
return spec_aug_mask
# Copied from transformers.models.deberta_v2.modeling_deberta_v2.make_log_bucket_position
def make_log_bucket_position(relative_pos, bucket_size, max_position):
sign = torch.sign(relative_pos)
mid = bucket_size // 2
abs_pos = torch.where(
(relative_pos < mid) & (relative_pos > -mid),
torch.tensor(mid - 1).type_as(relative_pos),
torch.abs(relative_pos),
)
log_pos = (
torch.ceil(torch.log(abs_pos / mid) / torch.log(torch.tensor((max_position - 1) / mid)) * (mid - 1)) + mid
)
bucket_pos = torch.where(abs_pos <= mid, relative_pos.type_as(log_pos), log_pos * sign)
return bucket_pos
# Copied from transformers.models.deberta_v2.modeling_deberta_v2.build_relative_position
def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1, device=None):
"""
Build relative position according to the query and key
We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
\\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
P_k\\)
Args:
query_size (int): the length of query
key_size (int): the length of key
bucket_size (int): the size of position bucket
max_position (int): the maximum allowed absolute position
device (`torch.device`): the device on which tensors will be created.
Return:
`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
"""
q_ids = torch.arange(0, query_size, device=device)
k_ids = torch.arange(0, key_size, device=device)
rel_pos_ids = q_ids[:, None] - k_ids[None, :]
if bucket_size > 0 and max_position > 0:
rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
rel_pos_ids = rel_pos_ids.to(torch.long)
rel_pos_ids = rel_pos_ids[:query_size, :]
rel_pos_ids = rel_pos_ids.unsqueeze(0)
return rel_pos_ids
@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
# Copied from transformers.models.deberta.modeling_deberta.get_mask
def get_mask(input, local_context):
if not isinstance(local_context, DropoutContext):
dropout = local_context
mask = None
else:
dropout = local_context.dropout
dropout *= local_context.scale
mask = local_context.mask if local_context.reuse_mask else None
if dropout > 0 and mask is None:
mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool)
if isinstance(local_context, DropoutContext):
if local_context.mask is None:
local_context.mask = mask
return mask, dropout
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->SEWD
class SEWDNoLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->SEWD
class SEWDLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->SEWD
class SEWDGroupNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.sew.modeling_sew.SEWPositionalConvEmbedding with SEW->SEWD
class SEWDPositionalConvEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
padding=config.num_conv_pos_embeddings // 2,
groups=config.num_conv_pos_embedding_groups,
stride=config.squeeze_factor,
)
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
deepspeed.zero.register_external_parameter(self, self.conv.weight_v)
deepspeed.zero.register_external_parameter(self, self.conv.weight_g)
else:
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
self.padding = SEWDSamePadLayer(config.num_conv_pos_embeddings)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->SEW
class SEWDSamePadLayer(nn.Module):
def __init__(self, num_conv_pos_embeddings):
super().__init__()
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
def forward(self, hidden_states):
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
return hidden_states
# Copied from transformers.models.sew.modeling_sew.SEWUpsampling with SEW->SEWD
class SEWDUpsampling(nn.Module):
def __init__(self, config):
super().__init__()
self.projection = nn.Linear(config.hidden_size, config.hidden_size * config.squeeze_factor)
self.activation = ACT2FN[config.feat_extract_activation]
self.squeeze_factor = config.squeeze_factor
def forward(self, hidden_states):
hidden_states = self.projection(hidden_states)
hidden_states = self.activation(hidden_states)
if self.squeeze_factor > 1:
# transform embedding channels to sequence length
bsz, src_len, src_embed_dim = hidden_states.size()
tgt_len = src_len * self.squeeze_factor
tgt_embed_dim = src_embed_dim // self.squeeze_factor
hidden_states = hidden_states.reshape(bsz, src_len, self.squeeze_factor, tgt_embed_dim)
hidden_states = hidden_states.reshape(bsz, tgt_len, tgt_embed_dim)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->SEWD
class SEWDFeatureEncoder(nn.Module):
"""Construct the features from raw audio waveform"""
def __init__(self, config):
super().__init__()
if config.feat_extract_norm == "group":
conv_layers = [SEWDGroupNormConvLayer(config, layer_id=0)] + [
SEWDNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1)
]
elif config.feat_extract_norm == "layer":
conv_layers = [SEWDLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)]
else:
raise ValueError(
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
)
self.conv_layers = nn.ModuleList(conv_layers)
self.gradient_checkpointing = False
self._requires_grad = True
def _freeze_parameters(self):
for param in self.parameters():
param.requires_grad = False
self._requires_grad = False
def forward(self, input_values):
hidden_states = input_values[:, None]
# make sure hidden_states require grad for gradient_checkpointing
if self._requires_grad and self.training:
hidden_states.requires_grad = True
for conv_layer in self.conv_layers:
if self._requires_grad and self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
conv_layer.__call__,
hidden_states,
)
else:
hidden_states = conv_layer(hidden_states)
return hidden_states
class SEWDFeatureExtractor(SEWDFeatureEncoder):
def __init__(self, config):
super().__init__(config)
warnings.warn(
f"The class `{self.__class__.__name__}` has been depreciated "
"and will be removed in Transformers v5. "
f"Use `{self.__class__.__bases__[0].__name__}` instead.",
FutureWarning,
)
# Copied from transformers.models.deberta.modeling_deberta.ContextPooler
class ContextPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
self.dropout = StableDropout(config.pooler_dropout)
self.config = config
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
context_token = hidden_states[:, 0]
context_token = self.dropout(context_token)
pooled_output = self.dense(context_token)
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
return pooled_output
@property
def output_dim(self):
return self.config.hidden_size
# Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2
class XSoftmax(torch.autograd.Function):
"""
Masked Softmax which is optimized for saving memory
Args:
input (`torch.tensor`): The input tensor that will apply softmax.
mask (`torch.IntTensor`):
The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
dim (int): The dimension that will apply softmax
Example:
```python
>>> import torch
>>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax
>>> # Make a tensor
>>> x = torch.randn([4, 20, 100])
>>> # Create a mask
>>> mask = (x > 0).int()
>>> # Specify the dimension to apply softmax
>>> dim = -1
>>> y = XSoftmax.apply(x, mask, dim)
```"""
@staticmethod
def forward(self, input, mask, dim):
self.dim = dim
rmask = ~(mask.to(torch.bool))
output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
output = torch.softmax(output, self.dim)
output.masked_fill_(rmask, 0)
self.save_for_backward(output)
return output
@staticmethod
def backward(self, grad_output):
(output,) = self.saved_tensors
inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output)
return inputGrad, None, None
@staticmethod
def symbolic(g, self, mask, dim):
import torch.onnx.symbolic_helper as sym_help
from torch.onnx.symbolic_opset9 import masked_fill, softmax
mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"])
r_mask = g.op(
"Cast",
g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value),
to_i=sym_help.cast_pytorch_to_onnx["Bool"],
)
output = masked_fill(
g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min))
)
output = softmax(g, output, dim)
return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool)))
# Copied from transformers.models.deberta.modeling_deberta.DropoutContext
class DropoutContext(object):
def __init__(self):
self.dropout = 0
self.mask = None
self.scale = 1
self.reuse_mask = True
# Copied from transformers.models.deberta.modeling_deberta.XDropout
class XDropout(torch.autograd.Function):
"""Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
@staticmethod
def forward(ctx, input, local_ctx):
mask, dropout = get_mask(input, local_ctx)
ctx.scale = 1.0 / (1 - dropout)
if dropout > 0:
ctx.save_for_backward(mask)
return input.masked_fill(mask, 0) * ctx.scale
else:
return input
@staticmethod
def backward(ctx, grad_output):
if ctx.scale > 1:
(mask,) = ctx.saved_tensors
return grad_output.masked_fill(mask, 0) * ctx.scale, None
else:
return grad_output, None
@staticmethod
def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value:
from torch.onnx import symbolic_opset12
dropout_p = local_ctx
if isinstance(local_ctx, DropoutContext):
dropout_p = local_ctx.dropout
# StableDropout only calls this function when training.
train = True
# TODO: We should check if the opset_version being used to export
# is > 12 here, but there's no good way to do that. As-is, if the
# opset_version < 12, export will fail with a CheckerError.
# Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like:
# if opset_version < 12:
# return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train)
return symbolic_opset12.dropout(g, input, dropout_p, train)
# Copied from transformers.models.deberta.modeling_deberta.StableDropout
class StableDropout(nn.Module):
"""
Optimized dropout module for stabilizing the training
Args:
drop_prob (float): the dropout probabilities
"""
def __init__(self, drop_prob):
super().__init__()
self.drop_prob = drop_prob
self.count = 0
self.context_stack = None
def forward(self, x):
"""
Call the module
Args:
x (`torch.tensor`): The input tensor to apply dropout
"""
if self.training and self.drop_prob > 0:
return XDropout.apply(x, self.get_context())
return x
def clear_context(self):
self.count = 0
self.context_stack = None
def init_context(self, reuse_mask=True, scale=1):
if self.context_stack is None:
self.context_stack = []
self.count = 0
for c in self.context_stack:
c.reuse_mask = reuse_mask
c.scale = scale
def get_context(self):
if self.context_stack is not None:
if self.count >= len(self.context_stack):
self.context_stack.append(DropoutContext())
ctx = self.context_stack[self.count]
ctx.dropout = self.drop_prob
self.count += 1
return ctx
else:
return self.drop_prob
# Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaV2->SEWD, DebertaLayerNorm->LayerNorm, hidden_dropout_prob->activation_dropout
class SEWDSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.activation_dropout)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.deberta_v2.modeling_deberta_v2.DisentangledSelfAttention with attention_probs_dropout_prob->attention_dropout, hidden_dropout_prob->activation_dropout
class DisentangledSelfAttention(nn.Module):
"""
Disentangled self-attention module
Parameters:
config (`DebertaV2Config`):
A model config class instance with the configuration to build a new model. The schema is similar to
*BertConfig*, for more details, please refer [`DebertaV2Config`]
"""
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
_attention_head_size = config.hidden_size // config.num_attention_heads
self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.share_att_key = getattr(config, "share_att_key", False)
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
self.relative_attention = getattr(config, "relative_attention", False)
if self.relative_attention:
self.position_buckets = getattr(config, "position_buckets", -1)
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.pos_ebd_size = self.max_relative_positions
if self.position_buckets > 0:
self.pos_ebd_size = self.position_buckets
self.pos_dropout = StableDropout(config.activation_dropout)
if not self.share_att_key:
if "c2p" in self.pos_att_type:
self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
if "p2c" in self.pos_att_type:
self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = StableDropout(config.attention_dropout)
def transpose_for_scores(self, x, attention_heads):
new_x_shape = x.size()[:-1] + (attention_heads, -1)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
def forward(
self,
hidden_states,
attention_mask,
output_attentions=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
):
"""
Call the module
Args:
hidden_states (`torch.FloatTensor`):
Input states to the module usually the output from previous layer, it will be the Q,K and V in
*Attention(Q,K,V)*
attention_mask (`torch.BoolTensor`):
An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
th token.
output_attentions (`bool`, optional):
Whether return the attention matrix.
query_states (`torch.FloatTensor`, optional):
The *Q* state in *Attention(Q,K,V)*.
relative_pos (`torch.LongTensor`):
The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
values ranging in [*-max_relative_positions*, *max_relative_positions*].
rel_embeddings (`torch.FloatTensor`):
The embedding of relative distances. It's a tensor of shape [\\(2 \\times
\\text{max_relative_positions}\\), *hidden_size*].
"""
if query_states is None:
query_states = hidden_states
query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads)
key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads)
value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads)
rel_att = None
# Take the dot product between "query" and "key" to get the raw attention scores.
scale_factor = 1
if "c2p" in self.pos_att_type:
scale_factor += 1
if "p2c" in self.pos_att_type:
scale_factor += 1
scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor)
attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2) / scale.to(dtype=query_layer.dtype))
if self.relative_attention:
rel_embeddings = self.pos_dropout(rel_embeddings)
rel_att = self.disentangled_attention_bias(
query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
)
if rel_att is not None:
attention_scores = attention_scores + rel_att
attention_scores = attention_scores
attention_scores = attention_scores.view(
-1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1)
)
# bsz x height x length x dimension
attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
attention_probs = self.dropout(attention_probs)
context_layer = torch.bmm(
attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer
)
context_layer = (
context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1))
.permute(0, 2, 1, 3)
.contiguous()
)
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
context_layer = context_layer.view(new_context_layer_shape)
if output_attentions:
return (context_layer, attention_probs)
else:
return context_layer
def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
if relative_pos is None:
q = query_layer.size(-2)
relative_pos = build_relative_position(
q,
key_layer.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
device=query_layer.device,
)
if relative_pos.dim() == 2:
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
elif relative_pos.dim() == 3:
relative_pos = relative_pos.unsqueeze(1)
# bsz x height x query x key
elif relative_pos.dim() != 4:
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
att_span = self.pos_ebd_size
relative_pos = relative_pos.long().to(query_layer.device)
rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0)
if self.share_att_key:
pos_query_layer = self.transpose_for_scores(
self.query_proj(rel_embeddings), self.num_attention_heads
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat(
query_layer.size(0) // self.num_attention_heads, 1, 1
)
else:
if "c2p" in self.pos_att_type:
pos_key_layer = self.transpose_for_scores(
self.pos_key_proj(rel_embeddings), self.num_attention_heads
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1)
if "p2c" in self.pos_att_type:
pos_query_layer = self.transpose_for_scores(
self.pos_query_proj(rel_embeddings), self.num_attention_heads
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1)
score = 0
# content->position
if "c2p" in self.pos_att_type:
scale = torch.sqrt(torch.tensor(pos_key_layer.size(-1), dtype=torch.float) * scale_factor)
c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
c2p_att = torch.gather(
c2p_att,
dim=-1,
index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]),
)
score += c2p_att / scale.to(dtype=c2p_att.dtype)
# position->content
if "p2c" in self.pos_att_type:
scale = torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor)
if key_layer.size(-2) != query_layer.size(-2):
r_pos = build_relative_position(
key_layer.size(-2),
key_layer.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
device=query_layer.device,
)
r_pos = r_pos.unsqueeze(0)
else:
r_pos = relative_pos
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
p2c_att = torch.gather(
p2c_att,
dim=-1,
index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]),
).transpose(-1, -2)
score += p2c_att / scale.to(dtype=p2c_att.dtype)
return score
# Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->SEWD
class SEWDAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = DisentangledSelfAttention(config)
self.output = SEWDSelfOutput(config)
self.config = config
def forward(
self,
hidden_states,
attention_mask,
output_attentions=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
):
self_output = self.self(
hidden_states,
attention_mask,
output_attentions,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
)
if output_attentions:
self_output, att_matrix = self_output
if query_states is None:
query_states = hidden_states
attention_output = self.output(self_output, query_states)
if output_attentions:
return (attention_output, att_matrix)
else:
return attention_output
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->SEWD
class SEWDIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm, hidden_dropout_prob->activation_dropout
class SEWDOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.activation_dropout)
self.config = config
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->SEWD
class SEWDLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = SEWDAttention(config)
self.intermediate = SEWDIntermediate(config)
self.output = SEWDOutput(config)
def forward(
self,
hidden_states,
attention_mask,
query_states=None,
relative_pos=None,
rel_embeddings=None,
output_attentions=False,
):
attention_output = self.attention(
hidden_states,
attention_mask,
output_attentions=output_attentions,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
)
if output_attentions:
attention_output, att_matrix = attention_output
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
if output_attentions:
return (layer_output, att_matrix)
else:
return layer_output
# Copied from transformers.models.deberta_v2.modeling_deberta_v2.ConvLayer
class ConvLayer(nn.Module):
def __init__(self, config):
super().__init__()
kernel_size = getattr(config, "conv_kernel_size", 3)
groups = getattr(config, "conv_groups", 1)
self.conv_act = getattr(config, "conv_act", "tanh")
self.conv = nn.Conv1d(
config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups
)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.config = config
def forward(self, hidden_states, residual_states, input_mask):
out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous()
rmask = (1 - input_mask).bool()
out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
out = ACT2FN[self.conv_act](self.dropout(out))
layer_norm_input = residual_states + out
output = self.LayerNorm(layer_norm_input).to(layer_norm_input)
if input_mask is None:
output_states = output
else:
if input_mask.dim() != layer_norm_input.dim():
if input_mask.dim() == 4:
input_mask = input_mask.squeeze(1).squeeze(1)
input_mask = input_mask.unsqueeze(2)
input_mask = input_mask.to(output.dtype)
output_states = output * input_mask
return output_states
# Copied from transformers.models.deberta_v2.modeling_deberta_v2.DebertaV2Encoder with DebertaV2->SEWD
class SEWDTransformerEncoder(nn.Module):
"""Modified BertEncoder with relative position bias support"""
def __init__(self, config):
super().__init__()
self.layer = nn.ModuleList([SEWDLayer(config) for _ in range(config.num_hidden_layers)])
self.relative_attention = getattr(config, "relative_attention", False)
if self.relative_attention:
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.position_buckets = getattr(config, "position_buckets", -1)
pos_ebd_size = self.max_relative_positions * 2
if self.position_buckets > 0:
pos_ebd_size = self.position_buckets * 2
self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")]
if "layer_norm" in self.norm_rel_ebd:
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
self.gradient_checkpointing = False
def get_rel_embedding(self):
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
rel_embeddings = self.LayerNorm(rel_embeddings)
return rel_embeddings
def get_attention_mask(self, attention_mask):
if attention_mask.dim() <= 2:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
elif attention_mask.dim() == 3:
attention_mask = attention_mask.unsqueeze(1)
return attention_mask
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
if self.relative_attention and relative_pos is None:
q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
relative_pos = build_relative_position(
q,
hidden_states.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
device=hidden_states.device,
)
return relative_pos
def forward(
self,
hidden_states,
attention_mask,
output_hidden_states=True,
output_attentions=False,
query_states=None,
relative_pos=None,
return_dict=True,
):
if attention_mask.dim() <= 2:
input_mask = attention_mask
else:
input_mask = attention_mask.sum(-2) > 0
attention_mask = self.get_attention_mask(attention_mask)
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[0]
else:
next_kv = hidden_states
rel_embeddings = self.get_rel_embedding()
output_states = next_kv
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (output_states,)
if self.gradient_checkpointing and self.training:
output_states = self._gradient_checkpointing_func(
layer_module.__call__,
next_kv,
attention_mask,
query_states,
relative_pos,
rel_embeddings,
output_attentions,
)
else:
output_states = layer_module(
next_kv,
attention_mask,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
output_attentions=output_attentions,
)
if output_attentions:
output_states, att_m = output_states
if i == 0 and self.conv is not None:
output_states = self.conv(hidden_states, output_states, input_mask)
if query_states is not None:
query_states = output_states
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
else:
next_kv = output_states
if output_attentions:
all_attentions = all_attentions + (att_m,)
if output_hidden_states:
all_hidden_states = all_hidden_states + (output_states,)
if not return_dict:
return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions
)
class SEWDEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = SEWDPositionalConvEmbedding(config)
self.pool = nn.AvgPool1d(config.squeeze_factor, config.squeeze_factor)
self.encoder = SEWDTransformerEncoder(config)
self.upsample = SEWDUpsampling(config)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
max_encoder_length = hidden_states.shape[1] // self.config.squeeze_factor
if attention_mask is None:
attention_mask = torch.ones(
(hidden_states.shape[0], max_encoder_length), dtype=torch.long, device=hidden_states.device
)
else:
# make sure padded tokens output 0
hidden_states[~attention_mask.bool()] = 0.0
input_lengths = (attention_mask.long()).sum(-1)
# apply pooling formula to get real output_lengths
output_lengths = input_lengths // self.config.squeeze_factor
attention_ids = (
torch.arange(0, max_encoder_length, device=output_lengths.device)
.view(1, -1)
.expand(output_lengths.shape[0], -1)
)
attention_mask = (attention_ids < output_lengths.view(-1, 1)).long()
n_input_timesteps = hidden_states.shape[1]
hidden_states = hidden_states.transpose(1, 2)
position_embeddings = self.pos_conv_embed(hidden_states)
pooled_hidden_states = self.pool(hidden_states)
min_length = min(position_embeddings.size(-1), pooled_hidden_states.size(-1))
hidden_states = pooled_hidden_states[..., :min_length] + position_embeddings[..., :min_length]
hidden_states = hidden_states.transpose(1, 2)
encoder_outputs = self.encoder(hidden_states, attention_mask, output_hidden_states, output_attentions)
hidden_states = self.upsample(encoder_outputs.last_hidden_state)
if hidden_states.shape[1] < n_input_timesteps:
hidden_states = nn.functional.pad(hidden_states, (0, 0, 0, n_input_timesteps - hidden_states.shape[1]))
if not return_dict:
return tuple(
v for v in [hidden_states, encoder_outputs.hidden_states, encoder_outputs.attentions] if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class SEWDPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SEWDConfig
base_model_prefix = "sew-d"
main_input_name = "input_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, SEWDPositionalConvEmbedding):
nn.init.normal_(
module.conv.weight,
mean=0,
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
)
nn.init.constant_(module.conv.bias, 0)
elif isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
if is_deepspeed_zero3_enabled():
import deepspeed
if hasattr(module, "weight_v") and hasattr(module, "weight_g"):
with deepspeed.zero.GatheredParameters([module.weight_v, module.weight_g], modifier_rank=0):
nn.init.kaiming_normal_(module.weight.data)
else:
with deepspeed.zero.GatheredParameters(module.weight, modifier_rank=0):
nn.init.kaiming_normal_(module.weight.data)
else:
nn.init.kaiming_normal_(module.weight.data)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None:
module.bias.data.zero_()
def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
return input_lengths
def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor):
output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
batch_size = attention_mask.shape[0]
attention_mask = torch.zeros(
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
)
# these two operations makes sure that all values before the output lengths idxs are attended to
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
return attention_mask
SEWD_START_DOCSTRING = r"""
SEW-D was proposed in [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech
Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger,
Yoav Artzi.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving etc.).
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`SEWDConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SEWD_INPUTS_DOCSTRING = r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare SEW-D Model transformer outputting raw hidden-states without any specific head on top.",
SEWD_START_DOCSTRING,
)
# Copied from transformers.models.sew.modeling_sew.SEWModel with SEW->SEWD, layer_norm_eps->feature_layer_norm_eps
class SEWDModel(SEWDPreTrainedModel):
def __init__(self, config: SEWDConfig):
super().__init__(config)
self.config = config
self.feature_extractor = SEWDFeatureEncoder(config)
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.feature_layer_norm_eps)
self.project_features = config.conv_dim[-1] != config.hidden_size
if self.project_features:
self.feature_projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
self.feature_dropout = nn.Dropout(config.feat_proj_dropout)
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
self.encoder = SEWDEncoder(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
def _mask_hidden_states(
self,
hidden_states: torch.FloatTensor,
mask_time_indices: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return hidden_states
# generate indices & apply SpecAugment along time axis
batch_size, sequence_length, hidden_size = hidden_states.size()
if mask_time_indices is not None:
# apply SpecAugment along time axis with given mask_time_indices
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
elif self.config.mask_time_prob > 0 and self.training:
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
attention_mask=attention_mask,
min_masks=self.config.mask_time_min_masks,
)
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
if self.config.mask_feature_prob > 0 and self.training:
# generate indices & apply SpecAugment along feature axis
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
min_masks=self.config.mask_feature_min_masks,
)
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
hidden_states[mask_feature_indices] = 0
return hidden_states
@add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
extract_features = self.feature_extractor(input_values)
extract_features = extract_features.transpose(1, 2)
extract_features = self.layer_norm(extract_features)
if self.project_features:
extract_features = self.feature_projection(extract_features)
hidden_states = self.feature_dropout(extract_features)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if not return_dict:
return (hidden_states,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""SEW-D Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
SEWD_START_DOCSTRING,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->SEWD, wav2vec2->sew_d, WAV_2_VEC_2->SEWD
class SEWDForCTC(SEWDPreTrainedModel):
def __init__(self, config, target_lang: Optional[str] = None):
super().__init__(config)
self.sew_d = SEWDModel(config)
self.dropout = nn.Dropout(config.final_dropout)
self.target_lang = target_lang
if config.vocab_size is None:
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that "
"does not define the vocabulary size of the language model head. Please "
"instantiate the model as follows: `SEWDForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
"or define `vocab_size` of your model's configuration."
)
output_hidden_size = (
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
)
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def tie_weights(self):
"""
This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
passing `target_lang=...` to `from_pretrained(...)`.
This method is **not** supposed to be called by the user and is prone to be changed in the future.
"""
# Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to
# correctly load adapter layers for SEWD so that we do not have to introduce a new API to
# [`PreTrainedModel`]. While slightly hacky, SEWD never has to tie input and output embeddings, so that it is
# ok to repurpose this function here.
target_lang = self.target_lang
if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None:
raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.")
elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None:
logger.info("By default `target_lang` is set to 'eng'.")
elif target_lang is not None:
self.load_adapter(target_lang, force_load=True)
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.sew_d.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.sew_d.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_CTC_EXPECTED_OUTPUT,
expected_loss=_CTC_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
config.vocab_size - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.sew_d(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if labels.max() >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
# retrieve loss input_lengths from attention_mask
attention_mask = (
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
)
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
flattened_targets = labels.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=False):
loss = nn.functional.ctc_loss(
log_probs,
flattened_targets,
input_lengths,
target_lengths,
blank=self.config.pad_token_id,
reduction=self.config.ctc_loss_reduction,
zero_infinity=self.config.ctc_zero_infinity,
)
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"""
SEWD Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB
Keyword Spotting.
""",
SEWD_START_DOCSTRING,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification with Wav2Vec2->SEWD, wav2vec2->sew_d, WAV_2_VEC_2->SEWD
class SEWDForSequenceClassification(SEWDPreTrainedModel):
def __init__(self, config):
super().__init__(config)
if hasattr(config, "add_adapter") and config.add_adapter:
raise ValueError(
"Sequence classification does not support the use of SEWD adapters (config.add_adapter=True)"
)
self.sew_d = SEWDModel(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.sew_d.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.sew_d.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_SEQ_CLASS_CHECKPOINT,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.sew_d(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
if attention_mask is None:
pooled_output = hidden_states.mean(dim=1)
else:
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
hidden_states[~padding_mask] = 0.0
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/swinv2/configuration_swinv2.py
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Swinv2 Transformer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/swinv2-tiny-patch4-window8-256": (
"https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json"
),
}
class Swinv2Config(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Swinv2Model`]. It is used to instantiate a Swin
Transformer v2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Swin Transformer v2
[microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 4):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
embed_dim (`int`, *optional*, defaults to 96):
Dimensionality of patch embedding.
depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`):
Depth of each layer in the Transformer encoder.
num_heads (`list(int)`, *optional*, defaults to `[3, 6, 12, 24]`):
Number of attention heads in each layer of the Transformer encoder.
window_size (`int`, *optional*, defaults to 7):
Size of windows.
pretrained_window_sizes (`list(int)`, *optional*, defaults to `[0, 0, 0, 0]`):
Size of windows during pretraining.
mlp_ratio (`float`, *optional*, defaults to 4.0):
Ratio of MLP hidden dimensionality to embedding dimensionality.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether or not a learnable bias should be added to the queries, keys and values.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings and encoder.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
drop_path_rate (`float`, *optional*, defaults to 0.1):
Stochastic depth rate.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
`"selu"` and `"gelu_new"` are supported.
use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
Whether or not to add absolute position embeddings to the patch embeddings.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
encoder_stride (`int`, *optional*, defaults to 32):
Factor to increase the spatial resolution by in the decoder head for masked image modeling.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage.
Example:
```python
>>> from transformers import Swinv2Config, Swinv2Model
>>> # Initializing a Swinv2 microsoft/swinv2-tiny-patch4-window8-256 style configuration
>>> configuration = Swinv2Config()
>>> # Initializing a model (with random weights) from the microsoft/swinv2-tiny-patch4-window8-256 style configuration
>>> model = Swinv2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "swinv2"
attribute_map = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__(
self,
image_size=224,
patch_size=4,
num_channels=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
pretrained_window_sizes=[0, 0, 0, 0],
mlp_ratio=4.0,
qkv_bias=True,
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
drop_path_rate=0.1,
hidden_act="gelu",
use_absolute_embeddings=False,
initializer_range=0.02,
layer_norm_eps=1e-5,
encoder_stride=32,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.embed_dim = embed_dim
self.depths = depths
self.num_layers = len(depths)
self.num_heads = num_heads
self.window_size = window_size
self.pretrained_window_sizes = pretrained_window_sizes
self.mlp_ratio = mlp_ratio
self.qkv_bias = qkv_bias
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.drop_path_rate = drop_path_rate
self.hidden_act = hidden_act
self.use_absolute_embeddings = use_absolute_embeddings
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.encoder_stride = encoder_stride
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/swinv2/modeling_swinv2.py
|
# coding=utf-8
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Swinv2 Transformer model."""
import collections.abc
import math
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_swinv2 import Swinv2Config
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "Swinv2Config"
# Base docstring
_CHECKPOINT_FOR_DOC = "microsoft/swinv2-tiny-patch4-window8-256"
_EXPECTED_OUTPUT_SHAPE = [1, 64, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "microsoft/swinv2-tiny-patch4-window8-256"
_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/swinv2-tiny-patch4-window8-256",
# See all Swinv2 models at https://huggingface.co/models?filter=swinv2
]
# drop_path, Swinv2PatchEmbeddings, Swinv2PatchMerging and Swinv2DropPath are from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/swin_transformer_v2.py.
@dataclass
# Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->Swinv2
class Swinv2EncoderOutput(ModelOutput):
"""
Swinv2 encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
# Copied from transformers.models.swin.modeling_swin.SwinModelOutput with Swin->Swinv2
class Swinv2ModelOutput(ModelOutput):
"""
Swinv2 model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
# Copied from transformers.models.swin.modeling_swin.SwinMaskedImageModelingOutput with Swin->Swinv2
class Swinv2MaskedImageModelingOutput(ModelOutput):
"""
Swinv2 masked image model outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided):
Masked image modeling (MLM) loss.
reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Reconstructed pixel values.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: Optional[torch.FloatTensor] = None
reconstruction: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
@property
def logits(self):
warnings.warn(
"logits attribute is deprecated and will be removed in version 5 of Transformers."
" Please use the reconstruction attribute to retrieve the final output instead.",
FutureWarning,
)
return self.reconstruction
@dataclass
# Copied from transformers.models.swin.modeling_swin.SwinImageClassifierOutput with Swin->Swinv2
class Swinv2ImageClassifierOutput(ModelOutput):
"""
Swinv2 outputs for image classification.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
# Copied from transformers.models.swin.modeling_swin.window_partition
def window_partition(input_feature, window_size):
"""
Partitions the given input into windows.
"""
batch_size, height, width, num_channels = input_feature.shape
input_feature = input_feature.view(
batch_size, height // window_size, window_size, width // window_size, window_size, num_channels
)
windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels)
return windows
# Copied from transformers.models.swin.modeling_swin.window_reverse
def window_reverse(windows, window_size, height, width):
"""
Merges windows to produce higher resolution features.
"""
num_channels = windows.shape[-1]
windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels)
windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels)
return windows
# Copied from transformers.models.swin.modeling_swin.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.swin.modeling_swin.SwinDropPath with Swin->Swinv2
class Swinv2DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
# Copied from transformers.models.swin.modeling_swin.SwinEmbeddings with Swin->Swinv2
class Swinv2Embeddings(nn.Module):
"""
Construct the patch and position embeddings. Optionally, also the mask token.
"""
def __init__(self, config, use_mask_token=False):
super().__init__()
self.patch_embeddings = Swinv2PatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
self.patch_grid = self.patch_embeddings.grid_size
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None
if config.use_absolute_embeddings:
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim))
else:
self.position_embeddings = None
self.norm = nn.LayerNorm(config.embed_dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None
) -> Tuple[torch.Tensor]:
embeddings, output_dimensions = self.patch_embeddings(pixel_values)
embeddings = self.norm(embeddings)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
if self.position_embeddings is not None:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings, output_dimensions
# Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings with Swin->Swinv2
class Swinv2PatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.embed_dim
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def maybe_pad(self, pixel_values, height, width):
if width % self.patch_size[1] != 0:
pad_values = (0, self.patch_size[1] - width % self.patch_size[1])
pixel_values = nn.functional.pad(pixel_values, pad_values)
if height % self.patch_size[0] != 0:
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0])
pixel_values = nn.functional.pad(pixel_values, pad_values)
return pixel_values
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]:
_, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
# pad the input to be divisible by self.patch_size, if needed
pixel_values = self.maybe_pad(pixel_values, height, width)
embeddings = self.projection(pixel_values)
_, _, height, width = embeddings.shape
output_dimensions = (height, width)
embeddings = embeddings.flatten(2).transpose(1, 2)
return embeddings, output_dimensions
class Swinv2PatchMerging(nn.Module):
"""
Patch Merging Layer.
Args:
input_resolution (`Tuple[int]`):
Resolution of input feature.
dim (`int`):
Number of input channels.
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
Normalization layer class.
"""
def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(2 * dim)
def maybe_pad(self, input_feature, height, width):
should_pad = (height % 2 == 1) or (width % 2 == 1)
if should_pad:
pad_values = (0, 0, 0, width % 2, 0, height % 2)
input_feature = nn.functional.pad(input_feature, pad_values)
return input_feature
def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor:
height, width = input_dimensions
# `dim` is height * width
batch_size, dim, num_channels = input_feature.shape
input_feature = input_feature.view(batch_size, height, width, num_channels)
# pad input to be disible by width and height, if needed
input_feature = self.maybe_pad(input_feature, height, width)
# [batch_size, height/2, width/2, num_channels]
input_feature_0 = input_feature[:, 0::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_1 = input_feature[:, 1::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_2 = input_feature[:, 0::2, 1::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_3 = input_feature[:, 1::2, 1::2, :]
# [batch_size, height/2 * width/2, 4*num_channels]
input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1)
input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # [batch_size, height/2 * width/2, 4*C]
input_feature = self.reduction(input_feature)
input_feature = self.norm(input_feature)
return input_feature
class Swinv2SelfAttention(nn.Module):
def __init__(self, config, dim, num_heads, window_size, pretrained_window_size=[0, 0]):
super().__init__()
if dim % num_heads != 0:
raise ValueError(
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
)
self.num_attention_heads = num_heads
self.attention_head_size = int(dim / num_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.window_size = (
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size)
)
self.pretrained_window_size = pretrained_window_size
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
# mlp to generate continuous relative position bias
self.continuous_position_bias_mlp = nn.Sequential(
nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False)
)
# get relative_coords_table
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
relative_coords_table = (
torch.stack(meshgrid([relative_coords_h, relative_coords_w], indexing="ij"))
.permute(1, 2, 0)
.contiguous()
.unsqueeze(0)
) # [1, 2*window_height - 1, 2*window_width - 1, 2]
if pretrained_window_size[0] > 0:
relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1
relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1
else:
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1
relative_coords_table *= 8 # normalize to -8, 8
relative_coords_table = (
torch.sign(relative_coords_table) * torch.log2(torch.abs(relative_coords_table) + 1.0) / math.log2(8)
)
self.register_buffer("relative_coords_table", relative_coords_table, persistent=False)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index", relative_position_index, persistent=False)
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=False)
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
batch_size, dim, num_channels = hidden_states.shape
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# cosine attention
attention_scores = nn.functional.normalize(query_layer, dim=-1) @ nn.functional.normalize(
key_layer, dim=-1
).transpose(-2, -1)
logit_scale = torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp()
attention_scores = attention_scores * logit_scale
relative_position_bias_table = self.continuous_position_bias_mlp(self.relative_coords_table).view(
-1, self.num_attention_heads
)
# [window_height*window_width,window_height*window_width,num_attention_heads]
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
)
# [num_attention_heads,window_height*window_width,window_height*window_width]
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
attention_scores = attention_scores + relative_position_bias.unsqueeze(0)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in Swinv2Model forward() function)
mask_shape = attention_mask.shape[0]
attention_scores = attention_scores.view(
batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim
) + attention_mask.unsqueeze(1).unsqueeze(0)
attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0)
attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->Swinv2
class Swinv2SelfOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, dim)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class Swinv2Attention(nn.Module):
def __init__(self, config, dim, num_heads, window_size, pretrained_window_size=0):
super().__init__()
self.self = Swinv2SelfAttention(
config=config,
dim=dim,
num_heads=num_heads,
window_size=window_size,
pretrained_window_size=pretrained_window_size
if isinstance(pretrained_window_size, collections.abc.Iterable)
else (pretrained_window_size, pretrained_window_size),
)
self.output = Swinv2SelfOutput(config, dim)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.swin.modeling_swin.SwinIntermediate with Swin->Swinv2
class Swinv2Intermediate(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinOutput with Swin->Swinv2
class Swinv2Output(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class Swinv2Layer(nn.Module):
def __init__(self, config, dim, input_resolution, num_heads, shift_size=0, pretrained_window_size=0):
super().__init__()
self.input_resolution = input_resolution
window_size, shift_size = self._compute_window_shift(
(config.window_size, config.window_size), (shift_size, shift_size)
)
self.window_size = window_size[0]
self.shift_size = shift_size[0]
self.attention = Swinv2Attention(
config=config,
dim=dim,
num_heads=num_heads,
window_size=self.window_size,
pretrained_window_size=pretrained_window_size
if isinstance(pretrained_window_size, collections.abc.Iterable)
else (pretrained_window_size, pretrained_window_size),
)
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.drop_path = Swinv2DropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
self.intermediate = Swinv2Intermediate(config, dim)
self.output = Swinv2Output(config, dim)
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
def _compute_window_shift(self, target_window_size, target_shift_size) -> Tuple[Tuple[int, int], Tuple[int, int]]:
window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)]
shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)]
return window_size, shift_size
def get_attn_mask(self, height, width, dtype):
if self.shift_size > 0:
# calculate attention mask for shifted window multihead self attention
img_mask = torch.zeros((1, height, width, 1), dtype=dtype)
height_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
width_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
count = 0
for height_slice in height_slices:
for width_slice in width_slices:
img_mask[:, height_slice, width_slice, :] = count
count += 1
mask_windows = window_partition(img_mask, self.window_size)
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
return attn_mask
def maybe_pad(self, hidden_states, height, width):
pad_right = (self.window_size - width % self.window_size) % self.window_size
pad_bottom = (self.window_size - height % self.window_size) % self.window_size
pad_values = (0, 0, 0, pad_right, 0, pad_bottom)
hidden_states = nn.functional.pad(hidden_states, pad_values)
return hidden_states, pad_values
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
height, width = input_dimensions
batch_size, _, channels = hidden_states.size()
shortcut = hidden_states
# pad hidden_states to multiples of window size
hidden_states = hidden_states.view(batch_size, height, width, channels)
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
_, height_pad, width_pad, _ = hidden_states.shape
# cyclic shift
if self.shift_size > 0:
shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_hidden_states = hidden_states
# partition windows
hidden_states_windows = window_partition(shifted_hidden_states, self.window_size)
hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels)
attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype)
if attn_mask is not None:
attn_mask = attn_mask.to(hidden_states_windows.device)
attention_outputs = self.attention(
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions
)
attention_output = attention_outputs[0]
attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels)
shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad)
# reverse cyclic shift
if self.shift_size > 0:
attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
attention_windows = shifted_windows
was_padded = pad_values[3] > 0 or pad_values[5] > 0
if was_padded:
attention_windows = attention_windows[:, :height, :width, :].contiguous()
attention_windows = attention_windows.view(batch_size, height * width, channels)
hidden_states = self.layernorm_before(attention_windows)
hidden_states = shortcut + self.drop_path(hidden_states)
layer_output = self.intermediate(hidden_states)
layer_output = self.output(layer_output)
layer_output = hidden_states + self.drop_path(self.layernorm_after(layer_output))
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
return layer_outputs
class Swinv2Stage(nn.Module):
def __init__(
self, config, dim, input_resolution, depth, num_heads, drop_path, downsample, pretrained_window_size=0
):
super().__init__()
self.config = config
self.dim = dim
blocks = []
for i in range(depth):
block = Swinv2Layer(
config=config,
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
shift_size=0 if (i % 2 == 0) else config.window_size // 2,
pretrained_window_size=pretrained_window_size,
)
blocks.append(block)
self.blocks = nn.ModuleList(blocks)
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm)
else:
self.downsample = None
self.pointing = False
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
height, width = input_dimensions
for i, layer_module in enumerate(self.blocks):
layer_head_mask = head_mask[i] if head_mask is not None else None
layer_outputs = layer_module(
hidden_states,
input_dimensions,
layer_head_mask,
output_attentions,
)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = hidden_states
if self.downsample is not None:
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
output_dimensions = (height, width, height_downsampled, width_downsampled)
hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions)
else:
output_dimensions = (height, width, height, width)
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions)
if output_attentions:
stage_outputs += layer_outputs[1:]
return stage_outputs
class Swinv2Encoder(nn.Module):
def __init__(self, config, grid_size, pretrained_window_sizes=(0, 0, 0, 0)):
super().__init__()
self.num_layers = len(config.depths)
self.config = config
if self.config.pretrained_window_sizes is not None:
pretrained_window_sizes = config.pretrained_window_sizes
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
layers = []
for i_layer in range(self.num_layers):
stage = Swinv2Stage(
config=config,
dim=int(config.embed_dim * 2**i_layer),
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)),
depth=config.depths[i_layer],
num_heads=config.num_heads[i_layer],
drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
downsample=Swinv2PatchMerging if (i_layer < self.num_layers - 1) else None,
pretrained_window_size=pretrained_window_sizes[i_layer],
)
layers.append(stage)
self.layers = nn.ModuleList(layers)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
output_hidden_states_before_downsampling: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, Swinv2EncoderOutput]:
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
batch_size, _, hidden_size = hidden_states.shape
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
for i, layer_module in enumerate(self.layers):
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__, hidden_states, input_dimensions, layer_head_mask
)
else:
layer_outputs = layer_module(
hidden_states,
input_dimensions,
layer_head_mask,
output_attentions,
)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = layer_outputs[1]
output_dimensions = layer_outputs[2]
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
if output_hidden_states and output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states_before_downsampling.shape
# rearrange b (h w) c -> b c h w
# here we use the original (not downsampled) height and width
reshaped_hidden_state = hidden_states_before_downsampling.view(
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size
)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states_before_downsampling,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
elif output_hidden_states and not output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states.shape
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
if output_attentions:
all_self_attentions += layer_outputs[3:]
if not return_dict:
return tuple(
v
for v in [hidden_states, all_hidden_states, all_self_attentions, all_reshaped_hidden_states]
if v is not None
)
return Swinv2EncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
reshaped_hidden_states=all_reshaped_hidden_states,
)
# Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->Swinv2,swin->swinv2
class Swinv2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Swinv2Config
base_model_prefix = "swinv2"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
SWINV2_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`Swinv2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SWINV2_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Swinv2 Model transformer outputting raw hidden-states without any specific head on top.",
SWINV2_START_DOCSTRING,
)
# Copied from transformers.models.swin.modeling_swin.SwinModel with SWIN->SWINV2,Swin->Swinv2
class Swinv2Model(Swinv2PreTrainedModel):
def __init__(self, config, add_pooling_layer=True, use_mask_token=False):
super().__init__(config)
self.config = config
self.num_layers = len(config.depths)
self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1))
self.embeddings = Swinv2Embeddings(config, use_mask_token=use_mask_token)
self.encoder = Swinv2Encoder(config, self.embeddings.patch_grid)
self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps)
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(SWINV2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Swinv2ModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Swinv2ModelOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, len(self.config.depths))
embedding_output, input_dimensions = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
encoder_outputs = self.encoder(
embedding_output,
input_dimensions,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = None
if self.pooler is not None:
pooled_output = self.pooler(sequence_output.transpose(1, 2))
pooled_output = torch.flatten(pooled_output, 1)
if not return_dict:
output = (sequence_output, pooled_output) + encoder_outputs[1:]
return output
return Swinv2ModelOutput(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"""Swinv2 Model with a decoder on top for masked image modeling, as proposed in
[SimMIM](https://arxiv.org/abs/2111.09886).
<Tip>
Note that we provide a script to pre-train this model on custom data in our [examples
directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
</Tip>
""",
SWINV2_START_DOCSTRING,
)
# Copied from transformers.models.swin.modeling_swin.SwinForMaskedImageModeling with swin->swinv2, base-simmim-window6-192->tiny-patch4-window8-256,SWIN->SWINV2,Swin->Swinv2,192->256
class Swinv2ForMaskedImageModeling(Swinv2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.swinv2 = Swinv2Model(config, add_pooling_layer=False, use_mask_token=True)
num_features = int(config.embed_dim * 2 ** (config.num_layers - 1))
self.decoder = nn.Sequential(
nn.Conv2d(
in_channels=num_features, out_channels=config.encoder_stride**2 * config.num_channels, kernel_size=1
),
nn.PixelShuffle(config.encoder_stride),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SWINV2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Swinv2MaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Swinv2MaskedImageModelingOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, Swinv2ForMaskedImageModeling
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256")
>>> model = Swinv2ForMaskedImageModeling.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256")
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
>>> list(reconstructed_pixel_values.shape)
[1, 3, 256, 256]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.swinv2(
pixel_values,
bool_masked_pos=bool_masked_pos,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# Reshape to (batch_size, num_channels, height, width)
sequence_output = sequence_output.transpose(1, 2)
batch_size, num_channels, sequence_length = sequence_output.shape
height = width = math.floor(sequence_length**0.5)
sequence_output = sequence_output.reshape(batch_size, num_channels, height, width)
# Reconstruct pixel values
reconstructed_pixel_values = self.decoder(sequence_output)
masked_im_loss = None
if bool_masked_pos is not None:
size = self.config.image_size // self.config.patch_size
bool_masked_pos = bool_masked_pos.reshape(-1, size, size)
mask = (
bool_masked_pos.repeat_interleave(self.config.patch_size, 1)
.repeat_interleave(self.config.patch_size, 2)
.unsqueeze(1)
.contiguous()
)
reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none")
masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels
if not return_dict:
output = (reconstructed_pixel_values,) + outputs[2:]
return ((masked_im_loss,) + output) if masked_im_loss is not None else output
return Swinv2MaskedImageModelingOutput(
loss=masked_im_loss,
reconstruction=reconstructed_pixel_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"""
Swinv2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state
of the [CLS] token) e.g. for ImageNet.
""",
SWINV2_START_DOCSTRING,
)
# Copied from transformers.models.swin.modeling_swin.SwinForImageClassification with SWIN->SWINV2,Swin->Swinv2,swin->swinv2
class Swinv2ForImageClassification(Swinv2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.swinv2 = Swinv2Model(config)
# Classifier head
self.classifier = (
nn.Linear(self.swinv2.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SWINV2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=Swinv2ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Swinv2ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.swinv2(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return Swinv2ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"""
Swinv2 backbone, to be used with frameworks like DETR and MaskFormer.
""",
SWINV2_START_DOCSTRING,
)
class Swinv2Backbone(Swinv2PreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))]
self.embeddings = Swinv2Embeddings(config)
self.encoder = Swinv2Encoder(config, self.embeddings.patch_grid)
# initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(SWINV2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256")
>>> model = AutoBackbone.from_pretrained(
... "microsoft/swinv2-tiny-patch4-window8-256", out_features=["stage1", "stage2", "stage3", "stage4"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 2048, 7, 7]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
embedding_output, input_dimensions = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output,
input_dimensions,
head_mask=None,
output_attentions=output_attentions,
output_hidden_states=True,
output_hidden_states_before_downsampling=True,
return_dict=return_dict,
)
hidden_states = outputs.reshaped_hidden_states if return_dict else outputs[-1]
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
feature_maps += (hidden_state,)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (outputs[1],)
if output_attentions:
output += (outputs[2],)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/swinv2/__init__.py
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_swinv2"] = [
"SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Swinv2ForImageClassification",
"Swinv2ForMaskedImageModeling",
"Swinv2Model",
"Swinv2PreTrainedModel",
"Swinv2Backbone",
]
if TYPE_CHECKING:
from .configuration_swinv2 import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, Swinv2Config
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinv2 import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
Swinv2Backbone,
Swinv2ForImageClassification,
Swinv2ForMaskedImageModeling,
Swinv2Model,
Swinv2PreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/swinv2/convert_swinv2_timm_to_pytorch.py
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Swinv2 checkpoints from the timm library."""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, Swinv2Config, Swinv2ForImageClassification
def get_swinv2_config(swinv2_name):
config = Swinv2Config()
name_split = swinv2_name.split("_")
model_size = name_split[1]
if "to" in name_split[3]:
img_size = int(name_split[3][-3:])
else:
img_size = int(name_split[3])
if "to" in name_split[2]:
window_size = int(name_split[2][-2:])
else:
window_size = int(name_split[2][6:])
if model_size == "tiny":
embed_dim = 96
depths = (2, 2, 6, 2)
num_heads = (3, 6, 12, 24)
elif model_size == "small":
embed_dim = 96
depths = (2, 2, 18, 2)
num_heads = (3, 6, 12, 24)
elif model_size == "base":
embed_dim = 128
depths = (2, 2, 18, 2)
num_heads = (4, 8, 16, 32)
else:
embed_dim = 192
depths = (2, 2, 18, 2)
num_heads = (6, 12, 24, 48)
if "to" in swinv2_name:
config.pretrained_window_sizes = (12, 12, 12, 6)
if ("22k" in swinv2_name) and ("to" not in swinv2_name):
num_classes = 21841
repo_id = "huggingface/label-files"
filename = "imagenet-22k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
else:
num_classes = 1000
repo_id = "huggingface/label-files"
filename = "imagenet-1k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
config.image_size = img_size
config.num_labels = num_classes
config.embed_dim = embed_dim
config.depths = depths
config.num_heads = num_heads
config.window_size = window_size
return config
def rename_key(name):
if "patch_embed.proj" in name:
name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection")
if "patch_embed.norm" in name:
name = name.replace("patch_embed.norm", "embeddings.norm")
if "layers" in name:
name = "encoder." + name
if "attn.proj" in name:
name = name.replace("attn.proj", "attention.output.dense")
if "attn" in name:
name = name.replace("attn", "attention.self")
if "norm1" in name:
name = name.replace("norm1", "layernorm_before")
if "norm2" in name:
name = name.replace("norm2", "layernorm_after")
if "mlp.fc1" in name:
name = name.replace("mlp.fc1", "intermediate.dense")
if "mlp.fc2" in name:
name = name.replace("mlp.fc2", "output.dense")
if "q_bias" in name:
name = name.replace("q_bias", "query.bias")
if "k_bias" in name:
name = name.replace("k_bias", "key.bias")
if "v_bias" in name:
name = name.replace("v_bias", "value.bias")
if "cpb_mlp" in name:
name = name.replace("cpb_mlp", "continuous_position_bias_mlp")
if name == "norm.weight":
name = "layernorm.weight"
if name == "norm.bias":
name = "layernorm.bias"
if "head" in name:
name = name.replace("head", "classifier")
else:
name = "swinv2." + name
return name
def convert_state_dict(orig_state_dict, model):
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if "mask" in key:
continue
elif "qkv" in key:
key_split = key.split(".")
layer_num = int(key_split[1])
block_num = int(key_split[3])
dim = model.swinv2.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
orig_state_dict[
f"swinv2.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.weight"
] = val[:dim, :]
orig_state_dict[
f"swinv2.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.weight"
] = val[dim : dim * 2, :]
orig_state_dict[
f"swinv2.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.weight"
] = val[-dim:, :]
else:
orig_state_dict[
f"swinv2.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.bias"
] = val[:dim]
orig_state_dict[f"swinv2.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.bias"] = val[
dim : dim * 2
]
orig_state_dict[
f"swinv2.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.bias"
] = val[-dim:]
else:
orig_state_dict[rename_key(key)] = val
return orig_state_dict
def convert_swinv2_checkpoint(swinv2_name, pytorch_dump_folder_path):
timm_model = timm.create_model(swinv2_name, pretrained=True)
timm_model.eval()
config = get_swinv2_config(swinv2_name)
model = Swinv2ForImageClassification(config)
model.eval()
new_state_dict = convert_state_dict(timm_model.state_dict(), model)
model.load_state_dict(new_state_dict)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image_processor = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinv2_name.replace("_", "-")))
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(images=image, return_tensors="pt")
timm_outs = timm_model(inputs["pixel_values"])
hf_outs = model(**inputs).logits
assert torch.allclose(timm_outs, hf_outs, atol=1e-3)
print(f"Saving model {swinv2_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(pytorch_dump_folder_path)
model.push_to_hub(
repo_path_or_name=Path(pytorch_dump_folder_path, swinv2_name),
organization="nandwalritik",
commit_message="Add model",
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--swinv2_name",
default="swinv2_tiny_patch4_window8_256",
type=str,
help="Name of the Swinv2 timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
args = parser.parse_args()
convert_swinv2_checkpoint(args.swinv2_name, args.pytorch_dump_folder_path)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/umt5/configuration_umt5.py
|
# coding=utf-8
# Copyright 2023, The T5 Authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" UMT5 model configuration"""
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeq2SeqConfigWithPast
from ...utils import logging
logger = logging.get_logger(__name__)
UMT5_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class UMT5Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`UMT5Model`]. It is used to instantiate a UMT5
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the UMT5
[google/umt5-small](https://huggingface.co/google/umt5-small) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Arguments:
vocab_size (`int`, *optional*, defaults to 250112):
Vocabulary size of the UMT5 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`UMT5Model`] or [`TFUMT5Model`].
d_model (`int`, *optional*, defaults to 512):
Size of the encoder layers and the pooler layer.
d_kv (`int`, *optional*, defaults to 64):
Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model //
num_heads`.
d_ff (`int`, *optional*, defaults to 1024):
Size of the intermediate feed forward layer in each `UMT5Block`.
num_layers (`int`, *optional*, defaults to 8):
Number of hidden layers in the Transformer encoder.
num_decoder_layers (`int`, *optional*):
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
num_heads (`int`, *optional*, defaults to 6):
Number of attention heads for each attention layer in the Transformer encoder.
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
The number of buckets to use for each attention layer.
relative_attention_max_distance (`int`, *optional*, defaults to 128):
The maximum distance of the longer sequences for the bucket separation.
dropout_rate (`float`, *optional*, defaults to 0.1):
The ratio for all dropout layers.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
The epsilon used by the layer normalization layers.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`):
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
"""
model_type = "umt5"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=250112,
d_model=512,
d_kv=64,
d_ff=1024,
num_layers=8,
num_decoder_layers=None,
num_heads=6,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
initializer_factor=1.0,
feed_forward_proj="gated-gelu",
is_encoder_decoder=True,
use_cache=True,
tokenizer_class="T5Tokenizer",
tie_word_embeddings=True,
pad_token_id=0,
eos_token_id=1,
decoder_start_token_id=0,
classifier_dropout=0.0,
**kwargs,
):
super().__init__(
is_encoder_decoder=is_encoder_decoder,
tokenizer_class=tokenizer_class,
tie_word_embeddings=tie_word_embeddings,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.d_model = d_model
self.d_kv = d_kv
self.d_ff = d_ff
self.num_layers = num_layers
self.num_decoder_layers = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
self.num_heads = num_heads
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.dropout_rate = dropout_rate
self.classifier_dropout = classifier_dropout
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor
self.feed_forward_proj = feed_forward_proj
self.use_cache = use_cache
act_info = self.feed_forward_proj.split("-")
self.dense_act_fn = act_info[-1]
self.is_gated_act = act_info[0] == "gated"
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
raise ValueError(
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. "
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'"
)
if feed_forward_proj == "gated-gelu":
self.dense_act_fn = "gelu_new"
@property
def hidden_size(self):
return self.d_model
@property
def num_attention_heads(self):
return self.num_heads
@property
def num_hidden_layers(self):
return self.num_layers
class UMT5OnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = {
"input_ids": {0: "batch", 1: "encoder_sequence"},
"attention_mask": {0: "batch", 1: "encoder_sequence"},
}
if self.use_past:
common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence"
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def default_onnx_opset(self) -> int:
return 13
@property
def atol_for_validation(self) -> float:
return 5e-4
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/umt5/__init__.py
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {"configuration_umt5": ["UMT5Config", "UMT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_umt5"] = [
"UMT5EncoderModel",
"UMT5ForConditionalGeneration",
"UMT5ForQuestionAnswering",
"UMT5ForSequenceClassification",
"UMT5Model",
"UMT5PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_umt5 import UMT5Config, UMT5OnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_umt5 import (
UMT5EncoderModel,
UMT5ForConditionalGeneration,
UMT5ForQuestionAnswering,
UMT5ForSequenceClassification,
UMT5Model,
UMT5PreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/umt5/convert_umt5_checkpoint_to_pytorch.py
|
# coding=utf-8
# Copyright 2023 Google LLC and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Convert T5X checkpoint to PyTorch
Steps:
- Install gsutil according to https://cloud.google.com/storage/docs/gsutil_install
- Get a T5X checkpoint at https://github.com/google-research/t5x/blob/main/docs/models.md#t5-11-checkpoints Example:
`gsutil -m cp -r gs://t5-data/pretrained_models/t5x/t5_1_1_small $HOME/`
- Create or download a corresponding config for the downloaded model. E.g. for T5 v1.1 small, you can use
https://huggingface.co/google/t5-v1_1-small/blob/main/config.json
- Convert:
```
python3 convert_t5x_checkpoint_to_pytorch.py --t5x_checkpoint_path=$HOME/t5_1_1_small --config_file=config.json\
--pytorch_dump_path=$HOME/t5_1_1_small_pt
```
"""
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from t5x import checkpoints
from transformers import MT5Config, UMT5EncoderModel, UMT5ForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def t5x_relpos_bias_lookup(params, i, prefix):
"""Returns the Relative Position Bias parameters of a layer. Does not transpose."""
return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :]
def t5x_attention_lookup(params, i, prefix, layer_name="attention"):
"""Returns the KOQV parameters of (self-)attention. Does not transpose."""
k_tmp = k_tmp = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :])
k = k_tmp.reshape(k_tmp.shape[0], k_tmp.shape[1] * k_tmp.shape[2])
o_tmp = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :])
o = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1], o_tmp.shape[2])
q_tmp = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :])
q = q_tmp.reshape(q_tmp.shape[0], q_tmp.shape[1] * q_tmp.shape[2])
v_tmp = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :])
v = v_tmp.reshape(v_tmp.shape[0], v_tmp.shape[1] * v_tmp.shape[2])
return k, o, q, v
def t5x_mlp_lookup(params, i, prefix, split_mlp_wi=False):
"""Returns the MLP parameters of a layer. Does not transpose."""
if split_mlp_wi:
wi_0 = params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :]
wi_1 = params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :]
wi = (wi_0, wi_1)
else:
wi = params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :]
wo = params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :]
return wi, wo
def t5x_layer_norm_lookup(params, i, prefix, layer_name):
"""Returns the layer norm param of a layer."""
return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i]
def convert_t5x_to_pytorch(
variables: dict, *, num_layers: int, is_encoder_only: bool, scalable_attention: bool = False
):
"""Converts the parameters from T5X-Flax to Transformers-PyTorch."""
old = traverse_util.flatten_dict(variables["target"])
old = {"/".join(k): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
split_mlp_wi = "encoder/encoder/mlp/wi_0/kernel" in old
print("Split MLP:", split_mlp_wi)
new = collections.OrderedDict()
# Shared embeddings.
new["shared.weight"] = old["token_embedder/embedding"]
# Encoder.
for i in range(num_layers):
# Block i, layer 0 (Self Attention).
layer_norm = t5x_layer_norm_lookup(old, i, "encoder", "pre_attention_layer_norm")
k, o, q, v = t5x_attention_lookup(old, i, "encoder", "attention")
new[f"encoder.block.{i}.layer.0.layer_norm.weight"] = layer_norm
new[f"encoder.block.{i}.layer.0.SelfAttention.k.weight"] = k.T
new[f"encoder.block.{i}.layer.0.SelfAttention.o.weight"] = o.T
new[f"encoder.block.{i}.layer.0.SelfAttention.q.weight"] = q.T
new[f"encoder.block.{i}.layer.0.SelfAttention.v.weight"] = v.T
# Block i, layer 1 (MLP).
layer_norm = t5x_layer_norm_lookup(old, i, "encoder", "pre_mlp_layer_norm")
wi, wo = t5x_mlp_lookup(old, i, "encoder", split_mlp_wi)
new[f"encoder.block.{i}.layer.1.layer_norm.weight"] = layer_norm
if split_mlp_wi:
new[f"encoder.block.{i}.layer.1.DenseReluDense.wi_0.weight"] = wi[0].T
new[f"encoder.block.{i}.layer.1.DenseReluDense.wi_1.weight"] = wi[1].T
else:
new[f"encoder.block.{i}.layer.1.DenseReluDense.wi.weight"] = wi.T
new[f"encoder.block.{i}.layer.1.DenseReluDense.wo.weight"] = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
new[f"encoder.block.{i}.layer.0.SelfAttention.relative_attention_bias.weight"] = t5x_relpos_bias_lookup(
old, i, "encoder"
).T
new["encoder.final_layer_norm.weight"] = old["encoder/encoder_norm/scale"]
if not scalable_attention:
new["encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = t5x_relpos_bias_lookup(
old, 0, "encoder"
).T
new["decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = t5x_relpos_bias_lookup(
old, 0, "decoder"
).T
if not is_encoder_only:
# Decoder.
for i in range(num_layers):
# Block i, layer 0 (Self Attention).
layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_self_attention_layer_norm")
k, o, q, v = t5x_attention_lookup(old, i, "decoder", "self_attention")
new[f"decoder.block.{i}.layer.0.layer_norm.weight"] = layer_norm
new[f"decoder.block.{i}.layer.0.SelfAttention.k.weight"] = k.T
new[f"decoder.block.{i}.layer.0.SelfAttention.o.weight"] = o.T
new[f"decoder.block.{i}.layer.0.SelfAttention.q.weight"] = q.T
new[f"decoder.block.{i}.layer.0.SelfAttention.v.weight"] = v.T
# Block i, layer 1 (Cross Attention).
layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_cross_attention_layer_norm")
k, o, q, v = t5x_attention_lookup(old, i, "decoder", "encoder_decoder_attention")
new[f"decoder.block.{i}.layer.1.layer_norm.weight"] = layer_norm
new[f"decoder.block.{i}.layer.1.EncDecAttention.k.weight"] = k.T
new[f"decoder.block.{i}.layer.1.EncDecAttention.o.weight"] = o.T
new[f"decoder.block.{i}.layer.1.EncDecAttention.q.weight"] = q.T
new[f"decoder.block.{i}.layer.1.EncDecAttention.v.weight"] = v.T
# Block i, layer 2 (MLP).
layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_mlp_layer_norm")
wi, wo = t5x_mlp_lookup(old, i, "decoder", split_mlp_wi)
new[f"decoder.block.{i}.layer.2.layer_norm.weight"] = layer_norm
if split_mlp_wi:
new[f"decoder.block.{i}.layer.2.DenseReluDense.wi_0.weight"] = wi[0].T
new[f"decoder.block.{i}.layer.2.DenseReluDense.wi_1.weight"] = wi[1].T
else:
new[f"encoder.block.{i}.layer.2.DenseReluDense.wi.weight"] = wi.T
new[f"decoder.block.{i}.layer.2.DenseReluDense.wo.weight"] = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
new[
f"decoder.block.{i}.layer.0.SelfAttention.relative_attention_bias.weight"
] = t5x_relpos_bias_lookup(old, i, "decoder").T
new["decoder.final_layer_norm.weight"] = old["decoder/decoder_norm/scale"]
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
new["lm_head.weight"] = old["decoder/logits_dense/kernel"].T
return new
def make_state_dict(converted_params, is_encoder_only: bool):
"""Prepares a state dict for the PyTorch model."""
# Make a state dict with torch tensors.
state_dict = collections.OrderedDict([(k, torch.from_numpy(v.copy())) for (k, v) in converted_params.items()])
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
state_dict["encoder.embed_tokens.weight"] = state_dict["shared.weight"]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
state_dict["decoder.embed_tokens.weight"] = state_dict["shared.weight"]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("Using shared word embeddings as lm_head.")
state_dict["lm_head.weight"] = state_dict["shared.weight"]
return state_dict
def load_t5x_weights_in_t5(model, config, t5x_checkpoint_path, is_encoder_only, scalable_attention):
"""Replaces the params in model witht the T5X converted params."""
variables = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path)
converted = convert_t5x_to_pytorch(
variables, num_layers=config.num_layers, is_encoder_only=is_encoder_only, scalable_attention=scalable_attention
)
state_dict = make_state_dict(converted, is_encoder_only)
model.load_state_dict(state_dict, strict=True)
def convert_t5x_checkpoint_to_pytorch(
t5x_checkpoint_path,
config_file,
pytorch_dump_path,
is_encoder_only: bool = False,
scalable_attention: bool = False,
):
"""Loads the config and model, converts the T5X checkpoint, and saves a PyTorch checkpoint."""
# Initialise PyTorch model
config = MT5Config.from_json_file(config_file)
print(f"Building PyTorch model from configuration: {config}")
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
model = UMT5EncoderModel(config)
else:
model = UMT5ForConditionalGeneration(config)
# Load weights from tf checkpoint
load_t5x_weights_in_t5(model, config, t5x_checkpoint_path, is_encoder_only, scalable_attention)
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}")
model.save_pretrained(pytorch_dump_path)
# Verify that we can load the checkpoint.
model.from_pretrained(pytorch_dump_path)
print("Done")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.")
# Required parameters
parser.add_argument(
"--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False
)
parser.add_argument(
"--scalable_attention",
action="store_true",
help="Whether the model uses scaled attention (umt5 model)",
default=False,
)
args = parser.parse_args()
convert_t5x_checkpoint_to_pytorch(
args.t5x_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/umt5/modeling_umt5.py
|
# coding=utf-8
# Copyright 2023 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch UMT5 model."""
import copy
import math
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
DUMMY_INPUTS,
DUMMY_MASK,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_fx_proxy,
logging,
replace_return_docstrings,
)
from .configuration_umt5 import UMT5Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "UMT5Config"
_CHECKPOINT_FOR_DOC = "google/umt5-small"
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->UMT5
class UMT5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the UMT5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# UMT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->UMT5
class UMT5DenseActDense(nn.Module):
def __init__(self, config: UMT5Config):
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->UMT5
class UMT5DenseGatedActDense(nn.Module):
def __init__(self, config: UMT5Config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
# See https://github.com/huggingface/transformers/issues/20287
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->UMT5
class UMT5LayerFF(nn.Module):
def __init__(self, config: UMT5Config):
super().__init__()
if config.is_gated_act:
self.DenseReluDense = UMT5DenseGatedActDense(config)
else:
self.DenseReluDense = UMT5DenseActDense(config)
self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
class UMT5Attention(nn.Module):
"""
T5's attention using relative_attention_bias.
"""
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
def _shape(self, projection: torch.Tensor) -> torch.Tensor:
new_projection_shape = projection.size()[:-1] + (self.n_heads, self.key_value_proj_dim)
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
return new_projection
def _relative_position_bucket(self, relative_position):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
num_buckets = self.relative_attention_num_buckets
max_distance = self.relative_attention_max_distance
if not self.is_decoder:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
log_ratio = torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact)
log_ratio = log_ratio * (num_buckets - max_exact)
relative_position_if_large = max_exact + log_ratio.to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(relative_position)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
):
is_cross_attention = encoder_hidden_states is not None
batch_size, seq_length = hidden_states.shape[:2]
# use encoder_hidden_states if cross attention
current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
# checking that the `sequence_length` of the `past_key_value` is the same as the he provided
# `encoder_hidden_states` to support prefix tuning
if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
else:
key_states = self._shape(self.k(current_states))
value_states = self._shape(self.v(current_states))
if past_key_value is not None and not is_cross_attention:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
query_states = self._shape(self.q(hidden_states))
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
# compute positional bias
if self.has_relative_attention_bias:
query_length = seq_length
if past_key_value is not None:
query_length += past_key_value[0].shape[2]
position_bias = self.compute_bias(query_length, key_states.size(2), device=attention_scores.device)
else:
position_bias = torch.zeros(
(1, self.n_heads, seq_length, key_states.size(2)),
device=attention_scores.device,
dtype=attention_scores.dtype,
requires_grad=self.training,
)
if past_key_value is not None:
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
if attention_mask is not None:
position_bias = position_bias + attention_mask # (batch_size, n_heads, seq_length, key_length)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
attention_scores += position_bias
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).type_as(attention_scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
# attn_output = torch.bmm(attn_probs, value_states) ?
context_states = torch.matmul(attn_weights, value_states)
# attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) ?
context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1)
attn_output = self.o(context_states)
return attn_output, attn_weights, past_key_value
class UMT5LayerSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.SelfAttention = UMT5Attention(config, has_relative_attention_bias=True)
self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
layer_head_mask=None,
past_key_value=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class UMT5LayerCrossAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.EncDecAttention = UMT5Attention(config, has_relative_attention_bias=False)
self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
layer_head_mask=None,
past_key_value=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
class UMT5Block(nn.Module):
def __init__(self, config):
super().__init__()
self.is_decoder = config.is_decoder
self.layer = nn.ModuleList()
self.layer.append(UMT5LayerSelfAttention(config))
if self.is_decoder:
self.layer.append(UMT5LayerCrossAttention(config))
self.layer.append(UMT5LayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
):
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
hidden_states, self_attn_weights, present_key_value = self.layer[0](
hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
past_key_value=self_attn_past_key_value,
)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
max_dtype = torch.finfo(hidden_states.dtype).max
clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
if do_cross_attention:
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.layer[1](
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
max_dtype = torch.finfo(hidden_states.dtype).max
clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
present_key_value += cross_attn_present_key_value
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
max_dtype = torch.finfo(hidden_states.dtype).max
clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (
hidden_states,
present_key_value,
)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
# Copied from transformers.models.t5.modeling_t5.T5ClassificationHead with T5->UMT5
class UMT5ClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config: UMT5Config):
super().__init__()
self.dense = nn.Linear(config.d_model, config.d_model)
self.dropout = nn.Dropout(p=config.classifier_dropout)
self.out_proj = nn.Linear(config.d_model, config.num_labels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class UMT5PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = UMT5Config
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["UMT5Block"]
_keep_in_fp32_modules = ["wo"]
@property
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {
"decoder_input_ids": input_ids,
"input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return dummy_inputs
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, UMT5LayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(
module,
(
UMT5Model,
UMT5ForConditionalGeneration,
UMT5EncoderModel,
UMT5ForQuestionAnswering,
),
):
# Mesh TensorFlow embeddings initialization
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "qa_outputs"):
module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
module.qa_outputs.bias.data.zero_()
elif isinstance(module, UMT5ClassificationHead):
module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.dense, "bias") and module.dense.bias is not None:
module.dense.bias.data.zero_()
module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None:
module.out_proj.bias.data.zero_()
elif isinstance(module, UMT5DenseActDense):
# Mesh TensorFlow FF initialization
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi, "bias") and module.wi.bias is not None:
module.wi.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, UMT5DenseGatedActDense):
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, UMT5Attention):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
d_model = self.config.d_model
key_value_proj_dim = self.config.d_kv
n_heads = self.config.num_heads
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
if decoder_start_token_id is None:
raise ValueError(
"self.model.config.decoder_start_token_id has to be defined. In UMT5 it is usually set to the pad_token_id. "
"See UMT5 docs for more information."
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class UMT5Stack(UMT5PreTrainedModel):
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.block = nn.ModuleList([UMT5Block(config) for i in range(config.num_layers)])
self.final_layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
if inputs_embeds is None:
if self.embed_tokens is None:
raise ValueError("You have to initialize the model with valid token embeddings")
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
# required mask seq length can be calculated via length of past
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
if use_cache is True:
if not self.is_decoder:
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
if attention_mask is None:
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
encoder_seq_length = encoder_hidden_states.shape[1]
encoder_attention_mask = torch.ones(
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
)
# initialize past_key_values with `None` if past does not exist
if past_key_values is None:
past_key_values = [None] * len(self.block)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
present_key_value_states = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.is_decoder else None
hidden_states = self.dropout(inputs_embeds)
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.forward,
hidden_states,
extended_attention_mask,
encoder_hidden_states,
encoder_extended_attention_mask,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
use_cache,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=extended_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
present_key_value_states += (layer_outputs[1],)
if output_attentions:
all_attentions += (layer_outputs[2],)
if self.is_decoder:
all_cross_attentions += (layer_outputs[3],)
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
UMT5_START_DOCSTRING = r"""
The UMT5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a
text-to-text denoising generative setting.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`UMT5Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
UMT5_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [UMT5 Training](./umt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
UMT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [UMT5
Training](./umt5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
UMT5_ENCODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
To know more on how to prepare `input_ids` for pretraining take a look a [UMT5 Training](./umt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare UMT5 Model transformer outputting raw hidden-states without any specific head on top.",
UMT5_START_DOCSTRING,
)
class UMT5Model(UMT5PreTrainedModel):
r"""
Examples:
```python
>>> from transformers import UMT5Model, AutoTokenizer
>>> model = UMT5Model.from_pretrained("google/umt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> noisy_text = "UN Offizier sagt, dass weiter <extra_id_0> werden muss in Syrien."
>>> label = "<extra_id_0> verhandelt"
>>> inputs = tokenizer(inputs, return_tensors="pt")
>>> labels = tokenizer(label=label, return_tensors="pt")
>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"])
>>> hidden_states = outputs.last_hidden_state
```"""
model_type = "uumt5"
config_class = UMT5Config
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = UMT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = UMT5Stack(decoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.t5.modeling_t5.T5Model.get_input_embeddings
def get_input_embeddings(self):
return self.shared
# Copied from transformers.models.t5.modeling_t5.T5Model.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
# Copied from transformers.models.t5.modeling_t5.T5Model._tie_weights
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
# Copied from transformers.models.t5.modeling_t5.T5Model.get_encoder
def get_encoder(self):
return self.encoder
# Copied from transformers.models.t5.modeling_t5.T5Model.get_decoder
def get_decoder(self):
return self.decoder
# Copied from transformers.models.t5.modeling_t5.T5Model._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(UMT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, UMT5Model
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> model = UMT5Model.from_pretrained("google/umt5-small")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for UMT5Model.
>>> # This is not needed for torch's UMT5ForConditionalGeneration as it does this internally using labels arg.
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings("""UMT5 Model with a `language modeling` head on top.""", UMT5_START_DOCSTRING)
class UMT5ForConditionalGeneration(UMT5PreTrainedModel):
r"""
Examples:
```python
>>> from transformers import UMT5ForConditionalGeneration, AutoTokenizer
>>> model = UMT5ForConditionalGeneration.from_pretrained("google/umt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, text_target=summary, return_tensors="pt")
>>> outputs = model(**inputs)
>>> loss = outputs.loss
```"""
model_type = "umt5"
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = UMT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = UMT5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_input_embeddings
def get_input_embeddings(self):
return self.shared
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration._tie_weights
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_output_embeddings
def get_output_embeddings(self):
return self.lm_head
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_encoder
def get_encoder(self):
return self.encoder
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_decoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(UMT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, UMT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> model = UMT5ForConditionalGeneration.from_pretrained("google/umt5-small")
>>> # training
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
>>> # inference
>>> input_ids = tokenizer("Studies have shown that <extra_id_0> good for you", return_tensors="pt").input_ids
>>> outputs = model.generate(input_ids)
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
# move labels to correct device to enable PP
labels = labels.to(lm_logits.device)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.prepare_inputs_for_generation
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
decoder_attention_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
return {
"decoder_input_ids": input_ids,
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"decoder_attention_mask": decoder_attention_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,
}
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.prepare_decoder_input_ids_from_labels
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@add_start_docstrings(
"The bare UMT5 Model transformer outputting encoder's raw hidden-states without any specific head on top.",
UMT5_START_DOCSTRING,
)
class UMT5EncoderModel(UMT5PreTrainedModel):
r"""
Examples:
```python
>>> from transformers import UMT5EncoderModel, AutoTokenizer
>>> model = UMT5EncoderModel.from_pretrained("google/umt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> input_ids = tokenizer(article, return_tensors="pt").input_ids
>>> outputs = model(input_ids)
>>> hidden_state = outputs.last_hidden_state
```"""
model_type = "umt5"
# config_class = UMT5Config
_tied_weights_keys = ["encoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = UMT5Stack(encoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.get_input_embeddings
def get_input_embeddings(self):
return self.shared
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel._tie_weights
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.get_encoder
def get_encoder(self):
return self.encoder
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)
@add_start_docstrings_to_model_forward(UMT5_ENCODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.forward with T5->UMT5, t5-small->google/umt5-small
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, UMT5EncoderModel
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> model = UMT5EncoderModel.from_pretrained("google/umt5-small")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return encoder_outputs
@add_start_docstrings(
"""
UMT5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
UMT5_START_DOCSTRING,
)
class UMT5ForSequenceClassification(UMT5PreTrainedModel):
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
# Copied from transformers.models.t5.modeling_t5.T5ForSequenceClassification.__init__ with T5->UMT5
def __init__(self, config: UMT5Config):
super().__init__(config)
self.transformer = UMT5Model(config)
self.classification_head = UMT5ClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
self.model_parallel = False
@add_start_docstrings_to_model_forward(UMT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
# Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates
# decoder_input_ids from input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = self._shift_right(input_ids)
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
batch_size, _, hidden_size = sequence_output.shape
sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
UMT5 Model with a span classification head on top for extractive question-answering tasks like SQuAD (linear layers
on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
UMT5_START_DOCSTRING,
)
class UMT5ForQuestionAnswering(UMT5PreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = UMT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = UMT5Stack(decoder_config, self.shared)
self.num_labels = config.num_labels
self.qa_outputs = nn.Linear(config.d_model, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_input_embeddings
def get_input_embeddings(self):
return self.shared
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering._tie_weights
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_encoder
def get_encoder(self):
return self.encoder
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_decoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(UMT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
if start_positions is not None and end_positions is not None:
use_cache = False
# Copied from models.bart.modeling_bart.BartModel.forward
# different to other models, T5 automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = self._shift_right(input_ids)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=None,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1).to(start_logits.device)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1).to(end_logits.device)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs
return ((total_loss,) + output) if total_loss is not None else output
return Seq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/patchtsmixer/modeling_patchtsmixer.py
|
# coding=utf-8
# Copyright 2023 IBM and HuggingFace Inc. team. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch PatchTSMixer model."""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput
from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_patchtsmixer import PatchTSMixerConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "PatchTSMixerConfig"
PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"ibm/patchtsmixer-etth1-pretrain",
# See all PatchTSMixer models at https://huggingface.co/models?filter=patchtsmixer
]
PATCHTSMIXER_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`PatchTSMixerConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
mask_input (`bool`, *optional*, defaults to `False`):
If True, Masking will be enabled. False otherwise.
"""
PATCHTSMIXER_INPUTS_DOCSTRING = r"""
Args:
past_values (`torch.FloatTensor` of shape `(batch_size, seq_length, num_input_channels)`):
Context values of the time series. For a pretraining task, this denotes the input time series to predict
the masked portion. For a forecasting task, this denotes the history/past time series values. Similarly,
for classification or regression tasks, it denotes the appropriate context values of the time series.
For univariate time series, `num_input_channels` dimension should be 1. For multivariate time series, it is
greater than 1.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class PatchTSMixerGatedAttention(nn.Module):
"""
Module that applies gated attention to input data.
Args:
in_size (`int`): The input size.
out_size (`int`): The output size.
"""
def __init__(self, in_size: int, out_size: int):
super().__init__()
self.attn_layer = nn.Linear(in_size, out_size)
self.attn_softmax = nn.Softmax(dim=-1)
def forward(self, inputs):
attn_weight = self.attn_softmax(self.attn_layer(inputs))
inputs = inputs * attn_weight
return inputs
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTBatchNorm with PatchTST->PatchTSMixer
class PatchTSMixerBatchNorm(nn.Module):
"""
Compute batch normalization over the sequence length (time) dimension.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.batchnorm = nn.BatchNorm1d(config.d_model, eps=config.norm_eps)
def forward(self, inputs: torch.Tensor):
"""
Parameters:
inputs (`torch.Tensor` of shape `(batch_size, sequence_length, d_model)`):
input for Batch norm calculation
Returns:
`torch.Tensor` of shape `(batch_size, sequence_length, d_model)`
"""
output = inputs.transpose(1, 2) # output: (batch_size, d_model, sequence_length)
output = self.batchnorm(output)
return output.transpose(1, 2)
class PatchTSMixerPositionalEncoding(nn.Module):
"""
Class for positional encoding
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
# positional encoding: [num_patches x d_model]
if config.use_positional_encoding:
self.position_enc = self._init_pe(config)
else:
self.position_enc = nn.Parameter(torch.zeros(config.num_patches, config.d_model))
@staticmethod
def _init_pe(config: PatchTSMixerConfig) -> nn.Parameter:
# Positional encoding
if config.positional_encoding_type == "random":
position_enc = nn.Parameter(torch.randn(config.num_patches, config.d_model), requires_grad=True)
elif config.positional_encoding_type == "sincos":
position_enc = torch.zeros(config.num_patches, config.d_model)
position = torch.arange(0, config.num_patches).unsqueeze(1)
div_term = torch.exp(torch.arange(0, config.d_model, 2) * -(math.log(10000.0) / config.d_model))
position_enc[:, 0::2] = torch.sin(position * div_term)
position_enc[:, 1::2] = torch.cos(position * div_term)
position_enc = position_enc - position_enc.mean()
position_enc = position_enc / (position_enc.std() * 10)
position_enc = nn.Parameter(position_enc, requires_grad=False)
else:
raise ValueError(
f"{config.positional_encoding_type} is not a valid positional encoder. Available types are 'random' and 'sincos'."
)
return position_enc
def forward(self, patch_input: torch.Tensor):
# hidden_state: [bs x num_channels x num_patches x d_model]
hidden_state = patch_input + self.position_enc
return hidden_state
class PatchTSMixerNormLayer(nn.Module):
"""Normalization block
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.norm_mlp = config.norm_mlp
if "batch" in config.norm_mlp.lower():
self.norm = PatchTSMixerBatchNorm(config)
else:
self.norm = nn.LayerNorm(config.d_model, eps=config.norm_eps)
def forward(self, inputs: torch.Tensor):
"""
Args:
inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`):
Input to the normalization layer.
Returns:
`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`
"""
if "batch" in self.norm_mlp.lower():
# reshape the data
inputs_reshaped = torch.reshape(
inputs,
(
inputs.shape[0] * inputs.shape[1],
inputs.shape[2],
inputs.shape[3],
),
) # inputs_reshaped: [batch_size*num_channels, num_patches, d_model]
# inputs_reshaped: [batch_size*num_channels, num_patches, d_model]
inputs_reshaped = self.norm(inputs_reshaped)
# put back data to the original shape
inputs = torch.reshape(inputs_reshaped, inputs.shape)
else:
inputs = self.norm(inputs)
return inputs
class PatchTSMixerMLP(nn.Module):
def __init__(self, in_features, out_features, config):
super().__init__()
num_hidden = in_features * config.expansion_factor
self.fc1 = nn.Linear(in_features, num_hidden)
self.dropout1 = nn.Dropout(config.dropout)
self.fc2 = nn.Linear(num_hidden, out_features)
self.dropout2 = nn.Dropout(config.dropout)
def forward(self, inputs: torch.Tensor):
"""
Args:
inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`):
Input to the MLP layer.
Returns:
`torch.Tensor` of the same shape as `inputs`
"""
inputs = self.dropout1(nn.functional.gelu(self.fc1(inputs)))
inputs = self.fc2(inputs)
inputs = self.dropout2(inputs)
return inputs
class PatchTSMixerChannelFeatureMixerBlock(nn.Module):
"""This module mixes the features in the channel dimension.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.norm = PatchTSMixerNormLayer(config)
self.gated_attn = config.gated_attn
self.mlp = PatchTSMixerMLP(
in_features=config.num_input_channels,
out_features=config.num_input_channels,
config=config,
)
if config.gated_attn:
self.gating_block = PatchTSMixerGatedAttention(
in_size=config.num_input_channels, out_size=config.num_input_channels
)
def forward(self, inputs: torch.Tensor):
"""
Args:
inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`):
input to the MLP layer
Returns:
`torch.Tensor` of the same shape as `inputs`
"""
residual = inputs
inputs = self.norm(inputs)
inputs = inputs.permute(0, 3, 2, 1)
if self.gated_attn:
inputs = self.gating_block(inputs)
inputs = self.mlp(inputs)
inputs = inputs.permute(0, 3, 2, 1)
out = inputs + residual
return out
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PatchTSMixer
class PatchTSMixerAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[PatchTSMixerConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class PatchMixerBlock(nn.Module):
"""This module mixes the patch dimension.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.norm = PatchTSMixerNormLayer(config)
self.self_attn = config.self_attn
self.gated_attn = config.gated_attn
self.mlp = PatchTSMixerMLP(
in_features=config.num_patches,
out_features=config.num_patches,
config=config,
)
if config.gated_attn:
self.gating_block = PatchTSMixerGatedAttention(in_size=config.num_patches, out_size=config.num_patches)
if config.self_attn:
self.self_attn_layer = PatchTSMixerAttention(
embed_dim=config.d_model,
num_heads=config.self_attn_heads,
dropout=config.dropout,
)
self.norm_attn = PatchTSMixerNormLayer(config)
def forward(self, hidden_state):
"""
Args:
hidden_state (`torch.Tensor`): Input tensor.
Returns:
`torch.Tensor`: Transformed tensor.
"""
residual = hidden_state
hidden_state = self.norm(hidden_state)
if self.self_attn:
batch_size, n_vars, num_patches, d_model = hidden_state.shape
hidden_state_reshaped = hidden_state.reshape(batch_size * n_vars, num_patches, d_model)
x_attn, _, _ = self.self_attn_layer(hidden_state_reshaped, output_attentions=False)
x_attn = x_attn.reshape(batch_size, n_vars, num_patches, d_model)
# Transpose so that num_patches is the last dimension
hidden_state = hidden_state.transpose(2, 3)
hidden_state = self.mlp(hidden_state)
if self.gated_attn:
hidden_state = self.gating_block(hidden_state)
# Transpose back
hidden_state = hidden_state.transpose(2, 3)
if self.self_attn:
hidden_state = self.norm_attn(hidden_state + x_attn)
out = hidden_state + residual
return out
class FeatureMixerBlock(nn.Module):
"""This module mixes the hidden feature dimension.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.norm = PatchTSMixerNormLayer(config)
self.gated_attn = config.gated_attn
self.mlp = PatchTSMixerMLP(
in_features=config.d_model,
out_features=config.d_model,
config=config,
)
if config.gated_attn:
self.gating_block = PatchTSMixerGatedAttention(in_size=config.d_model, out_size=config.d_model)
def forward(self, hidden: torch.Tensor):
"""
Args:
hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`):
Input tensor to the layer.
Returns:
`torch.Tensor`: Transformed tensor.
"""
residual = hidden
hidden = self.norm(hidden)
hidden = self.mlp(hidden)
if self.gated_attn:
hidden = self.gating_block(hidden)
out = hidden + residual
return out
class PatchTSMixerLayer(nn.Module):
"""
The `PatchTSMixer` layer that does all three kinds of mixing.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.patch_mixer = PatchMixerBlock(config=config)
self.feature_mixer = FeatureMixerBlock(config=config)
self.mode = config.mode
if config.mode == "mix_channel":
self.channel_feature_mixer = PatchTSMixerChannelFeatureMixerBlock(config=config)
def forward(self, hidden: torch.Tensor):
"""
Args:
hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`):
Input tensor to the layer.
Returns:
`torch.Tensor`: Transformed tensor.
"""
if self.mode == "mix_channel":
hidden = self.channel_feature_mixer(hidden)
hidden = self.patch_mixer(hidden)
hidden = self.feature_mixer(hidden) # hidden: (batch_size x num_patches x d_model)
return hidden
class PatchTSMixerBlock(nn.Module):
"""The main computing framework of the `PatchTSMixer` model.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
num_layers = config.num_layers
self.mixers = nn.ModuleList([PatchTSMixerLayer(config=config) for _ in range(num_layers)])
def forward(self, hidden_state, output_hidden_states: bool = False):
"""
Args:
hidden_state (`torch.Tensor`): The input tensor.
output_hidden_states (`bool`, *optional*, defaults to False.):
Whether to output the hidden states as well.
Returns:
`torch.Tensor`: The embedding. `list`: List of all hidden states if `output_hidden_states` is set to
`True`.
"""
all_hidden_states = []
embedding = hidden_state
for mod in self.mixers:
embedding = mod(embedding)
if output_hidden_states:
all_hidden_states.append(embedding)
if output_hidden_states:
return embedding, all_hidden_states
else:
return embedding, None
class PatchTSMixerForPredictionHead(nn.Module):
"""Prediction Head for Forecasting
Args:
config (`PatchTSMixerConfig`, *required*): Configuration.
"""
def __init__(self, config: PatchTSMixerConfig, distribution_output=None):
super().__init__()
self.prediction_channel_indices = config.prediction_channel_indices
if self.prediction_channel_indices is not None:
self.prediction_channel_indices.sort()
self.dropout_layer = nn.Dropout(config.head_dropout)
if distribution_output is None:
self.base_forecast_block = nn.Linear((config.num_patches * config.d_model), config.prediction_length)
else:
self.base_forecast_block = distribution_output.get_parameter_projection(
config.num_patches * config.d_model
)
self.flatten = nn.Flatten(start_dim=-2)
def forward(self, hidden_features):
"""
Args:
hidden_features (`torch.Tensor` of shape `(batch_size, num_patch, d_model)` in `flatten` mode
or `(batch_size, n_vars, num_patch, d_model)` in `common_channel`/`mix_channel` mode.): Input hidden
features.
Returns:
`torch.Tensor` of shape `(batch_size, prediction_length, nvars)`.
"""
hidden_features = self.flatten(hidden_features) # [batch_size x n_vars x num_patch * d_model]
hidden_features = self.dropout_layer(hidden_features) # [batch_size x n_vars x num_patch * d_model]
forecast = self.base_forecast_block(hidden_features) # [batch_size x n_vars x prediction_length]
if isinstance(forecast, tuple):
forecast = tuple(z.transpose(-1, -2) for z in forecast)
else:
forecast = forecast.transpose(-1, -2) # [batch_size x prediction_length x n_vars]
if self.prediction_channel_indices is not None:
if isinstance(forecast, tuple):
forecast = tuple(z[..., self.prediction_channel_indices] for z in forecast)
else:
forecast = forecast[..., self.prediction_channel_indices] # [batch_size x prediction_length x n_vars]
return forecast
class PatchTSMixerLinearHead(nn.Module):
"""Linear head for Classification and Regression.
Args:
config (`PatchTSMixerConfig`, *required*):
"""
def __init__(self, config: PatchTSMixerConfig, distribution_output=None):
super().__init__()
self.head_aggregation = config.head_aggregation
self.output_range = config.output_range
if config.head_aggregation is None:
mul_factor = config.num_patches
else:
mul_factor = 1
self.distribution_output = distribution_output
if distribution_output is None:
self.projection = nn.Linear(
config.d_model * config.num_input_channels * mul_factor,
config.num_targets,
)
else:
self.projection = distribution_output.get_parameter_projection(
config.d_model * config.num_input_channels * mul_factor
)
if config.head_aggregation is None:
self.flatten = nn.Flatten(start_dim=-3)
else:
self.flatten = nn.Flatten(start_dim=-2)
self.dropout = nn.Dropout(config.head_dropout)
def forward(self, hidden_features):
"""
Args:
hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode
or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden
features.
Returns:
`torch.Tensor` of shape `(batch_size x num_targets)`.
"""
# batch_size x d_model x num_patch or batch_size x n_vars x d_model x num_patch
hidden_features = hidden_features.transpose(-1, -2)
if self.head_aggregation == "use_last":
# batch_size x d_model (flatten) or # batch_size x n_vars x d_model (common_channel)
hidden_features = hidden_features[..., -1]
elif self.head_aggregation == "max_pool":
# batch_size x n_vars x d_model or batch_size x d_model
hidden_features = hidden_features.max(dim=-1).values
elif self.head_aggregation == "avg_pool":
# batch_size x n_vars x d_model or batch_size x d_model
hidden_features = hidden_features.mean(dim=-1)
if self.flatten:
hidden_features = self.flatten(hidden_features)
hidden_features = self.dropout(hidden_features)
hidden_features = self.projection(hidden_features) # batch_size x num_targets
if (self.distribution_output is None) and (self.output_range is not None):
hidden_features = (
torch.sigmoid(hidden_features) * (self.output_range[1] - self.output_range[0]) + self.output_range[0]
)
return hidden_features
class PatchTSMixerPreTrainedModel(PreTrainedModel):
# Weight initialization
config_class = PatchTSMixerConfig
base_model_prefix = "model"
main_input_name = "past_values"
supports_gradient_checkpointing = False
def _init_weights(self, module):
"""Initialize weights"""
if isinstance(module, PatchTSMixerPositionalEncoding):
# initialize positional encoding
if self.config.positional_encoding_type == "random":
nn.init.normal_(module.position_enc, mean=0.0, std=0.1)
elif isinstance(module, (nn.LayerNorm, nn.BatchNorm1d)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, PatchTSMixerBatchNorm):
module.batchnorm.bias.data.zero_()
module.batchnorm.weight.data.fill_(1.0)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
if module.bias is not None:
module.bias.data.zero_()
class PatchTSMixerPretrainHead(nn.Module):
"""Pretraining head.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.dropout_layer = nn.Dropout(config.head_dropout)
self.base_pt_block = nn.Linear(config.d_model, config.patch_length)
def forward(self, hidden_features):
"""
Args:
hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode
or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden
features.
Returns:
`torch.Tensor` of shape `(batch_size x n_vars x num_patch x patch_length)`.
"""
hidden_features = self.dropout_layer(hidden_features)
forecast = self.base_pt_block(hidden_features) # [batch_size x n_vars x num_patch x patch_length]
return forecast
# Copied from transformers.models.patchtst.modeling_patchtst.random_masking
def random_masking(
inputs: torch.Tensor,
mask_ratio: float,
unmasked_channel_indices: list = None,
channel_consistent_masking: bool = False,
mask_value: int = 0,
):
"""random_masking: Mask the input considering the control variables.
Args:
inputs (`torch.Tensor` of shape `(batch_size, num_channels, sequence_length, num_features)`):
The input tensor to mask.
mask_ratio (`float`):
Masking ratio applied to mask the input data during random pretraining. It is the number between 0 and 1.
unmasked_channel_indices (list, *optional*):
Indices of channels that will not be masked.
channel_consistent_masking (bool, *optional*, defaults to `False`):
When true, masking will be same across all channels of a timeseries. Otherwise, masking positions will vary
across channels.
mask_value (int, *optional*, defaults to 0):
Define the value of masked patches for pretraining.
Returns:
`tuple(torch.Tensor)`: inputs_mask, masked input, same shape as input Tensor and mask tensor of shape [bs x c x
n]
"""
if mask_ratio < 0 or mask_ratio >= 1:
raise ValueError(f"Mask ratio {mask_ratio} has to be between 0 and 1.")
batch_size, num_channels, sequence_length, num_features = inputs.shape
device = inputs.device
len_keep = int(sequence_length * (1 - mask_ratio))
if channel_consistent_masking:
noise = torch.rand(batch_size, 1, sequence_length, device=device) # noise in [0, 1], bs x 1 x L
noise = noise.repeat(1, num_channels, 1) # bs x num_channels x time
else:
# noise in [0, 1], bs x num_channels x L
noise = torch.rand(batch_size, num_channels, sequence_length, device=device)
# mask: [bs x num_channels x num_patch]
mask = torch.ones(batch_size, num_channels, sequence_length, device=device)
mask[:, :, :len_keep] = 0
# sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=-1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=-1) # ids_restore: [bs x num_channels x L]
mask = torch.gather(mask, dim=-1, index=ids_restore)
mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patches x patch_length]
if unmasked_channel_indices is not None:
mask[:, unmasked_channel_indices, :, :] = 0
inputs_mask = inputs.masked_fill(mask.bool(), mask_value)
return inputs_mask, mask[..., 0]
# Copied from transformers.models.patchtst.modeling_patchtst.forecast_masking
def forecast_masking(
inputs: torch.Tensor,
num_forecast_mask_patches: Union[list, int],
unmasked_channel_indices: list = None,
mask_value: int = 0,
):
"""Forecast masking that masks the last K patches where K is from the num_forecast_mask_patches.
If num_forecast_mask_patches is a list, samples in the batch will be randomly masked by numbers defined in the list.
Parameters:
inputs (`torch.Tensor`):
Input of shape `(bs, num_channels, num_patch, patch_len)`
num_forecast_mask_patches (`list`):
Number of patches to be masked at the end of each batch sample. e.g. 4 or [3, 5].
unmasked_channel_indices (`list`, *optional*):
Indices of channels that are not masked.
mask_value (`int`, *optional*, defaults to 0):
Values in the masked patches will be filled by `mask_value`.
Returns:
`tuple(torch.Tensor)`: inputs_mask, masked input, same shape as inputs Tensor and Mask tensor of shape `(bs,
num_channels , num_patch)` or `(bs, tsg1, tsg2, num_channels, num_patch)`
"""
if isinstance(num_forecast_mask_patches, int):
num_forecast_mask_patches = [num_forecast_mask_patches]
forecast_mask_ratios = [1 for _ in num_forecast_mask_patches]
batch_size, num_channels, sequence_length, num_features = inputs.shape
mask = torch.zeros(batch_size, num_channels, sequence_length, device=inputs.device)
t_list = []
total_length = 0
total_ratio = sum(forecast_mask_ratios)
for patch_length, ratio in zip(num_forecast_mask_patches, forecast_mask_ratios):
if patch_length <= 0 or patch_length >= sequence_length:
raise ValueError(
f"num_forecast_mask_patches {patch_length} should be greater than 0 and less than total patches."
)
temp_len = int(batch_size * ratio / total_ratio)
t_list.append([patch_length, ratio, temp_len])
total_length += temp_len
t_list = sorted(t_list, key=lambda x: x[2])
if total_length < batch_size:
t_list[0][2] = t_list[0][2] + (batch_size - total_length)
elif total_length > batch_size:
t_list[-1][2] = t_list[-1][2] + (total_length - batch_size)
batch1 = 0
for patch_len, _, temp_len in t_list:
batch2 = batch1 + temp_len
mask[batch1:batch2, :, -patch_len:] = 1
batch1 = batch2
perm = torch.randperm(mask.shape[0])
mask = mask[perm]
mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patch x patch_len]
if unmasked_channel_indices is not None:
mask[:, unmasked_channel_indices, :, :] = 0
inputs_mask = inputs.masked_fill(mask.bool(), mask_value)
return inputs_mask, mask[..., 0]
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTPatchify with PatchTST->PatchTSMixer
class PatchTSMixerPatchify(nn.Module):
"""
A class to patchify the time series sequence into different patches
Returns:
`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.sequence_length = config.context_length
self.patch_length = config.patch_length
self.patch_stride = config.patch_stride
if self.sequence_length <= self.patch_length:
raise ValueError(
f"Sequence length ({self.sequence_length}) has to be greater than the patch length ({self.patch_length})"
)
# get the number of patches
self.num_patches = (max(self.sequence_length, self.patch_length) - self.patch_length) // self.patch_stride + 1
new_sequence_length = self.patch_length + self.patch_stride * (self.num_patches - 1)
self.sequence_start = self.sequence_length - new_sequence_length
def forward(self, past_values: torch.Tensor):
"""
Parameters:
past_values (`torch.Tensor` of shape `(batch_size, sequence_length, num_channels)`, *required*):
Input for patchification
Returns:
`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`
"""
sequence_length = past_values.shape[-2]
if sequence_length != self.sequence_length:
raise ValueError(
f"Input sequence length ({sequence_length}) doesn't match model configuration ({self.sequence_length})."
)
# output: [bs x new_sequence_length x num_channels]
output = past_values[:, self.sequence_start :, :]
# output: [bs x num_patches x num_input_channels x patch_length]
output = output.unfold(dimension=-2, size=self.patch_length, step=self.patch_stride)
# output: [bs x num_input_channels x num_patches x patch_length]
output = output.transpose(-2, -3).contiguous()
return output
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTMasking with PatchTST->PatchTSMixer
class PatchTSMixerMasking(nn.Module):
"""
Class to perform random or forecast masking.
Parameters:
config (`PatchTSMixerConfig`): model config
Returns:
x_mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`)
Masked patched input
mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`)
Bool tensor indicating True on masked points
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.random_mask_ratio = config.random_mask_ratio
self.channel_consistent_masking = config.channel_consistent_masking
self.mask_type = config.mask_type
self.num_forecast_mask_patches = config.num_forecast_mask_patches
self.unmasked_channel_indices = config.unmasked_channel_indices
self.mask_value = config.mask_value
if self.unmasked_channel_indices is not None:
self.unmasked_channel_indices = sorted(self.unmasked_channel_indices)
def forward(self, patch_input: torch.Tensor):
"""
Parameters:
patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*):
Patch input
Return:
masked_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`)
Masked patched input
mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`)
Bool tensor indicating True on masked points
"""
if self.mask_type == "random":
masked_input, mask = random_masking(
inputs=patch_input,
mask_ratio=self.random_mask_ratio,
unmasked_channel_indices=self.unmasked_channel_indices,
channel_consistent_masking=self.channel_consistent_masking,
mask_value=self.mask_value,
)
elif self.mask_type == "forecast":
masked_input, mask = forecast_masking(
inputs=patch_input,
num_forecast_mask_patches=self.num_forecast_mask_patches,
unmasked_channel_indices=self.unmasked_channel_indices,
mask_value=self.mask_value,
)
else:
raise ValueError(f"Invalid mask type {self.mask_type}.")
# mask: [bs x num_input_channels x num_patch]
mask = mask.bool()
return masked_input, mask
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTStdScaler with PatchTST->PatchTSMixer
class PatchTSMixerStdScaler(nn.Module):
"""
Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by
subtracting from the mean and dividing by the standard deviation.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim)
denominator = denominator.clamp_min(1.0)
loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator
variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
scale = torch.sqrt(variance + self.minimum_scale)
return (data - loc) / scale, loc, scale
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTMeanScaler with PatchTST->PatchTSMixer
class PatchTSMixerMeanScaler(nn.Module):
"""
Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data
accordingly.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
self.default_scale = config.default_scale if hasattr(config, "default_scale") else None
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True)
num_observed = observed_indicator.sum(self.dim, keepdim=True)
scale = ts_sum / torch.clamp(num_observed, min=1)
# If `default_scale` is provided, we use it, otherwise we use the scale
# of the batch.
if self.default_scale is None:
batch_sum = ts_sum.sum(dim=0)
batch_observations = torch.clamp(num_observed.sum(0), min=1)
default_scale = torch.squeeze(batch_sum / batch_observations)
else:
default_scale = self.default_scale * torch.ones_like(scale)
# apply default scale where there are no observations
scale = torch.where(num_observed > 0, scale, default_scale)
# ensure the scale is at least `self.minimum_scale`
scale = torch.clamp(scale, min=self.minimum_scale)
scaled_data = data / scale
if not self.keepdim:
scale = scale.squeeze(dim=self.dim)
return scaled_data, torch.zeros_like(scale), scale
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTNOPScaler with PatchTST->PatchTSMixer
class PatchTSMixerNOPScaler(nn.Module):
"""
Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
return data, loc, scale
@dataclass
class PatchTSMixerEncoderOutput(ModelOutput):
"""
Base class for `PatchTSMixerEncoderOutput`, with potential hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, d_model)`):
Hidden-state at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class PatchTSMixerEncoder(PatchTSMixerPreTrainedModel):
"""
Encoder for PatchTSMixer which inputs patched time-series and outputs patched embeddings.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__(config)
self.use_return_dict = config.use_return_dict
self.patcher = nn.Linear(config.patch_length, config.d_model)
if config.use_positional_encoding:
self.positional_encoder = PatchTSMixerPositionalEncoding(config=config)
else:
self.positional_encoder = None
self.mlp_mixer_encoder = PatchTSMixerBlock(config=config)
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@replace_return_docstrings(output_type=PatchTSMixerEncoderOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, PatchTSMixerEncoderOutput]:
r"""
Args:
past_values (`torch.FloatTensor` of shape `(batch_size, seq_length, num_input_channels)`):
Context values of the time series. For a pretraining task, this denotes the input time series to
predict the masked portion. For a forecasting task, this denotes the history/past time series values.
Similarly, for classification or regression tasks, it denotes the appropriate context values of the
time series.
For univariate time series, `num_input_channels` dimension should be 1. For multivariate time series,
it is greater than 1.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
`torch.FloatTensor` of shape `(batch_size, n_vars, num_patches, d_model)`
"""
return_dict = return_dict if return_dict is not None else self.use_return_dict
# flatten [bs x num_patch x d_model]. common_channel/mix_channel: [bs x n_vars x num_patch x d_model]
patches = self.patcher(past_values)
# add positional encoder
if self.positional_encoder is not None:
patches = self.positional_encoder(patches)
last_hidden_state, hidden_states = self.mlp_mixer_encoder(patches, output_hidden_states=output_hidden_states)
if not return_dict:
return tuple(
v
for v in [
last_hidden_state,
hidden_states,
]
)
return PatchTSMixerEncoderOutput(last_hidden_state=last_hidden_state, hidden_states=hidden_states)
@dataclass
class PatchTSMixerModelOutput(ModelOutput):
"""
Base class for model's outputs, with potential hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, d_model)`):
Hidden-state at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer.
patch_input (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, patch_length)`):
Patched input data to the model.
mask: (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches)`,*optional*):
Bool Tensor indicating True in masked patches and False otherwise.
loc: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`,*optional*):
Gives the mean of the context window per channel. Used for revin denorm outside the model, if revin
enabled.
scale: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`,*optional*):
Gives the std dev of the context window per channel. Used for revin denorm outside the model, if revin
enabled.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
patch_input: torch.FloatTensor = None
mask: Optional[torch.FloatTensor] = None
loc: Optional[torch.FloatTensor] = None
scale: Optional[torch.FloatTensor] = None
@add_start_docstrings(
"The PatchTSMixer Model for time-series forecasting.",
PATCHTSMIXER_START_DOCSTRING,
)
class PatchTSMixerModel(PatchTSMixerPreTrainedModel):
def __init__(self, config: PatchTSMixerConfig, mask_input: bool = False):
super().__init__(config)
self.use_return_dict = config.use_return_dict
self.encoder = PatchTSMixerEncoder(config)
self.patching = PatchTSMixerPatchify(config)
if mask_input is True:
self.masking = PatchTSMixerMasking(config)
else:
self.masking = None
if config.scaling == "mean":
self.scaler = PatchTSMixerMeanScaler(config)
elif config.scaling == "std" or config.scaling is True:
self.scaler = PatchTSMixerStdScaler(config)
else:
self.scaler = PatchTSMixerNOPScaler(config)
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=PatchTSMixerModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
observed_mask: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = None,
) -> PatchTSMixerModelOutput:
r"""
observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
Returns:
"""
return_dict = return_dict if return_dict is not None else self.use_return_dict
mask = None
if observed_mask is None:
observed_mask = torch.ones_like(past_values)
scaled_past_values, loc, scale = self.scaler(past_values, observed_mask)
patched_x = self.patching(scaled_past_values) # [batch_size x num_input_channels x num_patch x patch_length
enc_input = patched_x
if self.masking is not None:
enc_input, mask = self.masking(patched_x)
# enc_input: [batch_size x num_input_channels x num_patch x patch_length]
# mask: [batch_size x num_input_channels x num_patch]
encoder_output = self.encoder(
enc_input,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if isinstance(encoder_output, tuple):
encoder_output = PatchTSMixerEncoderOutput(*encoder_output)
if not return_dict:
return tuple(
v
for v in [
encoder_output.last_hidden_state,
encoder_output.hidden_states,
patched_x,
mask,
loc,
scale,
]
)
return PatchTSMixerModelOutput(
last_hidden_state=encoder_output.last_hidden_state,
hidden_states=encoder_output.hidden_states,
patch_input=patched_x,
mask=mask,
loc=loc,
scale=scale,
)
@dataclass
class PatchTSMixerForPreTrainingOutput(ModelOutput):
"""
Output type of [`PatchTSMixerForPreTrainingOutput`].
Args:
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, patch_length)`):
Prediction output from the pretrain head.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
Backbone embeddings before passing through the head.
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
Total loss
"""
loss: Optional[torch.FloatTensor] = None
prediction_outputs: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class PatchTSMixerForPretraining(PatchTSMixerPreTrainedModel):
r"""
`PatchTSMixer` for mask pretraining.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
Returns:
`None`.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__(config)
self.model = PatchTSMixerModel(config, mask_input=True)
self.head = PatchTSMixerPretrainHead(config=config)
self.masked_loss = config.masked_loss
self.use_return_dict = config.use_return_dict
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=PatchTSMixerForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
observed_mask: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = False,
return_loss: bool = True,
return_dict: Optional[bool] = None,
) -> PatchTSMixerForPreTrainingOutput:
r"""
observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
return_loss (`bool`, *optional*):
Whether to return the loss in the `forward` call.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.use_return_dict
if self.masked_loss is True:
loss = torch.nn.MSELoss(reduction="none")
else:
loss = torch.nn.MSELoss(reduction="mean")
# past_values: tensor [batch_size x context_length x num_input_channels]
model_output = self.model(
past_values,
observed_mask=observed_mask,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
) # x.last_hidden_state: [batch_size x nvars x num_patch x d_model]
if isinstance(model_output, tuple):
model_output = PatchTSMixerModelOutput(*model_output)
x_hat = self.head(model_output.last_hidden_state) # tensor [batch_size x nvars x num_patch x patch_length]
if return_loss is True:
loss_val = loss(x_hat, model_output.patch_input)
else:
loss_val = None
# calculate masked_loss
if self.masked_loss is True and loss_val is not None:
loss_val = (loss_val.mean(dim=-1) * model_output.mask).sum() / (model_output.mask.sum() + 1e-10)
if not return_dict:
return tuple(
v
for v in [
loss_val,
x_hat,
model_output.last_hidden_state,
model_output.hidden_states,
]
)
return PatchTSMixerForPreTrainingOutput(
loss=loss_val,
prediction_outputs=x_hat, # tensor [batch_size x nvars x num_patch x patch_length]
last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model]
hidden_states=model_output.hidden_states,
)
@dataclass
class PatchTSMixerForPredictionOutput(ModelOutput):
"""
Output type of [`PatchTSMixerForPredictionOutput`].
Args:
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_input_channels)`):
Prediction output from the forecast head.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
Backbone embeddings before passing through the head.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
Total loss.
loc (`torch.FloatTensor`, *optional* of shape `(batch_size, 1, num_input_channels)`):
Input mean
scale (`torch.FloatTensor`, *optional* of shape `(batch_size, 1, num_input_channels)`):
Input std dev
"""
loss: Optional[torch.FloatTensor] = None
prediction_outputs: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
loc: torch.FloatTensor = None
scale: torch.FloatTensor = None
@dataclass
class SamplePatchTSMixerPredictionOutput(ModelOutput):
"""
Base class for time series model's predictions outputs that contains the sampled values from the chosen
distribution.
Args:
sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, prediction_length, number_channels)`):
Sampled values from the chosen distribution.
"""
sequences: torch.FloatTensor = None
@dataclass
class SamplePatchTSMixerRegressionOutput(ModelOutput):
"""
Base class for time series model's predictions outputs that contains the sampled values from the chosen
distribution.
Args:
sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, num_targets)`
Sampled values from the chosen distribution.
"""
sequences: torch.FloatTensor = None
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll
def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor:
"""
Computes the negative log likelihood loss from input distribution with respect to target.
"""
return -input.log_prob(target)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average
def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor:
"""
Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero,
meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`.
Args:
input_tensor (`torch.FloatTensor`):
Input tensor, of which the average must be computed.
weights (`torch.FloatTensor`, *optional*):
Weights tensor, of the same shape as `input_tensor`.
dim (`int`, *optional*):
The dim along which to average `input_tensor`.
Returns:
`torch.FloatTensor`: The tensor with values averaged along the specified `dim`.
"""
if weights is not None:
weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor))
sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0)
return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights
else:
return input_tensor.mean(dim=dim)
class PatchTSMixerForPrediction(PatchTSMixerPreTrainedModel):
r"""
`PatchTSMixer` for forecasting application.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
Returns:
`None`.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__(config)
self.loss = config.loss
self.use_return_dict = config.use_return_dict
self.prediction_channel_indices = config.prediction_channel_indices
self.num_parallel_samples = config.num_parallel_samples
if config.loss == "mse":
self.distribution_output = None
else:
dim = config.prediction_length
distribution_output_map = {
"student_t": StudentTOutput,
"normal": NormalOutput,
"negative_binomial": NegativeBinomialOutput,
}
output_class = distribution_output_map.get(config.distribution_output, None)
if output_class is not None:
self.distribution_output = output_class(dim=dim)
else:
raise ValueError(f"Unknown distribution output {config.distribution_output}")
self.model = PatchTSMixerModel(config)
self.head = PatchTSMixerForPredictionHead(
config=config,
distribution_output=self.distribution_output,
)
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=PatchTSMixerForPredictionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
observed_mask: Optional[torch.Tensor] = None,
future_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = False,
return_loss: bool = True,
return_dict: Optional[bool] = None,
) -> PatchTSMixerForPredictionOutput:
r"""
observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
future_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting,:
`(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target
values of the time series, that serve as labels for the model. The `future_values` is what the
Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT
required for a pretraining task.
For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want
to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter,
pass the target data with all channels, as channel Filtering for both prediction and target will be
manually applied before the loss computation.
return_loss (`bool`, *optional*):
Whether to return the loss in the `forward` call.
Returns:
"""
if self.loss == "mse":
loss = nn.MSELoss(reduction="mean")
elif self.loss == "nll":
loss = nll
else:
raise ValueError("Invalid loss function: Allowed values: mse and nll")
return_dict = return_dict if return_dict is not None else self.use_return_dict
# past_values: tensor [batch_size x context_length x num_input_channels]
model_output = self.model(
past_values,
observed_mask=observed_mask,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
) # model_output: [batch_size x nvars x num_patch x d_model]
if isinstance(model_output, tuple):
model_output = PatchTSMixerModelOutput(*model_output)
# tensor [batch_size x prediction_length x num_input_channels]
y_hat = self.head(model_output.last_hidden_state)
loss_val = None
if self.prediction_channel_indices is not None:
if self.distribution_output:
distribution = self.distribution_output.distribution(
y_hat,
loc=model_output.loc[..., self.prediction_channel_indices],
scale=model_output.scale[..., self.prediction_channel_indices],
)
if future_values is not None and return_loss is True:
loss_val = loss(
distribution,
future_values[..., self.prediction_channel_indices],
)
# take average of the loss
loss_val = weighted_average(loss_val)
else:
y_hat = (
y_hat * model_output.scale[..., self.prediction_channel_indices]
+ model_output.loc[..., self.prediction_channel_indices]
)
if future_values is not None and return_loss is True:
loss_val = loss(y_hat, future_values[..., self.prediction_channel_indices])
else:
if self.distribution_output:
distribution = self.distribution_output.distribution(
y_hat, loc=model_output.loc, scale=model_output.scale
)
if future_values is not None and return_loss is True:
loss_val = loss(distribution, future_values)
loss_val = weighted_average(loss_val)
else:
y_hat = y_hat * model_output.scale + model_output.loc
if future_values is not None and return_loss is True:
loss_val = loss(y_hat, future_values)
if self.prediction_channel_indices is not None:
loc = model_output.loc[..., self.prediction_channel_indices]
scale = model_output.scale[..., self.prediction_channel_indices]
else:
loc = model_output.loc
scale = model_output.scale
if not return_dict:
return tuple(
v
for v in [
loss_val,
y_hat,
model_output.last_hidden_state,
model_output.hidden_states,
loc,
scale,
]
)
return PatchTSMixerForPredictionOutput(
loss=loss_val,
prediction_outputs=y_hat, # tensor [batch_size x prediction_length x num_input_channels]
last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model]
hidden_states=model_output.hidden_states,
loc=loc,
scale=scale,
)
def generate(
self,
past_values: torch.Tensor,
observed_mask: Optional[torch.Tensor] = None,
) -> SamplePatchTSMixerPredictionOutput:
"""
Generate sequences of sample predictions from a model with a probability distribution head.
Args:
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Past values of the time series that serves as context in order to predict the future.
observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
Return:
[`SamplePatchTSMixerPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size,
number of samples, prediction_length, num_input_channels)`.
"""
# get number of samples
num_parallel_samples = self.num_parallel_samples
# get model output
outputs = self(
past_values=past_values,
future_values=None,
observed_mask=observed_mask,
output_hidden_states=False,
)
# get distribution
distribution = self.distribution_output.distribution(
outputs.prediction_outputs, loc=outputs.loc, scale=outputs.scale
)
# get samples: list of [batch_size x prediction_length x num_channels]
samples = [distribution.sample() for _ in range(num_parallel_samples)]
# stack tensors
samples = torch.stack(samples, dim=1) # [batch_size x num_samples x prediction_length x num_channels]
return SamplePatchTSMixerPredictionOutput(sequences=samples)
@dataclass
class PatchTSMixerForTimeSeriesClassificationOutput(ModelOutput):
"""
Output type of [`PatchTSMixerForTimeSeriesClassificationOutput`].
Args:
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
Prediction output from the classfication head.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
Backbone embeddings before passing through the head.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
Total loss.
"""
loss: Optional[torch.FloatTensor] = None
prediction_outputs: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class PatchTSMixerForTimeSeriesClassification(PatchTSMixerPreTrainedModel):
r"""
`PatchTSMixer` for classification application.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
Returns:
`None`.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__(config)
self.model = PatchTSMixerModel(config)
self.head = PatchTSMixerLinearHead(
config=config,
)
self.use_return_dict = config.use_return_dict
if config.scaling in ["std", "mean", True]:
self.inject_scale = InjectScalerStatistics4D(d_model=config.d_model, num_patches=config.num_patches)
else:
self.inject_scale = None
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=PatchTSMixerForTimeSeriesClassificationOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
past_values: torch.Tensor,
future_values: torch.Tensor = None,
output_hidden_states: Optional[bool] = False,
return_loss: bool = True,
return_dict: Optional[bool] = None,
) -> PatchTSMixerForTimeSeriesClassificationOutput:
r"""
future_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting,
`(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target
values of the time series, that serve as labels for the model. The `future_values` is what the
Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT
required for a pretraining task.
For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want
to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter,
pass the target data with all channels, as channel Filtering for both prediction and target will be
manually applied before the loss computation.
For a classification task, it has a shape of `(batch_size,)`.
For a regression task, it has a shape of `(batch_size, num_targets)`.
return_loss (`bool`, *optional*):
Whether to return the loss in the `forward` call.
Returns:
"""
loss = torch.nn.CrossEntropyLoss()
return_dict = return_dict if return_dict is not None else self.use_return_dict
model_output = self.model(
past_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
) # x: [batch_size x nvars x num_patch x d_model]
if isinstance(model_output, tuple):
model_output = PatchTSMixerModelOutput(*model_output)
if self.inject_scale is not None:
model_output.last_hidden_state = self.inject_scale(
model_output.last_hidden_state,
loc=model_output.loc,
scale=model_output.scale,
) # x: [batch_size x nvars x num_patch x d_model]
y_hat = self.head(model_output.last_hidden_state) # tensor [batch_size x n_labels]
if future_values is not None and return_loss is True:
loss_val = loss(y_hat, future_values)
else:
loss_val = None
if not return_dict:
return tuple(
v
for v in [
loss_val,
y_hat,
model_output.last_hidden_state,
model_output.hidden_states,
]
)
return PatchTSMixerForTimeSeriesClassificationOutput(
loss=loss_val,
prediction_outputs=y_hat, # tensor [batch_size x n_labels]
last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model]
hidden_states=model_output.hidden_states,
)
@dataclass
class PatchTSMixerForRegressionOutput(ModelOutput):
"""
Output type of [`PatchTSMixerForRegressionOutput`].
Args:
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_targets)`):
Prediction output from the regression head.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
Backbone embeddings before passing through the head.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
Total loss.
"""
loss: Optional[torch.FloatTensor] = None
prediction_outputs: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class InjectScalerStatistics4D(nn.Module):
def __init__(self, d_model: int, num_patches: int, expansion: int = 2):
super().__init__()
self.inverse_trans_expansion = nn.Linear(d_model + 2, expansion * d_model)
self.inverse_trans_compression = nn.Linear(expansion * d_model, d_model)
self.map_scale_expansion = nn.Linear(2, 2 * expansion)
self.map_scale_compression = nn.Linear(2 * expansion, 2)
self.num_patches = num_patches
def forward(self, inputs: torch.Tensor, loc: torch.Tensor, scale: torch.Tensor):
"""
Args:
inputs (`torch.Tensor` of shape `(batch_size, num_input_channels, num_patch, d_model)`)
loc (`torch.Tensor` of shape `(batch_size, 1, num_input_channels)`)
scale (`torch.Tensor` of shape `(batch_size, 1, num_input_channels)`)
Returns:
`torch.Tensor` of shape `(batch_size, num_input_channels, num_patch, d_model)`
"""
mean = loc.transpose(-1, -2) # [batch_size x n_channels x 1 ]
mean = mean.unsqueeze(-2) # [batch_size x n_channels x 1 x 1]
mean = mean.repeat(1, 1, self.num_patches, 1) # [batch_size x n_channels x num_patch x 1]
stdev = scale.transpose(-1, -2) # [batch_size x n_channels x 1 ]
stdev = stdev.unsqueeze(-2) # [batch_size x n_channels x 1 x 1]
stdev = stdev.repeat(1, 1, self.num_patches, 1) # [batch_size x n_channels x num_patch x 1]
concat_stats = torch.cat([mean, stdev], dim=-1) # [batch_size x n_channels x num_patch x 2]
concat_stats = self.map_scale_expansion(concat_stats) # [batch_size x n_channels x num_patch x (2*expansion)]
concat_stats = self.map_scale_compression(concat_stats) # [batch_size x n_channels x num_patch x 2]
inputs = torch.cat([inputs, concat_stats], dim=-1) # [batch_size x channels x num_patch x d_model+2]
inputs = self.inverse_trans_expansion(inputs) # [batch_size x channels x num_patch x (expansion*d_model)]
inputs = self.inverse_trans_compression(inputs) # [batch_size x channels x num_patch x d_model]
return inputs
class PatchTSMixerForRegression(PatchTSMixerPreTrainedModel):
r"""
`PatchTSMixer` for regression application.
Args:
config (`PatchTSMixerConfig`, *required*):
Configuration.
Returns:
`None`.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__(config)
self.model = PatchTSMixerModel(config)
self.loss = config.loss
self.distribution_output = config.distribution_output
self.use_return_dict = config.use_return_dict
self.num_parallel_samples = config.num_parallel_samples
if config.loss == "mse":
self.distribution_output = None
else:
distribution_output_map = {
"student_t": StudentTOutput,
"normal": NormalOutput,
"negative_binomial": NegativeBinomialOutput,
}
output_class = distribution_output_map.get(config.distribution_output)
if output_class is not None:
self.distribution_output = output_class(dim=config.num_targets)
else:
raise ValueError(f"Unknown distribution output {config.distribution_output}")
if config.scaling in ["std", "mean", True]:
self.inject_scale = InjectScalerStatistics4D(d_model=config.d_model, num_patches=config.num_patches)
else:
self.inject_scale = None
self.head = PatchTSMixerLinearHead(
config=config,
distribution_output=self.distribution_output,
)
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=PatchTSMixerForRegressionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
future_values: torch.Tensor = None,
output_hidden_states: Optional[bool] = False,
return_loss: bool = True,
return_dict: Optional[bool] = None,
) -> PatchTSMixerForRegressionOutput:
r"""
future_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting,
`(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target
values of the time series, that serve as labels for the model. The `future_values` is what the
Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT
required for a pretraining task.
For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want
to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter,
pass the target data with all channels, as channel Filtering for both prediction and target will be
manually applied before the loss computation.
For a classification task, it has a shape of `(batch_size,)`.
For a regression task, it has a shape of `(batch_size, num_targets)`.
return_loss (`bool`, *optional*):
Whether to return the loss in the `forward` call.
Returns:
"""
if self.loss == "mse":
loss = nn.MSELoss(reduction="mean")
elif self.loss == "nll":
loss = nll
else:
raise ValueError("Invalid loss function: Allowed values: mse and nll")
return_dict = return_dict if return_dict is not None else self.use_return_dict
model_output = self.model(
past_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
) # model_output: [batch_size x nvars x num_patch x d_model]
if isinstance(model_output, tuple):
model_output = PatchTSMixerModelOutput(*model_output)
if self.inject_scale is not None:
model_output.last_hidden_state = self.inject_scale(
model_output.last_hidden_state,
loc=model_output.loc,
scale=model_output.scale,
) # x: [batch_size x nvars x num_patch x d_model]
y_hat = self.head(model_output.last_hidden_state) # [batch_size x num_targets]
if future_values is not None and return_loss is True:
if self.distribution_output:
if self.distribution_output == "negative_binomial" and torch.any(future_values < 0):
raise Exception("future_values cannot be negative for negative_binomial distribution.")
distribution = self.distribution_output.distribution(y_hat)
loss_val = loss(distribution, future_values)
# take average of the loss
loss_val = weighted_average(loss_val)
else:
loss_val = loss(y_hat, future_values)
else:
loss_val = None
if not return_dict:
return tuple(
v
for v in [
loss_val,
y_hat,
model_output.last_hidden_state,
model_output.hidden_states,
]
)
return PatchTSMixerForRegressionOutput(
loss=loss_val,
prediction_outputs=y_hat, # tensor [batch_size x num_targets]
last_hidden_state=model_output.last_hidden_state, # [batch_size x nvars x num_patch x d_model]
hidden_states=model_output.hidden_states,
)
def generate(
self,
past_values: torch.Tensor,
) -> SamplePatchTSMixerRegressionOutput:
"""
Generate sequences of sample predictions from a model with a probability distribution head.
Args:
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Past values of the time series that serves as context in order to predict the future.
Return:
[`SamplePatchTSMixerRegressionOutput`] where the outputs `sequences` tensor will have shape `(batch_size,
number of samples, num_targets)`.
"""
# get number of samples
num_parallel_samples = self.num_parallel_samples
# get model output
outputs = self(
past_values=past_values,
future_values=None,
output_hidden_states=False,
)
# get distribution
distribution = self.distribution_output.distribution(outputs.prediction_outputs)
# get samples
samples = [
distribution.sample() for _ in range(num_parallel_samples)
] # samples: list of [batch_size x num_targets]
# stack tensors
samples = torch.stack(samples, dim=1) # [batch_size x num_samples x num_targets]
return SamplePatchTSMixerRegressionOutput(sequences=samples)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/patchtsmixer/configuration_patchtsmixer.py
|
# coding=utf-8
# Copyright 2023 IBM and HuggingFace Inc. team. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PatchTSMixer model configuration"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"ibm/patchtsmixer-etth1-pretrain": "https://huggingface.co/ibm/patchtsmixer-etth1-pretrain/resolve/main/config.json",
}
class PatchTSMixerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PatchTSMixerModel`]. It is used to instantiate a
PatchTSMixer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the PatchTSMixer
[ibm/patchtsmixer-etth1-pretrain](https://huggingface.co/ibm/patchtsmixer-etth1-pretrain) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
context_length (`int`, *optional*, defaults to 32):
The context/history length for the input sequence.
patch_len (`int`, *optional*, defaults to 8):
The patch length for the input sequence.
num_input_channels (`int`, *optional*, defaults to 1):
Number of input variates. For Univariate, set it to 1.
patch_stride (`int`, *optional*, defaults to 8):
Determines the overlap between two consecutive patches. Set it to patch_length (or greater), if we want
non-overlapping patches.
num_parallel_samples (`int`, *optional*, defaults to 100):
The number of samples to generate in parallel for probabilistic forecast.
d_model (`int`, *optional*, defaults to 8):
Hidden dimension of the model. Recommended to set it as a multiple of patch_length (i.e. 2-5X of
patch_len). Larger value indicates more complex model.
expansion_factor (`int`, *optional*, defaults to 2):
Expansion factor to use inside MLP. Recommended range is 2-5. Larger value indicates more complex model.
num_layers (`int`, *optional*, defaults to 3):
Number of layers to use. Recommended range is 3-15. Larger value indicates more complex model.
dropout (`float`, *optional*, defaults to 0.2):
The dropout probability the `PatchTSMixer` backbone. Recommended range is 0.2-0.7
mode (`str`, *optional*, defaults to `"common_channel"`):
Mixer Mode. Determines how to process the channels. Allowed values: "common_channel", "mix_channel". In
"common_channel" mode, we follow Channel-independent modelling with no explicit channel-mixing. Channel
mixing happens in an implicit manner via shared weights across channels. (preferred first approach) In
"mix_channel" mode, we follow explicit channel-mixing in addition to patch and feature mixer. (preferred
approach when channel correlations are very important to model)
gated_attn (`bool`, *optional*, defaults to `True`):
Enable Gated Attention.
norm_mlp (`str`, *optional*, defaults to `"LayerNorm"`):
Normalization layer (BatchNorm or LayerNorm).
self_attn (`bool`, *optional*, defaults to `False`):
Enable Tiny self attention across patches. This can be enabled when the output of Vanilla PatchTSMixer with
gated attention is not satisfactory. Enabling this leads to explicit pair-wise attention and modelling
across patches.
self_attn_heads (`int`, *optional*, defaults to 1):
Number of self-attention heads. Works only when `self_attn` is set to `True`.
use_positional_encoding (`bool`, *optional*, defaults to `False`):
Enable the use of positional embedding for the tiny self-attention layers. Works only when `self_attn` is
set to `True`.
positional_encoding_type (`str`, *optional*, defaults to `"sincos"`):
Positional encodings. Options `"random"` and `"sincos"` are supported. Works only when
`use_positional_encoding` is set to `True`
scaling (`string` or `bool`, *optional*, defaults to `"std"`):
Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the
scaler is set to "mean".
loss (`string`, *optional*, defaults to `"mse"`):
The loss function for the model corresponding to the `distribution_output` head. For parametric
distributions it is the negative log likelihood ("nll") and for point estimates it is the mean squared
error "mse".
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal weight initialization distribution.
post_init (`bool`, *optional*, defaults to `False`):
Whether to use custom weight initialization from `transformers` library, or the default initialization in
`PyTorch`. Setting it to `False` performs `PyTorch` weight initialization.
norm_eps (`float`, *optional*, defaults to 1e-05):
A value added to the denominator for numerical stability of normalization.
mask_type (`str`, *optional*, defaults to `"random"`):
Type of masking to use for Masked Pretraining mode. Allowed values are "random", "forecast". In Random
masking, points are masked randomly. In Forecast masking, points are masked towards the end.
random_mask_ratio (`float`, *optional*, defaults to 0.5):
Masking ratio to use when `mask_type` is `random`. Higher value indicates more masking.
num_forecast_mask_patches (`int` or `list`, *optional*, defaults to `[2]`):
Number of patches to be masked at the end of each batch sample. If it is an integer, all the samples in the
batch will have the same number of masked patches. If it is a list, samples in the batch will be randomly
masked by numbers defined in the list. This argument is only used for forecast pretraining.
mask_value (`float`, *optional*, defaults to `0.0`):
Mask value to use.
masked_loss (`bool`, *optional*, defaults to `True`):
Whether to compute pretraining loss only at the masked portions, or on the entire output.
channel_consistent_masking (`bool`, *optional*, defaults to `True`):
When true, masking will be same across all channels of a timeseries. Otherwise, masking positions will vary
across channels.
unmasked_channel_indices (`list`, *optional*):
Channels that are not masked during pretraining.
head_dropout (`float`, *optional*, defaults to 0.2):
The dropout probability the `PatchTSMixer` head.
distribution_output (`string`, *optional*, defaults to `"student_t"`):
The distribution emission head for the model when loss is "nll". Could be either "student_t", "normal" or
"negative_binomial".
prediction_length (`int`, *optional*, defaults to 16):
Number of time steps to forecast for a forecasting task. Also known as the Forecast Horizon.
prediction_channel_indices (`list`, *optional*):
List of channel indices to forecast. If None, forecast all channels. Target data is expected to have all
channels and we explicitly filter the channels in prediction and target before loss computation.
num_targets (`int`, *optional*, defaults to 3):
Number of targets (dimensionality of the regressed variable) for a regression task.
output_range (`list`, *optional*):
Output range to restrict for the regression task. Defaults to None.
head_aggregation (`str`, *optional*, defaults to `"max_pool"`):
Aggregation mode to enable for classification or regression task. Allowed values are `None`, "use_last",
"max_pool", "avg_pool".
Example:
```python
>>> from transformers import PatchTSMixerConfig, PatchTSMixerModel
>>> # Initializing a default PatchTSMixer configuration
>>> configuration = PatchTSMixerConfig()
>>> # Randomly initializing a model (with random weights) from the configuration
>>> model = PatchTSMixerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "patchtsmixer"
attribute_map = {
"hidden_size": "d_model",
"num_hidden_layers": "num_layers",
}
def __init__(
self,
# Time series specific configuration
context_length: int = 32,
patch_len: int = 8,
num_input_channels: int = 1,
patch_stride: int = 8,
num_parallel_samples: int = 100,
# General model configuration
d_model: int = 8,
expansion_factor: int = 2,
num_layers: int = 3,
dropout: float = 0.2,
mode: str = "common_channel",
gated_attn: bool = True,
norm_mlp: str = "LayerNorm",
self_attn: bool = False,
self_attn_heads: int = 1,
use_positional_encoding: bool = False,
positional_encoding_type: str = "sincos",
scaling: Optional[Union[str, bool]] = "std",
loss: str = "mse",
init_std: float = 0.02,
post_init: bool = False,
norm_eps: float = 1e-5,
# Pretrain model configuration
mask_type: str = "random",
random_mask_ratio: float = 0.5,
num_forecast_mask_patches: Optional[Union[List[int], int]] = [2],
mask_value: int = 0,
masked_loss: bool = True,
channel_consistent_masking: bool = True,
unmasked_channel_indices: Optional[List[int]] = None,
# General head configuration
head_dropout: float = 0.2,
distribution_output: str = "student_t",
# Prediction head configuration
prediction_length: int = 16,
prediction_channel_indices: list = None,
# Classification/Regression configuration
num_targets: int = 3,
output_range: list = None,
head_aggregation: str = "max_pool",
**kwargs,
):
self.num_input_channels = num_input_channels
self.context_length = context_length
self.patch_length = patch_len
self.patch_stride = patch_stride
self.d_model = d_model
self.expansion_factor = expansion_factor
self.num_layers = num_layers
self.dropout = dropout
self.mode = mode
self.gated_attn = gated_attn
self.norm_mlp = norm_mlp
self.scaling = scaling
self.head_dropout = head_dropout
self.num_patches = (max(context_length, patch_len) - patch_len) // patch_stride + 1
self.mask_type = mask_type
self.random_mask_ratio = random_mask_ratio
self.num_forecast_mask_patches = num_forecast_mask_patches
self.mask_value = mask_value
self.channel_consistent_masking = channel_consistent_masking
self.masked_loss = masked_loss
self.patch_last = True
self.use_positional_encoding = use_positional_encoding
self.positional_encoding_type = positional_encoding_type
self.prediction_length = prediction_length
self.prediction_channel_indices = prediction_channel_indices
self.num_targets = num_targets
self.output_range = output_range
self.head_aggregation = head_aggregation
self.self_attn = self_attn
self.self_attn_heads = self_attn_heads
self.init_std = init_std
self.post_init = post_init
self.distribution_output = distribution_output
self.loss = loss
self.num_parallel_samples = num_parallel_samples
self.unmasked_channel_indices = unmasked_channel_indices
self.norm_eps = norm_eps
super().__init__(**kwargs)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/patchtsmixer/__init__.py
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_patchtsmixer": [
"PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"PatchTSMixerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_patchtsmixer"] = [
"PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST",
"PatchTSMixerPreTrainedModel",
"PatchTSMixerModel",
"PatchTSMixerForPretraining",
"PatchTSMixerForPrediction",
"PatchTSMixerForTimeSeriesClassification",
"PatchTSMixerForRegression",
]
if TYPE_CHECKING:
from .configuration_patchtsmixer import (
PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PatchTSMixerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_patchtsmixer import (
PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST,
PatchTSMixerForPrediction,
PatchTSMixerForPretraining,
PatchTSMixerForRegression,
PatchTSMixerForTimeSeriesClassification,
PatchTSMixerModel,
PatchTSMixerPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/m2m_100/tokenization_m2m_100.py
|
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for M2M100."""
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "▁"
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"spm_file": "sentencepiece.bpe.model",
"tokenizer_config_file": "tokenizer_config.json",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json",
"facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json",
},
"spm_file": {
"facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model",
"facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model",
},
"tokenizer_config_file": {
"facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json",
"facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"facebook/m2m100_418M": 1024,
}
# fmt: off
FAIRSEQ_LANGUAGE_CODES = {
"m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"],
"wmt21": ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de']
}
# fmt: on
class M2M100Tokenizer(PreTrainedTokenizer):
"""
Construct an M2M100 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
spm_file (`str`):
Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
contains the vocabulary.
src_lang (`str`, *optional*):
A string representing the source language.
tgt_lang (`str`, *optional*):
A string representing the target language.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
language_codes (`str`, *optional*, defaults to `"m2m100"`):
What language codes to use. Should be one of `"m2m100"` or `"wmt21"`.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Examples:
```python
>>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
>>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="en", tgt_lang="ro")
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
>>> outputs = model(**model_inputs) # should work
```"""
vocab_files_names = VOCAB_FILES_NAMES
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
model_input_names = ["input_ids", "attention_mask"]
prefix_tokens: List[int] = []
suffix_tokens: List[int] = []
def __init__(
self,
vocab_file,
spm_file,
src_lang=None,
tgt_lang=None,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
pad_token="<pad>",
unk_token="<unk>",
language_codes="m2m100",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
num_madeup_words=8,
**kwargs,
) -> None:
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.language_codes = language_codes
fairseq_language_code = FAIRSEQ_LANGUAGE_CODES[language_codes]
self.lang_code_to_token = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code}
additional_special_tokens = kwargs.pop("additional_special_tokens", [])
for lang_code in fairseq_language_code:
token = self.get_lang_token(lang_code)
if token not in additional_special_tokens and lang_code not in str(token) not in self.added_tokens_encoder:
additional_special_tokens.append(token)
self.vocab_file = vocab_file
self.encoder = load_json(vocab_file)
self.decoder = {v: k for k, v in self.encoder.items()}
self.spm_file = spm_file
self.sp_model = load_spm(spm_file, self.sp_model_kwargs)
self.encoder_size = len(self.encoder)
self.lang_token_to_id = {
self.get_lang_token(lang_code): self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)
}
self.lang_code_to_id = {lang_code: self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)}
self.id_to_lang_token = {v: k for k, v in self.lang_token_to_id.items()}
self._src_lang = src_lang if src_lang is not None else "en"
self.tgt_lang = tgt_lang
self.cur_lang_id = self.get_lang_id(self._src_lang)
self.num_madeup_words = num_madeup_words
super().__init__(
src_lang=src_lang,
tgt_lang=tgt_lang,
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
unk_token=unk_token,
pad_token=pad_token,
language_codes=language_codes,
sp_model_kwargs=self.sp_model_kwargs,
additional_special_tokens=additional_special_tokens,
num_madeup_words=num_madeup_words,
**kwargs,
)
self.set_src_lang_special_tokens(self._src_lang)
@property
def vocab_size(self) -> int:
return len(self.encoder)
def get_vocab(self) -> Dict:
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
@property
def src_lang(self) -> str:
return self._src_lang
@src_lang.setter
def src_lang(self, new_src_lang: str) -> None:
self._src_lang = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def _tokenize(self, text: str) -> List[str]:
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
if token in self.lang_token_to_id:
return self.lang_token_to_id[token]
return self.encoder.get(token, self.encoder[self.unk_token])
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) in a token (str) using the decoder."""
if index in self.id_to_lang_token:
return self.id_to_lang_token[index]
return self.decoder.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(current_sub_tokens) + token
current_sub_tokens = []
else:
current_sub_tokens.append(token)
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
prefix_ones = [1] * len(self.prefix_tokens)
suffix_ones = [1] * len(self.suffix_tokens)
if token_ids_1 is None:
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An MBART sequence has the following format, where `X` represents the sequence:
- `input_ids` (for encoder) `X [eos, src_lang_code]`
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
separator.
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
def __getstate__(self) -> Dict:
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d: Dict) -> None:
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = load_spm(self.spm_file, self.sp_model_kwargs)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
save_dir = Path(save_directory)
if not save_dir.is_dir():
raise OSError(f"{save_directory} should be a directory")
vocab_save_path = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
)
spm_save_path = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"]
)
save_json(self.encoder, vocab_save_path)
if os.path.abspath(self.spm_file) != os.path.abspath(spm_save_path) and os.path.isfile(self.spm_file):
copyfile(self.spm_file, spm_save_path)
elif not os.path.isfile(self.spm_file):
with open(spm_save_path, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (str(vocab_save_path), str(spm_save_path))
def prepare_seq2seq_batch(
self,
src_texts: List[str],
src_lang: str = "en",
tgt_texts: Optional[List[str]] = None,
tgt_lang: str = "ro",
**kwargs,
) -> BatchEncoding:
self.src_lang = src_lang
self.tgt_lang = tgt_lang
self.set_src_lang_special_tokens(self.src_lang)
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
def _build_translation_inputs(self, raw_inputs, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs):
"""Used by translation pipeline, to prepare inputs for the generate function"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
self.src_lang = src_lang
inputs = self(raw_inputs, add_special_tokens=True, **extra_kwargs)
tgt_lang_id = self.get_lang_id(tgt_lang)
inputs["forced_bos_token_id"] = tgt_lang_id
return inputs
def _switch_to_input_mode(self):
self.set_src_lang_special_tokens(self.src_lang)
def _switch_to_target_mode(self):
self.set_tgt_lang_special_tokens(self.tgt_lang)
def set_src_lang_special_tokens(self, src_lang: str) -> None:
"""Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code]."""
lang_token = self.get_lang_token(src_lang)
self.cur_lang_id = self.lang_token_to_id[lang_token]
self.prefix_tokens = [self.cur_lang_id]
self.suffix_tokens = [self.eos_token_id]
def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None:
"""Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code]."""
lang_token = self.get_lang_token(tgt_lang)
self.cur_lang_id = self.lang_token_to_id[lang_token]
self.prefix_tokens = [self.cur_lang_id]
self.suffix_tokens = [self.eos_token_id]
def get_lang_token(self, lang: str) -> str:
return self.lang_code_to_token[lang]
def get_lang_id(self, lang: str) -> int:
lang_token = self.get_lang_token(lang)
return self.lang_token_to_id[lang_token]
def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor:
spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs)
spm.Load(str(path))
return spm
def load_json(path: str) -> Union[Dict, List]:
with open(path, "r") as f:
return json.load(f)
def save_json(data, path: str) -> None:
with open(path, "w") as f:
json.dump(data, f, indent=2)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/m2m_100/configuration_m2m_100.py
|
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" M2M100 model configuration"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
logger = logging.get_logger(__name__)
M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/config.json",
# See all M2M100 models at https://huggingface.co/models?filter=m2m_100
}
class M2M100Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`M2M100Model`]. It is used to instantiate an
M2M100 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the M2M100
[facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the M2M100 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`M2M100Model`] or
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Example:
```python
>>> from transformers import M2M100Config, M2M100Model
>>> # Initializing a M2M100 facebook/m2m100_418M style configuration
>>> configuration = M2M100Config()
>>> # Initializing a model (with random weights) from the facebook/m2m100_418M style configuration
>>> model = M2M100Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "m2m_100"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=128112,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.05,
decoder_layerdrop=0.05,
use_cache=True,
is_encoder_decoder=True,
activation_function="relu",
d_model=1024,
dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=2,
scale_embedding=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
class M2M100OnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
return common_inputs
# Copied from BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering
# A better name would be _generate_dummy_inputs_for_encoder_and_decoder because sequence classification and question
# answering are not supported for M2M100, but this name is preserved to be able to check that the copy matches what
# was done for BART so that it can be updated if need be.
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
return common_inputs
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._generate_dummy_inputs_for_default_and_seq2seq_lm
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair, framework
)
# Generate decoder inputs
decoder_seq_length = seq_length if not self.use_past else 1
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, decoder_seq_length, is_pair, framework
)
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
common_inputs = dict(**encoder_inputs, **decoder_inputs)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, encoder_seq_length = common_inputs["input_ids"].shape
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
encoder_shape = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
decoder_past_length = decoder_seq_length + 3
decoder_shape = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
common_inputs["decoder_attention_mask"] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
)
common_inputs["past_key_values"] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
num_encoder_layers, num_decoder_layers = self.num_layers
min_num_layers = min(num_encoder_layers, num_decoder_layers)
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(min_num_layers):
common_inputs["past_key_values"].append(
(
torch.zeros(decoder_shape),
torch.zeros(decoder_shape),
torch.zeros(encoder_shape),
torch.zeros(encoder_shape),
)
)
# TODO: test this.
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(min_num_layers, max_num_layers):
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
return common_inputs
generate_dummy_inputs = _generate_dummy_inputs_for_default_and_seq2seq_lm
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/m2m_100/convert_m2m100_original_checkpoint_to_pytorch.py
|
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
from torch import nn
from transformers import M2M100Config, M2M100ForConditionalGeneration
def remove_ignore_keys_(state_dict):
ignore_keys = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(k, None)
def make_linear_from_emb(emb):
vocab_size, emb_size = emb.weight.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight.data = emb.weight.data
return lin_layer
def convert_fairseq_m2m100_checkpoint_from_disk(checkpoint_path):
m2m_100 = torch.load(checkpoint_path, map_location="cpu")
args = m2m_100["args"] or m2m_100["cfg"]["model"]
state_dict = m2m_100["model"]
remove_ignore_keys_(state_dict)
vocab_size = state_dict["encoder.embed_tokens.weight"].shape[0]
config = M2M100Config(
vocab_size=vocab_size,
max_position_embeddings=1024,
encoder_layers=args.encoder_layers,
decoder_layers=args.decoder_layers,
encoder_attention_heads=args.encoder_attention_heads,
decoder_attention_heads=args.decoder_attention_heads,
encoder_ffn_dim=args.encoder_ffn_embed_dim,
decoder_ffn_dim=args.decoder_ffn_embed_dim,
d_model=args.encoder_embed_dim,
encoder_layerdrop=args.encoder_layerdrop,
decoder_layerdrop=args.decoder_layerdrop,
dropout=args.dropout,
attention_dropout=args.attention_dropout,
activation_dropout=args.activation_dropout,
activation_function="relu",
)
state_dict["shared.weight"] = state_dict["decoder.embed_tokens.weight"]
model = M2M100ForConditionalGeneration(config)
model.model.load_state_dict(state_dict, strict=False)
model.lm_head = make_linear_from_emb(model.model.shared)
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
args = parser.parse_args()
model = convert_fairseq_m2m100_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/m2m_100/__init__.py
|
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"],
"tokenization_m2m_100": ["M2M100Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_m2m_100"] = [
"M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST",
"M2M100ForConditionalGeneration",
"M2M100Model",
"M2M100PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config, M2M100OnnxConfig
from .tokenization_m2m_100 import M2M100Tokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_m2m_100 import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
M2M100ForConditionalGeneration,
M2M100Model,
M2M100PreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/m2m_100/modeling_m2m_100.py
|
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch M2M100 model."""
import math
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_m2m_100 import M2M100Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "M2M100Config"
_CHECKPOINT_FOR_DOC = "facebook/m2m100_418M"
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/m2m100_418M",
# See all M2M100 models at https://huggingface.co/models?filter=m2m_100
]
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
class M2M100SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__()
self.offset = 2
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.register_buffer("weights", emb_weights, persistent=False)
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
"""
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(
self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0
):
if input_ids is not None:
bsz, seq_len = input_ids.size()
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
input_ids.device
)
else:
bsz, seq_len = inputs_embeds.size()[:-1]
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
# expand embeddings if needed
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->M2M100
class M2M100Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[M2M100Config] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->M2M100, MBART->M2M100
class M2M100EncoderLayer(nn.Module):
def __init__(self, config: M2M100Config):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = M2M100_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
M2M100_ATTENTION_CLASSES = {"eager": M2M100Attention}
# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->M2M100, MBART->M2M100
class M2M100DecoderLayer(nn.Module):
def __init__(self, config: M2M100Config):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = M2M100_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = M2M100_ATTENTION_CLASSES[config._attn_implementation](
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
config=config,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class M2M100PreTrainedModel(PreTrainedModel):
config_class = M2M100Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["M2M100Attention"]
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
M2M_100_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`M2M100Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
M2M_100_GENERATION_EXAMPLE = r"""
Translation example:
```python
>>> from transformers import AutoTokenizer, M2M100ForConditionalGeneration
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M")
>>> text_to_translate = "Life is like a box of chocolates"
>>> model_inputs = tokenizer(text_to_translate, return_tensors="pt")
>>> # translate to French
>>> gen_tokens = model.generate(**model_inputs, forced_bos_token_id=tokenizer.get_lang_id("fr"))
>>> print(tokenizer.batch_decode(gen_tokens, skip_special_tokens=True))
```
"""
M2M_100_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
M2M100 uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class M2M100Encoder(M2M100PreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`M2M100EncoderLayer`].
Args:
config: M2M100Config
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: M2M100Config, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = M2M100SinusoidalPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
self.padding_idx,
)
self.layers = nn.ModuleList([M2M100EncoderLayer(config) for _ in range(config.encoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_ids, inputs_embeds)
embed_pos = embed_pos.to(inputs_embeds.device)
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class M2M100Decoder(M2M100PreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`M2M100DecoderLayer`]
Args:
config: M2M100Config
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: M2M100Config, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = M2M100SinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
self.padding_idx,
)
self.layers = nn.ModuleList([M2M100DecoderLayer(config) for _ in range(config.decoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input_ids, inputs_embeds, past_key_values_length)
positions = positions.to(inputs_embeds.device)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting" " `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if output_attentions else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
combined_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
continue
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare M2M100 Model outputting raw hidden-states without any specific head on top.",
M2M_100_START_DOCSTRING,
)
class M2M100Model(M2M100PreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: M2M100Config):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = M2M100Encoder(config, self.shared)
self.decoder = M2M100Decoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(M2M_100_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The M2M100 Model with a language modeling head. Can be used for summarization.", M2M_100_START_DOCSTRING
)
class M2M100ForConditionalGeneration(M2M100PreTrainedModel):
base_model_prefix = "model"
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: M2M100Config):
super().__init__(config)
self.model = M2M100Model(config)
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(M2M_100_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(M2M_100_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0])
masked_lm_loss = None
if labels is not None:
# move labels to the correct device to enable PP
labels = labels.to(lm_logits.device)
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if decoder_input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = decoder_input_ids.shape[1] - 1
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/gpt_neox/tokenization_gpt_neox_fast.py
|
# coding=utf-8
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for GPTNeoX."""
import json
from typing import Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"tokenizer_file": {
"EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"gpt-neox-20b": 2048,
}
class GPTNeoXTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" GPT-NeoX-20B tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import GPTNeoXTokenizerFast
>>> tokenizer = GPTNeoXTokenizerFast.from_pretrained("gpt2")
>>> tokenizer("Hello world")["input_ids"]
[15496, 995]
>>> tokenizer(" Hello world")["input_ids"]
[18435, 995]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
</Tip>
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The end of sequence token.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (GPTNeoX tokenizer detect beginning of words by the preceding space).
trim_offsets (`bool`, *optional*, defaults to `True`):
Whether or not the post-processing step should trim offsets to avoid including whitespaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
add_prefix_space=False,
**kwargs,
):
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
pre_tok_state["add_prefix_space"] = add_prefix_space
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
self.add_prefix_space = add_prefix_space
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
@property
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template
def default_chat_template(self):
"""
A simple chat template that ignores role information and just concatenates messages with EOS tokens.
"""
logger.warning_once(
"\nNo chat template is defined for this tokenizer - using the default template "
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
"your model, please set `tokenizer.chat_template` to an appropriate template. "
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
)
return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/gpt_neox/modeling_gpt_neox.py
|
# coding=utf-8
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch GPTNeoX model."""
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.nn import functional as F
from ...activations import ACT2FN
from ...file_utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging
from .configuration_gpt_neox import GPTNeoXConfig
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "trl-internal-testing/tiny-random-GPTNeoXForCausalLM"
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neox-20b"
_CONFIG_FOR_DOC = "GPTNeoXConfig"
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST = [
"EleutherAI/gpt-neox-20b",
# See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox
]
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
class GPTNeoXPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GPTNeoXConfig
base_model_prefix = "gpt_neox"
supports_gradient_checkpointing = True
_no_split_modules = ["GPTNeoXLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class GPTNeoXAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
"The hidden size is not divisble by the number of attention heads! Make sure to update them"
)
self.head_size = self.hidden_size // self.num_attention_heads
self.rotary_ndims = int(self.head_size * config.rotary_pct)
self._init_bias(config.max_position_embeddings)
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
self._init_rope()
self.norm_factor = self.head_size**-0.5
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.attention_bias)
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
self.attention_dropout = nn.Dropout(config.attention_dropout)
self.is_causal = True
def _init_bias(self, max_positions, device=None):
self.register_buffer(
"bias",
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
1, 1, max_positions, max_positions
),
persistent=False,
)
if device is not None:
self.bias = self.bias.to(device)
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = GPTNeoXRotaryEmbedding(
self.rotary_ndims, self.config.max_position_embeddings, base=self.config.rotary_emb_base
)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = GPTNeoXLinearScalingRotaryEmbedding(
self.rotary_ndims,
self.config.max_position_embeddings,
base=self.config.rotary_emb_base,
scaling_factor=scaling_factor,
)
elif scaling_type == "dynamic":
self.rotary_emb = GPTNeoXDynamicNTKScalingRotaryEmbedding(
self.rotary_ndims,
self.config.max_position_embeddings,
base=self.config.rotary_emb_base,
scaling_factor=scaling_factor,
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
position_ids: torch.LongTensor,
head_mask: Optional[torch.FloatTensor] = None,
layer_past: Optional[Tuple[torch.Tensor]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
padding_mask: Optional[torch.Tensor] = None,
):
has_layer_past = layer_past is not None
# Compute QKV
# Attention heads [batch, seq_len, hidden_size]
# --> [batch, seq_len, (np * 3 * head_size)]
qkv = self.query_key_value(hidden_states)
# [batch, seq_len, (num_heads * 3 * head_size)]
# --> [batch, seq_len, num_heads, 3 * head_size]
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
qkv = qkv.view(*new_qkv_shape)
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
# Compute rotary embeddings on rotary_ndims
query_rot = query[..., : self.rotary_ndims]
query_pass = query[..., self.rotary_ndims :]
key_rot = key[..., : self.rotary_ndims]
key_pass = key[..., self.rotary_ndims :]
# Compute token offset for rotary embeddings (when decoding)
seq_len = key.shape[-2]
if has_layer_past:
seq_len += layer_past[0].shape[-2]
cos, sin = self.rotary_emb(value, seq_len=seq_len)
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
query = torch.cat((query, query_pass), dim=-1)
key = torch.cat((key, key_pass), dim=-1)
# Cache QKV values
if has_layer_past:
past_key = layer_past[0]
past_value = layer_past[1]
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
present = (key, value) if use_cache else None
# Compute attention
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
# Reshape outputs
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size)
attn_output = self.dense(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs
@classmethod
def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
"""
Splits hidden dim into attn_head_size and num_attention_heads
"""
# tensor: [bs, seq_len, hidden_size]
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
# -> [bs, seq_len, num_attention_heads, attn_head_size]
tensor = tensor.view(new_shape)
# -> [bs, num_attention_heads, seq_len, attn_head_size]
tensor = tensor.permute(0, 2, 1, 3)
return tensor
@classmethod
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden dim
"""
# tensor [bs, num_attention_heads, seq_len, attn_head_size]
tensor = tensor.permute(0, 2, 1, 3).contiguous()
# -> [bs, seq_len, num_attention_heads, attn_head_size]
tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size)
# -> [bs, seq_len, hidden_size]
return tensor
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
# q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
# compute causal mask from causal mask buffer
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
key_length = key.size(-2)
# dynamically increase the causal mask with the key length, if needed.
if key_length > self.bias.shape[-1]:
self._init_bias(key_length, device=key.device)
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
attn_scores = torch.zeros(
batch_size * num_attention_heads,
query_length,
key_length,
dtype=query.dtype,
device=key.device,
)
attn_scores = torch.baddbmm(
attn_scores,
query,
key.transpose(1, 2),
beta=1.0,
alpha=self.norm_factor,
)
attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)
mask_value = torch.finfo(attn_scores.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device)
attn_scores = torch.where(causal_mask, attn_scores, mask_value)
if attention_mask is not None:
# Apply the attention mask
attn_scores = attn_scores + attention_mask
attn_weights = nn.functional.softmax(attn_scores, dim=-1)
attn_weights = attn_weights.to(value.dtype)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_weights = self.attention_dropout(attn_weights)
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
class GPTNeoXFlashAttention2(GPTNeoXAttention):
"""
GPTNeoX flash attention module. This module inherits from `GPTNeoXAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
position_ids: torch.LongTensor,
head_mask: Optional[torch.FloatTensor] = None,
layer_past: Optional[Tuple[torch.Tensor]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
):
has_layer_past = layer_past is not None
# Compute QKV
# Attention heads [batch, seq_len, hidden_size]
# --> [batch, seq_len, (np * 3 * head_size)]
qkv = self.query_key_value(hidden_states)
# [batch, seq_len, (num_heads * 3 * head_size)]
# --> [batch, seq_len, num_heads, 3 * head_size]
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
qkv = qkv.view(*new_qkv_shape)
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
query_length = query.shape[-2]
# Compute rotary embeddings on rotary_ndims
query_rot = query[..., : self.rotary_ndims]
query_pass = query[..., self.rotary_ndims :]
key_rot = key[..., : self.rotary_ndims]
key_pass = key[..., self.rotary_ndims :]
# Compute token offset for rotary embeddings (when decoding)
seq_len = key.shape[-2]
if has_layer_past:
seq_len += layer_past[0].shape[-2]
cos, sin = self.rotary_emb(value, seq_len=seq_len)
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
query = torch.cat((query, query_pass), dim=-1)
key = torch.cat((key, key_pass), dim=-1)
# Cache QKV values
if has_layer_past:
past_key = layer_past[0]
past_value = layer_past[1]
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
present = (key, value) if use_cache else None
# GPT-neo-X casts query and key in fp32 to apply rotary embedding in full precision
target_dtype = value.dtype
if query.dtype != target_dtype:
query = query.to(target_dtype)
if key.dtype != target_dtype:
key = key.to(target_dtype)
# Permute to get the expected shape for Flash Attention
query = query.permute(0, 2, 1, 3)
key = key.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3)
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 / bfloat16 just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
input_dtype = query.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query = query.to(target_dtype)
key = key.to(target_dtype)
value = value.to(target_dtype)
attention_dropout = self.config.attention_dropout if self.training else 0.0
# Compute attention
attn_weights = self._flash_attention_forward(
query, key, value, attention_mask, query_length, dropout=attention_dropout, softmax_scale=self.norm_factor
)
# Reshape outputs
attn_output = attn_weights.reshape(
attn_weights.shape[0], attn_weights.shape[1], self.num_attention_heads * self.head_size
)
attn_output = self.dense(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
def _flash_attention_forward(
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output = flash_attn_func(
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
)
return attn_output
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input with num_heads->num_attention_heads
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
def attention_mask_func(attention_scores, ltor_mask):
attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min)
return attention_scores
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with LlamaRotary->GPTNeoXRotary
class GPTNeoXRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->GPTNeoX
class GPTNeoXLinearScalingRotaryEmbedding(GPTNeoXRotaryEmbedding):
"""GPTNeoXRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
t = t / self.scaling_factor
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->GPTNeoX
class GPTNeoXDynamicNTKScalingRotaryEmbedding(GPTNeoXRotaryEmbedding):
"""GPTNeoXRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class GPTNeoXMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size)
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size)
self.act = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
hidden_states = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dense_4h_to_h(hidden_states)
return hidden_states
GPT_NEOX_ATTENTION_CLASSES = {
"eager": GPTNeoXAttention,
"flash_attention_2": GPTNeoXFlashAttention2,
}
class GPTNeoXLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.use_parallel_residual = config.use_parallel_residual
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_dropout = nn.Dropout(config.hidden_dropout)
self.post_mlp_dropout = nn.Dropout(config.hidden_dropout)
self.attention = GPT_NEOX_ATTENTION_CLASSES[config._attn_implementation](config)
self.mlp = GPTNeoXMLP(config)
def forward(
self,
hidden_states: Optional[torch.FloatTensor],
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
layer_past: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
):
attention_layer_outputs = self.attention(
self.input_layernorm(hidden_states),
attention_mask=attention_mask,
position_ids=position_ids,
layer_past=layer_past,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights)
attn_output = self.post_attention_dropout(attn_output)
outputs = attention_layer_outputs[1:]
if self.use_parallel_residual:
# pseudocode:
# x = x + attn(ln1(x)) + mlp(ln2(x))
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
mlp_output = self.post_mlp_dropout(mlp_output)
hidden_states = mlp_output + attn_output + hidden_states
else:
# pseudocode:
# x = x + attn(ln1(x))
# x = x + mlp(ln2(x))
attn_output = attn_output + hidden_states
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
mlp_output = self.post_mlp_dropout(mlp_output)
hidden_states = mlp_output + attn_output
if use_cache:
outputs = (hidden_states,) + outputs # hidden_states, present, (attn_weights)
else:
outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights)
return outputs
GPT_NEOX_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`~GPTNeoXConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GPT_NEOX_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare GPTNeoX Model transformer outputting raw hidden-states without any specific head on top.",
GPT_NEOX_START_DOCSTRING,
)
class GPTNeoXModel(GPTNeoXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
self.emb_dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)])
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_in
def set_input_embeddings(self, value):
self.embed_in = value
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * self.config.num_hidden_layers)
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0)
# Attention mask.
if attention_mask is not None:
assert batch_size > 0, "batch_size has to be defined and > 0"
attention_mask = attention_mask.view(batch_size, -1)
if self._use_flash_attention_2:
attention_mask = attention_mask if 0 in attention_mask else None
else:
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
if inputs_embeds is None:
inputs_embeds = self.embed_in(input_ids)
hidden_states = self.emb_dropout(inputs_embeds)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
presents = () if use_cache else None
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
position_ids,
head_mask[i],
use_cache,
None,
output_attentions,
)
else:
outputs = layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask[i],
layer_past=layer_past,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
hidden_states = self.final_layer_norm(hidden_states)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
@add_start_docstrings(
"""GPTNeoX Model with a `language modeling` head on top for CLM fine-tuning.""", GPT_NEOX_START_DOCSTRING
)
class GPTNeoXForCausalLM(GPTNeoXPreTrainedModel):
_tied_weights_keys = ["embed_out.weight"]
def __init__(self, config):
super().__init__(config)
self.gpt_neox = GPTNeoXModel(config)
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.embed_out
def set_output_embeddings(self, new_embeddings):
self.embed_out = new_embeddings
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
`past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config.is_decoder = True
>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.gpt_neox(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
lm_logits = self.embed_out(hidden_states)
lm_loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# we are doing next-token prediction; shift prediction scores and input ids by one
shift_logits = lm_logits[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithPast(
loss=lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
input_shape = input_ids.shape
# cut decoder_input_ids if past is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"position_ids": position_ids,
}
)
return model_inputs
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"""
The GPTNeoX Model transformer with a sequence classification head on top (linear layer).
[`GPTNeoXForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-1) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
GPT_NEOX_START_DOCSTRING,
)
class GPTNeoXForSequenceClassification(GPTNeoXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.gpt_neox = GPTNeoXModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.gpt_neox(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class GPTNeoXForTokenClassification(GPTNeoXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.gpt_neox = GPTNeoXModel(config)
self.dropout = nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint="LarsJonasson/pythia-410m-deduped-sft-swedish",
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_loss=0.25,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.gpt_neox(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The GPT-NeoX Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
GPT_NEOX_START_DOCSTRING,
)
class GPTNeoXForQuestionAnswering(GPTNeoXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.gpt_neox = GPTNeoXModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.gpt_neox(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1).to(start_logits.device)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1).to(end_logits.device)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/gpt_neox/configuration_gpt_neox.py
|
# coding=utf-8
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" GPTNeoX model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json",
# See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox
}
class GPTNeoXConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an
GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the GPTNeoX
[EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50432):
Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPTNeoXModel`].
hidden_size (`int`, *optional*, defaults to 6144):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 44):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 24576):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
rotary_pct (`float`, *optional*, defaults to 0.25):
percentage of hidden dimensions to allocate to rotary embeddings
rotary_emb_base (`int`, *optional*, defaults to 10000)
base for computing rotary embeddings frequency
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio probability of the attention score.
hidden_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp
hidden states.
classifier_dropout (`float`, *optional*, defaults to 0.1):
Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`].
The dropout ratio for the hidden layer.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 1e-5):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
use_parallel_residual (`bool`, *optional*, defaults to `True`):
Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training
speedup at large scales (e.g. 20B).
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, *optional*, defaults to `True`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
Example:
```python
>>> from transformers import GPTNeoXConfig, GPTNeoXModel
>>> # Initializing a GPTNeoX gpt-neox-20b style configuration
>>> configuration = GPTNeoXConfig()
>>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration
>>> model = GPTNeoXModel(configuration) # doctest: +SKIP
>>> # Accessing the model configuration
>>> configuration = model.config # doctest: +SKIP
```"""
model_type = "gpt_neox"
def __init__(
self,
vocab_size=50432,
hidden_size=6144,
num_hidden_layers=44,
num_attention_heads=64,
intermediate_size=24576,
hidden_act="gelu",
rotary_pct=0.25,
rotary_emb_base=10000,
attention_dropout=0.0,
hidden_dropout=0.0,
classifier_dropout=0.1,
max_position_embeddings=2048,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
bos_token_id=0,
eos_token_id=2,
tie_word_embeddings=False,
use_parallel_residual=True,
rope_scaling=None,
attention_bias=True,
**kwargs,
):
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.rotary_pct = rotary_pct
self.rotary_emb_base = rotary_emb_base
self.attention_dropout = attention_dropout
self.hidden_dropout = hidden_dropout
self.classifier_dropout = classifier_dropout
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.tie_word_embeddings = tie_word_embeddings
self.use_parallel_residual = use_parallel_residual
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self._rope_scaling_validation()
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
"The hidden size is not divisble by the number of attention heads! Make sure to update them!"
)
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/gpt_neox/__init__.py
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
_import_structure = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_gpt_neox_fast"] = ["GPTNeoXTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_gpt_neox"] = [
"GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTNeoXForCausalLM",
"GPTNeoXForQuestionAnswering",
"GPTNeoXForSequenceClassification",
"GPTNeoXForTokenClassification",
"GPTNeoXLayer",
"GPTNeoXModel",
"GPTNeoXPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox import (
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXLayer,
GPTNeoXModel,
GPTNeoXPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/clvp/feature_extraction_clvp.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Feature extractor class for CLVP
"""
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
logger = logging.get_logger(__name__)
class ClvpFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a CLVP feature extractor.
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods.
This class extracts log-mel-spectrogram features from raw speech using a custom numpy implementation of the `Short
Time Fourier Transform` which should match pytorch's `torch.stft` equivalent.
Args:
feature_size (`int`, *optional*, defaults to 80):
The feature dimension of the extracted features.
sampling_rate (`int`, *optional*, defaults to 22050):
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
default_audio_length (`int`, *optional*, defaults to 6):
The default length of raw audio in seconds. If `max_length` is not set during `__call__` then it will
automatically be set to default_audio_length * `self.sampling_rate`.
hop_length (`int`, *optional*, defaults to 256):
Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
chunk_length (`int`, *optional*, defaults to 30):
The maximum number of chuncks of `sampling_rate` samples used to trim and pad longer or shorter audio
sequences.
n_fft (`int`, *optional*, defaults to 1024):
Size of the Fourier transform.
padding_value (`float`, *optional*, defaults to 0.0):
Padding value used to pad the audio. Should correspond to silences.
mel_norms (`list` of length `feature_size`, *optional*):
If `mel_norms` is provided then it will be used to normalize the log-mel spectrograms along each
mel-filter.
return_attention_mask (`bool`, *optional*, defaults to `False`):
Whether to return the attention mask. If left to the default, it will return the attention mask.
[What are attention masks?](../glossary#attention-mask)
"""
model_input_names = ["input_features", "attention_mask"]
def __init__(
self,
feature_size=80,
sampling_rate=22050,
default_audio_length=6,
hop_length=256,
chunk_length=30,
n_fft=1024,
padding_value=0.0,
mel_norms=None,
return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask
**kwargs,
):
super().__init__(
feature_size=feature_size,
sampling_rate=sampling_rate,
padding_value=padding_value,
return_attention_mask=return_attention_mask,
**kwargs,
)
self.n_fft = n_fft
self.hop_length = hop_length
self.chunk_length = chunk_length
self.n_samples = chunk_length * sampling_rate
self.nb_max_frames = self.n_samples // hop_length
self.sampling_rate = sampling_rate
self.default_audio_length = default_audio_length
self.mel_norms = mel_norms
self.mel_filters = mel_filter_bank(
num_frequency_bins=1 + (n_fft // 2),
num_mel_filters=feature_size,
min_frequency=0.0,
max_frequency=8000.0,
sampling_rate=sampling_rate,
norm="slaney",
mel_scale="htk",
)
def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
"""
This method first computes the log-mel spectrogram of the provided audio then applies normalization along the
each mel-filterbank, if `mel_norms` is provided.
"""
log_spec = spectrogram(
waveform,
window_function(self.n_fft, "hann"),
frame_length=self.n_fft,
hop_length=self.hop_length,
power=2.0,
mel_filters=self.mel_filters,
log_mel=None,
)
log_spec = np.log(np.clip(log_spec, a_min=1e-5, a_max=None))
if self.mel_norms is not None:
log_spec = log_spec / np.array(self.mel_norms)[:, None]
return log_spec
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
sampling_rate: Optional[int] = None,
truncation: bool = True,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = True,
padding: Optional[str] = "max_length",
max_length: Optional[int] = None,
**kwargs,
) -> BatchFeature:
"""
`ClvpFeatureExtractor` is used to extract various voice specific properties such as the pitch and tone of the
voice, speaking speed, and even speaking defects like a lisp or stuttering from a sample voice or `raw_speech`.
First the voice is padded or truncated in a way such that it becomes a waveform of `self.default_audio_length`
seconds long and then the log-mel spectrogram is extracted from it.
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
stereo, i.e. single float per timestep.
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
pipeline.
truncation (`bool`, *optional*, default to `True`):
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
return_attention_mask (`bool`, *optional*, defaults to `True`):
Whether to return the attention mask. If left to the default, it will return the attention mask.
[What are attention masks?](../glossary#attention-mask)
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
padding_value (`float`, defaults to 0.0):
The value that is used to fill the padding values / vectors.
max_length (`int`, *optional*):
The maximum input length of the inputs.
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
f" was sampled with {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [np.asarray([raw_speech]).T]
batched_speech = BatchFeature({"input_features": raw_speech})
max_length = self.default_audio_length * self.sampling_rate if max_length is None else max_length
padded_inputs = self.pad(
batched_speech,
padding=padding,
max_length=max_length,
truncation=truncation,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
# make sure list is in array format
input_features = padded_inputs.get("input_features").transpose(2, 0, 1)
input_features = [
self._np_extract_fbank_features(waveform).astype(np.float32) for waveform in input_features[0]
]
if isinstance(input_features[0], List):
padded_inputs["input_features"] = [np.asarray(feature) for feature in input_features]
else:
padded_inputs["input_features"] = input_features
return padded_inputs.convert_to_tensors(return_tensors)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/clvp/convert_clvp_to_hf.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Weights conversion script for CLVP
"""
import argparse
import os
import torch
from huggingface_hub import hf_hub_download
from transformers import ClvpConfig, ClvpModelForConditionalGeneration
_MODELS = {
"clvp": "https://huggingface.co/jbetker/tortoise-tts-v2/blob/main/.models/clvp2.pth",
"decoder": "https://huggingface.co/jbetker/tortoise-tts-v2/blob/main/.models/autoregressive.pth",
}
dim = 1024
sub_dim = dim // 16
CLVP_ENCODERS_MAPPING = {
"text_transformer.transformer.attn_layers": "text_encoder_model",
"speech_transformer.transformer.attn_layers": "speech_encoder_model",
"text_transformer.transformer.norm": "text_encoder_model.final_layer_norm",
"speech_transformer.transformer.norm": "speech_encoder_model.final_layer_norm",
"to_text_latent": "text_encoder_model.projection",
"to_speech_latent": "speech_encoder_model.projection",
"text_emb": "text_encoder_model.token_embedding",
"speech_emb": "speech_encoder_model.token_embedding",
"1.wrap.net.0": "mlp.fc1",
"1.wrap.net.3": "mlp.fc2",
"1.wrap": "self_attn",
"to_out": "out_proj",
"to_q": "q_proj",
"to_k": "k_proj",
"to_v": "v_proj",
"temperature": "logit_scale",
}
CLVP_DECODER_MAPPING = {
"conditioning_encoder.init": "conditioning_encoder.mel_conv",
"conditioning_encoder.attn": "conditioning_encoder.mel_attn_blocks",
"mel_attn_blocks": "group_norms",
".norm.weight": ".weight",
".norm.bias": ".bias",
"text_embedding": "conditioning_encoder.text_token_embedding",
"text_pos_embedding.emb": "conditioning_encoder.text_position_embedding",
"final_norm": "speech_decoder_model.final_norm",
"mel_head": "speech_decoder_model.lm_head",
"gpt.ln_f": "speech_decoder_model.model.decoder.layer_norm",
"mel_embedding": "speech_decoder_model.model.decoder.input_embeds_layer",
"mel_pos_embedding.emb": "speech_decoder_model.model.decoder.position_embeds_layer",
"gpt.h": "speech_decoder_model.model.decoder.layers",
"ln_1": "input_layernorm",
"ln_2": "post_attention_layernorm",
}
def update_index(present_index):
if present_index % 2 == 0:
return int(present_index / 2)
else:
return int((present_index - 1) / 2)
def convert_encoder_weights(original_weights):
converted_weights = {}
original_weights_keys = sorted(original_weights.keys())
for original_key in original_weights_keys:
updated_key = original_key
# for input_rmsnorm.weight and post_attention_rmsnorm.weight
if "0.0.g" in updated_key:
present_index = updated_key.split(".")[4]
if int(present_index) % 2 == 0:
updated_key = updated_key.replace("0.0.g", "input_rmsnorm.weight")
else:
updated_key = updated_key.replace("0.0.g", "post_attention_rmsnorm.weight")
if "transformer.attn_layers.layers" in updated_key:
present_index = updated_key.split(".")[4]
updated_index = update_index(int(present_index))
updated_key = updated_key.replace(
f"transformer.attn_layers.layers.{present_index}", f"transformer.attn_layers.layers.{updated_index}"
)
for k, v in CLVP_ENCODERS_MAPPING.items():
if k in updated_key:
updated_key = updated_key.replace(k, v)
converted_weights[updated_key] = original_weights.pop(original_key)
return converted_weights
def convert_decoder_weights(original_weights):
converted_weights = {}
original_weights_keys = sorted(original_weights.keys())
for original_key in original_weights_keys:
updated_key = original_key
if len(updated_key.split(".")) > 3:
index, attr = updated_key.split(".")[2], updated_key.split(".")[-1]
# for decoder attention
if "attn.c_attn" in updated_key:
if attr == "weight":
slice1, slice2, slice3 = original_weights[updated_key].squeeze(-1).T.split(split_size=dim, dim=0)
else:
slice1, slice2, slice3 = original_weights[updated_key].split(split_size=dim, dim=0)
converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.q_proj.{attr}"] = slice1
converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.k_proj.{attr}"] = slice2
converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.v_proj.{attr}"] = slice3
continue
if "attn.c_proj" in updated_key:
converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.out_proj.{attr}"] = (
original_weights[updated_key].squeeze(-1).T
)
continue
if "attn.bias" in updated_key or "attn.masked_bias" in updated_key or "text_head" in updated_key:
original_weights.pop(updated_key)
continue
# conditional encoder attention
if "qkv" in updated_key:
if attr == "weight":
slice1, slice2, slice3 = original_weights[updated_key].squeeze(-1).split(split_size=dim, dim=0)
else:
slice1, slice2, slice3 = original_weights[updated_key].split(split_size=dim, dim=0)
indices = torch.arange(dim)
index1, index2, index3 = (
indices.unfold(0, sub_dim, sub_dim * 3).flatten(),
indices[sub_dim:].unfold(0, sub_dim, sub_dim * 3).flatten(),
indices[2 * sub_dim :].unfold(0, sub_dim, sub_dim * 3).flatten(),
)
converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.q_proj.{attr}"] = torch.concatenate(
[slice1[index1], slice2[index3], slice3[index2]],
axis=0,
)
converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.k_proj.{attr}"] = torch.concatenate(
[slice1[index2], slice2[index1], slice3[index3]],
axis=0,
)
converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.v_proj.{attr}"] = torch.concatenate(
[slice1[index3], slice2[index2], slice3[index1]],
axis=0,
)
continue
if "proj_out" in updated_key:
converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.out_proj.{attr}"] = original_weights[
updated_key
].squeeze(-1)
continue
for k, v in CLVP_DECODER_MAPPING.items():
if k in updated_key:
updated_key = updated_key.replace(k, v)
converted_weights[updated_key] = original_weights.pop(original_key)
return converted_weights
def _download(url: str, root: str):
repo_id = f"{url.split('/')[3]}/{url.split('/')[4]}"
filename = f"{url.split('/')[-2]}/{url.split('/')[-1]}"
hf_hub_download(
repo_id=repo_id,
filename=filename,
force_filename=root,
local_dir_use_symlinks=False,
)
def convert_clvp_weights(checkpoint_path, pytorch_dump_folder_path):
converted_checkpoint = {}
for each_model_name, each_model_url in _MODELS.items():
each_model_path = os.path.join(checkpoint_path, each_model_url.split("/")[-1])
if not os.path.exists(each_model_path):
print(f"\n{each_model_name} was not found! Downloading it to {each_model_path}")
_download(url=each_model_url, root=each_model_path)
if each_model_name == "clvp":
clvp_checkpoint = torch.load(each_model_path, map_location="cpu")
else:
decoder_checkpoint = torch.load(each_model_path, map_location="cpu")
# Converting the weights
converted_checkpoint.update(**convert_encoder_weights(clvp_checkpoint))
converted_checkpoint.update(**convert_decoder_weights(decoder_checkpoint))
config = ClvpConfig.from_pretrained("susnato/clvp_dev")
model = ClvpModelForConditionalGeneration(config)
model.load_state_dict(converted_checkpoint, strict=True)
model.save_pretrained(pytorch_dump_folder_path)
print(f"Model saved at {pytorch_dump_folder_path}!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# # Required parameters
parser.add_argument(
"--checkpoint_path", type=str, help="Path to the folder of downloaded checkpoints. (Please enter full path)"
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
help="Path to the output PyTorch model. (Please enter full path)",
)
args = parser.parse_args()
convert_clvp_weights(args.checkpoint_path, args.pytorch_dump_folder_path)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/clvp/modeling_clvp.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CLVP model."""
import copy
import math
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...generation import GenerationConfig
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPooling,
CausalLMOutputWithCrossAttentions,
)
from ...modeling_utils import PreTrainedModel, SequenceSummary
from ...pytorch_utils import Conv1D
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_clvp import (
ClvpConfig,
ClvpDecoderConfig,
ClvpEncoderConfig,
)
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "susnato/clvp_dev"
CLVP_PRETRAINED_MODEL_ARCHIVE_LIST = [
"susnato/clvp_dev",
# See all Clvp models at https://huggingface.co/models?filter=clvp
]
# Copied from transformers.models.clip.modeling_clip.contrastive_loss
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->clvp, image_loss->speech_loss
def clvp_loss(similarity: torch.Tensor) -> torch.Tensor:
caption_loss = contrastive_loss(similarity)
speech_loss = contrastive_loss(similarity.t())
return (caption_loss + speech_loss) / 2.0
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, v, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
v_embed = (v * cos) + (rotate_half(v) * sin)
return q_embed, k_embed, v_embed
def _pad_extra_bos_eos_tokens(
input_ids,
attention_mask=None,
pad_token_id=0,
bos_token_id=255,
eos_token_id=0,
add_bos_token=True,
add_eos_token=True,
):
"""
This method adds extra bos and eos tokens to input_ids and accordingly modifies the attention_mask which is used in
`ClvpConditioningEncoder` and the generation loop of the `ClvpModelForConditionalGeneration`.
"""
# add the bos token at the beginning
if add_bos_token:
input_ids = torch.nn.functional.pad(input_ids, (1, 0), value=bos_token_id)
attention_mask = (
torch.nn.functional.pad(attention_mask, (1, 0), value=1) if attention_mask is not None else attention_mask
)
modified_input_ids = input_ids
if add_eos_token:
modified_input_ids = torch.zeros(
(input_ids.shape[0], input_ids.shape[1] + 1), dtype=input_ids.dtype, device=input_ids.device
)
for i, each_input_id in enumerate(input_ids):
# locate where the valid tokens end and then add the eos token
if torch.isin(each_input_id, pad_token_id).sum():
pos = torch.where(each_input_id == pad_token_id)[0].min()
modified_input_ids[i] = torch.concatenate(
[each_input_id[:pos], torch.tensor([eos_token_id], device=input_ids.device), each_input_id[pos:]]
)
else:
# if there are no pad tokens present, then add eos to the end
modified_input_ids[i] = torch.nn.functional.pad(each_input_id, (0, 1), value=eos_token_id)
attention_mask = (
torch.nn.functional.pad(attention_mask, (1, 0), value=1) if attention_mask is not None else attention_mask
)
return modified_input_ids, attention_mask
@dataclass
class ClvpEncoderOutput(ModelOutput):
"""
Base class for CLVP encoder's outputs that contains a pooling of the last hidden states as well as a projection
output (a linear layer on top of the pooled output).
Args:
embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when model is initialized with `with_projection=True`):
The embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The hidden state of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Pooled output of the `last_hidden_state`.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class ClvpOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for speech-text similarity.
speech_ids (`torch.LongTensor`, *optional*):
speech_ids (or speech candidates) generated by the `ClvpForCausalLM` model.
logits_per_speech (`torch.FloatTensor` of shape `(speech_batch_size, text_batch_size)`):
The scaled dot product scores between `speech_embeds` and `text_embeds`. This represents the speech-text
similarity scores.
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, speech_batch_size)`):
The scaled dot product scores between `text_embeds` and `speech_embeds`. This represents the text-speech
similarity scores.
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of the text encoder
model.
speech_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The speech embeddings obtained by applying the projection layer to the pooled output of the speech encoder
model.
text_model_output (`BaseModelOutputWithPooling`):
The pooled output of the `last_hidden_state` of the text encoder Model.
speech_model_output (`BaseModelOutputWithPooling`):
The pooled output of the `last_hidden_state` of the speech encoder Model.
decoder_hidden_states (`torch.FloatTensor`, *optional*):
The hidden states of the decoder model.
text_encoder_hidden_states (`torch.FloatTensor`, *optional*):
The hidden states of the text encoder model.
speech_encoder_hidden_states (`torch.FloatTensor`, *optional*):
The hidden states of the speech encoder model.
"""
loss: Optional[torch.FloatTensor] = None
speech_ids: Optional[torch.LongTensor] = None
logits_per_speech: torch.FloatTensor = None
logits_per_text: torch.FloatTensor = None
text_embeds: torch.FloatTensor = None
speech_embeds: torch.FloatTensor = None
text_model_output: BaseModelOutputWithPooling = None
speech_model_output: BaseModelOutputWithPooling = None
decoder_hidden_states: torch.FloatTensor = None
text_encoder_hidden_states: torch.FloatTensor = None
speech_encoder_hidden_states: torch.FloatTensor = None
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Clvp
class ClvpRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
ClvpRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class ClvpRotaryPositionalEmbedding(nn.Module):
"""
Rotary Position Embedding Class for CLVP. It was proposed in the paper 'ROFORMER: ENHANCED TRANSFORMER WITH ROTARY
POSITION EMBEDDING', Please see https://arxiv.org/pdf/2104.09864v1.pdf .
"""
def __init__(self, config):
super().__init__()
dim = max(config.projection_dim // (config.num_attention_heads * 2), 32)
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.cached_sequence_length = None
self.cached_rotary_positional_embedding = None
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
sequence_length = hidden_states.shape[1]
if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None:
return self.cached_rotary_positional_embedding
self.cached_sequence_length = sequence_length
time_stamps = torch.arange(sequence_length, device=hidden_states.device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq)
embeddings = torch.cat((freqs, freqs), dim=-1)
self.cached_rotary_positional_embedding = embeddings.unsqueeze(0)
return self.cached_rotary_positional_embedding
class ClvpSelfAttention(nn.Module):
"""
Multi-headed attention to combine Absolute and Rotary Positional Embeddings into a single Attention module.
"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
if hasattr(config, "max_position_embeddings"):
max_positions = config.max_position_embeddings
bias = torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool))
bias = bias.view(1, 1, max_positions, max_positions)
self.register_buffer("bias", bias, persistent=False)
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
# Copied from transformers.models.clip.modeling_clip.CLIPAttention._shape
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.FloatTensor,
rotary_pos_emb: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
use_cache: Optional[bool] = False,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
# Raise error when position_ids is None but rotary_pos_emb is provided, because we need that when applying
# rotary_pos_emb to query and key states.
if rotary_pos_emb is not None and position_ids is None:
raise ValueError("`position_ids` must be provided when `rotary_pos_emb` is not None.")
bsz, _, embed_dim = hidden_states.size()
# get query proj
query_states = self._shape(self.q_proj(hidden_states), -1, bsz) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if past_key_value is not None:
past_key, past_value = past_key_value
key_states = torch.cat((past_key, key_states), dim=-2)
value_states = torch.cat((past_value, value_states), dim=-2)
if use_cache is True:
present = (key_states, value_states)
else:
present = None
if rotary_pos_emb is not None:
rotary_emb_dim = rotary_pos_emb.shape[-1]
# Partial rotary embedding
query_rot, query_pass = (
query_states[..., :rotary_emb_dim],
query_states[..., rotary_emb_dim:],
)
key_rot, key_pass = (
key_states[..., :rotary_emb_dim],
key_states[..., rotary_emb_dim:],
)
value_rot, value_pass = (
value_states[..., :rotary_emb_dim],
value_states[..., rotary_emb_dim:],
)
cos, sin = rotary_pos_emb.cos().squeeze(0), rotary_pos_emb.sin().squeeze(0)
query_rot, key_rot, value_rot = apply_rotary_pos_emb(query_rot, key_rot, value_rot, cos, sin, position_ids)
# [batch_size, num_heads, seq_length, head_dim]
query_states = torch.cat((query_rot, query_pass), dim=-1)
key_states = torch.cat((key_rot, key_pass), dim=-1)
value_states = torch.cat((value_rot, value_pass), dim=-1)
tgt_len = query_states.shape[2]
src_len = key_states.shape[2]
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_probs, value_states)
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, present, attn_weights
class ClvpGatedLinearUnit(nn.Module):
"""
`ClvpGatedLinearUnit` uses the second half of the `hidden_states` to act as a gate for the first half of the
`hidden_states` which controls the flow of data from the first of the tensor.
"""
def __init__(self, config):
super().__init__()
self.activation_fn = ACT2FN[config.hidden_act]
self.proj = nn.Linear(config.hidden_size, config.intermediate_size * 2)
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
return hidden_states * self.activation_fn(gate)
class ClvpEncoderMLP(nn.Module):
"""
This MLP is used in CLVP speech or text encoder models.
"""
def __init__(self, config):
super().__init__()
self.config = config
self.fc1 = ClvpGatedLinearUnit(config)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout_layer = nn.Dropout(config.dropout)
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.dropout_layer(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class ClvpEncoderLayer(nn.Module):
def __init__(self, config: ClvpConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.self_attn = ClvpSelfAttention(config)
self.mlp = ClvpEncoderMLP(config)
self.input_rmsnorm = ClvpRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
self.post_attention_rmsnorm = ClvpRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.FloatTensor,
rotary_pos_emb: torch.FloatTensor,
attention_mask: torch.LongTensor,
position_ids: torch.LongTensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, embed_dim)`):
input to the layer.
rotary_pos_emb (`torch.FloatTensor`):
rotary position embeddings generated by `ClvpRotaryPositionalEmbedding` module.
attention_mask (`torch.FloatTensor` of shape `(batch, 1, tgt_len, src_len)`):
attention mask where padding elements are indicated by very large negative values.
position_ids (`torch.LongTensor`):
Denotes position ids of the input tokens.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.input_rmsnorm(hidden_states)
attention_outputs = self.self_attn(
hidden_states=hidden_states,
rotary_pos_emb=rotary_pos_emb,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
)
hidden_states = attention_outputs[0]
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_attention_rmsnorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attention_outputs[-1],)
return outputs
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP with GPT2->ClvpDecoderMLP
class ClvpDecoderMLP(nn.Module):
def __init__(self, intermediate_size, config):
super().__init__()
embed_dim = config.hidden_size
self.c_fc = Conv1D(intermediate_size, embed_dim)
self.c_proj = Conv1D(embed_dim, intermediate_size)
self.act = ACT2FN[config.activation_function]
self.dropout = nn.Dropout(config.resid_pdrop)
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class ClvpDecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
hidden_size = config.hidden_size
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
self.input_layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = ClvpSelfAttention(config)
self.post_attention_layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = ClvpDecoderMLP(inner_dim, config)
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attn_outputs = self.attn(
hidden_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
outputs = attn_outputs[1:]
# residual connection
hidden_states = attn_output + residual
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs
class ClvpConditioningEncoder(nn.Module):
"""
This class processes the log-mel spectrograms(extracted by the Feature Extractor) and text tokens(produced by the
tokenizer) as inputs for the decoder model.
First each log-mel spectrogram is processed into a single vector which captures valuable characteristics from each
of them, then the text tokens are converted into token embeddings and position embeddings are added afterwards.
Both of these vectors are concatenated and then passed to the decoder model.
The text tokens helps to incorporate the "text information" and the log-mel spectrogram is used to specify the
"voice characteristics" into the generated mel tokens.
"""
def __init__(self, config: ClvpConfig):
super().__init__()
self.text_config = config.text_config
self.decoder_config = config.decoder_config
self.text_token_embedding = nn.Embedding(self.text_config.vocab_size, self.decoder_config.hidden_size)
self.text_position_embedding = nn.Embedding(
self.decoder_config.max_text_tokens, self.decoder_config.hidden_size
)
self.mel_conv = nn.Conv1d(self.decoder_config.feature_size, self.decoder_config.hidden_size, kernel_size=1)
# define group norms to be used before each attention layer
num_groups = self.compute_groupnorm_groups(self.decoder_config.hidden_size)
self.group_norms = nn.ModuleList(
[
nn.GroupNorm(num_groups, self.decoder_config.hidden_size, eps=1e-5, affine=True)
for _ in range(self.decoder_config.num_mel_attn_blocks)
]
)
# define the attention layers
self.mel_attn_blocks = nn.ModuleList(
[ClvpSelfAttention(self.decoder_config) for _ in range(self.decoder_config.num_mel_attn_blocks)]
)
self.gradient_checkpointing = False
def compute_groupnorm_groups(self, channels: int, groups: int = 32):
"""
Calculates the value of `num_groups` for nn.GroupNorm. This logic is taken from the official tortoise
repository. link :
https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/models/arch_util.py#L26
"""
if channels <= 16:
groups = 8
elif channels <= 64:
groups = 16
while channels % groups != 0:
groups = int(groups / 2)
if groups <= 2:
raise ValueError(
f"Number of groups for the GroupNorm must be greater than 2, but it is {groups}."
f"Please consider using a different `hidden_size`"
)
return groups
def forward(
self,
input_features: torch.FloatTensor,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
# process text
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.size()
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
# construct attention mask if not given
if attention_mask is None:
attention_mask = torch.ones([batch_size, seq_length], dtype=torch.long, device=input_ids.device)
# We add bos and eos input_ids in the modeling file instead of the tokenizer file to keep the logic simple
# This logic is specific to ClvpConditioningEncoder and not used by other modules.
input_ids, attention_mask = _pad_extra_bos_eos_tokens(
input_ids,
attention_mask,
bos_token_id=self.text_config.bos_token_id,
eos_token_id=self.text_config.eos_token_id,
)
inputs_embeds = self.text_token_embedding(input_ids)
position_ids = attention_mask.cumsum(-1) - 1
position_embeds = self.text_position_embedding(position_ids)
text_embeds = inputs_embeds + position_embeds
if self.gradient_checkpointing and self.training:
# process each log-mel spectrogram into a single vector
mel_spec = torch.utils.checkpoint.checkpoint(self.mel_conv, input_features)
for i, mel_attn_block in enumerate(self.mel_attn_blocks):
residual_mel_spec = mel_spec.transpose(1, 2)
mel_spec = torch.utils.checkpoint.checkpoint(self.group_norms[i], mel_spec).transpose(1, 2)
mel_spec = torch.utils.checkpoint.checkpoint(mel_attn_block, mel_spec)[0] + residual_mel_spec
mel_spec = mel_spec.transpose(1, 2)
else:
# process each log-mel spectrogram into a single vector
mel_spec = self.mel_conv(input_features)
for i, mel_attn_block in enumerate(self.mel_attn_blocks):
residual_mel_spec = mel_spec.transpose(1, 2)
mel_spec = self.group_norms[i](mel_spec).transpose(1, 2)
mel_spec = mel_attn_block(mel_spec)[0] + residual_mel_spec
mel_spec = mel_spec.transpose(1, 2)
mel_spec = mel_spec[:, :, 0]
mel_spec = mel_spec.unsqueeze(1)
# repeat if there is either (1 text vs N audios) or (N texts vs 1 audio)
if text_embeds.shape[0] == 1 and mel_spec.shape[0] != 1:
text_embeds = text_embeds.repeat(mel_spec.shape[0], 1, 1)
elif text_embeds.shape[0] != 1 and mel_spec.shape[0] == 1:
mel_spec = mel_spec.repeat(text_embeds.shape[0], 1, 1)
# If there is N texts and M audios we will raise error since the number of text and audio must be same.
elif text_embeds.shape[0] != mel_spec.shape[0]:
raise ValueError(
f"The number of texts and number of audios must be same. "
f"Found {text_embeds.shape[0]} texts vs {mel_spec.shape[0]} audios"
)
return torch.concat([mel_spec, text_embeds], dim=1)
class ClvpPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ClvpConfig
base_model_prefix = "clvp"
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, (nn.Linear, Conv1D, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=factor * 0.02)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, ClvpEncoderMLP):
factor = self.config.initializer_factor
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
nn.init.normal_(module.fc1.proj.weight if getattr(module.fc1, "proj") else module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
elif isinstance(module, ClvpEncoder):
config = self.config.text_config if hasattr(self.config, "text_config") else self.config
factor = config.initializer_factor
module.projection.weight.data.normal_(mean=0.0, std=factor * (config.hidden_size**-0.5))
elif isinstance(module, ClvpConditioningEncoder):
module.mel_conv.weight.data.normal_(mean=0.0, std=factor)
module.mel_conv.bias.data.zero_()
elif isinstance(module, ClvpForCausalLM):
for name, p in module.named_parameters():
if name == "c_proj.weight":
p.data.normal_(
mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.num_hidden_layers))
)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
CLVP_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`ClvpConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
CLVP_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`):
Indicates log mel-spectrogram representations for audio returned by [`ClvpFeatureExtractor`].
conditioning_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
inputs_embeds for `ClvpConditioningEncoder`. Can be used in place of `input_ids`.
text_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
inputs_embeds for the text encoder model passed in place of `input_ids`.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding text token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
CLVP_DECODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
their past given to this model should not be passed as `input_ids` as they have already been computed.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
`past_key_values`. In other words, the `attention_mask` always has to have the length:
`len(past_key_values) + len(input_ids)`
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
`past_key_values`).
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class ClvpEncoder(ClvpPreTrainedModel):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`ClvpEncoderLayer`].
Args:
config: ClvpConfig
"""
def __init__(self, config: ClvpConfig):
super().__init__(config)
self.config = config
self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
self.rotary_pos_emb = ClvpRotaryPositionalEmbedding(config) if config.use_rotary_embedding else None
self.layers = nn.ModuleList([ClvpEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.sequence_summary = SequenceSummary(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.token_embedding
def set_input_embeddings(self, value):
self.token_embedding = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
input embeddings for the model. This bypasses the model's internal embedding lookup matrix.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor`, *optional*):
Denotes the position ids of `input_ids`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
inputs_embeds = self.token_embedding(input_ids)
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
# expand attention_mask and create position_ids if needed
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(input_shape[1], dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
rotary_pos_emb = self.rotary_pos_emb(inputs_embeds) if self.rotary_pos_emb is not None else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = torch.utils.checkpoint.checkpoint(
encoder_layer.__call__,
hidden_states,
rotary_pos_emb,
attention_mask,
position_ids,
)
else:
layer_outputs = encoder_layer(
hidden_states,
rotary_pos_emb,
attention_mask,
position_ids,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
last_hidden_state = hidden_states
last_hidden_state = self.final_layer_norm(last_hidden_state)
# take the mean over axis 1 and get pooled output
pooled_output = self.sequence_summary(last_hidden_state)
# apply the projection layer
embeds = self.projection(pooled_output)
if not return_dict:
return tuple(
v for v in [embeds, last_hidden_state, pooled_output, encoder_states, all_attentions] if v is not None
)
return ClvpEncoderOutput(
embeds=embeds,
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_states,
attentions=all_attentions,
)
class ClvpDecoder(ClvpPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ClvpDecoderLayer`]
"""
def __init__(self, config):
super().__init__(config)
self.config = config
self.input_embeds_layer = nn.Embedding(self.config.vocab_size, self.config.hidden_size)
self.position_embeds_layer = nn.Embedding(self.config.max_position_embeddings, self.config.hidden_size)
self.drop = nn.Dropout(self.config.embd_pdrop)
self.layers = nn.ModuleList([ClvpDecoderLayer(self.config) for _ in range(self.config.num_hidden_layers)])
self.layer_norm = nn.LayerNorm(self.config.hidden_size, eps=self.config.layer_norm_epsilon)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.input_embeds_layer
def set_input_embeddings(self, new_embeddings):
self.input_embeds_layer = new_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
for layer, heads in heads_to_prune.items():
self.layers[layer].attn.prune_heads(heads)
@add_start_docstrings_to_model_forward(CLVP_DECODER_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_key_values_length = 0
past_key_values = tuple([None] * len(self.layers))
else:
past_key_values_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(
past_key_values_length, input_shape[-1] + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
if inputs_embeds is None:
inputs_embeds = self.input_embeds_layer(input_ids)
position_embeds = self.position_embeds_layer(position_ids)
inputs_embeds = inputs_embeds + position_embeds
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x num_attention_heads x N x N
# head_mask has shape num_hidden_layers x batch x num_attention_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
hidden_states = inputs_embeds
if token_type_ids is not None:
token_type_embeds = self.input_embeds_layer(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
for i, (block, past_key_value) in enumerate(zip(self.layers, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = torch.utils.checkpoint.checkpoint(
block.__call__,
hidden_states,
None,
attention_mask,
position_ids,
head_mask[i],
)
else:
outputs = block(
hidden_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask[i],
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare Clvp decoder model outputting raw hidden-states without any specific head on top.",
CLVP_START_DOCSTRING,
)
class ClvpModel(ClvpPreTrainedModel):
def __init__(self, config: ClvpDecoderConfig):
super().__init__(config)
self.config = config
self.decoder = ClvpDecoder(self.config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.input_embeds_layer
def set_input_embeddings(self, value):
self.decoder.input_embeds_layer = value
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(CLVP_DECODER_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
)
@add_start_docstrings(
"The CLVP decoder model with a language modelling head on top.",
CLVP_START_DOCSTRING,
)
class ClvpForCausalLM(ClvpPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.model = ClvpModel(self.config)
self.final_norm = nn.LayerNorm(self.config.hidden_size)
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=True)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.input_embeds_layer
def set_input_embeddings(self, new_embeddings):
self.model.decoder.input_embeds_layer = new_embeddings
def _prepare_model_inputs(
self,
inputs: Optional[torch.Tensor] = None,
bos_token_id: Optional[int] = None,
model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]:
"""
This function extracts the model-specific `inputs` for generation.
"""
input_name = self.main_input_name
model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None}
inputs_kwarg = model_kwargs.pop(input_name, None)
if inputs_kwarg is not None and inputs is not None:
raise ValueError(
f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed."
f"Make sure to either pass {inputs} or {input_name}=..."
)
elif inputs_kwarg is not None:
inputs = inputs_kwarg
if input_name == "input_ids" and "inputs_embeds" in model_kwargs:
model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation(
inputs, bos_token_id, model_kwargs=model_kwargs
)
inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
# Check if conditioning_embeds are provided or not, if yes then concatenate the bos_token_id at the end of the conditioning_embeds.
# Then we must subtract the positional_ids because during the forward pass it will be added anyways, so we must cancel them out here.
conditioning_embeds = model_kwargs.get("conditioning_embeds", None)
if conditioning_embeds is not None:
mel_start_token_embedding = self.model.decoder.input_embeds_layer(
torch.full(
(conditioning_embeds.shape[0], 1),
fill_value=self.config.bos_token_id,
device=conditioning_embeds.device,
)
)
mel_start_token_embedding += self.model.decoder.position_embeds_layer(
torch.full((conditioning_embeds.shape[0], 1), fill_value=0, device=conditioning_embeds.device)
)
conditioning_embeds = torch.concat([conditioning_embeds, mel_start_token_embedding], dim=1)
# subtract the positional_ids here
if hasattr(model_kwargs, "attention_mask"):
position_ids = model_kwargs["attention_mask"].long().cumsum(-1) - 1
else:
position_ids = torch.range(
0, conditioning_embeds.shape[1] - 1, dtype=torch.long, device=conditioning_embeds.device
)
position_ids = position_ids.unsqueeze(0).repeat(conditioning_embeds.shape[0], 1)
model_kwargs["inputs_embeds"] = conditioning_embeds - self.model.decoder.position_embeds_layer(
position_ids
)
model_kwargs["input_ids"] = (
torch.ones((model_kwargs["inputs_embeds"].shape[0], 1), dtype=torch.long, device=self.device)
* self.config.bos_token_id
)
return model_kwargs["inputs_embeds"], "inputs_embeds", model_kwargs
inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs)
return inputs, input_name, model_kwargs
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, inputs_embeds=None, conditioning_embeds=None, **kwargs
):
input_ids_length = input_ids.shape[-1]
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
if conditioning_embeds is not None and past_key_values is not None:
position_ids = torch.tensor([input_ids_length], dtype=torch.long, device=input_ids.device)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"token_type_ids": token_type_ids,
}
)
return model_inputs
@add_start_docstrings_to_model_forward(CLVP_DECODER_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
lm_logits = self.final_norm(hidden_states)
lm_logits = self.lm_head(lm_logits)
loss = None
if labels is not None:
labels = labels.to(lm_logits.device)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@staticmethod
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2LMHeadModel._reorder_cache
def _reorder_cache(
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
return tuple(
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
for layer_past in past_key_values
)
@add_start_docstrings(
"The composite CLVP model with a text encoder, speech encoder and speech decoder model."
"The speech decoder model generates the speech_ids from the text and the text encoder and speech encoder works"
"together to filter out the best speech_ids.",
CLVP_START_DOCSTRING,
)
class ClvpModelForConditionalGeneration(ClvpPreTrainedModel):
config_class = ClvpConfig
def __init__(self, config: ClvpConfig):
super().__init__(config)
if not isinstance(config.text_config, ClvpEncoderConfig):
raise ValueError(
"config.text_config is expected to be of type `ClvpEncoderConfig` but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.speech_config, ClvpEncoderConfig):
raise ValueError(
"config.speech_config is expected to be of type `ClvpEncoderConfig` but is of type"
f" {type(config.speech_config)}."
)
if not isinstance(config.decoder_config, ClvpDecoderConfig):
raise ValueError(
"config.decoder_config is expected to be of type `ClvpDecoderConfig` but is of type"
f" {type(config.decoder_config)}."
)
self.conditioning_encoder = ClvpConditioningEncoder(config)
self.speech_decoder_model = ClvpForCausalLM(config.decoder_config)
self.text_encoder_model = ClvpEncoder(config.text_config)
self.speech_encoder_model = ClvpEncoder(config.speech_config)
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
# Initialize weights and apply final processing
self.post_init()
# taken from the original repo,
# link : https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/api.py#L117
def fix_speech_decoder_output(self, speech_ids: torch.LongTensor) -> torch.LongTensor:
"""
This method modifies the output of the decoder model, such as replacing the `eos_token_id` and changing the
last few tokens of each sequence.
Args:
speech_ids (`torch.LongTensor`):
This refers to the output of the decoder model.
"""
decoder_fixing_codes = self.config.decoder_config.decoder_fixing_codes
speech_ids = speech_ids[:, 1:]
stop_token_indices = torch.where(speech_ids == self.speech_decoder_model.config.eos_token_id, 1, 0)
speech_ids = torch.masked_fill(speech_ids, mask=stop_token_indices.bool(), value=decoder_fixing_codes[0])
for i, each_seq_stop_token_index in enumerate(stop_token_indices):
# This means that no stop tokens were found so the sentence was still being generated, in that case we don't need
# to apply any padding so just skip to the next sequence of tokens.
if each_seq_stop_token_index.sum() == 0:
continue
stm = each_seq_stop_token_index.argmax()
speech_ids[i, stm:] = decoder_fixing_codes[0]
if stm - 3 < speech_ids.shape[1]:
speech_ids[i, -3:] = torch.tensor(
[decoder_fixing_codes[1:]], device=speech_ids.device, dtype=torch.long
)
return speech_ids
def get_text_features(
self,
input_ids: Optional[torch.LongTensor] = None,
text_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
) -> torch.FloatTensor:
r"""
This method can be used to extract text_embeds from a text. The text embeddings obtained by applying the
projection layer to the pooled output of the CLVP text encoder model.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
[What are input IDs?](../glossary#input-ids)
text_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
inputs_embeds for the text encoder model passed in place of `input_ids`.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Returns:
`torch.FloatTensor` of shape `(batch_size, output_dim)`:
The text embeddings obtained by applying the projection layer to the pooled output of the CLVP Text
Model.
Examples:
```python
>>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration
>>> # Define the Text
>>> text = "This is an example text."
>>> # Define processor and model
>>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev")
>>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev")
>>> # Generate processor output and text embeds
>>> processor_output = processor(text=text, return_tensors="pt")
>>> text_embeds = model.get_text_features(input_ids=processor_output["input_ids"])
```
"""
outputs = self.text_encoder_model(
input_ids=input_ids,
inputs_embeds=text_encoder_inputs_embeds,
attention_mask=attention_mask,
)
return outputs[0]
def get_speech_features(
self,
speech_ids: Optional[torch.LongTensor] = None,
input_ids: Optional[torch.LongTensor] = None,
input_features: Optional[torch.FloatTensor] = None,
conditioning_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
**kwargs,
) -> torch.FloatTensor:
r"""
This method can be used to extract speech_embeds. The speech embeddings are obtained by applying the speech
model on speech_ids. If speech_ids is not present but both input_ids and input_features are given then the
decoder model will be used to first generate the speech_ids and then applying the speech model.
Args:
speech_ids (`torch.LongTensor` of shape `(batch_size, num_speech_ids)`, *optional*):
Speech Tokens. Padding will be ignored by default should you provide it. If speech_ids are provided
then input_ids and input_features will be automatically ignored.
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Input text Tokens. Processed from the [`ClvpTokenizer`]. If speech_ids is not provided, then input_ids
and input_features will be used.
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`, *optional*):
Indicates log-melspectrogram representations for audio returned by [`ClvpFeatureExtractor`]. If
speech_ids is not provided, then input_ids and input_features will be used.
conditioning_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
inputs_embeds for `ClvpConditioningEncoder`. Can be used in place of `input_ids`.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding speech token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
generation_config (`GenerationConfig`, *optional*):
generation config to control the generation of speech_ids if they are not provided.
Returns:
`torch.FloatTensor` of shape `(batch_size, output_dim)`:
The speech embeddings obtained by applying the projection layer to the pooled output of the CLVP Speech
Model.
Examples:
```python
>>> import datasets
>>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration
>>> # Define the Text and Load the Audio (We are taking an audio example from HuggingFace Hub using `datasets` library)
>>> text = "This is an example text."
>>> ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050))
>>> _, audio, sr = ds.sort("id").select(range(1))[:1]["audio"][0].values()
>>> # Define processor and model
>>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev")
>>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev")
>>> # Generate processor output and model output
>>> processor_output = processor(raw_speech=audio, sampling_rate=sr, text=text, return_tensors="pt")
>>> speech_embeds = model.get_speech_features(
... input_ids=processor_output["input_ids"], input_features=processor_output["input_features"]
... )
```
"""
if speech_ids is None:
if (input_ids is None and conditioning_encoder_inputs_embeds is None) or input_features is None:
raise ValueError(
"Either speech_ids or input_ids/conditioning_encoder_inputs_embeds and input_features must be provided."
)
if generation_config is None:
generation_config = self.generation_config
generation_config.update(**kwargs)
conditioning_embeds = self.conditioning_encoder(
input_features=input_features,
input_ids=input_ids,
inputs_embeds=conditioning_encoder_inputs_embeds,
attention_mask=attention_mask,
)
speech_ids = self.speech_decoder_model.generate(
conditioning_embeds=conditioning_embeds,
generation_config=generation_config,
)
speech_ids = self.fix_speech_decoder_output(speech_ids[0])
outputs = self.speech_encoder_model(
input_ids=speech_ids,
attention_mask=attention_mask,
)
return outputs[0]
@add_start_docstrings_to_model_forward(CLVP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ClvpOutput, config_class=ClvpConfig)
def forward(
self,
input_ids: torch.LongTensor = None,
input_features: torch.FloatTensor = None,
conditioning_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
text_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ClvpOutput]:
r"""
Returns:
Examples:
```python
>>> import datasets
>>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration
>>> # Define the Text and Load the Audio (We are taking an audio example from HuggingFace Hub using `datasets` library)
>>> text = "This is an example text."
>>> ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050))
>>> _, audio, sr = ds.sort("id").select(range(1))[:1]["audio"][0].values()
>>> # Define processor and model
>>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev")
>>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev")
>>> # processor outputs and model outputs
>>> processor_output = processor(raw_speech=audio, sampling_rate=sr, text=text, return_tensors="pt")
>>> outputs = model(
... input_ids=processor_output["input_ids"],
... input_features=processor_output["input_features"],
... return_dict=True,
... )
```
"""
# Use CLVP model's config for some fields (if specified) instead of those of speech & text components.
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
conditioning_embeds = self.conditioning_encoder(
input_features=input_features,
input_ids=input_ids,
inputs_embeds=conditioning_encoder_inputs_embeds,
attention_mask=attention_mask,
)
decoder_outputs = self.speech_decoder_model(
inputs_embeds=conditioning_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
speech_ids = decoder_outputs[0]
# since we will get the embeds of shape `(batch_size, seq_len, embedding_dim)` during the forward pass
# we must convert it to tokens, to make it compaitable with speech_transformer
if speech_ids.ndim == 3:
speech_ids = speech_ids.argmax(2)
speech_ids = self.fix_speech_decoder_output(speech_ids)
speech_outputs = self.speech_encoder_model(
input_ids=speech_ids,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_outputs = self.text_encoder_model(
input_ids=input_ids,
inputs_embeds=text_encoder_inputs_embeds,
attention_mask=attention_mask,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
speech_embeds = speech_outputs[0]
text_embeds = text_outputs[0]
# normalized features
speech_embeds = speech_embeds / speech_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_text = torch.matmul(text_embeds, speech_embeds.t()) * logit_scale
logits_per_speech = logits_per_text.t()
loss = None
if return_loss:
loss = clvp_loss(logits_per_text)
if not return_dict:
output = (
logits_per_speech,
logits_per_text,
text_embeds,
speech_embeds,
text_outputs[2],
speech_outputs[2],
)
if output_hidden_states:
output += (
decoder_outputs[-1],
text_outputs[-1],
speech_outputs[-1],
)
return ((loss,) + output) if loss is not None else output
return ClvpOutput(
loss=loss,
logits_per_speech=logits_per_speech,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
speech_embeds=speech_embeds,
text_model_output=text_outputs[2],
speech_model_output=speech_outputs[2],
decoder_hidden_states=decoder_outputs.hidden_states,
text_encoder_hidden_states=text_outputs.hidden_states,
speech_encoder_hidden_states=speech_outputs.hidden_states,
)
@torch.no_grad()
def generate(
self,
input_ids: torch.LongTensor = None,
input_features: torch.FloatTensor = None,
attention_mask: Optional[torch.LongTensor] = None,
generation_config: Optional[GenerationConfig] = None,
pad_to_max_mel_tokens: Optional[int] = None,
output_hidden_states: Optional[bool] = None,
**kwargs,
):
"""
Generate method for `ClvpModelForConditionalGeneration`, this method calls the `generate` method of
`ClvpForCausalLM` and then uses those generated `speech_ids` to process `text_embeds` and `speech_embeds` using
`ClvpEncoder`.
Args:
input_ids (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Input text Tokens. Processed from the [`ClvpTokenizer`].
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`, *optional*):
Indicates log-melspectrogram representations for audio returned by [`ClvpFeatureExtractor`].
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding text token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
pad_to_max_mel_tokens (`int`, *optional*):
Pads generated speech_ids to the specified value. This is to implement the same logic from the official
repo, link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L430
and to make sure the logits are same.
This does not affect generation quality so please don't consider using it since it is less efficient.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of decoder model, text encoder and speech encoder models.
Returns:
`ClvpOutput` or tuple: A `ClvpOutput` (if `return_dict_in_generate=True` or when
`config.return_dict_in_generate=True`) or a tuple.
"""
# If the input sequences are larger than (self.config.decoder_config.max_text_tokens - 3) then raise error,
# because we need to add 3 tokens ( 1 bos tokens and 2 eos tokens) to the input_ids in ClvpConditioningEncoder to
# properly sample
sequence_length = input_ids.shape[-1]
if sequence_length > (self.config.decoder_config.max_text_tokens - 3):
raise ValueError(
f"Maximum sequence length reached! Found input_ids of length {sequence_length}."
f"Please make sure that the maximum length of input_ids is {self.config.decoder_config.max_text_tokens - 3}"
)
if generation_config is None:
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
generation_config.validate()
self._validate_model_kwargs(model_kwargs.copy())
# pad input_ids as specified in the original repo
# link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L380
input_ids, attention_mask = _pad_extra_bos_eos_tokens(
input_ids,
attention_mask,
add_bos_token=False,
bos_token_id=self.config.text_config.bos_token_id,
eos_token_id=self.config.text_config.eos_token_id,
)
conditioning_embeds = self.conditioning_encoder(
input_features=input_features,
input_ids=input_ids,
attention_mask=attention_mask,
)
decoder_outputs = self.speech_decoder_model.generate(
conditioning_embeds=conditioning_embeds,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
return_dict=generation_config.return_dict_in_generate,
)
if isinstance(decoder_outputs, ModelOutput):
speech_ids = decoder_outputs.sequences
# pad to pad_to_max_mel_tokens if given, to replicate the original repo logic
# link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L430
if pad_to_max_mel_tokens is not None:
padding_needed = pad_to_max_mel_tokens - speech_ids.shape[-1]
speech_ids = torch.nn.functional.pad(
speech_ids, (0, padding_needed), value=self.generation_config.eos_token_id
)
speech_ids = self.fix_speech_decoder_output(speech_ids)
speech_outputs = self.speech_encoder_model(
input_ids=speech_ids,
output_hidden_states=output_hidden_states,
return_dict=generation_config.return_dict_in_generate,
)
text_outputs = self.text_encoder_model(
input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=output_hidden_states,
return_dict=generation_config.return_dict_in_generate,
)
speech_embeds = speech_outputs[0]
text_embeds = text_outputs[0]
# normalized features
speech_embeds = speech_embeds / speech_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_text = torch.matmul(text_embeds, speech_embeds.t()) * logit_scale
logits_per_speech = logits_per_text.t()
if not generation_config.return_dict_in_generate:
output = (
speech_ids,
logits_per_speech,
logits_per_text,
text_embeds,
speech_embeds,
text_outputs[2],
speech_outputs[2],
)
if output_hidden_states:
output += (
decoder_outputs[-1],
text_outputs[-1],
speech_outputs[-1],
)
return output
return ClvpOutput(
speech_ids=speech_ids,
logits_per_speech=logits_per_speech,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
speech_embeds=speech_embeds,
text_model_output=text_outputs[2],
speech_model_output=speech_outputs[2],
decoder_hidden_states=decoder_outputs.hidden_states,
text_encoder_hidden_states=text_outputs.hidden_states,
speech_encoder_hidden_states=speech_outputs.hidden_states,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/clvp/__init__.py
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_import_structure = {
"configuration_clvp": [
"CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ClvpConfig",
"ClvpDecoderConfig",
"ClvpEncoderConfig",
],
"feature_extraction_clvp": ["ClvpFeatureExtractor"],
"processing_clvp": ["ClvpProcessor"],
"tokenization_clvp": ["ClvpTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_clvp"] = [
"CLVP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClvpModelForConditionalGeneration",
"ClvpForCausalLM",
"ClvpModel",
"ClvpPreTrainedModel",
"ClvpEncoder",
"ClvpDecoder",
]
if TYPE_CHECKING:
from .configuration_clvp import (
CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP,
ClvpConfig,
ClvpDecoderConfig,
ClvpEncoderConfig,
)
from .feature_extraction_clvp import ClvpFeatureExtractor
from .processing_clvp import ClvpProcessor
from .tokenization_clvp import ClvpTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clvp import (
CLVP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClvpDecoder,
ClvpEncoder,
ClvpForCausalLM,
ClvpModel,
ClvpModelForConditionalGeneration,
ClvpPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/clvp/tokenization_clvp.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for CLVP."""
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
from .number_normalizer import EnglishNormalizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"clvp_dev": "https://huggingface.co/susnato/clvp_dev/blob/main/vocab.json",
},
"merges_file": {
"clvp_dev": "https://huggingface.co/susnato/clvp_dev/blob/main/merges.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"clvp_dev": 1024,
}
@lru_cache()
# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
characters the bpe code barfs on.
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
tables between utf-8 bytes and unicode strings.
"""
bs = (
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
def get_pairs(word):
"""
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class ClvpTokenizer(PreTrainedTokenizer):
"""
Construct a CLVP tokenizer. Based on byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import ClvpTokenizer
>>> tokenizer = ClvpTokenizer.from_pretrained("susnato/clvp_dev")
>>> tokenizer("Hello world")["input_ids"]
[62, 84, 28, 2, 179, 79]
>>> tokenizer(" Hello world")["input_ids"]
[2, 62, 84, 28, 2, 179, 79]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
</Tip>
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"[STOP]"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"[STOP]"`):
The pad token of the sequence.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (CLVP tokenizer detect beginning of words by the preceding space).
add_bos_token (`bool`, *optional*, defaults to `False`):
Whether to add `bos_token` in front of the sequence when add_special_tokens=True.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether to add `eos_token` in end of the sequence when add_special_tokens=True.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = [
"input_ids",
"attention_mask",
]
def __init__(
self,
vocab_file,
merges_file,
errors="replace",
unk_token="[UNK]",
bos_token="<|endoftext|>",
eos_token="[STOP]",
pad_token="[STOP]",
add_prefix_space=False,
add_bos_token=False,
add_eos_token=False,
**kwargs,
):
bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self._normalizer = None
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
bpe_merges = merges_handle.read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
self.add_prefix_space = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
super().__init__(
errors=errors,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_prefix_space=add_prefix_space,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
**kwargs,
)
@property
def vocab_size(self):
return len(self.encoder)
@property
def normalizer(self):
if self._normalizer is None:
self._normalizer = EnglishNormalizer()
return self._normalizer
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if not self.add_bos_token:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0))
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
def _tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
text = self.normalizer(text)
for token in re.findall(self.pat, text):
token = "".join(
self.byte_encoder[b] for b in token.encode("utf-8")
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
# if the token is "Ġ" we replace it with "[SPACE]" (if "[SPACE]" is present in the vocab), otherwise we keep the "Ġ".
bpe_tokens.extend(
"[SPACE]" if bpe_token == "\u0120" and "[SPACE]" in self.encoder.keys() else bpe_token
for bpe_token in self.bpe(token).split(" ")
)
return bpe_tokens
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
text = "".join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
return text
def clean_up_tokenization(self, text):
text = "".join(text)
vocab_tokens = list(self.encoder.keys()) + list(self.added_tokens_encoder.keys())
text = text.replace("[SPACE]", " ") if "[SPACE]" in vocab_tokens else text
text = text.replace("[STOP]", " ") if "[STOP]" in vocab_tokens else text
text = text.replace(self.unk_token, "").replace(" ", " ").replace(" ", " ")
return text
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/clvp/configuration_clvp.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CLVP model configuration"""
import os
from typing import TYPE_CHECKING, Union
if TYPE_CHECKING:
pass
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"susnato/clvp_dev": "https://huggingface.co/susnato/clvp_dev/resolve/main/config.json",
}
class ClvpEncoderConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ClvpEncoder`]. It is used to instantiate a CLVP
text or CLVP speech encoder according to the specified arguments. Instantiating a configuration with the defaults
will yield a similar configuration to that of the encoder of the CLVP
[susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256):
Vocabulary size of the CLVP Encoder model.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 1536):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
projection_dim (`int`, *optional*, defaults to 768):
Dimensionality of the projection vector.
num_hidden_layers (`int`, *optional*, defaults to 20):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the feed-forward layers in [`ClvpEncoderMLP`].
use_rotary_embedding (`bool`, *optional*, defaults to `True`):
Whether to use rotary_embedding or not.
use_attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in Query, Key and Value layers during self attention.
summary_type (`str`, *optional*, defaults to `"mean"`):
What strategy to use to get pooler_output from the last_hidden_state. `"last"`, `"first"`, `"mean"` and
`"cls_index"` are supported.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
testing).
bos_token_id (`int`, *optional*, defaults to 255):
Beginning of sequence token id.
eos_token_id (`int`, *optional*, defaults to 0):
End of sequence token id.
Example:
```python
>>> from transformers import ClvpEncoderConfig, ClvpEncoder
>>> # Initializing a ClvpEncoderConfig with susnato/clvp_dev style configuration
>>> encoder_configuration = ClvpEncoderConfig()
>>> # Initializing a ClvpEncoder (with random weights) from the susnato/clvp_dev style configuration
>>> model = ClvpEncoder(encoder_configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clvp_encoder"
def __init__(
self,
vocab_size=256,
hidden_size=768,
intermediate_size=1536,
projection_dim=768,
num_hidden_layers=20,
num_attention_heads=12,
hidden_act="gelu",
layer_norm_eps=1e-5,
attention_dropout=0.1,
dropout=0.1,
use_rotary_embedding=True,
use_attention_bias=False,
summary_type="mean",
initializer_factor=1.0,
bos_token_id=255,
eos_token_id=0,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.dropout = dropout
self.use_rotary_embedding = use_rotary_embedding
self.use_attention_bias = use_attention_bias
self.summary_type = summary_type
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], config_type: str = "text_config", **kwargs
) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# make sure to have the config_type be either "text_config" or "speech_config"
# this is to make sure that we can load only text or speech configs from the nested ClvpConfig.
if config_type not in ["text_config", "speech_config"]:
raise ValueError(
f"We can only load either 'text_config' or 'speech_config' but you are trying to load" f"{config_type}"
)
# get the text config dict if we are loading from ClvpConfig
if config_dict.get("model_type") == "clvp":
config_dict = config_dict[config_type]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class ClvpDecoderConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ClvpDecoder`]. It is used to instantiate a CLVP
Decoder Model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Decoder part of the CLVP
[susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
The architecture is similar to GPT2.
Args:
vocab_size (`int`, *optional*, defaults to 8194):
Vocabulary size of the model.
max_position_embeddings (`int`, *optional*, defaults to 608):
The maximum sequence length of mel tokens that this model might ever be used with. Similar to `n_positions`
in `GPT2Config`.
max_text_tokens (`int`, *optional*, defaults to 404):
The maximum sequence length of text tokens that this model might ever be used with. Similar to
`n_positions` in `GPT2Config`.
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the embeddings and hidden states.
num_hidden_layers (`int`, *optional*, defaults to 30):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
n_inner (`int`, *optional*):
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times `hidden_size`.
num_mel_attn_blocks (`int`, *optional*, defaults to 6):
Denotes the number of self attention layers in [`ClvpConditioningEncoder`].
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
summary_type (`string`, *optional*, defaults to `"cls_index"`):
Argument used when doing sequence summary.
Has to be one of the following options:
- `"last"`: Take the last token hidden state (like XLNet).
- `"first"`: Take the first token hidden state (like BERT).
- `"mean"`: Take the mean of all tokens hidden states.
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- `"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (`bool`, *optional*, defaults to `True`):
Whether or not to add a projection after the vector extraction.
summary_activation (`str`, *optional*):
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
summary_first_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio to be used after the projection and activation.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
bos_token_id (`int`, *optional*, defaults to 8192):
Beginning of sequence token id, used at the start of the generation.
eos_token_id (`int`, *optional*, defaults to 8193):
End of sequence token id, used in the method
[`ClvpModelForConditionalGeneration.fix_speech_decoder_output()`] to correct decoder outputs.
feature_size (`int`, *optional*, defaults to 80):
The feature dimension of the extracted mel features. This value is used in [`ClvpConditioningEncoder`].
use_attention_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in Query, Key and Value layers during self attention.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
testing).
decoder_fixing_codes (`list`, *optional*, defaults to `[83, 45, 45, 248]`):
These values are used in the method `fix_speech_decoder_output` to fix decoder generated outputs.
Example:
```python
>>> from transformers import ClvpDecoderConfig, ClvpDecoder
>>> # Initializing a ClvpDecoderConfig with susnato/clvp_dev style configuration
>>> decoder_configuration = ClvpDecoderConfig()
>>> # Initializing a ClvpDecoder (with random weights) from the susnato/clvp_dev style configuration
>>> model = ClvpDecoder(decoder_configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clvp_decoder"
def __init__(
self,
vocab_size=8194,
max_position_embeddings=608,
max_text_tokens=404,
hidden_size=1024,
num_hidden_layers=30,
num_attention_heads=16,
n_inner=None,
num_mel_attn_blocks=6,
activation_function="gelu_new",
resid_pdrop=0.1,
embd_pdrop=0.1,
attention_dropout=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
summary_type="cls_index",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
use_cache=True,
bos_token_id=8192,
eos_token_id=8193,
feature_size=80,
use_attention_bias=True,
initializer_factor=1.0,
decoder_fixing_codes=[83, 45, 45, 248],
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.max_text_tokens = max_text_tokens
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.n_inner = n_inner
self.num_mel_attn_blocks = num_mel_attn_blocks
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attention_dropout = attention_dropout
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_first_dropout = summary_first_dropout
self.summary_proj_to_labels = summary_proj_to_labels
self.use_cache = use_cache
self.feature_size = feature_size
self.use_attention_bias = use_attention_bias
self.initializer_factor = initializer_factor
self.decoder_fixing_codes = decoder_fixing_codes
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the speech config dict if we are loading from ClvpConfig
if config_dict.get("model_type") == "clvp":
config_dict = config_dict["decoder_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class ClvpConfig(PretrainedConfig):
r"""
[`ClvpConfig`] is the configuration class to store the configuration of a [`ClvpModelForConditionalGeneration`]. It
is used to instantiate a CLVP model according to the specified arguments, defining the text model, speech model and
decoder model configs. Instantiating a configuration with the defaults will yield a similar configuration to that
of the CLVP [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize the CLVP text encoder.
speech_config (`dict`, *optional*):
Dictionary of configuration options used to initialize CLVP speech encoder.
decoder_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`ClvpDecoderConfig`].
projection_dim (`int`, *optional*, defaults to 768):
Dimentionality of text and speech projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The inital value of the *logit_scale* paramter. Default is used as per the original CLVP implementation.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
testing).
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import ClvpConfig, ClvpModelForConditionalGeneration
>>> # Initializing a ClvpConfig with susnato/clvp_dev style configuration
>>> configuration = ClvpConfig()
>>> # Initializing a ClvpModelForConditionalGeneration (with random weights) from the susnato/clvp_dev style configuration
>>> model = ClvpModelForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a CLVPConfig from a CLVPTextConfig, CLVPSpeechConfig and a CLVPAutoRegressiveConfig
>>> from transformers import ClvpEncoderConfig, ClvpDecoderConfig
>>> # Initializing a CLVP text, CLVP speech and CLVP decoder configuration
>>> config_text = ClvpEncoderConfig()
>>> config_speech = ClvpEncoderConfig()
>>> decoder_config = ClvpDecoderConfig()
>>> config = ClvpConfig.from_sub_model_configs(config_text, config_speech, decoder_config)
```"""
model_type = "clvp"
is_composition = True
def __init__(
self,
text_config=None,
speech_config=None,
decoder_config=None,
projection_dim=768,
logit_scale_init_value=2.6592,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `ClvpEncoderConfig` with default values.")
if speech_config is None:
speech_config = {}
logger.info("`speech_config` is `None`. initializing the `ClvpEncoderConfig` with default values.")
if decoder_config is None:
decoder_config = {}
logger.info("`decoder_config` is `None`. initializing the `ClvpDecoderConfig` with default values.")
self.text_config = ClvpEncoderConfig(**text_config)
self.speech_config = ClvpEncoderConfig(**speech_config)
self.decoder_config = ClvpDecoderConfig(**decoder_config)
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
self.initializer_factor = initializer_factor
@classmethod
def from_sub_model_configs(
cls,
text_config: ClvpEncoderConfig,
speech_config: ClvpEncoderConfig,
decoder_config: ClvpDecoderConfig,
**kwargs,
):
r"""
Instantiate a [`ClvpConfig`] (or a derived class) from CLVP text model configuration, CLVP speech model
configuration and CLVP decoder model configuration.
Args:
text_config (`ClvpEncoderConfig`):
Text model configuration of type [`ClvpEncoderConfig`].
speech_config (`ClvpEncoderConfig`):
Speech model configuration of type [`ClvpEncoderConfig`].
decoder_config (`ClvpDecoderConfig`):
Decoder model configuration of type [`ClvpDecoderConfig`].
Returns:
[`ClvpConfig`]: An instance of a configuration object
"""
return cls(
text_config=text_config.to_dict(),
speech_config=speech_config.to_dict(),
decoder_config=decoder_config.to_dict(),
**kwargs,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/clvp/number_normalizer.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""English Normalizer class for CLVP."""
import re
class EnglishNormalizer:
def __init__(self):
# List of (regular expression, replacement) pairs for abbreviations:
self._abbreviations = [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mrs", "misess"),
("mr", "mister"),
("dr", "doctor"),
("st", "saint"),
("co", "company"),
("jr", "junior"),
("maj", "major"),
("gen", "general"),
("drs", "doctors"),
("rev", "reverend"),
("lt", "lieutenant"),
("hon", "honorable"),
("sgt", "sergeant"),
("capt", "captain"),
("esq", "esquire"),
("ltd", "limited"),
("col", "colonel"),
("ft", "fort"),
]
]
self.ones = ["", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
self.teens = [
"ten",
"eleven",
"twelve",
"thirteen",
"fourteen",
"fifteen",
"sixteen",
"seventeen",
"eighteen",
"nineteen",
]
self.tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]
def number_to_words(self, num: int) -> str:
"""
Converts numbers(`int`) to words(`str`).
Please note that it only supports upto - "'nine hundred ninety-nine quadrillion, nine hundred ninety-nine
trillion, nine hundred ninety-nine billion, nine hundred ninety-nine million, nine hundred ninety-nine
thousand, nine hundred ninety-nine'" or `number_to_words(999_999_999_999_999_999)`.
"""
if num == 0:
return "zero"
elif num < 0:
return "minus " + self.number_to_words(abs(num))
elif num < 10:
return self.ones[num]
elif num < 20:
return self.teens[num - 10]
elif num < 100:
return self.tens[num // 10] + ("-" + self.number_to_words(num % 10) if num % 10 != 0 else "")
elif num < 1000:
return (
self.ones[num // 100] + " hundred" + (" " + self.number_to_words(num % 100) if num % 100 != 0 else "")
)
elif num < 1_000_000:
return (
self.number_to_words(num // 1000)
+ " thousand"
+ (", " + self.number_to_words(num % 1000) if num % 1000 != 0 else "")
)
elif num < 1_000_000_000:
return (
self.number_to_words(num // 1_000_000)
+ " million"
+ (", " + self.number_to_words(num % 1_000_000) if num % 1_000_000 != 0 else "")
)
elif num < 1_000_000_000_000:
return (
self.number_to_words(num // 1_000_000_000)
+ " billion"
+ (", " + self.number_to_words(num % 1_000_000_000) if num % 1_000_000_000 != 0 else "")
)
elif num < 1_000_000_000_000_000:
return (
self.number_to_words(num // 1_000_000_000_000)
+ " trillion"
+ (", " + self.number_to_words(num % 1_000_000_000_000) if num % 1_000_000_000_000 != 0 else "")
)
elif num < 1_000_000_000_000_000_000:
return (
self.number_to_words(num // 1_000_000_000_000_000)
+ " quadrillion"
+ (
", " + self.number_to_words(num % 1_000_000_000_000_000)
if num % 1_000_000_000_000_000 != 0
else ""
)
)
else:
return "number out of range"
def convert_to_ascii(self, text: str) -> str:
"""
Converts unicode to ascii
"""
return text.encode("ascii", "ignore").decode("utf-8")
def _expand_dollars(self, m: str) -> str:
"""
This method is used to expand numerical dollar values into spoken words.
"""
match = m.group(1)
parts = match.split(".")
if len(parts) > 2:
return match + " dollars" # Unexpected format
dollars = int(parts[0]) if parts[0] else 0
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
if dollars and cents:
dollar_unit = "dollar" if dollars == 1 else "dollars"
cent_unit = "cent" if cents == 1 else "cents"
return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit)
elif dollars:
dollar_unit = "dollar" if dollars == 1 else "dollars"
return "%s %s" % (dollars, dollar_unit)
elif cents:
cent_unit = "cent" if cents == 1 else "cents"
return "%s %s" % (cents, cent_unit)
else:
return "zero dollars"
def _remove_commas(self, m: str) -> str:
"""
This method is used to remove commas from sentences.
"""
return m.group(1).replace(",", "")
def _expand_decimal_point(self, m: str) -> str:
"""
This method is used to expand '.' into spoken word ' point '.
"""
return m.group(1).replace(".", " point ")
def _expand_ordinal(self, num: str) -> str:
"""
This method is used to expand ordinals such as '1st', '2nd' into spoken words.
"""
ordinal_suffixes = {1: "st", 2: "nd", 3: "rd"}
num = int(num.group(0)[:-2])
if 10 <= num % 100 and num % 100 <= 20:
suffix = "th"
else:
suffix = ordinal_suffixes.get(num % 10, "th")
return self.number_to_words(num) + suffix
def _expand_number(self, m: str) -> str:
"""
This method acts as a preprocessing step for numbers between 1000 and 3000 (same as the original repository,
link :
https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/utils/tokenizer.py#L86)
"""
num = int(m.group(0))
if num > 1000 and num < 3000:
if num == 2000:
return "two thousand"
elif num > 2000 and num < 2010:
return "two thousand " + self.number_to_words(num % 100)
elif num % 100 == 0:
return self.number_to_words(num // 100) + " hundred"
else:
return self.number_to_words(num)
else:
return self.number_to_words(num)
def normalize_numbers(self, text: str) -> str:
"""
This method is used to normalize numbers within a text such as converting the numbers to words, removing
commas, etc.
"""
text = re.sub(re.compile(r"([0-9][0-9\,]+[0-9])"), self._remove_commas, text)
text = re.sub(re.compile(r"£([0-9\,]*[0-9]+)"), r"\1 pounds", text)
text = re.sub(re.compile(r"\$([0-9\.\,]*[0-9]+)"), self._expand_dollars, text)
text = re.sub(re.compile(r"([0-9]+\.[0-9]+)"), self._expand_decimal_point, text)
text = re.sub(re.compile(r"[0-9]+(st|nd|rd|th)"), self._expand_ordinal, text)
text = re.sub(re.compile(r"[0-9]+"), self._expand_number, text)
return text
def expand_abbreviations(self, text: str) -> str:
"""
Expands the abbreviate words.
"""
for regex, replacement in self._abbreviations:
text = re.sub(regex, replacement, text)
return text
def collapse_whitespace(self, text: str) -> str:
"""
Removes multiple whitespaces
"""
return re.sub(re.compile(r"\s+"), " ", text)
def __call__(self, text):
"""
Converts text to ascii, numbers / number-like quantities to their spelt-out counterparts and expands
abbreviations
"""
text = self.convert_to_ascii(text)
text = text.lower()
text = self.normalize_numbers(text)
text = self.expand_abbreviations(text)
text = self.collapse_whitespace(text)
text = text.replace('"', "")
return text
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/clvp/processing_clvp.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for CLVP
"""
from ...processing_utils import ProcessorMixin
class ClvpProcessor(ProcessorMixin):
r"""
Constructs a CLVP processor which wraps a CLVP Feature Extractor and a CLVP Tokenizer into a single processor.
[`ClvpProcessor`] offers all the functionalities of [`ClvpFeatureExtractor`] and [`ClvpTokenizer`]. See the
[`~ClvpProcessor.__call__`], [`~ClvpProcessor.decode`] and [`~ClvpProcessor.batch_decode`] for more information.
Args:
feature_extractor (`ClvpFeatureExtractor`):
An instance of [`ClvpFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`ClvpTokenizer`):
An instance of [`ClvpTokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "ClvpFeatureExtractor"
tokenizer_class = "ClvpTokenizer"
model_input_names = [
"input_ids",
"input_features",
"attention_mask",
]
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
def __call__(self, *args, **kwargs):
"""
Forwards the `audio` and `sampling_rate` arguments to [`~ClvpFeatureExtractor.__call__`] and the `text`
argument to [`~ClvpTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
information.
"""
raw_speech = kwargs.pop("raw_speech", None)
sampling_rate = kwargs.pop("sampling_rate", None)
text = kwargs.pop("text", None)
if raw_speech is None and text is None:
raise ValueError("You need to specify either an `raw_speech` or `text` input to process.")
if raw_speech is not None:
inputs = self.feature_extractor(raw_speech, sampling_rate=sampling_rate, **kwargs)
if text is not None:
encodings = self.tokenizer(text, **kwargs)
if text is None:
return inputs
elif raw_speech is None:
return encodings
else:
inputs["input_ids"] = encodings["input_ids"]
inputs["attention_mask"] = encodings["attention_mask"]
return inputs
# Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.batch_decode with Whisper->Clvp
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.decode with Whisper->Clvp
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/timesformer/modeling_timesformer.py
|
# coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch TimeSformer model."""
import collections
from typing import Optional, Tuple, Union
import torch
import torch.nn.functional
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_timesformer import TimesformerConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "TimesformerConfig"
_CHECKPOINT_FOR_DOC = "facebook/timesformer"
TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/timesformer-base-finetuned-k400",
# See all TimeSformer models at https://huggingface.co/models?filter=timesformer
]
# Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L155
class TimesformerPatchEmbeddings(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, config):
super().__init__()
image_size = config.image_size
patch_size = config.patch_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.projection = nn.Conv2d(config.num_channels, config.hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values):
batch_size, num_frames, num_channels, height, width = pixel_values.shape
pixel_values = pixel_values.reshape(batch_size * num_frames, num_channels, height, width)
embeddings = self.projection(pixel_values)
patch_width = embeddings.size(-1)
embeddings = embeddings.flatten(2).transpose(1, 2)
return embeddings, num_frames, patch_width
class TimesformerEmbeddings(nn.Module):
"""
Construct the patch and position embeddings.
"""
def __init__(self, config):
super().__init__()
embed_dim = config.hidden_size
num_frames = config.num_frames
drop_rate = config.hidden_dropout_prob
attention_type = config.attention_type
self.attention_type = attention_type
self.patch_embeddings = TimesformerPatchEmbeddings(config)
self.num_patches = self.patch_embeddings.num_patches
# Positional Embeddings
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.position_embeddings = nn.Parameter(torch.zeros(1, self.num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
if attention_type != "space_only":
self.time_embeddings = nn.Parameter(torch.zeros(1, num_frames, embed_dim))
self.time_drop = nn.Dropout(p=drop_rate)
def forward(self, pixel_values):
batch_size = pixel_values.shape[0]
# create patch embeddings
embeddings, num_frames, patch_width = self.patch_embeddings(pixel_values)
cls_tokens = self.cls_token.expand(embeddings.size(0), -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# resizing the positional embeddings in case they don't match the input at inference
if embeddings.size(1) != self.position_embeddings.size(1):
position_embeddings = self.position_embeddings
cls_pos_embed = position_embeddings[0, 0, :].unsqueeze(0).unsqueeze(1)
other_pos_embed = position_embeddings[0, 1:, :].unsqueeze(0).transpose(1, 2)
patch_num = int(other_pos_embed.size(2) ** 0.5)
patch_height = embeddings.size(1) // patch_width
other_pos_embed = other_pos_embed.reshape(1, embeddings.size(2), patch_num, patch_num)
new_pos_embed = nn.functional.interpolate(
other_pos_embed, size=(patch_height, patch_width), mode="nearest"
)
new_pos_embed = new_pos_embed.flatten(2)
new_pos_embed = new_pos_embed.transpose(1, 2)
new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1)
embeddings = embeddings + new_pos_embed
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.pos_drop(embeddings)
# Time Embeddings
if self.attention_type != "space_only":
cls_tokens = embeddings[:batch_size, 0, :].unsqueeze(1)
embeddings = embeddings[:, 1:]
_, patch_height, patch_width = embeddings.shape
embeddings = (
embeddings.reshape(batch_size, num_frames, patch_height, patch_width)
.permute(0, 2, 1, 3)
.reshape(batch_size * patch_height, num_frames, patch_width)
)
# Resizing time embeddings in case they don't match
if num_frames != self.time_embeddings.size(1):
time_embeddings = self.time_embeddings.transpose(1, 2)
new_time_embeddings = nn.functional.interpolate(time_embeddings, size=(num_frames), mode="nearest")
new_time_embeddings = new_time_embeddings.transpose(1, 2)
embeddings = embeddings + new_time_embeddings
else:
embeddings = embeddings + self.time_embeddings
embeddings = self.time_drop(embeddings)
embeddings = embeddings.view(batch_size, patch_height, num_frames, patch_width).reshape(
batch_size, patch_height * num_frames, patch_width
)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
return embeddings
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->TimeSformer
class TimeSformerDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
# Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L57
class TimesformerSelfAttention(nn.Module):
def __init__(self, config: TimesformerConfig):
super().__init__()
num_heads = config.num_attention_heads
qkv_bias = config.qkv_bias
attention_dropout_prob = config.attention_probs_dropout_prob
self.num_heads = num_heads
head_dim = config.hidden_size // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attention_dropout_prob)
def forward(self, hidden_states, output_attentions: bool = False):
batch_size, hidden_size, num_channels = hidden_states.shape
qkv = (
self.qkv(hidden_states)
.reshape(batch_size, hidden_size, 3, self.num_heads, num_channels // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
query, key, value = qkv[0], qkv[1], qkv[2]
attention_probs = (query @ key.transpose(-2, -1)) * self.scale
attention_probs = attention_probs.softmax(dim=-1)
attention_probs = self.attn_drop(attention_probs)
context_layer = (attention_probs @ value).transpose(1, 2).reshape(batch_size, hidden_size, num_channels)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class TimesformerSelfOutput(nn.Module):
"""
The residual connection is defined in TimesformerLayer instead of here (as is the case with other models), due to
the layernorm applied before each block.
"""
def __init__(self, config: TimesformerConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class TimeSformerAttention(nn.Module):
def __init__(self, config: TimesformerConfig) -> None:
super().__init__()
self.attention = TimesformerSelfAttention(config)
self.output = TimesformerSelfOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(hidden_states, output_attentions)
attention_output = self.output(self_outputs[0])
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L39
class TimesformerIntermediate(nn.Module):
def __init__(self, config: TimesformerConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class TimesformerOutput(nn.Module):
def __init__(self, config: TimesformerConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L89
class TimesformerLayer(nn.Module):
def __init__(self, config: TimesformerConfig, layer_index: int) -> None:
super().__init__()
attention_type = config.attention_type
drop_path_rates = [
x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)
] # stochastic depth decay rule
drop_path_rate = drop_path_rates[layer_index]
self.drop_path = TimeSformerDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.attention = TimeSformerAttention(config)
self.intermediate = TimesformerIntermediate(config)
self.output = TimesformerOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.config = config
self.attention_type = attention_type
if attention_type not in ["divided_space_time", "space_only", "joint_space_time"]:
raise ValueError("Unknown attention type: {}".format(attention_type))
# Temporal Attention Parameters
if self.attention_type == "divided_space_time":
self.temporal_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.temporal_attention = TimeSformerAttention(config)
self.temporal_dense = nn.Linear(config.hidden_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False):
num_frames = self.config.num_frames
num_patch_width = self.config.image_size // self.config.patch_size
batch_size = hidden_states.shape[0]
num_spatial_tokens = (hidden_states.size(1) - 1) // num_frames
num_patch_height = num_spatial_tokens // num_patch_width
if self.attention_type in ["space_only", "joint_space_time"]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), output_attentions=output_attentions
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
hidden_states = hidden_states + self.drop_path(attention_output)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output)
layer_output = hidden_states + self.drop_path(layer_output)
outputs = (layer_output,) + outputs
return outputs
elif self.attention_type == "divided_space_time":
# Temporal
temporal_embedding = hidden_states[:, 1:, :]
temporal_embedding = temporal_embedding.reshape(
batch_size, num_patch_height, num_patch_width, num_frames, temporal_embedding.shape[2]
).reshape(batch_size * num_patch_height * num_patch_width, num_frames, temporal_embedding.shape[2])
temporal_attention_outputs = self.temporal_attention(
self.temporal_layernorm(temporal_embedding),
)
attention_output = temporal_attention_outputs[0]
residual_temporal = self.drop_path(attention_output)
residual_temporal = residual_temporal.reshape(
batch_size, num_patch_height, num_patch_width, num_frames, residual_temporal.shape[2]
).reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_temporal.shape[2])
residual_temporal = self.temporal_dense(residual_temporal)
temporal_embedding = hidden_states[:, 1:, :] + residual_temporal
# Spatial
init_cls_token = hidden_states[:, 0, :].unsqueeze(1)
cls_token = init_cls_token.repeat(1, num_frames, 1)
cls_token = cls_token.reshape(batch_size * num_frames, 1, cls_token.shape[2])
spatial_embedding = temporal_embedding
spatial_embedding = (
spatial_embedding.reshape(
batch_size, num_patch_height, num_patch_width, num_frames, spatial_embedding.shape[2]
)
.permute(0, 3, 1, 2, 4)
.reshape(batch_size * num_frames, num_patch_height * num_patch_width, spatial_embedding.shape[2])
)
spatial_embedding = torch.cat((cls_token, spatial_embedding), 1)
spatial_attention_outputs = self.attention(
self.layernorm_before(spatial_embedding), output_attentions=output_attentions
)
attention_output = spatial_attention_outputs[0]
outputs = spatial_attention_outputs[1:] # add self attentions if we output attention weights
residual_spatial = self.drop_path(attention_output)
# Taking care of CLS token
cls_token = residual_spatial[:, 0, :]
cls_token = cls_token.reshape(batch_size, num_frames, cls_token.shape[1])
cls_token = torch.mean(cls_token, 1, True) # averaging for every frame
residual_spatial = residual_spatial[:, 1:, :]
residual_spatial = (
residual_spatial.reshape(
batch_size, num_frames, num_patch_height, num_patch_width, residual_spatial.shape[2]
)
.permute(0, 2, 3, 1, 4)
.reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_spatial.shape[2])
)
residual = residual_spatial
hidden_states = temporal_embedding
# Mlp
hidden_states = torch.cat((init_cls_token, hidden_states), 1) + torch.cat((cls_token, residual), 1)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output)
layer_output = hidden_states + self.drop_path(layer_output)
outputs = (layer_output,) + outputs
return outputs
class TimesformerEncoder(nn.Module):
def __init__(self, config: TimesformerConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([TimesformerLayer(config, ind) for ind in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class TimesformerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = TimesformerConfig
base_model_prefix = "timesformer"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Conv2d)):
nn.init.trunc_normal_(module.weight, std=self.config.initializer_range)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.LayerNorm):
nn.init.constant_(module.bias, 0)
nn.init.constant_(module.weight, 1.0)
elif isinstance(module, TimesformerEmbeddings):
nn.init.trunc_normal_(module.cls_token, std=self.config.initializer_range)
nn.init.trunc_normal_(module.position_embeddings, std=self.config.initializer_range)
module.patch_embeddings.apply(self._init_weights)
TIMESFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`TimesformerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
TIMESFORMER_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`VideoMAEImageProcessor.preprocess`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare TimeSformer Model transformer outputting raw hidden-states without any specific head on top.",
TIMESFORMER_START_DOCSTRING,
)
class TimesformerModel(TimesformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = TimesformerEmbeddings(config)
self.encoder = TimesformerEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
r"""
Returns:
Examples:
```python
>>> import av
>>> import numpy as np
>>> from transformers import AutoImageProcessor, TimesformerModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 8 frames
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=4, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base")
>>> model = TimesformerModel.from_pretrained("facebook/timesformer-base-finetuned-k400")
>>> # prepare video for the model
>>> inputs = image_processor(list(video), return_tensors="pt")
>>> # forward pass
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 1569, 768]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if self.layernorm is not None:
sequence_output = self.layernorm(sequence_output)
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""TimeSformer Model transformer with a video classification head on top (a linear layer on top of the final hidden state
of the [CLS] token) e.g. for ImageNet.""",
TIMESFORMER_START_DOCSTRING,
)
class TimesformerForVideoClassification(TimesformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.timesformer = TimesformerModel(config)
# Classifier head
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> import av
>>> import torch
>>> import numpy as np
>>> from transformers import AutoImageProcessor, TimesformerForVideoClassification
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 8 frames
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
>>> model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400")
>>> inputs = image_processor(list(video), return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
... logits = outputs.logits
>>> # model predicts one of the 400 Kinetics-400 classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
eating spaghetti
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.timesformer(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0][:, 0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/timesformer/convert_timesformer_to_pytorch.py
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert TimeSformer checkpoints from the original repository: https://github.com/MCG-NJU/TimeSformer"""
import argparse
import json
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig, TimesformerForVideoClassification, VideoMAEImageProcessor
def get_timesformer_config(model_name):
config = TimesformerConfig()
if "large" in model_name:
config.num_frames = 96
if "hr" in model_name:
config.num_frames = 16
config.image_size = 448
repo_id = "huggingface/label-files"
if "k400" in model_name:
config.num_labels = 400
filename = "kinetics400-id2label.json"
elif "k600" in model_name:
config.num_labels = 600
filename = "kinetics600-id2label.json"
elif "ssv2" in model_name:
config.num_labels = 174
filename = "something-something-v2-id2label.json"
else:
raise ValueError("Model name should either contain 'k400', 'k600' or 'ssv2'.")
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
return config
def rename_key(name):
if "encoder." in name:
name = name.replace("encoder.", "")
if "cls_token" in name:
name = name.replace("cls_token", "timesformer.embeddings.cls_token")
if "pos_embed" in name:
name = name.replace("pos_embed", "timesformer.embeddings.position_embeddings")
if "time_embed" in name:
name = name.replace("time_embed", "timesformer.embeddings.time_embeddings")
if "patch_embed.proj" in name:
name = name.replace("patch_embed.proj", "timesformer.embeddings.patch_embeddings.projection")
if "patch_embed.norm" in name:
name = name.replace("patch_embed.norm", "timesformer.embeddings.norm")
if "blocks" in name:
name = name.replace("blocks", "timesformer.encoder.layer")
if "attn.proj" in name:
name = name.replace("attn.proj", "attention.output.dense")
if "attn" in name and "bias" not in name and "temporal" not in name:
name = name.replace("attn", "attention.self")
if "attn" in name and "temporal" not in name:
name = name.replace("attn", "attention.attention")
if "temporal_norm1" in name:
name = name.replace("temporal_norm1", "temporal_layernorm")
if "temporal_attn.proj" in name:
name = name.replace("temporal_attn", "temporal_attention.output.dense")
if "temporal_fc" in name:
name = name.replace("temporal_fc", "temporal_dense")
if "norm1" in name and "temporal" not in name:
name = name.replace("norm1", "layernorm_before")
if "norm2" in name:
name = name.replace("norm2", "layernorm_after")
if "mlp.fc1" in name:
name = name.replace("mlp.fc1", "intermediate.dense")
if "mlp.fc2" in name:
name = name.replace("mlp.fc2", "output.dense")
if "norm.weight" in name and "fc" not in name and "temporal" not in name:
name = name.replace("norm.weight", "timesformer.layernorm.weight")
if "norm.bias" in name and "fc" not in name and "temporal" not in name:
name = name.replace("norm.bias", "timesformer.layernorm.bias")
if "head" in name:
name = name.replace("head", "classifier")
return name
def convert_state_dict(orig_state_dict, config):
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if key.startswith("model."):
key = key.replace("model.", "")
if "qkv" in key:
key_split = key.split(".")
layer_num = int(key_split[1])
prefix = "timesformer.encoder.layer."
if "temporal" in key:
postfix = ".temporal_attention.attention.qkv."
else:
postfix = ".attention.attention.qkv."
if "weight" in key:
orig_state_dict[f"{prefix}{layer_num}{postfix}weight"] = val
else:
orig_state_dict[f"{prefix}{layer_num}{postfix}bias"] = val
else:
orig_state_dict[rename_key(key)] = val
return orig_state_dict
# We will verify our results on a video of eating spaghetti
# Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227]
def prepare_video():
file = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset"
)
video = np.load(file)
return list(video)
def convert_timesformer_checkpoint(checkpoint_url, pytorch_dump_folder_path, model_name, push_to_hub):
config = get_timesformer_config(model_name)
model = TimesformerForVideoClassification(config)
# download original checkpoint, hosted on Google Drive
output = "pytorch_model.bin"
gdown.cached_download(checkpoint_url, output, quiet=False)
files = torch.load(output, map_location="cpu")
if "model" in files:
state_dict = files["model"]
elif "module" in files:
state_dict = files["module"]
else:
state_dict = files["model_state"]
new_state_dict = convert_state_dict(state_dict, config)
model.load_state_dict(new_state_dict)
model.eval()
# verify model on basic input
image_processor = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5])
video = prepare_video()
inputs = image_processor(video[:8], return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
model_names = [
# Kinetics-400 checkpoints (hr = high resolution input of 448px instead of 224px)
"timesformer-base-finetuned-k400",
"timesformer-large-finetuned-k400",
"timesformer-hr-finetuned-k400",
# Kinetics-600 checkpoints (hr = high resolution input of 448px instead of 224px)
"timesformer-base-finetuned-k600",
"timesformer-large-finetuned-k600",
"timesformer-hr-finetuned-k600",
# Something-Something-v2 checkpoints (hr = high resolution input of 448px instead of 224px)
"timesformer-base-finetuned-ssv2",
"timesformer-large-finetuned-ssv2",
"timesformer-hr-finetuned-ssv2",
]
# NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
if model_name == "timesformer-base-finetuned-k400":
expected_shape = torch.Size([1, 400])
expected_slice = torch.tensor([-0.3016, -0.7713, -0.4205])
elif model_name == "timesformer-base-finetuned-k600":
expected_shape = torch.Size([1, 600])
expected_slice = torch.tensor([-0.7267, -0.7466, 3.2404])
elif model_name == "timesformer-base-finetuned-ssv2":
expected_shape = torch.Size([1, 174])
expected_slice = torch.tensor([-0.9059, 0.6433, -3.1457])
elif model_name == "timesformer-large-finetuned-k400":
expected_shape = torch.Size([1, 400])
expected_slice = torch.tensor([0, 0, 0])
elif model_name == "timesformer-large-finetuned-k600":
expected_shape = torch.Size([1, 600])
expected_slice = torch.tensor([0, 0, 0])
elif model_name == "timesformer-large-finetuned-ssv2":
expected_shape = torch.Size([1, 174])
expected_slice = torch.tensor([0, 0, 0])
elif model_name == "timesformer-hr-finetuned-k400":
expected_shape = torch.Size([1, 400])
expected_slice = torch.tensor([-0.9617, -3.7311, -3.7708])
elif model_name == "timesformer-hr-finetuned-k600":
expected_shape = torch.Size([1, 600])
expected_slice = torch.tensor([2.5273, 0.7127, 1.8848])
elif model_name == "timesformer-hr-finetuned-ssv2":
expected_shape = torch.Size([1, 174])
expected_slice = torch.tensor([-3.6756, -0.7513, 0.7180])
else:
raise ValueError(f"Model name not supported. Should be one of {model_names}")
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3], expected_slice, atol=1e-4)
print("Logits ok!")
if pytorch_dump_folder_path is not None:
print(f"Saving model and image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(pytorch_dump_folder_path)
model.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
print("Pushing to the hub...")
model.push_to_hub(f"fcakyon/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://drive.google.com/u/1/uc?id=17yvuYp9L4mn-HpIcK5Zo6K3UoOy1kA5l&export=download",
type=str,
help=(
"URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct"
" download link."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--model_name", default="timesformer-base-finetuned-k400", type=str, help="Name of the model.")
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_timesformer_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/timesformer/__init__.py
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_timesformer"] = [
"TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TimesformerModel",
"TimesformerForVideoClassification",
"TimesformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timesformer import (
TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimesformerForVideoClassification,
TimesformerModel,
TimesformerPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/timesformer/configuration_timesformer.py
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TimeSformer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json",
}
class TimesformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TimesformerModel`]. It is used to instantiate a
TimeSformer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the TimeSformer
[facebook/timesformer-base-finetuned-k600](https://huggingface.co/facebook/timesformer-base-finetuned-k600)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
num_frames (`int`, *optional*, defaults to 8):
The number of frames in each video.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
attention_type (`str`, *optional*, defaults to `"divided_space_time"`):
The attention type to use. Must be one of `"divided_space_time"`, `"space_only"`, `"joint_space_time"`.
drop_path_rate (`float`, *optional*, defaults to 0):
The dropout ratio for stochastic depth.
Example:
```python
>>> from transformers import TimesformerConfig, TimesformerModel
>>> # Initializing a TimeSformer timesformer-base style configuration
>>> configuration = TimesformerConfig()
>>> # Initializing a model from the configuration
>>> model = TimesformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "timesformer"
def __init__(
self,
image_size=224,
patch_size=16,
num_channels=3,
num_frames=8,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-6,
qkv_bias=True,
attention_type="divided_space_time",
drop_path_rate=0,
**kwargs,
):
super().__init__(**kwargs)
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_frames = num_frames
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.attention_type = attention_type
self.drop_path_rate = drop_path_rate
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/xlm/convert_xlm_original_pytorch_checkpoint_to_pytorch.py
|
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert OpenAI GPT checkpoint."""
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def convert_xlm_checkpoint_to_pytorch(xlm_checkpoint_path, pytorch_dump_folder_path):
# Load checkpoint
chkpt = torch.load(xlm_checkpoint_path, map_location="cpu")
state_dict = chkpt["model"]
# We have the base model one level deeper than the original XLM repository
two_levels_state_dict = {}
for k, v in state_dict.items():
if "pred_layer" in k:
two_levels_state_dict[k] = v
else:
two_levels_state_dict["transformer." + k] = v
config = chkpt["params"]
config = {n: v for n, v in config.items() if not isinstance(v, (torch.FloatTensor, numpy.ndarray))}
vocab = chkpt["dico_word2id"]
vocab = {s + "</w>" if s.find("@@") == -1 and i > 13 else s.replace("@@", ""): i for s, i in vocab.items()}
# Save pytorch-model
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
pytorch_vocab_dump_path = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"]
print(f"Save PyTorch model to {pytorch_weights_dump_path}")
torch.save(two_levels_state_dict, pytorch_weights_dump_path)
print(f"Save configuration file to {pytorch_config_dump_path}")
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
f.write(json.dumps(config, indent=2) + "\n")
print(f"Save vocab file to {pytorch_config_dump_path}")
with open(pytorch_vocab_dump_path, "w", encoding="utf-8") as f:
f.write(json.dumps(vocab, indent=2) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/xlm/configuration_xlm.py
|
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XLM configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json",
"xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json",
"xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json",
"xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json",
"xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json",
"xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json",
"xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json",
"xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json",
"xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json",
"xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json",
}
class XLMConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`XLMModel`] or a [`TFXLMModel`]. It is used to
instantiate a XLM model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the
[xlm-mlm-en-2048](https://huggingface.co/xlm-mlm-en-2048) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30145):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`XLMModel`] or [`TFXLMModel`].
emb_dim (`int`, *optional*, defaults to 2048):
Dimensionality of the encoder layers and the pooler layer.
n_layer (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention mechanism
gelu_activation (`bool`, *optional*, defaults to `True`):
Whether or not to use *gelu* for the activations instead of *relu*.
sinusoidal_embeddings (`bool`, *optional*, defaults to `False`):
Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.
causal (`bool`, *optional*, defaults to `False`):
Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in
order to only attend to the left-side context instead if a bidirectional context.
asm (`bool`, *optional*, defaults to `False`):
Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction
layer.
n_langs (`int`, *optional*, defaults to 1):
The number of languages the model handles. Set to 1 for monolingual models.
use_lang_emb (`bool`, *optional*, defaults to `True`)
Whether to use language embeddings. Some models use additional language embeddings, see [the multilingual
models page](http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings) for information
on how to use them.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
embed_init_std (`float`, *optional*, defaults to 2048^-0.5):
The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.
init_std (`int`, *optional*, defaults to 50257):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the
embedding matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
bos_index (`int`, *optional*, defaults to 0):
The index of the beginning of sentence token in the vocabulary.
eos_index (`int`, *optional*, defaults to 1):
The index of the end of sentence token in the vocabulary.
pad_index (`int`, *optional*, defaults to 2):
The index of the padding token in the vocabulary.
unk_index (`int`, *optional*, defaults to 3):
The index of the unknown token in the vocabulary.
mask_index (`int`, *optional*, defaults to 5):
The index of the masking token in the vocabulary.
is_encoder(`bool`, *optional*, defaults to `True`):
Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.
summary_type (`string`, *optional*, defaults to "first"):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Has to be one of the following options:
- `"last"`: Take the last token hidden state (like XLNet).
- `"first"`: Take the first token hidden state (like BERT).
- `"mean"`: Take the mean of all tokens hidden states.
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- `"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (`bool`, *optional*, defaults to `True`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Whether or not to add a projection after the vector extraction.
summary_activation (`str`, *optional*):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
Used in the sequence classification and multiple choice models.
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
summary_first_dropout (`float`, *optional*, defaults to 0.1):
Used in the sequence classification and multiple choice models.
The dropout ratio to be used after the projection and activation.
start_n_top (`int`, *optional*, defaults to 5):
Used in the SQuAD evaluation script.
end_n_top (`int`, *optional*, defaults to 5):
Used in the SQuAD evaluation script.
mask_token_id (`int`, *optional*, defaults to 0):
Model agnostic parameter to identify masked tokens when generating text in an MLM context.
lang_id (`int`, *optional*, defaults to 1):
The ID of the language used by the model. This parameter is used when generating text in a given language.
Examples:
```python
>>> from transformers import XLMConfig, XLMModel
>>> # Initializing a XLM configuration
>>> configuration = XLMConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = XLMModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "xlm"
attribute_map = {
"hidden_size": "emb_dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
"n_words": "vocab_size", # For backward compatibility
}
def __init__(
self,
vocab_size=30145,
emb_dim=2048,
n_layers=12,
n_heads=16,
dropout=0.1,
attention_dropout=0.1,
gelu_activation=True,
sinusoidal_embeddings=False,
causal=False,
asm=False,
n_langs=1,
use_lang_emb=True,
max_position_embeddings=512,
embed_init_std=2048**-0.5,
layer_norm_eps=1e-12,
init_std=0.02,
bos_index=0,
eos_index=1,
pad_index=2,
unk_index=3,
mask_index=5,
is_encoder=True,
summary_type="first",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
start_n_top=5,
end_n_top=5,
mask_token_id=0,
lang_id=0,
pad_token_id=2,
bos_token_id=0,
**kwargs,
):
"""Constructs XLMConfig."""
self.vocab_size = vocab_size
self.emb_dim = emb_dim
self.n_layers = n_layers
self.n_heads = n_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.gelu_activation = gelu_activation
self.sinusoidal_embeddings = sinusoidal_embeddings
self.causal = causal
self.asm = asm
self.n_langs = n_langs
self.use_lang_emb = use_lang_emb
self.layer_norm_eps = layer_norm_eps
self.bos_index = bos_index
self.eos_index = eos_index
self.pad_index = pad_index
self.unk_index = unk_index
self.mask_index = mask_index
self.is_encoder = is_encoder
self.max_position_embeddings = max_position_embeddings
self.embed_init_std = embed_init_std
self.init_std = init_std
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_proj_to_labels = summary_proj_to_labels
self.summary_first_dropout = summary_first_dropout
self.start_n_top = start_n_top
self.end_n_top = end_n_top
self.mask_token_id = mask_token_id
self.lang_id = lang_id
if "n_words" in kwargs:
self.n_words = kwargs["n_words"]
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, **kwargs)
# Copied from transformers.models.bert.configuration_bert.BertOnnxConfig
class XLMOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
]
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/xlm/tokenization_xlm.py
|
# coding=utf-8
# Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for XLM."""
import json
import os
import re
import sys
import unicodedata
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/vocab.json",
"xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/vocab.json",
"xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/vocab.json",
"xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/vocab.json",
"xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/vocab.json",
"xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/vocab.json",
"xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/vocab.json",
"xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/vocab.json",
"xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/vocab.json",
"xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/vocab.json",
},
"merges_file": {
"xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/merges.txt",
"xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/merges.txt",
"xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/merges.txt",
"xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/merges.txt",
"xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/merges.txt",
"xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/merges.txt",
"xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/merges.txt",
"xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/merges.txt",
"xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/merges.txt",
"xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/merges.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"xlm-mlm-en-2048": 512,
"xlm-mlm-ende-1024": 512,
"xlm-mlm-enfr-1024": 512,
"xlm-mlm-enro-1024": 512,
"xlm-mlm-tlm-xnli15-1024": 512,
"xlm-mlm-xnli15-1024": 512,
"xlm-clm-enfr-1024": 512,
"xlm-clm-ende-1024": 512,
"xlm-mlm-17-1280": 512,
"xlm-mlm-100-1280": 512,
}
PRETRAINED_INIT_CONFIGURATION = {
"xlm-mlm-en-2048": {"do_lowercase_and_remove_accent": True},
"xlm-mlm-ende-1024": {
"do_lowercase_and_remove_accent": True,
"id2lang": {0: "de", 1: "en"},
"lang2id": {"de": 0, "en": 1},
},
"xlm-mlm-enfr-1024": {
"do_lowercase_and_remove_accent": True,
"id2lang": {0: "en", 1: "fr"},
"lang2id": {"en": 0, "fr": 1},
},
"xlm-mlm-enro-1024": {
"do_lowercase_and_remove_accent": True,
"id2lang": {0: "en", 1: "ro"},
"lang2id": {"en": 0, "ro": 1},
},
"xlm-mlm-tlm-xnli15-1024": {
"do_lowercase_and_remove_accent": True,
"id2lang": {
0: "ar",
1: "bg",
2: "de",
3: "el",
4: "en",
5: "es",
6: "fr",
7: "hi",
8: "ru",
9: "sw",
10: "th",
11: "tr",
12: "ur",
13: "vi",
14: "zh",
},
"lang2id": {
"ar": 0,
"bg": 1,
"de": 2,
"el": 3,
"en": 4,
"es": 5,
"fr": 6,
"hi": 7,
"ru": 8,
"sw": 9,
"th": 10,
"tr": 11,
"ur": 12,
"vi": 13,
"zh": 14,
},
},
"xlm-mlm-xnli15-1024": {
"do_lowercase_and_remove_accent": True,
"id2lang": {
0: "ar",
1: "bg",
2: "de",
3: "el",
4: "en",
5: "es",
6: "fr",
7: "hi",
8: "ru",
9: "sw",
10: "th",
11: "tr",
12: "ur",
13: "vi",
14: "zh",
},
"lang2id": {
"ar": 0,
"bg": 1,
"de": 2,
"el": 3,
"en": 4,
"es": 5,
"fr": 6,
"hi": 7,
"ru": 8,
"sw": 9,
"th": 10,
"tr": 11,
"ur": 12,
"vi": 13,
"zh": 14,
},
},
"xlm-clm-enfr-1024": {
"do_lowercase_and_remove_accent": True,
"id2lang": {0: "en", 1: "fr"},
"lang2id": {"en": 0, "fr": 1},
},
"xlm-clm-ende-1024": {
"do_lowercase_and_remove_accent": True,
"id2lang": {0: "de", 1: "en"},
"lang2id": {"de": 0, "en": 1},
},
"xlm-mlm-17-1280": {
"do_lowercase_and_remove_accent": False,
"id2lang": {
0: "ar",
1: "de",
2: "en",
3: "es",
4: "fr",
5: "hi",
6: "it",
7: "ja",
8: "ko",
9: "nl",
10: "pl",
11: "pt",
12: "ru",
13: "sv",
14: "tr",
15: "vi",
16: "zh",
},
"lang2id": {
"ar": 0,
"de": 1,
"en": 2,
"es": 3,
"fr": 4,
"hi": 5,
"it": 6,
"ja": 7,
"ko": 8,
"nl": 9,
"pl": 10,
"pt": 11,
"ru": 12,
"sv": 13,
"tr": 14,
"vi": 15,
"zh": 16,
},
},
"xlm-mlm-100-1280": {
"do_lowercase_and_remove_accent": False,
"id2lang": {
0: "af",
1: "als",
2: "am",
3: "an",
4: "ang",
5: "ar",
6: "arz",
7: "ast",
8: "az",
9: "bar",
10: "be",
11: "bg",
12: "bn",
13: "br",
14: "bs",
15: "ca",
16: "ceb",
17: "ckb",
18: "cs",
19: "cy",
20: "da",
21: "de",
22: "el",
23: "en",
24: "eo",
25: "es",
26: "et",
27: "eu",
28: "fa",
29: "fi",
30: "fr",
31: "fy",
32: "ga",
33: "gan",
34: "gl",
35: "gu",
36: "he",
37: "hi",
38: "hr",
39: "hu",
40: "hy",
41: "ia",
42: "id",
43: "is",
44: "it",
45: "ja",
46: "jv",
47: "ka",
48: "kk",
49: "kn",
50: "ko",
51: "ku",
52: "la",
53: "lb",
54: "lt",
55: "lv",
56: "mk",
57: "ml",
58: "mn",
59: "mr",
60: "ms",
61: "my",
62: "nds",
63: "ne",
64: "nl",
65: "nn",
66: "no",
67: "oc",
68: "pl",
69: "pt",
70: "ro",
71: "ru",
72: "scn",
73: "sco",
74: "sh",
75: "si",
76: "simple",
77: "sk",
78: "sl",
79: "sq",
80: "sr",
81: "sv",
82: "sw",
83: "ta",
84: "te",
85: "th",
86: "tl",
87: "tr",
88: "tt",
89: "uk",
90: "ur",
91: "uz",
92: "vi",
93: "war",
94: "wuu",
95: "yi",
96: "zh",
97: "zh_classical",
98: "zh_min_nan",
99: "zh_yue",
},
"lang2id": {
"af": 0,
"als": 1,
"am": 2,
"an": 3,
"ang": 4,
"ar": 5,
"arz": 6,
"ast": 7,
"az": 8,
"bar": 9,
"be": 10,
"bg": 11,
"bn": 12,
"br": 13,
"bs": 14,
"ca": 15,
"ceb": 16,
"ckb": 17,
"cs": 18,
"cy": 19,
"da": 20,
"de": 21,
"el": 22,
"en": 23,
"eo": 24,
"es": 25,
"et": 26,
"eu": 27,
"fa": 28,
"fi": 29,
"fr": 30,
"fy": 31,
"ga": 32,
"gan": 33,
"gl": 34,
"gu": 35,
"he": 36,
"hi": 37,
"hr": 38,
"hu": 39,
"hy": 40,
"ia": 41,
"id": 42,
"is": 43,
"it": 44,
"ja": 45,
"jv": 46,
"ka": 47,
"kk": 48,
"kn": 49,
"ko": 50,
"ku": 51,
"la": 52,
"lb": 53,
"lt": 54,
"lv": 55,
"mk": 56,
"ml": 57,
"mn": 58,
"mr": 59,
"ms": 60,
"my": 61,
"nds": 62,
"ne": 63,
"nl": 64,
"nn": 65,
"no": 66,
"oc": 67,
"pl": 68,
"pt": 69,
"ro": 70,
"ru": 71,
"scn": 72,
"sco": 73,
"sh": 74,
"si": 75,
"simple": 76,
"sk": 77,
"sl": 78,
"sq": 79,
"sr": 80,
"sv": 81,
"sw": 82,
"ta": 83,
"te": 84,
"th": 85,
"tl": 86,
"tr": 87,
"tt": 88,
"uk": 89,
"ur": 90,
"uz": 91,
"vi": 92,
"war": 93,
"wuu": 94,
"yi": 95,
"zh": 96,
"zh_classical": 97,
"zh_min_nan": 98,
"zh_yue": 99,
},
},
}
def get_pairs(word):
"""
Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length
strings)
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def lowercase_and_remove_accent(text):
"""
Lowercase and strips accents from a piece of text based on
https://github.com/facebookresearch/XLM/blob/master/tools/lowercase_and_remove_accent.py
"""
text = " ".join(text)
text = text.lower()
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output).lower().split(" ")
def replace_unicode_punct(text):
"""
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl
"""
text = text.replace(",", ",")
text = re.sub(r"。\s*", ". ", text)
text = text.replace("、", ",")
text = text.replace("”", '"')
text = text.replace("“", '"')
text = text.replace("∶", ":")
text = text.replace(":", ":")
text = text.replace("?", "?")
text = text.replace("《", '"')
text = text.replace("》", '"')
text = text.replace(")", ")")
text = text.replace("!", "!")
text = text.replace("(", "(")
text = text.replace(";", ";")
text = text.replace("1", "1")
text = text.replace("」", '"')
text = text.replace("「", '"')
text = text.replace("0", "0")
text = text.replace("3", "3")
text = text.replace("2", "2")
text = text.replace("5", "5")
text = text.replace("6", "6")
text = text.replace("9", "9")
text = text.replace("7", "7")
text = text.replace("8", "8")
text = text.replace("4", "4")
text = re.sub(r".\s*", ". ", text)
text = text.replace("~", "~")
text = text.replace("’", "'")
text = text.replace("…", "...")
text = text.replace("━", "-")
text = text.replace("〈", "<")
text = text.replace("〉", ">")
text = text.replace("【", "[")
text = text.replace("】", "]")
text = text.replace("%", "%")
return text
def remove_non_printing_char(text):
"""
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl
"""
output = []
for char in text:
cat = unicodedata.category(char)
if cat.startswith("C"):
continue
output.append(char)
return "".join(output)
def romanian_preprocessing(text):
"""Sennrich's WMT16 scripts for Romanian preprocessing, used by model `xlm-mlm-enro-1024`"""
# https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/normalise-romanian.py
text = text.replace("\u015e", "\u0218").replace("\u015f", "\u0219")
text = text.replace("\u0162", "\u021a").replace("\u0163", "\u021b")
# https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/remove-diacritics.py
text = text.replace("\u0218", "S").replace("\u0219", "s") # s-comma
text = text.replace("\u021a", "T").replace("\u021b", "t") # t-comma
text = text.replace("\u0102", "A").replace("\u0103", "a")
text = text.replace("\u00C2", "A").replace("\u00E2", "a")
text = text.replace("\u00CE", "I").replace("\u00EE", "i")
return text
class XLMTokenizer(PreTrainedTokenizer):
"""
Construct an XLM tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following:
- Moses preprocessing and tokenization for most supported languages.
- Language specific tokenization for Chinese (Jieba), Japanese (KyTea) and Thai (PyThaiNLP).
- Optionally lowercases and normalizes all inputs text.
- The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like
"__classify__") to a vocabulary.
- The `lang2id` attribute maps the languages supported by the model with their IDs if provided (automatically set
for pretrained vocabularies).
- The `id2lang` attributes does reverse mapping if provided (automatically set for pretrained vocabularies).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Vocabulary file.
merges_file (`str`):
Merges file.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"</s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"<special1>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
additional_special_tokens (`List[str]`, *optional*, defaults to `['<special0>', '<special1>', '<special2>', '<special3>', '<special4>', '<special5>', '<special6>', '<special7>', '<special8>', '<special9>']`):
List of additional special tokens.
lang2id (`Dict[str, int]`, *optional*):
Dictionary mapping languages string identifiers to their IDs.
id2lang (`Dict[int, str]`, *optional*):
Dictionary mapping language IDs to their string identifiers.
do_lowercase_and_remove_accent (`bool`, *optional*, defaults to `True`):
Whether to lowercase and remove accents when tokenizing.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
vocab_file,
merges_file,
unk_token="<unk>",
bos_token="<s>",
sep_token="</s>",
pad_token="<pad>",
cls_token="</s>",
mask_token="<special1>",
additional_special_tokens=[
"<special0>",
"<special1>",
"<special2>",
"<special3>",
"<special4>",
"<special5>",
"<special6>",
"<special7>",
"<special8>",
"<special9>",
],
lang2id=None,
id2lang=None,
do_lowercase_and_remove_accent=True,
**kwargs,
):
try:
import sacremoses
except ImportError:
raise ImportError(
"You need to install sacremoses to use XLMTokenizer. "
"See https://pypi.org/project/sacremoses/ for installation."
)
self.sm = sacremoses
# cache of sm.MosesPunctNormalizer instance
self.cache_moses_punct_normalizer = {}
# cache of sm.MosesTokenizer instance
self.cache_moses_tokenizer = {}
self.lang_with_custom_tokenizer = {"zh", "th", "ja"}
# True for current supported model (v1.2.0), False for XLM-17 & 100
self.do_lowercase_and_remove_accent = do_lowercase_and_remove_accent
self.lang2id = lang2id
self.id2lang = id2lang
if lang2id is not None and id2lang is not None:
assert len(lang2id) == len(id2lang)
self.ja_word_tokenizer = None
self.zh_word_tokenizer = None
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
merges = merges_handle.read().split("\n")[:-1]
merges = [tuple(merge.split()[:2]) for merge in merges]
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {}
super().__init__(
unk_token=unk_token,
bos_token=bos_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
additional_special_tokens=additional_special_tokens,
lang2id=lang2id,
id2lang=id2lang,
do_lowercase_and_remove_accent=do_lowercase_and_remove_accent,
**kwargs,
)
@property
def do_lower_case(self):
return self.do_lowercase_and_remove_accent
def moses_punct_norm(self, text, lang):
if lang not in self.cache_moses_punct_normalizer:
punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang)
self.cache_moses_punct_normalizer[lang] = punct_normalizer
else:
punct_normalizer = self.cache_moses_punct_normalizer[lang]
return punct_normalizer.normalize(text)
def moses_tokenize(self, text, lang):
if lang not in self.cache_moses_tokenizer:
moses_tokenizer = self.sm.MosesTokenizer(lang=lang)
self.cache_moses_tokenizer[lang] = moses_tokenizer
else:
moses_tokenizer = self.cache_moses_tokenizer[lang]
return moses_tokenizer.tokenize(text, return_str=False, escape=False)
def moses_pipeline(self, text, lang):
text = replace_unicode_punct(text)
text = self.moses_punct_norm(text, lang)
text = remove_non_printing_char(text)
return text
def ja_tokenize(self, text):
if self.ja_word_tokenizer is None:
try:
import Mykytea
self.ja_word_tokenizer = Mykytea.Mykytea(
f"-model {os.path.expanduser('~')}/local/share/kytea/model.bin"
)
except (AttributeError, ImportError):
logger.error(
"Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper"
" (https://github.com/chezou/Mykytea-python) with the following steps"
)
logger.error("1. git clone [email protected]:neubig/kytea.git && cd kytea")
logger.error("2. autoreconf -i")
logger.error("3. ./configure --prefix=$HOME/local")
logger.error("4. make && make install")
logger.error("5. pip install kytea")
raise
return list(self.ja_word_tokenizer.getWS(text))
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def bpe(self, token):
word = tuple(token[:-1]) + (token[-1] + "</w>",)
if token in self.cache:
return self.cache[token]
pairs = get_pairs(word)
if not pairs:
return token + "</w>"
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
if word == "\n </w>":
word = "\n</w>"
self.cache[token] = word
return word
def _tokenize(self, text, lang="en", bypass_tokenizer=False):
"""
Tokenize a string given language code. For Chinese, Japanese and Thai, we use a language specific tokenizer.
Otherwise, we use Moses.
Details of tokenization:
- [sacremoses](https://github.com/alvations/sacremoses): port of Moses
- Install with `pip install sacremoses`
- [pythainlp](https://github.com/PyThaiNLP/pythainlp): Thai tokenizer
- Install with `pip install pythainlp`
- [kytea](https://github.com/chezou/Mykytea-python): Japanese tokenizer, wrapper of
[KyTea](https://github.com/neubig/kytea)
- Install with the following steps:
::
git clone [email protected]:neubig/kytea.git && cd kytea autoreconf -i ./configure --prefix=$HOME/local
make && make install pip install kytea
- [jieba](https://github.com/fxsjy/jieba): Chinese tokenizer (*)
- Install with `pip install jieba`
(*) The original XLM used [Stanford
Segmenter](https://nlp.stanford.edu/software/stanford-segmenter-2018-10-16.zip). However, the wrapper
(`nltk.tokenize.stanford_segmenter`) is slow due to JVM overhead, and it will be deprecated. Jieba is a lot
faster and pip-installable. Note there is some mismatch with the Stanford Segmenter. It should be fine if you
fine-tune the model with Chinese supervisionself. If you want the same exact behaviour, use the original XLM
[preprocessing script](https://github.com/facebookresearch/XLM/tree/master/tools) to tokenize the sentence
externally, and set `bypass_tokenizer=True` to bypass the tokenizer.
Args:
- lang: ISO language code (default = 'en') (string). Languages should belong of the model supported
languages. However, we don't enforce it.
- bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)
(bool). If True, we only apply BPE.
Returns:
List of tokens.
"""
if lang and self.lang2id and lang not in self.lang2id:
logger.error(
"Supplied language code not found in lang2id mapping. Please check that your language is supported by"
" the loaded pretrained model."
)
if bypass_tokenizer:
text = text.split()
elif lang not in self.lang_with_custom_tokenizer:
text = self.moses_pipeline(text, lang=lang)
# TODO: make sure we are using `xlm-mlm-enro-1024`, since XLM-100 doesn't have this step
if lang == "ro":
text = romanian_preprocessing(text)
text = self.moses_tokenize(text, lang=lang)
elif lang == "th":
text = self.moses_pipeline(text, lang=lang)
try:
if "pythainlp" not in sys.modules:
from pythainlp.tokenize import word_tokenize as th_word_tokenize
else:
th_word_tokenize = sys.modules["pythainlp"].word_tokenize
except (AttributeError, ImportError):
logger.error(
"Make sure you install PyThaiNLP (https://github.com/PyThaiNLP/pythainlp) with the following steps"
)
logger.error("1. pip install pythainlp")
raise
text = th_word_tokenize(text)
elif lang == "zh":
try:
if "jieba" not in sys.modules:
import jieba
else:
jieba = sys.modules["jieba"]
except (AttributeError, ImportError):
logger.error("Make sure you install Jieba (https://github.com/fxsjy/jieba) with the following steps")
logger.error("1. pip install jieba")
raise
text = " ".join(jieba.cut(text))
text = self.moses_pipeline(text, lang=lang)
text = text.split()
elif lang == "ja":
text = self.moses_pipeline(text, lang=lang)
text = self.ja_tokenize(text)
else:
raise ValueError("It should not reach here")
if self.do_lowercase_and_remove_accent and not bypass_tokenizer:
text = lowercase_and_remove_accent(text)
split_tokens = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(token).split(" ")))
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = "".join(tokens).replace("</w>", " ").strip()
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An XLM sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
bos = [self.bos_token_id]
sep = [self.sep_token_id]
if token_ids_1 is None:
return bos + token_ids_0 + sep
return bos + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLM sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
def __getstate__(self):
state = self.__dict__.copy()
state["sm"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
try:
import sacremoses
except ImportError:
raise ImportError(
"You need to install sacremoses to use XLMTokenizer. "
"See https://pypi.org/project/sacremoses/ for installation."
)
self.sm = sacremoses
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/xlm/modeling_tf_xlm.py
|
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
TF 2.0 XLM model.
"""
from __future__ import annotations
import itertools
import warnings
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFMultipleChoiceModelOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFModelInputType,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFSequenceSummary,
TFSharedEmbeddings,
TFTokenClassificationLoss,
get_initializer,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
MULTIPLE_CHOICE_DUMMY_INPUTS,
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_xlm import XLMConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "xlm-mlm-en-2048"
_CONFIG_FOR_DOC = "XLMConfig"
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST = [
"xlm-mlm-en-2048",
"xlm-mlm-ende-1024",
"xlm-mlm-enfr-1024",
"xlm-mlm-enro-1024",
"xlm-mlm-tlm-xnli15-1024",
"xlm-mlm-xnli15-1024",
"xlm-clm-enfr-1024",
"xlm-clm-ende-1024",
"xlm-mlm-17-1280",
"xlm-mlm-100-1280",
# See all XLM models at https://huggingface.co/models?filter=xlm
]
def create_sinusoidal_embeddings(n_pos, dim, out):
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
out[:, 0::2] = tf.constant(np.sin(position_enc[:, 0::2]))
out[:, 1::2] = tf.constant(np.cos(position_enc[:, 1::2]))
def get_masks(slen, lengths, causal, padding_mask=None):
"""
Generate hidden states mask, and optionally an attention mask.
"""
bs = shape_list(lengths)[0]
if padding_mask is not None:
mask = padding_mask
else:
# assert lengths.max().item() <= slen
alen = tf.range(slen, dtype=lengths.dtype)
mask = alen < tf.expand_dims(lengths, axis=1)
# attention mask is the same as mask, or triangular inferior attention (causal)
if causal:
attn_mask = tf.less_equal(
tf.tile(tf.reshape(alen, (1, 1, slen)), (bs, slen, 1)), tf.reshape(alen, (1, slen, 1))
)
else:
attn_mask = mask
# sanity check
# assert shape_list(mask) == [bs, slen]
tf.debugging.assert_equal(shape_list(mask), [bs, slen])
if causal:
tf.debugging.assert_equal(shape_list(attn_mask), [bs, slen, slen])
return mask, attn_mask
class TFXLMMultiHeadAttention(tf.keras.layers.Layer):
NEW_ID = itertools.count()
def __init__(self, n_heads, dim, config, **kwargs):
super().__init__(**kwargs)
self.layer_id = next(TFXLMMultiHeadAttention.NEW_ID)
self.dim = dim
self.n_heads = n_heads
self.output_attentions = config.output_attentions
assert self.dim % self.n_heads == 0
self.q_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="q_lin")
self.k_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="k_lin")
self.v_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="v_lin")
self.out_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="out_lin")
self.dropout = tf.keras.layers.Dropout(config.attention_dropout)
self.pruned_heads = set()
self.dim = dim
def prune_heads(self, heads):
raise NotImplementedError
def call(self, input, mask, kv, cache, head_mask, output_attentions, training=False):
"""
Self-attention (if kv is None) or attention over source sentence (provided by kv).
"""
# Input is (bs, qlen, dim)
# Mask is (bs, klen) (non-causal) or (bs, klen, klen)
bs, qlen, dim = shape_list(input)
if kv is None:
klen = qlen if cache is None else cache["slen"] + qlen
else:
klen = shape_list(kv)[1]
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
dim_per_head = self.dim // self.n_heads
mask_reshape = (bs, 1, qlen, klen) if len(shape_list(mask)) == 3 else (bs, 1, 1, klen)
def shape(x):
"""projection"""
return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3))
def unshape(x):
"""compute context"""
return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head))
q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head)
if kv is None:
k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head)
v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head)
elif cache is None or self.layer_id not in cache:
k = v = kv
k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head)
v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head)
if cache is not None:
if self.layer_id in cache:
if kv is None:
k_, v_ = cache[self.layer_id]
k = tf.concat([k_, k], axis=2) # (bs, n_heads, klen, dim_per_head)
v = tf.concat([v_, v], axis=2) # (bs, n_heads, klen, dim_per_head)
else:
k, v = cache[self.layer_id]
cache[self.layer_id] = (k, v)
f_dim_per_head = tf.cast(dim_per_head, dtype=q.dtype)
q = tf.multiply(q, tf.math.rsqrt(f_dim_per_head)) # (bs, n_heads, qlen, dim_per_head)
k = tf.cast(k, dtype=q.dtype)
scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, qlen, klen)
mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen)
# scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, qlen, klen)
mask = tf.cast(mask, dtype=scores.dtype)
scores = scores - 1e30 * (1.0 - mask)
weights = stable_softmax(scores, axis=-1) # (bs, n_heads, qlen, klen)
weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen)
# Mask heads if we want to
if head_mask is not None:
weights = weights * head_mask
context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
context = unshape(context) # (bs, qlen, dim)
outputs = (self.out_lin(context),)
if output_attentions:
outputs = outputs + (weights,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "q_lin", None) is not None:
with tf.name_scope(self.q_lin.name):
self.q_lin.build([None, None, self.dim])
if getattr(self, "k_lin", None) is not None:
with tf.name_scope(self.k_lin.name):
self.k_lin.build([None, None, self.dim])
if getattr(self, "v_lin", None) is not None:
with tf.name_scope(self.v_lin.name):
self.v_lin.build([None, None, self.dim])
if getattr(self, "out_lin", None) is not None:
with tf.name_scope(self.out_lin.name):
self.out_lin.build([None, None, self.dim])
class TFXLMTransformerFFN(tf.keras.layers.Layer):
def __init__(self, in_dim, dim_hidden, out_dim, config, **kwargs):
super().__init__(**kwargs)
self.lin1 = tf.keras.layers.Dense(dim_hidden, kernel_initializer=get_initializer(config.init_std), name="lin1")
self.lin2 = tf.keras.layers.Dense(out_dim, kernel_initializer=get_initializer(config.init_std), name="lin2")
self.act = get_tf_activation("gelu") if config.gelu_activation else get_tf_activation("relu")
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.in_dim = in_dim
self.dim_hidden = dim_hidden
def call(self, input, training=False):
x = self.lin1(input)
x = self.act(x)
x = self.lin2(x)
x = self.dropout(x, training=training)
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "lin1", None) is not None:
with tf.name_scope(self.lin1.name):
self.lin1.build([None, None, self.in_dim])
if getattr(self, "lin2", None) is not None:
with tf.name_scope(self.lin2.name):
self.lin2.build([None, None, self.dim_hidden])
@keras_serializable
class TFXLMMainLayer(tf.keras.layers.Layer):
config_class = XLMConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
self.return_dict = config.use_return_dict
# encoder / decoder, output layer
self.is_encoder = config.is_encoder
self.is_decoder = not config.is_encoder
if self.is_decoder:
raise NotImplementedError("Currently XLM can only be used as an encoder")
# self.with_output = with_output
self.causal = config.causal
# dictionary / languages
self.n_langs = config.n_langs
self.use_lang_emb = config.use_lang_emb
self.n_words = config.n_words
self.eos_index = config.eos_index
self.pad_index = config.pad_index
# self.dico = dico
# self.id2lang = config.id2lang
# self.lang2id = config.lang2id
# assert len(self.dico) == self.n_words
# assert len(self.id2lang) == len(self.lang2id) == self.n_langs
# model parameters
self.dim = config.emb_dim # 512 by default
self.hidden_dim = self.dim * 4 # 2048 by default
self.n_heads = config.n_heads # 8 by default
self.n_layers = config.n_layers
self.max_position_embeddings = config.max_position_embeddings
self.embed_init_std = config.embed_init_std
if self.dim % self.n_heads != 0:
raise ValueError("transformer dim must be a multiple of n_heads")
# embeddings
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.attention_dropout = tf.keras.layers.Dropout(config.attention_dropout)
if config.sinusoidal_embeddings:
raise NotImplementedError
# create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
self.embeddings = TFSharedEmbeddings(
self.n_words, self.dim, initializer_range=config.embed_init_std, name="embeddings"
) # padding_idx=self.pad_index)
self.layer_norm_emb = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm_emb")
# transformer layers
self.attentions = []
self.layer_norm1 = []
self.ffns = []
self.layer_norm2 = []
# if self.is_decoder:
# self.layer_norm15 = []
# self.encoder_attn = []
for i in range(self.n_layers):
self.attentions.append(
TFXLMMultiHeadAttention(self.n_heads, self.dim, config=config, name=f"attentions_._{i}")
)
self.layer_norm1.append(
tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm1_._{i}")
)
# if self.is_decoder:
# self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
# self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
self.ffns.append(
TFXLMTransformerFFN(self.dim, self.hidden_dim, self.dim, config=config, name=f"ffns_._{i}")
)
self.layer_norm2.append(
tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm2_._{i}")
)
if hasattr(config, "pruned_heads"):
pruned_heads = config.pruned_heads.copy().items()
config.pruned_heads = {}
for layer, heads in pruned_heads:
if self.attentions[int(layer)].n_heads == config.n_heads:
self.prune_heads({int(layer): list(map(int, heads))})
def build(self, input_shape=None):
if self.built:
return
self.built = True
with tf.name_scope("position_embeddings"):
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.dim],
initializer=get_initializer(self.embed_init_std),
)
if self.n_langs > 1 and self.use_lang_emb:
with tf.name_scope("lang_embeddings"):
self.lang_embeddings = self.add_weight(
name="embeddings",
shape=[self.n_langs, self.dim],
initializer=get_initializer(self.embed_init_std),
)
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "layer_norm_emb", None) is not None:
with tf.name_scope(self.layer_norm_emb.name):
self.layer_norm_emb.build([None, None, self.dim])
for layer in self.attentions:
with tf.name_scope(layer.name):
layer.build(None)
for layer in self.layer_norm1:
with tf.name_scope(layer.name):
layer.build([None, None, self.dim])
for layer in self.ffns:
with tf.name_scope(layer.name):
layer.build(None)
for layer in self.layer_norm2:
with tf.name_scope(layer.name):
layer.build([None, None, self.dim])
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
langs=None,
token_type_ids=None,
position_ids=None,
lengths=None,
cache=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
# removed: src_enc=None, src_len=None
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
bs, slen = shape_list(input_ids)
elif inputs_embeds is not None:
bs, slen = shape_list(inputs_embeds)[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if lengths is None:
if input_ids is not None:
lengths = tf.reduce_sum(
tf.cast(tf.not_equal(input_ids, self.pad_index), dtype=input_ids.dtype), axis=1
)
else:
lengths = tf.convert_to_tensor([slen] * bs)
# mask = input_ids != self.pad_index
# check inputs
# assert shape_list(lengths)[0] == bs
(
tf.debugging.assert_equal(shape_list(lengths)[0], bs),
f"Expected batch size {shape_list(lengths)[0]} and received batch size {bs} mismatched",
)
# assert lengths.max().item() <= slen
# input_ids = input_ids.transpose(0, 1) # batch size as dimension 0
# assert (src_enc is None) == (src_len is None)
# if src_enc is not None:
# assert self.is_decoder
# assert src_enc.size(0) == bs
# generate masks
mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
# if self.is_decoder and src_enc is not None:
# src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
# position_ids
if position_ids is None:
position_ids = tf.expand_dims(tf.range(slen), axis=0)
position_ids = tf.tile(position_ids, (bs, 1))
# assert shape_list(position_ids) == [bs, slen] # (slen, bs)
(
tf.debugging.assert_equal(shape_list(position_ids), [bs, slen]),
f"Position id shape {shape_list(position_ids)} and input shape {[bs, slen]} mismatched",
)
# position_ids = position_ids.transpose(0, 1)
# langs
if langs is not None:
# assert shape_list(langs) == [bs, slen] # (slen, bs)
(
tf.debugging.assert_equal(shape_list(langs), [bs, slen]),
f"Lang shape {shape_list(langs)} and input shape {[bs, slen]} mismatched",
)
# langs = langs.transpose(0, 1)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.n_layers
# do not recompute cached elements
if cache is not None and input_ids is not None:
_slen = slen - cache["slen"]
input_ids = input_ids[:, -_slen:]
position_ids = position_ids[:, -_slen:]
if langs is not None:
langs = langs[:, -_slen:]
mask = mask[:, -_slen:]
attn_mask = attn_mask[:, -_slen:]
# embeddings
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embeddings.vocab_size)
inputs_embeds = self.embeddings(input_ids)
tensor = inputs_embeds + tf.gather(self.position_embeddings, position_ids)
if langs is not None and self.use_lang_emb and self.n_langs > 1:
tensor = tensor + tf.gather(self.lang_embeddings, langs)
if token_type_ids is not None:
tensor = tensor + self.embeddings(token_type_ids)
tensor = self.layer_norm_emb(tensor)
tensor = self.dropout(tensor, training=training)
mask = tf.cast(mask, dtype=tensor.dtype)
tensor = tensor * tf.expand_dims(mask, axis=-1)
# transformer layers
hidden_states = () if output_hidden_states else None
attentions = () if output_attentions else None
for i in range(self.n_layers):
if output_hidden_states:
hidden_states = hidden_states + (tensor,)
# self attention
attn_outputs = self.attentions[i](
tensor,
attn_mask,
None,
cache,
head_mask[i],
output_attentions,
training=training,
)
attn = attn_outputs[0]
if output_attentions:
attentions = attentions + (attn_outputs[1],)
attn = self.dropout(attn, training=training)
tensor = tensor + attn
tensor = self.layer_norm1[i](tensor)
# encoder attention (for decoder only)
# if self.is_decoder and src_enc is not None:
# attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
# attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
# tensor = tensor + attn
# tensor = self.layer_norm15[i](tensor)
# FFN
tensor = tensor + self.ffns[i](tensor)
tensor = self.layer_norm2[i](tensor)
tensor = tensor * tf.expand_dims(mask, axis=-1)
# Add last hidden state
if output_hidden_states:
hidden_states = hidden_states + (tensor,)
# update cache length
if cache is not None:
cache["slen"] += tensor.size(1)
# move back sequence length to dimension 0
# tensor = tensor.transpose(0, 1)
if not return_dict:
return tuple(v for v in [tensor, hidden_states, attentions] if v is not None)
return TFBaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
class TFXLMPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = XLMConfig
base_model_prefix = "transformer"
@property
def dummy_inputs(self):
# Sometimes XLM has language embeddings so don't forget to build them as well if needed
inputs_list = tf.constant([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]], dtype=tf.int32)
attns_list = tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32)
if self.config.use_lang_emb and self.config.n_langs > 1:
return {
"input_ids": inputs_list,
"attention_mask": attns_list,
"langs": tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32),
}
else:
return {"input_ids": inputs_list, "attention_mask": attns_list}
# Remove when XLMWithLMHead computes loss like other LM models
@dataclass
class TFXLMWithLMHeadModelOutput(ModelOutput):
"""
Base class for [`TFXLMWithLMHeadModel`] outputs.
Args:
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
XLM_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`XLMConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
XLM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
langs (`tf.Tensor` or `Numpy array` of shape `({0})`, *optional*):
A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are
languages ids which can be obtained from the language names by using two conversion mappings provided in
the configuration of the model (only provided for multilingual models). More precisely, the *language name
to language id* mapping is in `model.config.lang2id` (which is a dictionary string to int) and the
*language id to language name* mapping is in `model.config.id2lang` (dictionary int to string).
See usage examples detailed in the [multilingual documentation](../multilingual).
token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
lengths (`tf.Tensor` or `Numpy array` of shape `(batch_size,)`, *optional*):
Length of each sentence that can be used to avoid performing attention on padding token indices. You can
also use *attention_mask* for the same result (see above), kept here for compatibility. Indices selected in
`[0, ..., input_ids.size(-1)]`.
cache (`Dict[str, tf.Tensor]`, *optional*):
Dictionary string to `tf.Tensor` that contains precomputed hidden states (key and values in the attention
blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential decoding.
The dictionary object will be modified in-place during the forward pass to add newly computed
hidden-states.
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare XLM Model transformer outputting raw hidden-states without any specific head on top.",
XLM_START_DOCSTRING,
)
class TFXLMModel(TFXLMPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXLMMainLayer(config, name="transformer")
@unpack_inputs
@add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: tf.Tensor | None = None,
langs: tf.Tensor | None = None,
token_type_ids: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
lengths: tf.Tensor | None = None,
cache: Dict[str, tf.Tensor] | None = None,
head_mask: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> TFBaseModelOutput | Tuple[tf.Tensor]:
outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
class TFXLMPredLayer(tf.keras.layers.Layer):
"""
Prediction layer (cross_entropy or adaptive_softmax).
"""
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.asm = config.asm
self.n_words = config.n_words
self.pad_index = config.pad_index
if config.asm is False:
self.input_embeddings = input_embeddings
else:
raise NotImplementedError
# self.proj = nn.AdaptiveLogSoftmaxWithLoss(
# in_features=dim,
# n_classes=config.n_words,
# cutoffs=config.asm_cutoffs,
# div_value=config.asm_div_value,
# head_bias=True, # default is False
# )
def build(self, input_shape):
# The output weights are the same as the input embeddings, but there is an output-only bias for each token.
self.bias = self.add_weight(shape=(self.n_words,), initializer="zeros", trainable=True, name="bias")
super().build(input_shape)
def get_output_embeddings(self):
return self.input_embeddings
def set_output_embeddings(self, value):
self.input_embeddings.weight = value
self.input_embeddings.vocab_size = shape_list(value)[0]
def get_bias(self):
return {"bias": self.bias}
def set_bias(self, value):
self.bias = value["bias"]
self.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states):
hidden_states = self.input_embeddings(hidden_states, mode="linear")
hidden_states = hidden_states + self.bias
return hidden_states
@add_start_docstrings(
"""
The XLM Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
XLM_START_DOCSTRING,
)
class TFXLMWithLMHeadModel(TFXLMPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXLMMainLayer(config, name="transformer")
self.pred_layer = TFXLMPredLayer(config, self.transformer.embeddings, name="pred_layer_._proj")
# XLM does not have past caching features
self.supports_xla_generation = False
def get_lm_head(self):
return self.pred_layer
def get_prefix_bias_name(self):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.pred_layer.name
def prepare_inputs_for_generation(self, inputs, **kwargs):
mask_token_id = self.config.mask_token_id
lang_id = self.config.lang_id
effective_batch_size = inputs.shape[0]
mask_token = tf.fill((effective_batch_size, 1), 1) * mask_token_id
inputs = tf.concat([inputs, mask_token], axis=1)
if lang_id is not None:
langs = tf.ones_like(inputs) * lang_id
else:
langs = None
return {"input_ids": inputs, "langs": langs}
@unpack_inputs
@add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFXLMWithLMHeadModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFXLMWithLMHeadModelOutput, Tuple[tf.Tensor]]:
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
output = transformer_outputs[0]
outputs = self.pred_layer(output)
if not return_dict:
return (outputs,) + transformer_outputs[1:]
return TFXLMWithLMHeadModelOutput(
logits=outputs, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "pred_layer", None) is not None:
with tf.name_scope(self.pred_layer.name):
self.pred_layer.build(None)
@add_start_docstrings(
"""
XLM Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g.
for GLUE tasks.
""",
XLM_START_DOCSTRING,
)
class TFXLMForSequenceClassification(TFXLMPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFXLMMainLayer(config, name="transformer")
self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary")
@unpack_inputs
@add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
output = transformer_outputs[0]
logits = self.sequence_summary(output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "sequence_summary", None) is not None:
with tf.name_scope(self.sequence_summary.name):
self.sequence_summary.build(None)
@add_start_docstrings(
"""
XLM Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
XLM_START_DOCSTRING,
)
class TFXLMForMultipleChoice(TFXLMPreTrainedModel, TFMultipleChoiceLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXLMMainLayer(config, name="transformer")
self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary")
self.logits_proj = tf.keras.layers.Dense(
1, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj"
)
self.config = config
@property
def dummy_inputs(self):
"""
Dummy inputs to build the network.
Returns:
tf.Tensor with dummy inputs
"""
# Sometimes XLM has language embeddings so don't forget to build them as well if needed
if self.config.use_lang_emb and self.config.n_langs > 1:
return {
"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32),
"langs": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32),
}
else:
return {
"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32),
}
@unpack_inputs
@add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
flat_langs = tf.reshape(langs, (-1, seq_length)) if langs is not None else None
flat_inputs_embeds = (
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
if lengths is not None:
logger.warning(
"The `lengths` parameter cannot be used with the XLM multiple choice models. Please use the "
"attention mask instead.",
)
lengths = None
transformer_outputs = self.transformer(
flat_input_ids,
flat_attention_mask,
flat_langs,
flat_token_type_ids,
flat_position_ids,
lengths,
cache,
head_mask,
flat_inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
output = transformer_outputs[0]
logits = self.sequence_summary(output)
logits = self.logits_proj(logits)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "sequence_summary", None) is not None:
with tf.name_scope(self.sequence_summary.name):
self.sequence_summary.build(None)
if getattr(self, "logits_proj", None) is not None:
with tf.name_scope(self.logits_proj.name):
self.logits_proj.build([None, None, self.config.num_labels])
@add_start_docstrings(
"""
XLM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
XLM_START_DOCSTRING,
)
class TFXLMForTokenClassification(TFXLMPreTrainedModel, TFTokenClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFXLMMainLayer(config, name="transformer")
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.classifier = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.init_std), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = transformer_outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
XLM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer
on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
XLM_START_DOCSTRING,
)
class TFXLMForQuestionAnsweringSimple(TFXLMPreTrainedModel, TFQuestionAnsweringLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFXLMMainLayer(config, name="transformer")
self.qa_outputs = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.init_std), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = transformer_outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/xlm/__init__.py
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_import_structure = {
"configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"],
"tokenization_xlm": ["XLMTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_xlm"] = [
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_xlm"] = [
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/xlm/modeling_xlm.py
|
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PyTorch XLM model.
"""
import itertools
import math
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import numpy as np
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import gelu
from ...modeling_outputs import (
BaseModelOutput,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel, SequenceSummary, SQuADHead
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_xlm import XLMConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "xlm-mlm-en-2048"
_CONFIG_FOR_DOC = "XLMConfig"
XLM_PRETRAINED_MODEL_ARCHIVE_LIST = [
"xlm-mlm-en-2048",
"xlm-mlm-ende-1024",
"xlm-mlm-enfr-1024",
"xlm-mlm-enro-1024",
"xlm-mlm-tlm-xnli15-1024",
"xlm-mlm-xnli15-1024",
"xlm-clm-enfr-1024",
"xlm-clm-ende-1024",
"xlm-mlm-17-1280",
"xlm-mlm-100-1280",
# See all XLM models at https://huggingface.co/models?filter=xlm
]
def create_sinusoidal_embeddings(n_pos, dim, out):
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
out.detach_()
out.requires_grad = False
def get_masks(slen, lengths, causal, padding_mask=None):
"""
Generate hidden states mask, and optionally an attention mask.
"""
alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
if padding_mask is not None:
mask = padding_mask
else:
assert lengths.max().item() <= slen
mask = alen < lengths[:, None]
# attention mask is the same as mask, or triangular inferior attention (causal)
bs = lengths.size(0)
if causal:
attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
else:
attn_mask = mask
# sanity check
assert mask.size() == (bs, slen)
assert causal is False or attn_mask.size() == (bs, slen, slen)
return mask, attn_mask
class MultiHeadAttention(nn.Module):
NEW_ID = itertools.count()
def __init__(self, n_heads, dim, config):
super().__init__()
self.layer_id = next(MultiHeadAttention.NEW_ID)
self.dim = dim
self.n_heads = n_heads
self.dropout = config.attention_dropout
assert self.dim % self.n_heads == 0
self.q_lin = nn.Linear(dim, dim)
self.k_lin = nn.Linear(dim, dim)
self.v_lin = nn.Linear(dim, dim)
self.out_lin = nn.Linear(dim, dim)
self.pruned_heads = set()
def prune_heads(self, heads):
attention_head_size = self.dim // self.n_heads
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(heads, self.n_heads, attention_head_size, self.pruned_heads)
# Prune linear layers
self.q_lin = prune_linear_layer(self.q_lin, index)
self.k_lin = prune_linear_layer(self.k_lin, index)
self.v_lin = prune_linear_layer(self.v_lin, index)
self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.dim = attention_head_size * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, input, mask, kv=None, cache=None, head_mask=None, output_attentions=False):
"""
Self-attention (if kv is None) or attention over source sentence (provided by kv).
"""
# Input is (bs, qlen, dim)
# Mask is (bs, klen) (non-causal) or (bs, klen, klen)
bs, qlen, dim = input.size()
if kv is None:
klen = qlen if cache is None else cache["slen"] + qlen
else:
klen = kv.size(1)
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
n_heads = self.n_heads
dim_per_head = self.dim // n_heads
mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)
def shape(x):
"""projection"""
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)
def unshape(x):
"""compute context"""
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head)
if kv is None:
k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head)
v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head)
elif cache is None or self.layer_id not in cache:
k = v = kv
k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head)
v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head)
if cache is not None:
if self.layer_id in cache:
if kv is None:
k_, v_ = cache[self.layer_id]
k = torch.cat([k_, k], dim=2) # (bs, n_heads, klen, dim_per_head)
v = torch.cat([v_, v], dim=2) # (bs, n_heads, klen, dim_per_head)
else:
k, v = cache[self.layer_id]
cache[self.layer_id] = (k, v)
q = q / math.sqrt(dim_per_head) # (bs, n_heads, qlen, dim_per_head)
scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, qlen, klen)
mask = (mask == 0).view(mask_reshape).expand_as(scores) # (bs, n_heads, qlen, klen)
scores.masked_fill_(mask, torch.finfo(scores.dtype).min) # (bs, n_heads, qlen, klen)
weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) # (bs, n_heads, qlen, klen)
weights = nn.functional.dropout(weights, p=self.dropout, training=self.training) # (bs, n_heads, qlen, klen)
# Mask heads if we want to
if head_mask is not None:
weights = weights * head_mask
context = torch.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
context = unshape(context) # (bs, qlen, dim)
outputs = (self.out_lin(context),)
if output_attentions:
outputs = outputs + (weights,)
return outputs
class TransformerFFN(nn.Module):
def __init__(self, in_dim, dim_hidden, out_dim, config):
super().__init__()
self.dropout = config.dropout
self.lin1 = nn.Linear(in_dim, dim_hidden)
self.lin2 = nn.Linear(dim_hidden, out_dim)
self.act = gelu if config.gelu_activation else nn.functional.relu
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
def forward(self, input):
return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input)
def ff_chunk(self, input):
x = self.lin1(input)
x = self.act(x)
x = self.lin2(x)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
return x
class XLMPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = XLMConfig
load_tf_weights = None
base_model_prefix = "transformer"
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
@property
def dummy_inputs(self):
inputs_list = torch.tensor([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]])
attns_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
if self.config.use_lang_emb and self.config.n_langs > 1:
langs_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
else:
langs_list = None
return {"input_ids": inputs_list, "attention_mask": attns_list, "langs": langs_list}
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Embedding):
if self.config is not None and self.config.embed_init_std is not None:
nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, nn.Linear):
if self.config is not None and self.config.init_std is not None:
nn.init.normal_(module.weight, mean=0, std=self.config.init_std)
if module.bias is not None:
nn.init.constant_(module.bias, 0.0)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@dataclass
class XLMForQuestionAnsweringOutput(ModelOutput):
"""
Base class for outputs of question answering models using a `SquadHead`.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Classification loss as the sum of start token, end token (and is_impossible if provided) classification
losses.
start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the top config.start_n_top start token possibilities (beam-search).
start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Indices for the top config.start_n_top start token possibilities (beam-search).
end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
(beam-search).
end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the `is_impossible` label of the answers.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
start_top_log_probs: Optional[torch.FloatTensor] = None
start_top_index: Optional[torch.LongTensor] = None
end_top_log_probs: Optional[torch.FloatTensor] = None
end_top_index: Optional[torch.LongTensor] = None
cls_logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
XLM_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`XLMConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
XLM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
langs (`torch.LongTensor` of shape `({0})`, *optional*):
A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are
languages ids which can be obtained from the language names by using two conversion mappings provided in
the configuration of the model (only provided for multilingual models). More precisely, the *language name
to language id* mapping is in `model.config.lang2id` (which is a dictionary string to int) and the
*language id to language name* mapping is in `model.config.id2lang` (dictionary int to string).
See usage examples detailed in the [multilingual documentation](../multilingual).
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
lengths (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Length of each sentence that can be used to avoid performing attention on padding token indices. You can
also use *attention_mask* for the same result (see above), kept here for compatibility. Indices selected in
`[0, ..., input_ids.size(-1)]`.
cache (`Dict[str, torch.FloatTensor]`, *optional*):
Dictionary string to `torch.FloatTensor` that contains precomputed hidden states (key and values in the
attention blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential
decoding.
The dictionary object will be modified in-place during the forward pass to add newly computed
hidden-states.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare XLM Model transformer outputting raw hidden-states without any specific head on top.",
XLM_START_DOCSTRING,
)
class XLMModel(XLMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
# encoder / decoder, output layer
self.is_encoder = config.is_encoder
self.is_decoder = not config.is_encoder
if self.is_decoder:
raise NotImplementedError("Currently XLM can only be used as an encoder")
# self.with_output = with_output
self.causal = config.causal
# dictionary / languages
self.n_langs = config.n_langs
self.use_lang_emb = config.use_lang_emb
self.n_words = config.n_words
self.eos_index = config.eos_index
self.pad_index = config.pad_index
# self.dico = dico
# self.id2lang = config.id2lang
# self.lang2id = config.lang2id
# assert len(self.dico) == self.n_words
# assert len(self.id2lang) == len(self.lang2id) == self.n_langs
# model parameters
self.dim = config.emb_dim # 512 by default
self.hidden_dim = self.dim * 4 # 2048 by default
self.n_heads = config.n_heads # 8 by default
self.n_layers = config.n_layers
self.dropout = config.dropout
self.attention_dropout = config.attention_dropout
assert self.dim % self.n_heads == 0, "transformer dim must be a multiple of n_heads"
# embeddings
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim)
if config.sinusoidal_embeddings:
create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
if config.n_langs > 1 and config.use_lang_emb:
self.lang_embeddings = nn.Embedding(self.n_langs, self.dim)
self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps)
# transformer layers
self.attentions = nn.ModuleList()
self.layer_norm1 = nn.ModuleList()
self.ffns = nn.ModuleList()
self.layer_norm2 = nn.ModuleList()
# if self.is_decoder:
# self.layer_norm15 = nn.ModuleList()
# self.encoder_attn = nn.ModuleList()
for _ in range(self.n_layers):
self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config))
self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
# if self.is_decoder:
# self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
# self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config))
self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
if hasattr(config, "pruned_heads"):
pruned_heads = config.pruned_heads.copy().items()
config.pruned_heads = {}
for layer, heads in pruned_heads:
if self.attentions[int(layer)].n_heads == config.n_heads:
self.prune_heads({int(layer): list(map(int, heads))})
# Initialize weights and apply final processing
self.post_init()
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings = new_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.attentions[layer].prune_heads(heads)
@add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None:
bs, slen = input_ids.size()
else:
bs, slen = inputs_embeds.size()[:-1]
device = input_ids.device if input_ids is not None else inputs_embeds.device
if lengths is None:
if input_ids is not None:
lengths = (input_ids != self.pad_index).sum(dim=1).long()
else:
lengths = torch.tensor([slen] * bs, device=device)
# mask = input_ids != self.pad_index
# check inputs
assert lengths.size(0) == bs
assert lengths.max().item() <= slen
# input_ids = input_ids.transpose(0, 1) # batch size as dimension 0
# assert (src_enc is None) == (src_len is None)
# if src_enc is not None:
# assert self.is_decoder
# assert src_enc.size(0) == bs
# generate masks
mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
# if self.is_decoder and src_enc is not None:
# src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
# position_ids
if position_ids is None:
position_ids = self.position_ids[:, :slen]
else:
assert position_ids.size() == (bs, slen) # (slen, bs)
# position_ids = position_ids.transpose(0, 1)
# langs
if langs is not None:
assert langs.size() == (bs, slen) # (slen, bs)
# langs = langs.transpose(0, 1)
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.n_layers)
# do not recompute cached elements
if cache is not None and input_ids is not None:
_slen = slen - cache["slen"]
input_ids = input_ids[:, -_slen:]
position_ids = position_ids[:, -_slen:]
if langs is not None:
langs = langs[:, -_slen:]
mask = mask[:, -_slen:]
attn_mask = attn_mask[:, -_slen:]
# embeddings
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
tensor = inputs_embeds + self.position_embeddings(position_ids).expand_as(inputs_embeds)
if langs is not None and self.use_lang_emb and self.n_langs > 1:
tensor = tensor + self.lang_embeddings(langs)
if token_type_ids is not None:
tensor = tensor + self.embeddings(token_type_ids)
tensor = self.layer_norm_emb(tensor)
tensor = nn.functional.dropout(tensor, p=self.dropout, training=self.training)
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
# transformer layers
hidden_states = () if output_hidden_states else None
attentions = () if output_attentions else None
for i in range(self.n_layers):
if output_hidden_states:
hidden_states = hidden_states + (tensor,)
# self attention
attn_outputs = self.attentions[i](
tensor,
attn_mask,
cache=cache,
head_mask=head_mask[i],
output_attentions=output_attentions,
)
attn = attn_outputs[0]
if output_attentions:
attentions = attentions + (attn_outputs[1],)
attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
tensor = tensor + attn
tensor = self.layer_norm1[i](tensor)
# encoder attention (for decoder only)
# if self.is_decoder and src_enc is not None:
# attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
# attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
# tensor = tensor + attn
# tensor = self.layer_norm15[i](tensor)
# FFN
tensor = tensor + self.ffns[i](tensor)
tensor = self.layer_norm2[i](tensor)
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
# Add last hidden state
if output_hidden_states:
hidden_states = hidden_states + (tensor,)
# update cache length
if cache is not None:
cache["slen"] += tensor.size(1)
# move back sequence length to dimension 0
# tensor = tensor.transpose(0, 1)
if not return_dict:
return tuple(v for v in [tensor, hidden_states, attentions] if v is not None)
return BaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
class XLMPredLayer(nn.Module):
"""
Prediction layer (cross_entropy or adaptive_softmax).
"""
def __init__(self, config):
super().__init__()
self.asm = config.asm
self.n_words = config.n_words
self.pad_index = config.pad_index
dim = config.emb_dim
if config.asm is False:
self.proj = nn.Linear(dim, config.n_words, bias=True)
else:
self.proj = nn.AdaptiveLogSoftmaxWithLoss(
in_features=dim,
n_classes=config.n_words,
cutoffs=config.asm_cutoffs,
div_value=config.asm_div_value,
head_bias=True, # default is False
)
def forward(self, x, y=None):
"""Compute the loss, and optionally the scores."""
outputs = ()
if self.asm is False:
scores = self.proj(x)
outputs = (scores,) + outputs
if y is not None:
loss = nn.functional.cross_entropy(scores.view(-1, self.n_words), y.view(-1), reduction="mean")
outputs = (loss,) + outputs
else:
scores = self.proj.log_prob(x)
outputs = (scores,) + outputs
if y is not None:
_, loss = self.proj(x, y)
outputs = (loss,) + outputs
return outputs
@add_start_docstrings(
"""
The XLM Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
XLM_START_DOCSTRING,
)
class XLMWithLMHeadModel(XLMPreTrainedModel):
_tied_weights_keys = ["pred_layer.proj.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = XLMModel(config)
self.pred_layer = XLMPredLayer(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.pred_layer.proj
def set_output_embeddings(self, new_embeddings):
self.pred_layer.proj = new_embeddings
def prepare_inputs_for_generation(self, input_ids, **kwargs):
mask_token_id = self.config.mask_token_id
lang_id = self.config.lang_id
effective_batch_size = input_ids.shape[0]
mask_token = torch.full((effective_batch_size, 1), mask_token_id, dtype=torch.long, device=input_ids.device)
input_ids = torch.cat([input_ids, mask_token], dim=1)
if lang_id is not None:
langs = torch.full_like(input_ids, lang_id)
else:
langs = None
return {"input_ids": input_ids, "langs": langs}
@add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<special1>",
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
output = transformer_outputs[0]
outputs = self.pred_layer(output, labels) # (loss, logits) or (logits,) depending on if labels are provided.
if not return_dict:
return outputs + transformer_outputs[1:]
return MaskedLMOutput(
loss=outputs[0] if labels is not None else None,
logits=outputs[0] if labels is None else outputs[1],
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
XLM Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g.
for GLUE tasks.
""",
XLM_START_DOCSTRING,
)
class XLMForSequenceClassification(XLMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.transformer = XLMModel(config)
self.sequence_summary = SequenceSummary(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
output = transformer_outputs[0]
logits = self.sequence_summary(output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
XLM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
XLM_START_DOCSTRING,
)
class XLMForQuestionAnsweringSimple(XLMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = XLMModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = transformer_outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + transformer_outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
XLM Model with a beam-search span classification head on top for extractive question-answering tasks like SQuAD (a
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
XLM_START_DOCSTRING,
)
class XLMForQuestionAnswering(XLMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = XLMModel(config)
self.qa_outputs = SQuADHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=XLMForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
is_impossible: Optional[torch.Tensor] = None,
cls_index: Optional[torch.Tensor] = None,
p_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, XLMForQuestionAnsweringOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels whether a question has an answer or no answer (SQuAD 2.0)
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the classification token to use as input for computing plausibility of the
answer.
p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be
masked. 0.0 mean token is not masked.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, XLMForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("xlm-mlm-en-2048")
>>> model = XLMForQuestionAnswering.from_pretrained("xlm-mlm-en-2048")
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
... 0
... ) # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>> loss = outputs.loss
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
output = transformer_outputs[0]
outputs = self.qa_outputs(
output,
start_positions=start_positions,
end_positions=end_positions,
cls_index=cls_index,
is_impossible=is_impossible,
p_mask=p_mask,
return_dict=return_dict,
)
if not return_dict:
return outputs + transformer_outputs[1:]
return XLMForQuestionAnsweringOutput(
loss=outputs.loss,
start_top_log_probs=outputs.start_top_log_probs,
start_top_index=outputs.start_top_index,
end_top_log_probs=outputs.end_top_log_probs,
end_top_index=outputs.end_top_index,
cls_logits=outputs.cls_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
XLM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
XLM_START_DOCSTRING,
)
class XLMForTokenClassification(XLMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = XLMModel(config)
self.dropout = nn.Dropout(config.dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
XLM Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
XLM_START_DOCSTRING,
)
class XLMForMultipleChoice(XLMPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = XLMModel(config)
self.sequence_summary = SequenceSummary(config)
self.logits_proj = nn.Linear(config.num_labels, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
langs = langs.view(-1, langs.size(-1)) if langs is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
if lengths is not None:
logger.warning(
"The `lengths` parameter cannot be used with the XLM multiple choice models. Please use the "
"attention mask instead."
)
lengths = None
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
output = transformer_outputs[0]
logits = self.sequence_summary(output)
logits = self.logits_proj(logits)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/canine/configuration_canine.py
|
# coding=utf-8
# Copyright Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CANINE model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json",
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class CanineConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CanineModel`]. It is used to instantiate an
CANINE model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the CANINE
[google/canine-s](https://huggingface.co/google/canine-s) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the deep Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoders.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoders.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probabilitiy for all fully connected layers in the embeddings, encoders, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 16384):
The maximum sequence length that this model might ever be used with.
type_vocab_size (`int`, *optional*, defaults to 16):
The vocabulary size of the `token_type_ids` passed when calling [`CanineModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 57344):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 57345):
End of stream token id.
downsampling_rate (`int`, *optional*, defaults to 4):
The rate at which to downsample the original character sequence length before applying the deep Transformer
encoder.
upsampling_kernel_size (`int`, *optional*, defaults to 4):
The kernel size (i.e. the number of characters in each window) of the convolutional projection layer when
projecting back from `hidden_size`*2 to `hidden_size`.
num_hash_functions (`int`, *optional*, defaults to 8):
The number of hash functions to use. Each hash function has its own embedding matrix.
num_hash_buckets (`int`, *optional*, defaults to 16384):
The number of hash buckets to use.
local_transformer_stride (`int`, *optional*, defaults to 128):
The stride of the local attention of the first shallow Transformer encoder. Defaults to 128 for good
TPU/XLA memory alignment.
Example:
```python
>>> from transformers import CanineConfig, CanineModel
>>> # Initializing a CANINE google/canine-s style configuration
>>> configuration = CanineConfig()
>>> # Initializing a model (with random weights) from the google/canine-s style configuration
>>> model = CanineModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "canine"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=16384,
type_vocab_size=16,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
bos_token_id=0xE000,
eos_token_id=0xE001,
downsampling_rate=4,
upsampling_kernel_size=4,
num_hash_functions=8,
num_hash_buckets=16384,
local_transformer_stride=128, # Good TPU/XLA memory alignment.
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
# Character config:
self.downsampling_rate = downsampling_rate
self.upsampling_kernel_size = upsampling_kernel_size
self.num_hash_functions = num_hash_functions
self.num_hash_buckets = num_hash_buckets
self.local_transformer_stride = local_transformer_stride
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/canine/tokenization_canine.py
|
# coding=utf-8
# Copyright Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for CANINE."""
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"nielsr/canine-s": 2048,
}
# Unicode defines 1,114,112 total “codepoints”
UNICODE_VOCAB_SIZE = 1114112
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
PAD = 0
CLS = 0xE000
SEP = 0xE001
BOS = 0xE002
MASK = 0xE003
RESERVED = 0xE004
# Maps special codepoints to human-readable names.
SPECIAL_CODEPOINTS: Dict[int, str] = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
SPECIAL_CODEPOINTS_BY_NAME: Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class CanineTokenizer(PreTrainedTokenizer):
r"""
Construct a CANINE tokenizer (i.e. a character splitter). It turns text into a sequence of characters, and then
converts each character into its Unicode code point.
[`CanineTokenizer`] inherits from [`PreTrainedTokenizer`].
Refer to superclass [`PreTrainedTokenizer`] for usage examples and documentation concerning parameters.
Args:
model_max_length (`int`, *optional*, defaults to 2048):
The maximum sentence length the model accepts.
"""
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
bos_token=chr(CLS),
eos_token=chr(SEP),
sep_token=chr(SEP),
cls_token=chr(CLS),
pad_token=chr(PAD),
mask_token=chr(MASK),
add_prefix_space=False,
model_max_length=2048,
**kwargs,
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
# Creates a mapping for looking up the IDs of special symbols.
self._special_codepoints: Dict[str, int] = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
self._special_codepoints[name] = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
self._special_codepoint_strings: Dict[int, str] = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
self._unicode_vocab_size = UNICODE_VOCAB_SIZE
self._num_special_tokens = len(self._special_codepoints)
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
model_max_length=model_max_length,
**kwargs,
)
@property
def vocab_size(self) -> int:
return self._unicode_vocab_size
def get_vocab(self):
vocab = {chr(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text: str) -> List[str]:
"""Tokenize a string (i.e. perform character splitting)."""
return list(text)
def _convert_token_to_id(self, token: str) -> int:
"""Converts a token (i.e. a Unicode character) in an id (i.e. its integer Unicode code point value)."""
try:
return ord(token)
except TypeError:
raise ValueError(f"invalid token: '{token}'")
def _convert_id_to_token(self, index: int) -> str:
"""
Converts a Unicode code point (integer) in a token (str). In case it's a special code point, convert to
human-readable format.
"""
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(index)
except TypeError:
raise ValueError(f"invalid id: {index}")
def convert_tokens_to_string(self, tokens):
return "".join(tokens)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A CANINE sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
result = cls + token_ids_0 + sep
if token_ids_1 is not None:
result += token_ids_1 + sep
return result
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
result = [1] + ([0] * len(token_ids_0)) + [1]
if token_ids_1 is not None:
result += ([0] * len(token_ids_1)) + [1]
return result
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A CANINE
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
result = len(cls + token_ids_0 + sep) * [0]
if token_ids_1 is not None:
result += len(token_ids_1 + sep) * [1]
return result
# CanineTokenizer has no vocab file
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None):
return ()
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/canine/__init__.py
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"],
"tokenization_canine": ["CanineTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_canine"] = [
"CANINE_PRETRAINED_MODEL_ARCHIVE_LIST",
"CanineForMultipleChoice",
"CanineForQuestionAnswering",
"CanineForSequenceClassification",
"CanineForTokenClassification",
"CanineLayer",
"CanineModel",
"CaninePreTrainedModel",
"load_tf_weights_in_canine",
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/canine/convert_canine_original_tf_checkpoint_to_pytorch.py
|
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert CANINE checkpoint."""
import argparse
from transformers import CanineConfig, CanineModel, CanineTokenizer, load_tf_weights_in_canine
from transformers.utils import logging
logging.set_verbosity_info()
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, pytorch_dump_path):
# Initialize PyTorch model
config = CanineConfig()
model = CanineModel(config)
model.eval()
print(f"Building PyTorch model from configuration: {config}")
# Load weights from tf checkpoint
load_tf_weights_in_canine(model, config, tf_checkpoint_path)
# Save pytorch-model (weights and configuration)
print(f"Save PyTorch model to {pytorch_dump_path}")
model.save_pretrained(pytorch_dump_path)
# Save tokenizer files
tokenizer = CanineTokenizer()
print(f"Save tokenizer files to {pytorch_dump_path}")
tokenizer.save_pretrained(pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the TensorFlow checkpoint. Should end with model.ckpt",
)
parser.add_argument(
"--pytorch_dump_path",
default=None,
type=str,
required=True,
help="Path to a folder where the PyTorch model will be placed.",
)
args = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.pytorch_dump_path)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/canine/modeling_canine.py
|
# coding=utf-8
# Copyright 2021 Google AI The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CANINE model."""
import copy
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
ModelOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_canine import CanineConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/canine-s"
_CONFIG_FOR_DOC = "CanineConfig"
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/canine-s",
"google/canine-r",
# See all CANINE models at https://huggingface.co/models?filter=canine
]
# Support up to 16 hash functions.
_PRIMES = [31, 43, 59, 61, 73, 97, 103, 113, 137, 149, 157, 173, 181, 193, 211, 223]
@dataclass
class CanineModelOutputWithPooling(ModelOutput):
"""
Output type of [`CanineModel`]. Based on [`~modeling_outputs.BaseModelOutputWithPooling`], but with slightly
different `hidden_states` and `attentions`, as these also include the hidden states and attentions of the shallow
Transformer encoders.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model (i.e. the output of the final
shallow Transformer encoder).
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Hidden-state of the first token of the sequence (classification token) at the last layer of the deep
Transformer encoder, further processed by a Linear layer and a Tanh activation function. The Linear layer
weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the input to each encoder + one for the output of each layer of each
encoder) of shape `(batch_size, sequence_length, hidden_size)` and `(batch_size, sequence_length //
config.downsampling_rate, hidden_size)`. Hidden-states of the model at the output of each layer plus the
initial input to each Transformer encoder. The hidden states of the shallow encoders have length
`sequence_length`, but the hidden states of the deep encoder have length `sequence_length` //
`config.downsampling_rate`.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of the 3 Transformer encoders of shape `(batch_size,
num_heads, sequence_length, sequence_length)` and `(batch_size, num_heads, sequence_length //
config.downsampling_rate, sequence_length // config.downsampling_rate)`. Attentions weights after the
attention softmax, used to compute the weighted average in the self-attention heads.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
def load_tf_weights_in_canine(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
# also discard the cls weights (which were used for the next sentence prediction pre-training task)
if any(
n
in [
"adam_v",
"adam_m",
"AdamWeightDecayOptimizer",
"AdamWeightDecayOptimizer_1",
"global_step",
"cls",
"autoregressive_decoder",
"char_output_weights",
]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
# if first scope name starts with "bert", change it to "encoder"
if name[0] == "bert":
name[0] = "encoder"
# remove "embeddings" middle name of HashBucketCodepointEmbedders
elif name[1] == "embeddings":
name.remove(name[1])
# rename segment_embeddings to token_type_embeddings
elif name[1] == "segment_embeddings":
name[1] = "token_type_embeddings"
# rename initial convolutional projection layer
elif name[1] == "initial_char_encoder":
name = ["chars_to_molecules"] + name[-2:]
# rename final convolutional projection layer
elif name[0] == "final_char_encoder" and name[1] in ["LayerNorm", "conv"]:
name = ["projection"] + name[1:]
pointer = model
for m_name in name:
if (re.fullmatch(r"[A-Za-z]+_\d+", m_name)) and "Embedder" not in m_name:
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight")
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight")
elif m_name[-10:] in [f"Embedder_{i}" for i in range(8)]:
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model
class CanineEmbeddings(nn.Module):
"""Construct the character, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.config = config
# character embeddings
shard_embedding_size = config.hidden_size // config.num_hash_functions
for i in range(config.num_hash_functions):
name = f"HashBucketCodepointEmbedder_{i}"
setattr(self, name, nn.Embedding(config.num_hash_buckets, shard_embedding_size))
self.char_position_embeddings = nn.Embedding(config.num_hash_buckets, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
def _hash_bucket_tensors(self, input_ids, num_hashes: int, num_buckets: int):
"""
Converts ids to hash bucket ids via multiple hashing.
Args:
input_ids: The codepoints or other IDs to be hashed.
num_hashes: The number of hash functions to use.
num_buckets: The number of hash buckets (i.e. embeddings in each table).
Returns:
A list of tensors, each of which is the hash bucket IDs from one hash function.
"""
if num_hashes > len(_PRIMES):
raise ValueError(f"`num_hashes` must be <= {len(_PRIMES)}")
primes = _PRIMES[:num_hashes]
result_tensors = []
for prime in primes:
hashed = ((input_ids + 1) * prime) % num_buckets
result_tensors.append(hashed)
return result_tensors
def _embed_hash_buckets(self, input_ids, embedding_size: int, num_hashes: int, num_buckets: int):
"""Converts IDs (e.g. codepoints) into embeddings via multiple hashing."""
if embedding_size % num_hashes != 0:
raise ValueError(f"Expected `embedding_size` ({embedding_size}) % `num_hashes` ({num_hashes}) == 0")
hash_bucket_tensors = self._hash_bucket_tensors(input_ids, num_hashes=num_hashes, num_buckets=num_buckets)
embedding_shards = []
for i, hash_bucket_ids in enumerate(hash_bucket_tensors):
name = f"HashBucketCodepointEmbedder_{i}"
shard_embeddings = getattr(self, name)(hash_bucket_ids)
embedding_shards.append(shard_embeddings)
return torch.cat(embedding_shards, dim=-1)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self._embed_hash_buckets(
input_ids, self.config.hidden_size, self.config.num_hash_functions, self.config.num_hash_buckets
)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.char_position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class CharactersToMolecules(nn.Module):
"""Convert character sequence to initial molecule sequence (i.e. downsample) using strided convolutions."""
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
in_channels=config.hidden_size,
out_channels=config.hidden_size,
kernel_size=config.downsampling_rate,
stride=config.downsampling_rate,
)
self.activation = ACT2FN[config.hidden_act]
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, char_encoding: torch.Tensor) -> torch.Tensor:
# `cls_encoding`: [batch, 1, hidden_size]
cls_encoding = char_encoding[:, 0:1, :]
# char_encoding has shape [batch, char_seq, hidden_size]
# We transpose it to be [batch, hidden_size, char_seq]
char_encoding = torch.transpose(char_encoding, 1, 2)
downsampled = self.conv(char_encoding)
downsampled = torch.transpose(downsampled, 1, 2)
downsampled = self.activation(downsampled)
# Truncate the last molecule in order to reserve a position for [CLS].
# Often, the last position is never used (unless we completely fill the
# text buffer). This is important in order to maintain alignment on TPUs
# (i.e. a multiple of 128).
downsampled_truncated = downsampled[:, 0:-1, :]
# We also keep [CLS] as a separate sequence position since we always
# want to reserve a position (and the model capacity that goes along
# with that) in the deep BERT stack.
# `result`: [batch, molecule_seq, molecule_dim]
result = torch.cat([cls_encoding, downsampled_truncated], dim=1)
result = self.LayerNorm(result)
return result
class ConvProjection(nn.Module):
"""
Project representations from hidden_size*2 back to hidden_size across a window of w = config.upsampling_kernel_size
characters.
"""
def __init__(self, config):
super().__init__()
self.config = config
self.conv = nn.Conv1d(
in_channels=config.hidden_size * 2,
out_channels=config.hidden_size,
kernel_size=config.upsampling_kernel_size,
stride=1,
)
self.activation = ACT2FN[config.hidden_act]
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self,
inputs: torch.Tensor,
final_seq_char_positions: Optional[torch.Tensor] = None,
) -> torch.Tensor:
# inputs has shape [batch, mol_seq, molecule_hidden_size+char_hidden_final]
# we transpose it to be [batch, molecule_hidden_size+char_hidden_final, mol_seq]
inputs = torch.transpose(inputs, 1, 2)
# PyTorch < 1.9 does not support padding="same" (which is used in the original implementation),
# so we pad the tensor manually before passing it to the conv layer
# based on https://github.com/google-research/big_transfer/blob/49afe42338b62af9fbe18f0258197a33ee578a6b/bit_tf2/models.py#L36-L38
pad_total = self.config.upsampling_kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
pad = nn.ConstantPad1d((pad_beg, pad_end), 0)
# `result`: shape (batch_size, char_seq_len, hidden_size)
result = self.conv(pad(inputs))
result = torch.transpose(result, 1, 2)
result = self.activation(result)
result = self.LayerNorm(result)
result = self.dropout(result)
final_char_seq = result
if final_seq_char_positions is not None:
# Limit transformer query seq and attention mask to these character
# positions to greatly reduce the compute cost. Typically, this is just
# done for the MLM training task.
# TODO add support for MLM
raise NotImplementedError("CanineForMaskedLM is currently not supported")
else:
query_seq = final_char_seq
return query_seq
class CanineSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
from_tensor: torch.Tensor,
to_tensor: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
mixed_query_layer = self.query(from_tensor)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
key_layer = self.transpose_for_scores(self.key(to_tensor))
value_layer = self.transpose_for_scores(self.value(to_tensor))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = from_tensor.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=from_tensor.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=from_tensor.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
if attention_mask.ndim == 3:
# if attention_mask is 3D, do the following:
attention_mask = torch.unsqueeze(attention_mask, dim=1)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
attention_mask = (1.0 - attention_mask.float()) * torch.finfo(attention_scores.dtype).min
# Apply the attention mask (precomputed for all layers in CanineModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class CanineSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self, hidden_states: Tuple[torch.FloatTensor], input_tensor: torch.FloatTensor
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class CanineAttention(nn.Module):
"""
Additional arguments related to local attention:
- **local** (`bool`, *optional*, defaults to `False`) -- Whether to apply local attention.
- **always_attend_to_first_position** (`bool`, *optional*, defaults to `False`) -- Should all blocks be able to
attend
to the `to_tensor`'s first position (e.g. a [CLS] position)? - **first_position_attends_to_all** (`bool`,
*optional*, defaults to `False`) -- Should the *from_tensor*'s first position be able to attend to all
positions within the *from_tensor*? - **attend_from_chunk_width** (`int`, *optional*, defaults to 128) -- The
width of each block-wise chunk in `from_tensor`. - **attend_from_chunk_stride** (`int`, *optional*, defaults to
128) -- The number of elements to skip when moving to the next block in `from_tensor`. -
**attend_to_chunk_width** (`int`, *optional*, defaults to 128) -- The width of each block-wise chunk in
*to_tensor*. - **attend_to_chunk_stride** (`int`, *optional*, defaults to 128) -- The number of elements to
skip when moving to the next block in `to_tensor`.
"""
def __init__(
self,
config,
local=False,
always_attend_to_first_position: bool = False,
first_position_attends_to_all: bool = False,
attend_from_chunk_width: int = 128,
attend_from_chunk_stride: int = 128,
attend_to_chunk_width: int = 128,
attend_to_chunk_stride: int = 128,
):
super().__init__()
self.self = CanineSelfAttention(config)
self.output = CanineSelfOutput(config)
self.pruned_heads = set()
# additional arguments related to local attention
self.local = local
if attend_from_chunk_width < attend_from_chunk_stride:
raise ValueError(
"`attend_from_chunk_width` < `attend_from_chunk_stride` would cause sequence positions to get skipped."
)
if attend_to_chunk_width < attend_to_chunk_stride:
raise ValueError(
"`attend_to_chunk_width` < `attend_to_chunk_stride`would cause sequence positions to get skipped."
)
self.always_attend_to_first_position = always_attend_to_first_position
self.first_position_attends_to_all = first_position_attends_to_all
self.attend_from_chunk_width = attend_from_chunk_width
self.attend_from_chunk_stride = attend_from_chunk_stride
self.attend_to_chunk_width = attend_to_chunk_width
self.attend_to_chunk_stride = attend_to_chunk_stride
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: Tuple[torch.FloatTensor],
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
if not self.local:
self_outputs = self.self(hidden_states, hidden_states, attention_mask, head_mask, output_attentions)
attention_output = self_outputs[0]
else:
from_seq_length = to_seq_length = hidden_states.shape[1]
from_tensor = to_tensor = hidden_states
# Create chunks (windows) that we will attend *from* and then concatenate them.
from_chunks = []
if self.first_position_attends_to_all:
from_chunks.append((0, 1))
# We must skip this first position so that our output sequence is the
# correct length (this matters in the *from* sequence only).
from_start = 1
else:
from_start = 0
for chunk_start in range(from_start, from_seq_length, self.attend_from_chunk_stride):
chunk_end = min(from_seq_length, chunk_start + self.attend_from_chunk_width)
from_chunks.append((chunk_start, chunk_end))
# Determine the chunks (windows) that will will attend *to*.
to_chunks = []
if self.first_position_attends_to_all:
to_chunks.append((0, to_seq_length))
for chunk_start in range(0, to_seq_length, self.attend_to_chunk_stride):
chunk_end = min(to_seq_length, chunk_start + self.attend_to_chunk_width)
to_chunks.append((chunk_start, chunk_end))
if len(from_chunks) != len(to_chunks):
raise ValueError(
f"Expected to have same number of `from_chunks` ({from_chunks}) and "
f"`to_chunks` ({from_chunks}). Check strides."
)
# next, compute attention scores for each pair of windows and concatenate
attention_output_chunks = []
attention_probs_chunks = []
for (from_start, from_end), (to_start, to_end) in zip(from_chunks, to_chunks):
from_tensor_chunk = from_tensor[:, from_start:from_end, :]
to_tensor_chunk = to_tensor[:, to_start:to_end, :]
# `attention_mask`: <float>[batch_size, from_seq, to_seq]
# `attention_mask_chunk`: <float>[batch_size, from_seq_chunk, to_seq_chunk]
attention_mask_chunk = attention_mask[:, from_start:from_end, to_start:to_end]
if self.always_attend_to_first_position:
cls_attention_mask = attention_mask[:, from_start:from_end, 0:1]
attention_mask_chunk = torch.cat([cls_attention_mask, attention_mask_chunk], dim=2)
cls_position = to_tensor[:, 0:1, :]
to_tensor_chunk = torch.cat([cls_position, to_tensor_chunk], dim=1)
attention_outputs_chunk = self.self(
from_tensor_chunk, to_tensor_chunk, attention_mask_chunk, head_mask, output_attentions
)
attention_output_chunks.append(attention_outputs_chunk[0])
if output_attentions:
attention_probs_chunks.append(attention_outputs_chunk[1])
attention_output = torch.cat(attention_output_chunks, dim=1)
attention_output = self.output(attention_output, hidden_states)
outputs = (attention_output,)
if not self.local:
outputs = outputs + self_outputs[1:] # add attentions if we output them
else:
outputs = outputs + tuple(attention_probs_chunks) # add attentions if we output them
return outputs
class CanineIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class CanineOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: Tuple[torch.FloatTensor], input_tensor: torch.FloatTensor) -> torch.FloatTensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class CanineLayer(nn.Module):
def __init__(
self,
config,
local,
always_attend_to_first_position,
first_position_attends_to_all,
attend_from_chunk_width,
attend_from_chunk_stride,
attend_to_chunk_width,
attend_to_chunk_stride,
):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = CanineAttention(
config,
local,
always_attend_to_first_position,
first_position_attends_to_all,
attend_from_chunk_width,
attend_from_chunk_stride,
attend_to_chunk_width,
attend_to_chunk_stride,
)
self.intermediate = CanineIntermediate(config)
self.output = CanineOutput(config)
def forward(
self,
hidden_states: Tuple[torch.FloatTensor],
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class CanineEncoder(nn.Module):
def __init__(
self,
config,
local=False,
always_attend_to_first_position=False,
first_position_attends_to_all=False,
attend_from_chunk_width=128,
attend_from_chunk_stride=128,
attend_to_chunk_width=128,
attend_to_chunk_stride=128,
):
super().__init__()
self.config = config
self.layer = nn.ModuleList(
[
CanineLayer(
config,
local,
always_attend_to_first_position,
first_position_attends_to_all,
attend_from_chunk_width,
attend_from_chunk_stride,
attend_to_chunk_width,
attend_to_chunk_stride,
)
for _ in range(config.num_hidden_layers)
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: Tuple[torch.FloatTensor],
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class CaninePooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class CaninePredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class CanineLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = CaninePredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor:
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class CanineOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = CanineLMPredictionHead(config)
def forward(
self,
sequence_output: Tuple[torch.Tensor],
) -> Tuple[torch.Tensor]:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class CaninePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = CanineConfig
load_tf_weights = load_tf_weights_in_canine
base_model_prefix = "canine"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
CANINE_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`CanineConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
CANINE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare CANINE Model transformer outputting raw hidden-states without any specific head on top.",
CANINE_START_DOCSTRING,
)
class CanineModel(CaninePreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
shallow_config = copy.deepcopy(config)
shallow_config.num_hidden_layers = 1
self.char_embeddings = CanineEmbeddings(config)
# shallow/low-dim transformer encoder to get a initial character encoding
self.initial_char_encoder = CanineEncoder(
shallow_config,
local=True,
always_attend_to_first_position=False,
first_position_attends_to_all=False,
attend_from_chunk_width=config.local_transformer_stride,
attend_from_chunk_stride=config.local_transformer_stride,
attend_to_chunk_width=config.local_transformer_stride,
attend_to_chunk_stride=config.local_transformer_stride,
)
self.chars_to_molecules = CharactersToMolecules(config)
# deep transformer encoder
self.encoder = CanineEncoder(config)
self.projection = ConvProjection(config)
# shallow/low-dim transformer encoder to get a final character encoding
self.final_char_encoder = CanineEncoder(shallow_config)
self.pooler = CaninePooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def _create_3d_attention_mask_from_input_mask(self, from_tensor, to_mask):
"""
Create 3D attention mask from a 2D tensor mask.
Args:
from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
to_mask: int32 Tensor of shape [batch_size, to_seq_length].
Returns:
float Tensor of shape [batch_size, from_seq_length, to_seq_length].
"""
batch_size, from_seq_length = from_tensor.shape[0], from_tensor.shape[1]
to_seq_length = to_mask.shape[1]
to_mask = torch.reshape(to_mask, (batch_size, 1, to_seq_length)).float()
# We don't assume that `from_tensor` is a mask (although it could be). We
# don't actually care if we attend *from* padding tokens (only *to* padding)
# tokens so we create a tensor of all ones.
broadcast_ones = torch.ones(size=(batch_size, from_seq_length, 1), dtype=torch.float32, device=to_mask.device)
# Here we broadcast along two dimensions to create the mask.
mask = broadcast_ones * to_mask
return mask
def _downsample_attention_mask(self, char_attention_mask: torch.Tensor, downsampling_rate: int):
"""Downsample 2D character attention mask to 2D molecule attention mask using MaxPool1d layer."""
# first, make char_attention_mask 3D by adding a channel dim
batch_size, char_seq_len = char_attention_mask.shape
poolable_char_mask = torch.reshape(char_attention_mask, (batch_size, 1, char_seq_len))
# next, apply MaxPool1d to get pooled_molecule_mask of shape (batch_size, 1, mol_seq_len)
pooled_molecule_mask = torch.nn.MaxPool1d(kernel_size=downsampling_rate, stride=downsampling_rate)(
poolable_char_mask.float()
)
# finally, squeeze to get tensor of shape (batch_size, mol_seq_len)
molecule_attention_mask = torch.squeeze(pooled_molecule_mask, dim=-1)
return molecule_attention_mask
def _repeat_molecules(self, molecules: torch.Tensor, char_seq_length: torch.Tensor) -> torch.Tensor:
"""Repeats molecules to make them the same length as the char sequence."""
rate = self.config.downsampling_rate
molecules_without_extra_cls = molecules[:, 1:, :]
# `repeated`: [batch_size, almost_char_seq_len, molecule_hidden_size]
repeated = torch.repeat_interleave(molecules_without_extra_cls, repeats=rate, dim=-2)
# So far, we've repeated the elements sufficient for any `char_seq_length`
# that's a multiple of `downsampling_rate`. Now we account for the last
# n elements (n < `downsampling_rate`), i.e. the remainder of floor
# division. We do this by repeating the last molecule a few extra times.
last_molecule = molecules[:, -1:, :]
remainder_length = torch.fmod(torch.tensor(char_seq_length), torch.tensor(rate)).item()
remainder_repeated = torch.repeat_interleave(
last_molecule,
# +1 molecule to compensate for truncation.
repeats=remainder_length + rate,
dim=-2,
)
# `repeated`: [batch_size, char_seq_len, molecule_hidden_size]
return torch.cat([repeated, remainder_repeated], dim=-2)
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CanineModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CanineModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
molecule_attention_mask = self._downsample_attention_mask(
attention_mask, downsampling_rate=self.config.downsampling_rate
)
extended_molecule_attention_mask: torch.Tensor = self.get_extended_attention_mask(
molecule_attention_mask, (batch_size, molecule_attention_mask.shape[-1])
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
# `input_char_embeddings`: shape (batch_size, char_seq, char_dim)
input_char_embeddings = self.char_embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
# Contextualize character embeddings using shallow Transformer.
# We use a 3D attention mask for the local attention.
# `input_char_encoding`: shape (batch_size, char_seq_len, char_dim)
char_attention_mask = self._create_3d_attention_mask_from_input_mask(
input_ids if input_ids is not None else inputs_embeds, attention_mask
)
init_chars_encoder_outputs = self.initial_char_encoder(
input_char_embeddings,
attention_mask=char_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
input_char_encoding = init_chars_encoder_outputs.last_hidden_state
# Downsample chars to molecules.
# The following lines have dimensions: [batch, molecule_seq, molecule_dim].
# In this transformation, we change the dimensionality from `char_dim` to
# `molecule_dim`, but do *NOT* add a resnet connection. Instead, we rely on
# the resnet connections (a) from the final char transformer stack back into
# the original char transformer stack and (b) the resnet connections from
# the final char transformer stack back into the deep BERT stack of
# molecules.
#
# Empirically, it is critical to use a powerful enough transformation here:
# mean pooling causes training to diverge with huge gradient norms in this
# region of the model; using a convolution here resolves this issue. From
# this, it seems that molecules and characters require a very different
# feature space; intuitively, this makes sense.
init_molecule_encoding = self.chars_to_molecules(input_char_encoding)
# Deep BERT encoder
# `molecule_sequence_output`: shape (batch_size, mol_seq_len, mol_dim)
encoder_outputs = self.encoder(
init_molecule_encoding,
attention_mask=extended_molecule_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
molecule_sequence_output = encoder_outputs[0]
pooled_output = self.pooler(molecule_sequence_output) if self.pooler is not None else None
# Upsample molecules back to characters.
# `repeated_molecules`: shape (batch_size, char_seq_len, mol_hidden_size)
repeated_molecules = self._repeat_molecules(molecule_sequence_output, char_seq_length=input_shape[-1])
# Concatenate representations (contextualized char embeddings and repeated molecules):
# `concat`: shape [batch_size, char_seq_len, molecule_hidden_size+char_hidden_final]
concat = torch.cat([input_char_encoding, repeated_molecules], dim=-1)
# Project representation dimension back to hidden_size
# `sequence_output`: shape (batch_size, char_seq_len, hidden_size])
sequence_output = self.projection(concat)
# Apply final shallow Transformer
# `sequence_output`: shape (batch_size, char_seq_len, hidden_size])
final_chars_encoder_outputs = self.final_char_encoder(
sequence_output,
attention_mask=extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = final_chars_encoder_outputs.last_hidden_state
if output_hidden_states:
deep_encoder_hidden_states = encoder_outputs.hidden_states if return_dict else encoder_outputs[1]
all_hidden_states = (
all_hidden_states
+ init_chars_encoder_outputs.hidden_states
+ deep_encoder_hidden_states
+ final_chars_encoder_outputs.hidden_states
)
if output_attentions:
deep_encoder_self_attentions = encoder_outputs.attentions if return_dict else encoder_outputs[-1]
all_self_attentions = (
all_self_attentions
+ init_chars_encoder_outputs.attentions
+ deep_encoder_self_attentions
+ final_chars_encoder_outputs.attentions
)
if not return_dict:
output = (sequence_output, pooled_output)
output += tuple(v for v in [all_hidden_states, all_self_attentions] if v is not None)
return output
return CanineModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
@add_start_docstrings(
"""
CANINE Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
CANINE_START_DOCSTRING,
)
class CanineForSequenceClassification(CaninePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.canine = CanineModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.canine(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
CANINE Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
CANINE_START_DOCSTRING,
)
class CanineForMultipleChoice(CaninePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.canine = CanineModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.canine(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
CANINE Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
CANINE_START_DOCSTRING,
)
class CanineForTokenClassification(CaninePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.canine = CanineModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, CanineForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/canine-s")
>>> model = CanineForTokenClassification.from_pretrained("google/canine-s")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes # doctest: +SKIP
```
```python
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2) # doctest: +SKIP
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.canine(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
CANINE Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
CANINE_START_DOCSTRING,
)
class CanineForQuestionAnswering(CaninePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.canine = CanineModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="Splend1dchan/canine-c-squad",
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'nice puppet'",
expected_loss=8.81,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.canine(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/clipseg/processing_clipseg.py
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for CLIPSeg
"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class CLIPSegProcessor(ProcessorMixin):
r"""
Constructs a CLIPSeg processor which wraps a CLIPSeg image processor and a CLIP tokenizer into a single processor.
[`CLIPSegProcessor`] offers all the functionalities of [`ViTImageProcessor`] and [`CLIPTokenizerFast`]. See the
[`~CLIPSegProcessor.__call__`] and [`~CLIPSegProcessor.decode`] for more information.
Args:
image_processor ([`ViTImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`CLIPTokenizerFast`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "ViTImageProcessor"
tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
def __call__(self, text=None, images=None, visual_prompt=None, return_tensors=None, **kwargs):
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
ViTImageProcessor's [`~ViTImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of
the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
visual_prompt (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The visual prompt image or batch of images to be prepared. Each visual prompt image can be a PIL image,
NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape
(C, H, W), where C is a number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None and visual_prompt is None and images is None:
raise ValueError("You have to specify either text, visual prompt or images.")
if text is not None and visual_prompt is not None:
raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt.")
if text is not None:
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
if visual_prompt is not None:
prompt_features = self.image_processor(visual_prompt, return_tensors=return_tensors, **kwargs)
if images is not None:
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
if visual_prompt is not None and images is not None:
encoding = {
"pixel_values": image_features.pixel_values,
"conditional_pixel_values": prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
encoding = {
"conditional_pixel_values": prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def feature_extractor_class(self):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
FutureWarning,
)
return self.image_processor_class
@property
def feature_extractor(self):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
FutureWarning,
)
return self.image_processor
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/clipseg/__init__.py
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_clipseg": [
"CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPSegConfig",
"CLIPSegTextConfig",
"CLIPSegVisionConfig",
],
"processing_clipseg": ["CLIPSegProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_clipseg"] = [
"CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPSegModel",
"CLIPSegPreTrainedModel",
"CLIPSegTextModel",
"CLIPSegVisionModel",
"CLIPSegForImageSegmentation",
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/clipseg/convert_clipseg_original_pytorch_to_hf.py
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert CLIPSeg checkpoints from the original repository. URL: https://github.com/timojl/clipseg."""
import argparse
import requests
import torch
from PIL import Image
from transformers import (
CLIPSegConfig,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPSegTextConfig,
CLIPSegVisionConfig,
CLIPTokenizer,
ViTImageProcessor,
)
def get_clipseg_config(model_name):
text_config = CLIPSegTextConfig()
vision_config = CLIPSegVisionConfig(patch_size=16)
use_complex_transposed_convolution = True if "refined" in model_name else False
reduce_dim = 16 if "rd16" in model_name else 64
config = CLIPSegConfig.from_text_vision_configs(
text_config,
vision_config,
use_complex_transposed_convolution=use_complex_transposed_convolution,
reduce_dim=reduce_dim,
)
return config
def rename_key(name):
# update prefixes
if "clip_model" in name:
name = name.replace("clip_model", "clip")
if "transformer" in name:
if "visual" in name:
name = name.replace("visual.transformer", "vision_model")
else:
name = name.replace("transformer", "text_model")
if "resblocks" in name:
name = name.replace("resblocks", "encoder.layers")
if "ln_1" in name:
name = name.replace("ln_1", "layer_norm1")
if "ln_2" in name:
name = name.replace("ln_2", "layer_norm2")
if "c_fc" in name:
name = name.replace("c_fc", "fc1")
if "c_proj" in name:
name = name.replace("c_proj", "fc2")
if "attn" in name and "self" not in name:
name = name.replace("attn", "self_attn")
# text encoder
if "token_embedding" in name:
name = name.replace("token_embedding", "text_model.embeddings.token_embedding")
if "positional_embedding" in name and "visual" not in name:
name = name.replace("positional_embedding", "text_model.embeddings.position_embedding.weight")
if "ln_final" in name:
name = name.replace("ln_final", "text_model.final_layer_norm")
# vision encoder
if "visual.class_embedding" in name:
name = name.replace("visual.class_embedding", "vision_model.embeddings.class_embedding")
if "visual.conv1" in name:
name = name.replace("visual.conv1", "vision_model.embeddings.patch_embedding")
if "visual.positional_embedding" in name:
name = name.replace("visual.positional_embedding", "vision_model.embeddings.position_embedding.weight")
if "visual.ln_pre" in name:
name = name.replace("visual.ln_pre", "vision_model.pre_layrnorm")
if "visual.ln_post" in name:
name = name.replace("visual.ln_post", "vision_model.post_layernorm")
# projection layers
if "visual.proj" in name:
name = name.replace("visual.proj", "visual_projection.weight")
if "text_projection" in name:
name = name.replace("text_projection", "text_projection.weight")
# decoder
if "trans_conv" in name:
name = name.replace("trans_conv", "transposed_convolution")
if "film_mul" in name or "film_add" in name or "reduce" in name or "transposed_convolution" in name:
name = "decoder." + name
if "blocks" in name:
name = name.replace("blocks", "decoder.layers")
if "linear1" in name:
name = name.replace("linear1", "mlp.fc1")
if "linear2" in name:
name = name.replace("linear2", "mlp.fc2")
if "norm1" in name and "layer_" not in name:
name = name.replace("norm1", "layer_norm1")
if "norm2" in name and "layer_" not in name:
name = name.replace("norm2", "layer_norm2")
return name
def convert_state_dict(orig_state_dict, config):
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if key.startswith("clip_model") and "attn.in_proj" in key:
key_split = key.split(".")
if "visual" in key:
layer_num = int(key_split[4])
dim = config.vision_config.hidden_size
prefix = "vision_model"
else:
layer_num = int(key_split[3])
dim = config.text_config.hidden_size
prefix = "text_model"
if "weight" in key:
orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[:dim, :]
orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[
dim : dim * 2, :
]
orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[-dim:, :]
else:
orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim]
orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[dim : dim * 2]
orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:]
elif "self_attn" in key and "out_proj" not in key:
key_split = key.split(".")
layer_num = int(key_split[1])
dim = config.reduce_dim
if "weight" in key:
orig_state_dict[f"decoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[:dim, :]
orig_state_dict[f"decoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[dim : dim * 2, :]
orig_state_dict[f"decoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[-dim:, :]
else:
orig_state_dict[f"decoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim]
orig_state_dict[f"decoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[dim : dim * 2]
orig_state_dict[f"decoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:]
else:
new_name = rename_key(key)
if "visual_projection" in new_name or "text_projection" in new_name:
val = val.T
orig_state_dict[new_name] = val
return orig_state_dict
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
def convert_clipseg_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub):
config = get_clipseg_config(model_name)
model = CLIPSegForImageSegmentation(config)
model.eval()
state_dict = torch.load(checkpoint_path, map_location="cpu")
# remove some keys
for key in state_dict.copy().keys():
if key.startswith("model"):
state_dict.pop(key, None)
# rename some keys
state_dict = convert_state_dict(state_dict, config)
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if missing_keys != ["clip.text_model.embeddings.position_ids", "clip.vision_model.embeddings.position_ids"]:
raise ValueError("Missing keys that are not expected: {}".format(missing_keys))
if unexpected_keys != ["decoder.reduce.weight", "decoder.reduce.bias"]:
raise ValueError(f"Unexpected keys: {unexpected_keys}")
image_processor = ViTImageProcessor(size=352)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPSegProcessor(image_processor=image_processor, tokenizer=tokenizer)
image = prepare_img()
text = ["a glass", "something to fill", "wood", "a jar"]
inputs = processor(text=text, images=[image] * len(text), padding="max_length", return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# verify values
expected_conditional = torch.tensor([0.1110, -0.1882, 0.1645])
expected_pooled_output = torch.tensor([0.2692, -0.7197, -0.1328])
if model_name == "clipseg-rd64-refined":
expected_masks_slice = torch.tensor(
[[-10.0407, -9.9431, -10.2646], [-9.9751, -9.7064, -9.9586], [-9.6891, -9.5645, -9.9618]]
)
elif model_name == "clipseg-rd64":
expected_masks_slice = torch.tensor(
[[-7.2877, -7.2711, -7.2463], [-7.2652, -7.2780, -7.2520], [-7.2239, -7.2204, -7.2001]]
)
elif model_name == "clipseg-rd16":
expected_masks_slice = torch.tensor(
[[-6.3955, -6.4055, -6.4151], [-6.3911, -6.4033, -6.4100], [-6.3474, -6.3702, -6.3762]]
)
else:
raise ValueError(f"Model name {model_name} not supported.")
assert torch.allclose(outputs.logits[0, :3, :3], expected_masks_slice, atol=1e-3)
assert torch.allclose(outputs.conditional_embeddings[0, :3], expected_conditional, atol=1e-3)
assert torch.allclose(outputs.pooled_output[0, :3], expected_pooled_output, atol=1e-3)
print("Looks ok!")
if pytorch_dump_folder_path is not None:
print(f"Saving model and processor to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
print(f"Pushing model and processor for {model_name} to the hub")
model.push_to_hub(f"CIDAS/{model_name}")
processor.push_to_hub(f"CIDAS/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="clipseg-rd64",
type=str,
choices=["clipseg-rd16", "clipseg-rd64", "clipseg-rd64-refined"],
help=(
"Name of the model. Supported models are: clipseg-rd64, clipseg-rd16 and clipseg-rd64-refined (rd meaning"
" reduce dimension)"
),
)
parser.add_argument(
"--checkpoint_path",
default="/Users/nielsrogge/Documents/CLIPSeg/clip_plus_rd64-uni.pth",
type=str,
help=(
"Path to the original checkpoint. Note that the script assumes that the checkpoint includes both CLIP and"
" the decoder weights."
),
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_clipseg_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/clipseg/configuration_clipseg.py
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CLIPSeg model configuration"""
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"CIDAS/clipseg-rd64": "https://huggingface.co/CIDAS/clipseg-rd64/resolve/main/config.json",
}
class CLIPSegTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the CLIPSeg
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 49408):
Vocabulary size of the CLIPSeg text model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`CLIPSegModel`].
hidden_size (`int`, *optional*, defaults to 512):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 77):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 49406):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 49407):
End of stream token id.
Example:
```python
>>> from transformers import CLIPSegTextConfig, CLIPSegTextModel
>>> # Initializing a CLIPSegTextConfig with CIDAS/clipseg-rd64 style configuration
>>> configuration = CLIPSegTextConfig()
>>> # Initializing a CLIPSegTextModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
>>> model = CLIPSegTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clipseg_text_model"
def __init__(
self,
vocab_size=49408,
hidden_size=512,
intermediate_size=2048,
num_hidden_layers=12,
num_attention_heads=8,
max_position_embeddings=77,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=49406,
eos_token_id=49407,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the text config dict if we are loading from CLIPSegConfig
if config_dict.get("model_type") == "clipseg":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class CLIPSegVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the CLIPSeg
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 32):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import CLIPSegVisionConfig, CLIPSegVisionModel
>>> # Initializing a CLIPSegVisionConfig with CIDAS/clipseg-rd64 style configuration
>>> configuration = CLIPSegVisionConfig()
>>> # Initializing a CLIPSegVisionModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
>>> model = CLIPSegVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clipseg_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=32,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from CLIPSegConfig
if config_dict.get("model_type") == "clipseg":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class CLIPSegConfig(PretrainedConfig):
r"""
[`CLIPSegConfig`] is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to
instantiate a CLIPSeg model according to the specified arguments, defining the text model and vision model configs.
Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIPSeg
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`CLIPSegTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`CLIPSegVisionConfig`].
projection_dim (`int`, *optional*, defaults to 512):
Dimensionality of text and vision projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The inital value of the *logit_scale* paramter. Default is used as per the original CLIPSeg implementation.
extract_layers (`List[int]`, *optional*, defaults to `[3, 6, 9]`):
Layers to extract when forwarding the query image through the frozen visual backbone of CLIP.
reduce_dim (`int`, *optional*, defaults to 64):
Dimensionality to reduce the CLIP vision embedding.
decoder_num_attention_heads (`int`, *optional*, defaults to 4):
Number of attention heads in the decoder of CLIPSeg.
decoder_attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
decoder_hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
decoder_intermediate_size (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layers in the Transformer decoder.
conditional_layer (`int`, *optional*, defaults to 0):
The layer to use of the Transformer encoder whose activations will be combined with the condition
embeddings using FiLM (Feature-wise Linear Modulation). If 0, the last layer is used.
use_complex_transposed_convolution (`bool`, *optional*, defaults to `False`):
Whether to use a more complex transposed convolution in the decoder, enabling more fine-grained
segmentation.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import CLIPSegConfig, CLIPSegModel
>>> # Initializing a CLIPSegConfig with CIDAS/clipseg-rd64 style configuration
>>> configuration = CLIPSegConfig()
>>> # Initializing a CLIPSegModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
>>> model = CLIPSegModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a CLIPSegConfig from a CLIPSegTextConfig and a CLIPSegVisionConfig
>>> # Initializing a CLIPSegText and CLIPSegVision configuration
>>> config_text = CLIPSegTextConfig()
>>> config_vision = CLIPSegVisionConfig()
>>> config = CLIPSegConfig.from_text_vision_configs(config_text, config_vision)
```"""
model_type = "clipseg"
def __init__(
self,
text_config=None,
vision_config=None,
projection_dim=512,
logit_scale_init_value=2.6592,
extract_layers=[3, 6, 9],
reduce_dim=64,
decoder_num_attention_heads=4,
decoder_attention_dropout=0.0,
decoder_hidden_act="quick_gelu",
decoder_intermediate_size=2048,
conditional_layer=0,
use_complex_transposed_convolution=False,
**kwargs,
):
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
text_config_dict = kwargs.pop("text_config_dict", None)
vision_config_dict = kwargs.pop("vision_config_dict", None)
super().__init__(**kwargs)
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
text_config = {}
# This is the complete result when using `text_config_dict`.
_text_config_dict = CLIPSegTextConfig(**text_config_dict).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
message = (
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
f'The value `text_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`text_config_dict` is provided which will be used to initialize `CLIPSegTextConfig`. The "
f'value `text_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict)
if vision_config_dict is not None:
if vision_config is None:
vision_config = {}
# This is the complete result when using `vision_config_dict`.
_vision_config_dict = CLIPSegVisionConfig(**vision_config_dict).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
_vision_config_dict["id2label"] = {
str(key): value for key, value in _vision_config_dict["id2label"].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
message = (
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`vision_config_dict` is provided which will be used to initialize `CLIPSegVisionConfig`. "
f'The value `vision_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `CLIPSegTextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. initializing the `CLIPSegVisionConfig` with default values.")
self.text_config = CLIPSegTextConfig(**text_config)
self.vision_config = CLIPSegVisionConfig(**vision_config)
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
self.extract_layers = extract_layers
self.reduce_dim = reduce_dim
self.decoder_num_attention_heads = decoder_num_attention_heads
self.decoder_attention_dropout = decoder_attention_dropout
self.decoder_hidden_act = decoder_hidden_act
self.decoder_intermediate_size = decoder_intermediate_size
self.conditional_layer = conditional_layer
self.initializer_factor = 1.0
self.use_complex_transposed_convolution = use_complex_transposed_convolution
@classmethod
def from_text_vision_configs(cls, text_config: CLIPSegTextConfig, vision_config: CLIPSegVisionConfig, **kwargs):
r"""
Instantiate a [`CLIPSegConfig`] (or a derived class) from clipseg text model configuration and clipseg vision
model configuration.
Returns:
[`CLIPSegConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/clipseg/modeling_clipseg.py
|
# coding=utf-8
# Copyright 2022 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CLIPSeg model."""
import copy
import math
from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_clipseg import CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "CIDAS/clipseg-rd64-refined"
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST = [
"CIDAS/clipseg-rd64-refined",
# See all CLIPSeg models at https://huggingface.co/models?filter=clipseg
]
# contrastive loss function, adapted from
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->clipseg
def clipseg_loss(similarity: torch.Tensor) -> torch.Tensor:
caption_loss = contrastive_loss(similarity)
image_loss = contrastive_loss(similarity.t())
return (caption_loss + image_loss) / 2.0
@dataclass
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->CLIPSeg
class CLIPSegOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegTextModel`].
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegVisionModel`].
text_model_output(`BaseModelOutputWithPooling`):
The output of the [`CLIPSegTextModel`].
vision_model_output(`BaseModelOutputWithPooling`):
The output of the [`CLIPSegVisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits_per_image: torch.FloatTensor = None
logits_per_text: torch.FloatTensor = None
text_embeds: torch.FloatTensor = None
image_embeds: torch.FloatTensor = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
@dataclass
class CLIPSegDecoderOutput(ModelOutput):
"""
Args:
logits (`torch.FloatTensor` of shape `(batch_size, height, width)`):
Classification scores for each pixel.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class CLIPSegImageSegmentationOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
...
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`CLIPSegVisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
conditional_embeddings: torch.FloatTensor = None
pooled_output: torch.FloatTensor = None
vision_model_output: BaseModelOutputWithPooling = None
decoder_output: CLIPSegDecoderOutput = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["vision_model_output", "decoder_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
class CLIPSegVisionEmbeddings(nn.Module):
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings.__init__ with CLIP->CLIPSeg
def __init__(self, config: CLIPSegVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
def interpolate_position_embeddings(self, new_size):
if len(new_size) != 2:
raise ValueError("new_size should consist of 2 values")
num_patches_one_direction = int(self.num_patches**0.5)
# we interpolate the position embeddings in 2D
a = self.position_embedding.weight[1:].T.view(
1, self.config.hidden_size, num_patches_one_direction, num_patches_one_direction
)
b = (
nn.functional.interpolate(a, new_size, mode="bicubic", align_corners=False)
.squeeze(0)
.view(self.config.hidden_size, new_size[0] * new_size[1])
.T
)
result = torch.cat([self.position_embedding.weight[:1], b])
return result
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if embeddings.shape[1] != self.num_positions:
new_shape = int(math.sqrt(embeddings.shape[1] - 1))
embeddings = embeddings + self.interpolate_position_embeddings((new_shape, new_shape))
embeddings = embeddings.to(embeddings.dtype)
else:
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->CLIPSeg
class CLIPSegTextEmbeddings(nn.Module):
def __init__(self, config: CLIPSegTextConfig):
super().__init__()
embed_dim = config.hidden_size
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->CLIPSeg
class CLIPSegAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->CLIPSeg
class CLIPSegMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->CLIPSeg
class CLIPSegEncoderLayer(nn.Module):
def __init__(self, config: CLIPSegConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = CLIPSegAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = CLIPSegMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class CLIPSegPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = CLIPSegConfig
base_model_prefix = "clip"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, CLIPSegTextEmbeddings):
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, CLIPSegVisionEmbeddings):
factor = self.config.initializer_factor
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
elif isinstance(module, CLIPSegAttention):
factor = self.config.initializer_factor
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (module.embed_dim**-0.5) * factor
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
elif isinstance(module, CLIPSegMLP):
factor = self.config.initializer_factor
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
nn.init.normal_(module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
elif isinstance(module, CLIPSegModel):
nn.init.normal_(
module.text_projection.weight,
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
)
nn.init.normal_(
module.visual_projection.weight,
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
CLIPSEG_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`CLIPSegConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
CLIPSEG_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
CLIPSEG_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
CLIPSEG_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->CLIPSeg
class CLIPSegEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`CLIPSegEncoderLayer`].
Args:
config: CLIPSegConfig
"""
def __init__(self, config: CLIPSegConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([CLIPSegEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class CLIPSegTextTransformer(nn.Module):
# Copied from transformers.models.clip.modeling_clip.CLIPTextTransformer.__init__ with CLIP->CLIPSeg
def __init__(self, config: CLIPSegTextConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = CLIPSegTextEmbeddings(config)
self.encoder = CLIPSegEncoder(config)
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
# For `pooled_output` computation
self.eos_token_id = config.eos_token_id
@add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig)
# Copied from transformers.models.clip.modeling_clip.CLIPTextTransformer.forward with clip->clipseg, CLIP->CLIPSeg
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify input_ids")
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
# CLIPSeg's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIPSeg/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clipseg/model.py#L324
causal_attention_mask = _create_4d_causal_attention_mask(
input_shape, hidden_states.dtype, device=hidden_states.device
)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.final_layer_norm(last_hidden_state)
if self.eos_token_id == 2:
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
# A CLIPSeg model with such `eos_token_id` in the config can't work correctly with extra new tokens added
# ------------------------------------------------------------
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
]
else:
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id)
.int()
.argmax(dim=-1),
]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class CLIPSegTextModel(CLIPSegPreTrainedModel):
config_class = CLIPSegTextConfig
_no_split_modules = ["CLIPSegTextEmbeddings", "CLIPSegEncoderLayer"]
def __init__(self, config: CLIPSegTextConfig):
super().__init__(config)
self.text_model = CLIPSegTextTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.embeddings.token_embedding
def set_input_embeddings(self, value):
self.text_model.embeddings.token_embedding = value
@add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, CLIPSegTextModel
>>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> model = CLIPSegTextModel.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
```"""
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class CLIPSegVisionTransformer(nn.Module):
# Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.__init__ with CLIP->CLIPSeg
def __init__(self, config: CLIPSegVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = CLIPSegVisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.encoder = CLIPSegEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig)
# Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class CLIPSegVisionModel(CLIPSegPreTrainedModel):
config_class = CLIPSegVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: CLIPSegVisionConfig):
super().__init__(config)
self.vision_model = CLIPSegVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, CLIPSegVisionModel
>>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> model = CLIPSegVisionModel.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
```"""
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@add_start_docstrings(CLIPSEG_START_DOCSTRING)
class CLIPSegModel(CLIPSegPreTrainedModel):
config_class = CLIPSegConfig
def __init__(self, config: CLIPSegConfig):
super().__init__(config)
if not isinstance(config.text_config, CLIPSegTextConfig):
raise ValueError(
"config.text_config is expected to be of type CLIPSegTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, CLIPSegVisionConfig):
raise ValueError(
"config.vision_config is expected to be of type CLIPSegVisionConfig but is of type"
f" {type(config.vision_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
self.projection_dim = config.projection_dim
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.text_model = CLIPSegTextTransformer(text_config)
self.vision_model = CLIPSegVisionTransformer(vision_config)
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`CLIPSegTextModel`].
Examples:
```python
>>> from transformers import AutoTokenizer, CLIPSegModel
>>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```"""
# Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[1]
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`CLIPSegVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, CLIPSegModel
>>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
```"""
# Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = vision_outputs[1] # pooled_output
image_features = self.visual_projection(pooled_output)
return image_features
@add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CLIPSegOutput, config_class=CLIPSegConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CLIPSegOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, CLIPSegModel
>>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```"""
# Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[1]
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.t()
loss = None
if return_loss:
loss = clipseg_loss(logits_per_text)
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return CLIPSegOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
class CLIPSegDecoderLayer(nn.Module):
"""
CLIPSeg decoder layer, which is identical to `CLIPSegEncoderLayer`, except that normalization is applied after
self-attention/MLP, rather than before.
"""
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer.__init__ with CLIP->CLIPSeg
def __init__(self, config: CLIPSegConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = CLIPSegAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = CLIPSegMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
hidden_states = self.layer_norm1(hidden_states)
residual = hidden_states
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.layer_norm2(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class CLIPSegDecoder(CLIPSegPreTrainedModel):
def __init__(self, config: CLIPSegConfig):
super().__init__(config)
self.conditional_layer = config.conditional_layer
self.film_mul = nn.Linear(config.projection_dim, config.reduce_dim)
self.film_add = nn.Linear(config.projection_dim, config.reduce_dim)
if config.use_complex_transposed_convolution:
transposed_kernels = (config.vision_config.patch_size // 4, config.vision_config.patch_size // 4)
self.transposed_convolution = nn.Sequential(
nn.Conv2d(config.reduce_dim, config.reduce_dim, kernel_size=3, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(
config.reduce_dim,
config.reduce_dim // 2,
kernel_size=transposed_kernels[0],
stride=transposed_kernels[0],
),
nn.ReLU(),
nn.ConvTranspose2d(
config.reduce_dim // 2, 1, kernel_size=transposed_kernels[1], stride=transposed_kernels[1]
),
)
else:
self.transposed_convolution = nn.ConvTranspose2d(
config.reduce_dim, 1, config.vision_config.patch_size, stride=config.vision_config.patch_size
)
depth = len(config.extract_layers)
self.reduces = nn.ModuleList(
[nn.Linear(config.vision_config.hidden_size, config.reduce_dim) for _ in range(depth)]
)
decoder_config = copy.deepcopy(config.vision_config)
decoder_config.hidden_size = config.reduce_dim
decoder_config.num_attention_heads = config.decoder_num_attention_heads
decoder_config.intermediate_size = config.decoder_intermediate_size
decoder_config.hidden_act = "relu"
self.layers = nn.ModuleList([CLIPSegDecoderLayer(decoder_config) for _ in range(len(config.extract_layers))])
def forward(
self,
hidden_states: Tuple[torch.Tensor],
conditional_embeddings: torch.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = True,
):
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
activations = hidden_states[::-1]
output = None
for i, (activation, layer, reduce) in enumerate(zip(activations, self.layers, self.reduces)):
if output is not None:
output = reduce(activation) + output
else:
output = reduce(activation)
if i == self.conditional_layer:
output = self.film_mul(conditional_embeddings) * output.permute(1, 0, 2) + self.film_add(
conditional_embeddings
)
output = output.permute(1, 0, 2)
layer_outputs = layer(
output, attention_mask=None, causal_attention_mask=None, output_attentions=output_attentions
)
output = layer_outputs[0]
if output_hidden_states:
all_hidden_states += (output,)
if output_attentions:
all_attentions += (layer_outputs[1],)
output = output[:, 1:, :].permute(0, 2, 1) # remove cls token and reshape to [batch_size, reduce_dim, seq_len]
size = int(math.sqrt(output.shape[2]))
batch_size = conditional_embeddings.shape[0]
output = output.view(batch_size, output.shape[1], size, size)
logits = self.transposed_convolution(output).squeeze()
if not return_dict:
return tuple(v for v in [logits, all_hidden_states, all_attentions] if v is not None)
return CLIPSegDecoderOutput(
logits=logits,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
@add_start_docstrings(
"""
CLIPSeg model with a Transformer-based decoder on top for zero-shot and one-shot image segmentation.
""",
CLIPSEG_START_DOCSTRING,
)
class CLIPSegForImageSegmentation(CLIPSegPreTrainedModel):
config_class = CLIPSegConfig
def __init__(self, config: CLIPSegConfig):
super().__init__(config)
self.config = config
self.clip = CLIPSegModel(config)
self.extract_layers = config.extract_layers
self.decoder = CLIPSegDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_conditional_embeddings(
self,
batch_size: int = None,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
conditional_pixel_values: Optional[torch.Tensor] = None,
):
if input_ids is not None:
# compute conditional embeddings from texts
if len(input_ids) != batch_size:
raise ValueError("Make sure to pass as many prompt texts as there are query images")
with torch.no_grad():
conditional_embeddings = self.clip.get_text_features(
input_ids, attention_mask=attention_mask, position_ids=position_ids
)
elif conditional_pixel_values is not None:
# compute conditional embeddings from images
if len(conditional_pixel_values) != batch_size:
raise ValueError("Make sure to pass as many prompt images as there are query images")
with torch.no_grad():
conditional_embeddings = self.clip.get_image_features(conditional_pixel_values)
else:
raise ValueError(
"Invalid conditional, should be either provided as `input_ids` or `conditional_pixel_values`"
)
return conditional_embeddings
@add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CLIPSegImageSegmentationOutput, config_class=CLIPSegTextConfig)
def forward(
self,
input_ids: Optional[torch.FloatTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
conditional_pixel_values: Optional[torch.FloatTensor] = None,
conditional_embeddings: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CLIPSegOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, CLIPSegForImageSegmentation
>>> from PIL import Image
>>> import requests
>>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> texts = ["a cat", "a remote", "a blanket"]
>>> inputs = processor(text=texts, images=[image] * len(texts), padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> print(logits.shape)
torch.Size([3, 352, 352])
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# step 1: forward the query images through the frozen CLIP vision encoder
with torch.no_grad():
vision_outputs = self.clip.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
pooled_output = self.clip.visual_projection(vision_outputs[1])
hidden_states = vision_outputs.hidden_states if return_dict else vision_outputs[2]
# we add +1 here as the hidden states also include the initial embeddings
activations = [hidden_states[i + 1] for i in self.extract_layers]
# update vision_outputs
if return_dict:
vision_outputs = BaseModelOutputWithPooling(
last_hidden_state=vision_outputs.last_hidden_state,
pooler_output=vision_outputs.pooler_output,
hidden_states=vision_outputs.hidden_states if output_hidden_states else None,
attentions=vision_outputs.attentions,
)
else:
vision_outputs = (
vision_outputs[:2] + vision_outputs[3:] if not output_hidden_states else vision_outputs
)
# step 2: compute conditional embeddings, either from text, images or an own provided embedding
if conditional_embeddings is None:
conditional_embeddings = self.get_conditional_embeddings(
batch_size=pixel_values.shape[0],
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
conditional_pixel_values=conditional_pixel_values,
)
else:
if conditional_embeddings.shape[0] != pixel_values.shape[0]:
raise ValueError(
"Make sure to pass as many conditional embeddings as there are query images in the batch"
)
if conditional_embeddings.shape[1] != self.config.projection_dim:
raise ValueError(
"Make sure that the feature dimension of the conditional embeddings matches"
" `config.projection_dim`."
)
# step 3: forward both the pooled output and the activations through the lightweight decoder to predict masks
decoder_outputs = self.decoder(
activations,
conditional_embeddings,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
loss = None
if labels is not None:
# move labels to the correct device to enable PP
labels = labels.to(logits.device)
loss_fn = nn.BCEWithLogitsLoss()
loss = loss_fn(logits, labels)
if not return_dict:
output = (logits, conditional_embeddings, pooled_output, vision_outputs, decoder_outputs)
return ((loss,) + output) if loss is not None else output
return CLIPSegImageSegmentationOutput(
loss=loss,
logits=logits,
conditional_embeddings=conditional_embeddings,
pooled_output=pooled_output,
vision_model_output=vision_outputs,
decoder_output=decoder_outputs,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/git/configuration_git.py
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
GIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json",
}
class GitVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GitVisionModel`]. It is used to instantiate a GIT
vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the vision encoder of the GIT
[microsoft/git-base](https://huggingface.co/microsoft/git-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import GitVisionConfig, GitVisionModel
>>> # Initializing a GitVisionConfig with microsoft/git-base style configuration
>>> configuration = GitVisionConfig()
>>> # Initializing a GitVisionModel (with random weights) from the microsoft/git-base style configuration
>>> model = GitVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "git_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=16,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from GITConfig
if config_dict.get("model_type") == "git":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class GitConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GitModel`]. It is used to instantiate a GIT model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the GIT
[microsoft/git-base](https://huggingface.co/microsoft/git-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`GitVisionConfig`].
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the GIT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GitModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
num_image_with_embedding (`int`, *optional*):
The number of temporal embeddings to add, in case the model is used for video captioning/VQA.
Examples:
```python
>>> from transformers import GitConfig, GitModel
>>> # Initializing a GIT microsoft/git-base style configuration
>>> configuration = GitConfig()
>>> # Initializing a model (with random weights) from the microsoft/git-base style configuration
>>> model = GitModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "git"
def __init__(
self,
vision_config=None,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=6,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=1024,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
position_embedding_type="absolute",
use_cache=True,
tie_word_embeddings=False,
bos_token_id=101,
eos_token_id=102,
num_image_with_embedding=None,
**kwargs,
):
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs)
if vision_config is None:
vision_config = {}
logger.info("vision_config is None. initializing the GitVisionConfig with default values.")
self.vision_config = GitVisionConfig(**vision_config)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.tie_word_embeddings = tie_word_embeddings
self.num_image_with_embedding = num_image_with_embedding
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/git/convert_git_to_pytorch.py
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert GIT checkpoints from the original repository.
URL: https://github.com/microsoft/GenerativeImage2Text/tree/main"""
import argparse
from pathlib import Path
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from transformers import (
AutoTokenizer,
CLIPImageProcessor,
GitConfig,
GitForCausalLM,
GitProcessor,
GitVisionConfig,
VideoMAEImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def get_git_config(model_name):
if "base" in model_name and "vqa" in model_name:
image_size = 480
elif "large" in model_name and "vqa" in model_name:
image_size = 420
else:
image_size = 224
vision_config = GitVisionConfig(image_size=image_size)
if "large" in model_name:
vision_config.patch_size = 14
vision_config.hidden_size = 1024
vision_config.intermediate_size = 4096
vision_config.num_hidden_layers = 24
vision_config.num_attention_heads = 16
is_video = "vatex" in model_name or "msrvtt" in model_name
num_image_with_embedding = 6 if is_video else None
config = GitConfig(vision_config=vision_config.to_dict(), num_image_with_embedding=num_image_with_embedding)
return config, image_size, is_video
# here we list all keys to be renamed (original name on the left, our name on the right)
def create_rename_keys(config, prefix=""):
rename_keys = []
# image encoder
# ftm: off
rename_keys.append(
(f"{prefix}image_encoder.class_embedding", "git.image_encoder.vision_model.embeddings.class_embedding")
)
rename_keys.append(
(
f"{prefix}image_encoder.positional_embedding",
"git.image_encoder.vision_model.embeddings.position_embedding.weight",
)
)
rename_keys.append(
(f"{prefix}image_encoder.conv1.weight", "git.image_encoder.vision_model.embeddings.patch_embedding.weight")
)
rename_keys.append((f"{prefix}image_encoder.ln_pre.weight", "git.image_encoder.vision_model.pre_layrnorm.weight"))
rename_keys.append((f"{prefix}image_encoder.ln_pre.bias", "git.image_encoder.vision_model.pre_layrnorm.bias"))
rename_keys.append(
(f"{prefix}image_encoder.ln_post.weight", "git.image_encoder.vision_model.post_layernorm.weight")
)
rename_keys.append((f"{prefix}image_encoder.ln_post.bias", "git.image_encoder.vision_model.post_layernorm.bias"))
# fmt: on
rename_keys.append((f"{prefix}image_encoder.proj", "git.image_encoder.visual_projection.weight"))
# fmt: off
for i in range(config.vision_config.num_hidden_layers):
# image encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.attn.out_proj.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.out_proj.weight"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.attn.out_proj.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.out_proj.bias"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_1.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm1.weight"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_1.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm1.bias"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_fc.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc1.weight"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_fc.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc1.bias"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_proj.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc2.weight"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.mlp.c_proj.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.mlp.fc2.bias"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_2.weight", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm2.weight"))
rename_keys.append((f"{prefix}image_encoder.transformer.resblocks.{i}.ln_2.bias", f"git.image_encoder.vision_model.encoder.layers.{i}.layer_norm2.bias"))
# fmt: on
# text decoder
# fmt: off
rename_keys.append((f"{prefix}textual.embedding.words.weight", "git.embeddings.word_embeddings.weight"))
rename_keys.append((f"{prefix}textual.embedding.positions.weight", "git.embeddings.position_embeddings.weight"))
rename_keys.append((f"{prefix}textual.visual_projection.0.weight", "git.visual_projection.visual_projection.0.weight"))
rename_keys.append((f"{prefix}textual.visual_projection.0.bias", "git.visual_projection.visual_projection.0.bias"))
rename_keys.append((f"{prefix}textual.visual_projection.1.weight", "git.visual_projection.visual_projection.1.weight"))
rename_keys.append((f"{prefix}textual.visual_projection.1.bias", "git.visual_projection.visual_projection.1.bias"))
rename_keys.append((f"{prefix}textual.embedding.layer_norm.weight", "git.embeddings.LayerNorm.weight"))
rename_keys.append((f"{prefix}textual.embedding.layer_norm.bias", "git.embeddings.LayerNorm.bias"))
rename_keys.append((f"{prefix}textual.output.weight", "output.weight"))
rename_keys.append((f"{prefix}textual.output.bias", "output.bias"))
for i in range(config.num_hidden_layers):
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.query.weight", f"git.encoder.layer.{i}.attention.self.query.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.query.bias", f"git.encoder.layer.{i}.attention.self.query.bias"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.key.weight", f"git.encoder.layer.{i}.attention.self.key.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.key.bias", f"git.encoder.layer.{i}.attention.self.key.bias"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.value.weight", f"git.encoder.layer.{i}.attention.self.value.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.self.value.bias", f"git.encoder.layer.{i}.attention.self.value.bias"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.dense.weight", f"git.encoder.layer.{i}.attention.output.dense.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.dense.bias", f"git.encoder.layer.{i}.attention.output.dense.bias"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.LayerNorm.weight", f"git.encoder.layer.{i}.attention.output.LayerNorm.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.attention.output.LayerNorm.bias", f"git.encoder.layer.{i}.attention.output.LayerNorm.bias"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.intermediate.dense.weight", f"git.encoder.layer.{i}.intermediate.dense.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.intermediate.dense.bias", f"git.encoder.layer.{i}.intermediate.dense.bias"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.dense.weight", f"git.encoder.layer.{i}.output.dense.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.dense.bias", f"git.encoder.layer.{i}.output.dense.bias"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.LayerNorm.weight", f"git.encoder.layer.{i}.output.LayerNorm.weight"))
rename_keys.append((f"{prefix}textual.transformer.encoder.layer.{i}.output.LayerNorm.bias", f"git.encoder.layer.{i}.output.LayerNorm.bias"))
# fmt: on
if config.num_image_with_embedding is not None:
rename_keys.append(("img_temperal_embedding.0", "git.img_temperal_embedding.0"))
rename_keys.append(("img_temperal_embedding.1", "git.img_temperal_embedding.1"))
rename_keys.append(("img_temperal_embedding.2", "git.img_temperal_embedding.2"))
rename_keys.append(("img_temperal_embedding.3", "git.img_temperal_embedding.3"))
rename_keys.append(("img_temperal_embedding.4", "git.img_temperal_embedding.4"))
rename_keys.append(("img_temperal_embedding.5", "git.img_temperal_embedding.5"))
return rename_keys
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val.T if "image_encoder.visual_projection" in new else val
# we split up the matrix of each CLIP encoder layer into queries, keys and values
def read_in_q_k_v(state_dict, config, prefix=""):
dim = config.vision_config.hidden_size
for i in range(config.vision_config.num_hidden_layers):
# read in weights + bias of input projection layer (in the original implementation, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"{prefix}image_encoder.transformer.resblocks.{i}.attn.in_proj_weight")
in_proj_bias = state_dict.pop(f"{prefix}image_encoder.transformer.resblocks.{i}.attn.in_proj_bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[
:dim, :
]
state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:dim]
state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[
dim : dim * 2, :
]
state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[
dim : dim * 2
]
state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[
-dim:, :
]
state_dict[f"git.image_encoder.vision_model.encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-dim:]
# We will verify our results on an image
def prepare_img(model_name):
if "textvqa" in model_name:
filepath = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset")
image = Image.open(filepath).convert("RGB")
else:
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
def prepare_video():
from decord import VideoReader, cpu
# set seed for reproducability
np.random.seed(0)
def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
"""
Sample a given number of frame indices from the video.
Args:
clip_len (`int`): Total number of frames to sample.
frame_sample_rate (`int`): Sample every n-th frame.
seg_len (`int`): Maximum allowed index of sample's last frame.
Returns:
indices (`List[int]`): List of sampled frame indices
"""
converted_len = int(clip_len * frame_sample_rate)
end_idx = np.random.randint(converted_len, seg_len)
start_idx = end_idx - converted_len
indices = np.linspace(start_idx, end_idx, num=clip_len)
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
return indices
# video clip consists of 300 frames (10 seconds at 30 FPS)
file_path = hf_hub_download(repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset")
videoreader = VideoReader(file_path, num_threads=1, ctx=cpu(0))
# sample 6 frames
videoreader.seek(0)
indices = sample_frame_indices(clip_len=6, frame_sample_rate=4, seg_len=len(videoreader))
video = videoreader.get_batch(indices).asnumpy()
return video
@torch.no_grad()
def convert_git_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False):
"""
Copy/paste/tweak model's weights to our GIT structure.
"""
model_name_to_url = {
"git-base": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE/snapshot/model.pt",
"git-base-coco": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_COCO/snapshot/model.pt",
"git-base-textcaps": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_TEXTCAPS/snapshot/model.pt",
"git-base-vqav2": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_VQAv2/snapshot/model.pt",
"git-base-textvqa": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_TEXTVQA/snapshot/model.pt", # todo
"git-base-vatex": "https://publicgit.blob.core.windows.net/data/output/GIT_BASE_VATEX/snapshot/model.pt",
"git-base-msrvtt-qa": (
"https://publicgit.blob.core.windows.net/data/output/GIT_BASE_MSRVTT_QA/snapshot/model.pt"
),
"git-large": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE/snapshot/model.pt",
"git-large-coco": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_COCO/snapshot/model.pt",
"git-large-textcaps": (
"https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_TEXTCAPS/snapshot/model.pt"
),
"git-large-vqav2": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_VQAv2/snapshot/model.pt",
"git-large-textvqa": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_TEXTVQA/snapshot/model.pt",
"git-large-vatex": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_VATEX/snapshot/model.pt",
"git-large-msrvtt-qa": (
"https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_MSRVTT_QA/snapshot/model.pt"
),
"git-large-r": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_R/snapshot/model.pt",
"git-large-r-coco": "https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_R_COCO/snapshot/model.pt",
"git-large-r-textcaps": (
"https://publicgit.blob.core.windows.net/data/output/GIT_LARGE_R_TEXTCAPS/snapshot/model.pt"
),
}
model_name_to_path = {
"git-large": "/Users/nielsrogge/Documents/GIT/git_large_model.pt",
"git-large-coco": "/Users/nielsrogge/Documents/GIT/git_large_coco_model.pt",
"git-large-textcaps": "/Users/nielsrogge/Documents/GIT/git_large_textcaps_model.pt",
"git-large-vqav2": "/Users/nielsrogge/Documents/GIT/git_large_vqav2_model.pt",
"git-large-textvqa": "/Users/nielsrogge/Documents/GIT/git_large_textvqa_model.pt",
}
# define GIT configuration based on model name
config, image_size, is_video = get_git_config(model_name)
if "large" in model_name and not is_video and "large-r" not in model_name:
# large checkpoints take way too long to download
checkpoint_path = model_name_to_path[model_name]
state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
else:
checkpoint_url = model_name_to_url[model_name]
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", file_name=model_name)[
"model"
]
# rename keys
prefix = "module." if model_name == "git-base" else ""
rename_keys = create_rename_keys(config, prefix=prefix)
for src, dest in rename_keys:
rename_key(state_dict, src, dest)
read_in_q_k_v(state_dict, config, prefix=prefix)
# load HuggingFace model
model = GitForCausalLM(config)
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
model.eval()
print("Missing keys:", missing_keys)
print("Unexpected keys:", unexpected_keys)
assert missing_keys == ["git.embeddings.position_ids", "git.image_encoder.vision_model.embeddings.position_ids"]
assert unexpected_keys == ["git.image_encoder.visual_projection.weight"]
# verify results
image_processor = (
VideoMAEImageProcessor(
size={"shortest_edge": image_size}, crop_size={"height": image_size, "width": image_size}
)
if is_video
else CLIPImageProcessor(
size={"shortest_edge": image_size}, crop_size={"height": image_size, "width": image_size}
)
)
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", model_input_names=["input_ids", "attention_mask"])
processor = GitProcessor(tokenizer=tokenizer, image_processor=image_processor)
if is_video:
video = prepare_video()
pixel_values = processor(images=list(video), return_tensors="pt").pixel_values
else:
image = prepare_img(model_name)
image_transforms = Compose(
[
Resize(image_size, interpolation=Image.BICUBIC),
CenterCrop(image_size),
ToTensor(),
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
]
)
original_pixel_values = image_transforms(image).unsqueeze(0)
pixel_values = processor(images=image, return_tensors="pt").pixel_values
assert torch.allclose(pixel_values, original_pixel_values)
input_ids = torch.tensor([[101]])
outputs = model(input_ids, pixel_values=pixel_values)
logits = outputs.logits
print("Logits:", logits[0, -1, :3])
if model_name == "git-base":
expected_slice_logits = torch.tensor([-1.2832, -1.2835, -1.2840])
elif model_name == "git-base-coco":
expected_slice_logits = torch.tensor([-0.9925, -0.9930, -0.9935])
elif model_name == "git-base-textcaps":
expected_slice_logits = torch.tensor([-1.2980, -1.2983, -1.2985])
elif model_name == "git-base-vqav2":
expected_slice_logits = torch.tensor([-0.8570, -0.8568, -0.8561])
elif model_name == "git-base-textvqa":
expected_slice_logits = torch.tensor([-1.4085, -1.4083, -1.4082])
elif model_name == "git-base-vatex":
expected_slice_logits = torch.tensor([-1.3451, -1.3447, -1.3447])
elif model_name == "git-base-msrvtt-qa":
expected_slice_logits = torch.tensor([-0.8554, -0.8550, -0.8540])
elif model_name == "git-large":
expected_slice_logits = torch.tensor([-1.1708, -1.1707, -1.1705])
elif model_name == "git-large-coco":
expected_slice_logits = torch.tensor([-1.0425, -1.0423, -1.0422])
elif model_name == "git-large-textcaps":
expected_slice_logits = torch.tensor([-1.2705, -1.2708, -1.2706])
elif model_name == "git-large-vqav2":
expected_slice_logits = torch.tensor([-0.7042, -0.7043, -0.7043])
elif model_name == "git-large-textvqa":
expected_slice_logits = torch.tensor([-0.8590, -0.8592, -0.8590])
elif model_name == "git-large-vatex":
expected_slice_logits = torch.tensor([-1.0113, -1.0114, -1.0113])
elif model_name == "git-large-msrvtt-qa":
expected_slice_logits = torch.tensor([0.0130, 0.0134, 0.0131])
elif model_name == "git-large-r":
expected_slice_logits = torch.tensor([-1.1283, -1.1285, -1.1286])
elif model_name == "git-large-r-coco":
expected_slice_logits = torch.tensor([-0.9641, -0.9641, -0.9641])
elif model_name == "git-large-r-textcaps":
expected_slice_logits = torch.tensor([-1.1121, -1.1120, -1.1124])
assert torch.allclose(logits[0, -1, :3], expected_slice_logits, atol=1e-4)
print("Looks ok!")
prompt = ""
if "textvqa" in model_name:
prompt = "what does the front of the bus say at the top?"
elif "msrvtt-qa" in model_name:
prompt = "what does the woman eat?"
elif "vqa" in model_name:
prompt = "what are the cats doing?"
input_ids = tokenizer(prompt, add_special_tokens=False).input_ids
input_ids = [processor.tokenizer.cls_token_id] + input_ids
input_ids = torch.tensor(input_ids).unsqueeze(0)
print("Generating caption...")
generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
print("Generated caption:", processor.batch_decode(generated_ids, skip_special_tokens=True))
if pytorch_dump_folder_path is not None:
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
print(f"Pushing model and processor of {model_name} to the hub...")
model.push_to_hub(f"microsoft/{model_name}")
processor.push_to_hub(f"microsoft/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="git-base",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model to the hub.",
)
args = parser.parse_args()
convert_git_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/git/modeling_git.py
|
# coding=utf-8
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch GIT model."""
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...file_utils import ModelOutput
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPast,
BaseModelOutputWithPooling,
CausalLMOutputWithPast,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_git import GitConfig, GitVisionConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/git-base"
_CONFIG_FOR_DOC = "GitConfig"
GIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/git-base",
# See all GIT models at https://huggingface.co/models?filter=git
]
@dataclass
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Git
class GitVisionModelOutput(ModelOutput):
"""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class GitEmbeddings(nn.Module):
"""Construct the embeddings from word and position embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
if inputs_embeds is None:
embeddings = self.word_embeddings(input_ids)
else:
embeddings = inputs_embeds
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class GitSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.image_patch_tokens = int((config.vision_config.image_size / config.vision_config.patch_size) ** 2 + 1)
if config.num_image_with_embedding is not None:
self.image_patch_tokens *= config.num_image_with_embedding
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
pixel_values_present: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
cutoff = self.image_patch_tokens if pixel_values_present else 0
if past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([key_layer[:, :, :cutoff, :], past_key_value[0], key_layer[:, :, -1:, :]], dim=2)
value_layer = torch.cat(
[value_layer[:, :, :cutoff, :], past_key_value[1], value_layer[:, :, -1:, :]], dim=2
)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
# NOTE: like in other caches, we store the text component. In GIT it means we discard the image component.
past_key_value = (
key_layer[:, :, cutoff:, :],
value_layer[:, :, cutoff:, :],
)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in GitModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class GitSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class GitAttention(nn.Module):
# Copied from transformers.models.bert.modeling_bert.BertAttention.__init__ with Bert->Git
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = GitSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = GitSelfOutput(config)
self.pruned_heads = set()
# Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
pixel_values_present: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
past_key_value,
output_attentions,
pixel_values_present,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class GitIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class GitOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class GitLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = GitAttention(config)
self.intermediate = GitIntermediate(config)
self.output = GitOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
pixel_values_present: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
pixel_values_present=pixel_values_present,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class GitEncoder(nn.Module):
# Copied from transformers.models.bert.modeling_bert.BertEncoder.__init__ with Bert->Git
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([GitLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
pixel_values_present: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
past_key_value,
output_attentions,
pixel_values_present,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class GitPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GitConfig
base_model_prefix = "git"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, GitVisionEmbeddings):
nn.init.normal_(module.class_embedding, mean=0.0, std=self.config.initializer_range)
nn.init.normal_(module.patch_embedding.weight, std=self.config.initializer_range)
nn.init.normal_(module.position_embedding.weight, std=self.config.initializer_range)
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
GIT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`GitConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GIT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`CLIPImageProcessor.__call__`] for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Git
class GitVisionEmbeddings(nn.Module):
def __init__(self, config: GitVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPMLP
class GitVisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.clip.modeling_clip.CLIPAttention
class GitVisionAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->GitVision
class GitVisionEncoderLayer(nn.Module):
def __init__(self, config: GitVisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = GitVisionAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = GitVisionMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->GitVision, CLIPConfig
class GitVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`GitVisionEncoderLayer`].
Args:
config: GitVisionConfig
"""
def __init__(self, config: GitVisionConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([GitVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
GIT_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class GitVisionTransformer(nn.Module):
# Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.__init__ with CLIPEncoder->GitVisionEncoder, CLIP->Git
def __init__(self, config: GitVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = GitVisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.encoder = GitVisionEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@add_start_docstrings_to_model_forward(GIT_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=GitVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.post_layernorm(last_hidden_state)
if not return_dict:
return (last_hidden_state,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=last_hidden_state,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""The vision model from CLIP, used in GIT, without any head or projection on top.""",
GIT_START_DOCSTRING,
)
class GitVisionModel(GitPreTrainedModel):
config_class = GitVisionConfig
main_input_name = "pixel_values"
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.__init__ with CLIP->Git
def __init__(self, config: GitVisionConfig):
super().__init__(config)
self.vision_model = GitVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(GIT_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=GitVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, GitVisionModel
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base")
>>> model = GitVisionModel.from_pretrained("microsoft/git-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class GitProjection(nn.Module):
def __init__(self, config: GitConfig):
super().__init__()
self.config = config
self.visual_projection = nn.Sequential(
nn.Linear(config.vision_config.hidden_size, config.hidden_size),
nn.LayerNorm(config.hidden_size, eps=config.vision_config.layer_norm_eps),
)
def forward(self, embeddings: torch.Tensor) -> torch.Tensor:
return self.visual_projection(embeddings)
@add_start_docstrings(
"The bare GIT Model transformer consisting of a CLIP image encoder and text decoder outputting raw hidden-states"
" without any specific head on top.",
GIT_START_DOCSTRING,
)
class GitModel(GitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = GitEmbeddings(config)
self.image_encoder = GitVisionModel(config.vision_config)
self.encoder = GitEncoder(config)
self.visual_projection = GitProjection(config)
if config.num_image_with_embedding is not None:
self.img_temperal_embedding = nn.ParameterList(
nn.Parameter(torch.zeros(1, 1, config.vision_config.hidden_size))
for _ in range(config.num_image_with_embedding)
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def _generate_future_mask(self, size: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
# Default mask is for forward direction. Flip for backward direction.
mask = torch.triu(torch.ones(size, size, device=device, dtype=dtype), diagonal=1)
mask = mask.masked_fill(mask == 1, float("-inf"))
return mask
def create_attention_mask(self, tgt, memory, tgt_mask, past_key_values_length, memory_key_padding_mask=None):
num_tgt = tgt.shape[1]
num_memory = memory.shape[1]
device = tgt.device
dtype = tgt.dtype
top_left = torch.zeros((num_memory, num_memory), device=device, dtype=dtype)
top_right = torch.full(
(num_memory, num_tgt + past_key_values_length),
float("-inf"),
device=tgt.device,
dtype=dtype,
)
bottom_left = torch.zeros(
(num_tgt, num_memory),
dtype=dtype,
device=tgt_mask.device,
)
if past_key_values_length > 0:
tgt_mask = torch.zeros(
(tgt_mask.shape[0], tgt_mask.shape[0] + past_key_values_length),
dtype=dtype,
device=tgt_mask.device,
)
left = torch.cat((top_left, bottom_left), dim=0)
right = torch.cat((top_right, tgt_mask.to(dtype)), dim=0)
full_attention_mask = torch.cat((left, right), dim=1)[None, :]
if memory_key_padding_mask is None:
memory_key_padding_mask = torch.full((memory.shape[0], memory.shape[1]), fill_value=False, device=device)
# if it is False, it means valid. That is, it is not a padding
if memory_key_padding_mask.dtype != torch.bool:
raise ValueError("Memory key padding mask must be a boolean tensor.")
zero_negative_infinity = torch.zeros_like(memory_key_padding_mask, dtype=tgt.dtype)
zero_negative_infinity[memory_key_padding_mask] = float("-inf")
full_attention_mask = full_attention_mask.expand(
(memory_key_padding_mask.shape[0], num_memory + num_tgt, num_memory + past_key_values_length + num_tgt)
)
full_attention_mask = full_attention_mask.clone()
origin_left = full_attention_mask[:, :, :num_memory]
update = zero_negative_infinity[:, None, :]
full_attention_mask[:, :, :num_memory] = origin_left + update
# add axis for multi-head
full_attention_mask = full_attention_mask[:, None, :, :]
return full_attention_mask
@add_start_docstrings_to_model_forward(GIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, AutoModel
>>> import requests
>>> from PIL import Image
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base")
>>> model = AutoModel.from_pretrained("microsoft/git-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "this is an image of two cats"
>>> inputs = processor(text, images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
seq_length = input_shape[1]
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
projected_visual_features = None
if pixel_values is not None:
if pixel_values.ndim == 4:
# here we assume pixel_values is of shape (batch_size, num_channels, height, width)
visual_features = self.image_encoder(pixel_values).last_hidden_state
elif pixel_values.ndim == 5:
# here we assume pixel_values is of shape (batch_size, num_frames, num_channels, height, width)
visual_features = []
for frame_idx in range(pixel_values.shape[1]):
visual_features_frame = self.image_encoder(pixel_values[:, frame_idx, :, :]).last_hidden_state
visual_features_frame += self.img_temperal_embedding[frame_idx]
visual_features.append(visual_features_frame)
# finally, concatenate all features along sequence dimension
visual_features = torch.cat(visual_features, dim=1)
else:
raise ValueError("pixel_values must be of rank 4 or 5")
projected_visual_features = self.visual_projection(visual_features)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
if projected_visual_features is None:
projected_visual_features = torch.zeros(
(embedding_output.shape[0], 0, embedding_output.shape[2]),
dtype=embedding_output.dtype,
device=embedding_output.device,
)
# Repeat visual features to match embedding batch size.
projected_visual_features = projected_visual_features.repeat(
embedding_output.size(0) // projected_visual_features.size(0), 1, 1
)
# concatenate patch token and text token embeddings
hidden_states = torch.cat((projected_visual_features, embedding_output), dim=1)
# By default, an additive causal mask is created
# for masking the future (one direction).
tgt_mask = self._generate_future_mask(seq_length, embedding_output.dtype, embedding_output.device)
# Create an attention mask of shape (batch_size, 1, tgt_seq_len, src_seq_len)
combined_attention_mask = self.create_attention_mask(
tgt=embedding_output,
memory=projected_visual_features,
tgt_mask=tgt_mask,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# if the user provides an attention mask, we add it to the default one
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _prepare_4d_attention_mask(
attention_mask, embedding_output.dtype, tgt_len=input_shape[-1]
).to(embedding_output.device)
if past_key_values_length > 0:
expanded_attn_mask = expanded_attn_mask[:, :, -past_key_values_length:, :]
else:
combined_attention_mask[:, :, -input_shape[1] :, -input_shape[1] :] += expanded_attn_mask
encoder_outputs = self.encoder(
hidden_states,
attention_mask=combined_attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
pixel_values_present=pixel_values is not None,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithPast(
last_hidden_state=sequence_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""GIT Model with a `language modeling` head on top for autoregressive language modeling.""", GIT_START_DOCSTRING
)
class GitForCausalLM(GitPreTrainedModel):
_tied_weights_keys = ["output.weight"]
def __init__(self, config):
super().__init__(config)
self.git = GitModel(config)
self.output = nn.Linear(config.hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.output
def set_output_embeddings(self, new_embeddings):
self.output = new_embeddings
@add_start_docstrings_to_model_forward(GIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Examples:
Image captioning example:
```python
>>> from transformers import AutoProcessor, AutoModelForCausalLM
>>> import requests
>>> from PIL import Image
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
>>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
>>> generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print(generated_caption)
two cats sleeping on a pink blanket next to remotes.
```
Visual question answering (VQA) example:
```python
>>> from transformers import AutoProcessor, AutoModelForCausalLM
>>> from huggingface_hub import hf_hub_download
>>> from PIL import Image
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base-textvqa")
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-textvqa")
>>> file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset")
>>> image = Image.open(file_path).convert("RGB")
>>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
>>> question = "what does the front of the bus say at the top?"
>>> input_ids = processor(text=question, add_special_tokens=False).input_ids
>>> input_ids = [processor.tokenizer.cls_token_id] + input_ids
>>> input_ids = torch.tensor(input_ids).unsqueeze(0)
>>> generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
>>> print(processor.batch_decode(generated_ids, skip_special_tokens=True))
['what does the front of the bus say at the top? special']
```
Video captioning example:
```python
>>> import av
>>> import numpy as np
>>> from PIL import Image
>>> from huggingface_hub import hf_hub_download
>>> from transformers import AutoProcessor, AutoModelForCausalLM
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base-vatex")
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vatex")
>>> # set seed for reproducability
>>> np.random.seed(45)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # load video
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample frames
>>> num_frames = model.config.num_image_with_embedding
>>> indices = sample_frame_indices(
... clip_len=num_frames, frame_sample_rate=4, seg_len=container.streams.video[0].frames
... )
>>> frames = read_video_pyav(container, indices)
>>> pixel_values = processor(images=list(frames), return_tensors="pt").pixel_values
>>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
>>> print("Generated caption:", processor.batch_decode(generated_ids, skip_special_tokens=True))
Generated caption: ['a woman is sitting at a table and she is talking about the food she is holding.']
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.git(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
pixel_values=pixel_values,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.output(sequence_output)
loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
num_image_tokens = self.git.encoder.layer[0].attention.self.image_patch_tokens
shifted_logits = logits[:, num_image_tokens:-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
loss = loss_fct(shifted_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
):
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
input_ids = input_ids[:, -1:]
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
input_shape = input_ids.shape
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": kwargs.get("pixel_values", None),
"past_key_values": past_key_values,
"use_cache": use_cache,
}
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/git/__init__.py
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_git"] = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/git/processing_git.py
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for GIT
"""
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class GitProcessor(ProcessorMixin):
r"""
Constructs a GIT processor which wraps a CLIP image processor and a BERT tokenizer into a single processor.
[`GitProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BertTokenizerFast`]. See the
[`~GitProcessor.__call__`] and [`~GitProcessor.decode`] for more information.
Args:
image_processor ([`AutoImageProcessor`]):
The image processor is a required input.
tokenizer ([`AutoTokenizer`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
if text is not None:
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
if images is not None:
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
if text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
return ["input_ids", "attention_mask", "pixel_values"]
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/mega/configuration_mega.py
|
# coding=utf-8
# Copyright 2023 The Mega Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MEGA configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"mnaylor/mega-base-wikitext": "https://huggingface.co/mnaylor/mega-base-wikitext/resolve/main/config.json",
}
class MegaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MegaModel`]. It is used to instantiate a Mega
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Mega
[mnaylor/mega-base-wikitext](https://huggingface.co/mnaylor/mega-base-wikitext) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the Mega model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MegaModel`].
hidden_size (`int`, *optional*, defaults to 128):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 4):
Number of hidden layers in the Mega encoder.
intermediate_size (`int`, *optional*, defaults to 256):
Dimensionality of the hidden size (self-attention value projection) within the Mega encoder
ema_projection_size (`int`, *optional*, defaults to 16):
Dimensionality of the MegaMultiDimensionDampedEma
bidirectional (`bool`, *optional*, defaults to `True`):
Whether the MegaMultiDimensionDampedEma used in Mega's self-attention should work bidirectionally (`True`)
or unidirectionally (`False`). Bidirectional EMA is incompatible with causal decoding, so this should be
False if you intend to use the model as a decoder.
shared_representation_size (`int`, *optional*, defaults to 64):
Dimensionality of the linear projection for shared representation of self-attention queries and keys
use_chunking (`bool`, *optional*, defaults to `False`):
Whether to chunk inputs for linear self-attention complexity (described as Mega-chunk in the paper)
chunk_size (`int`, *optional*, defaults to -1):
If `use_chunking` is set to `True`, determines the size of the chunks to apply to the input sequence. If
chunking is used, input sequences must be padded to a multiple of `chunk_size`
truncation (`int`, *optional*):
If specified, the sequence length for which to truncate MegaMultiDimensionDampedEma
normalize_before_mega (`bool`, *optional*, defaults to `True`):
Whether to normalize before (`True`) or after (`False`) passing through Mega encoder blocks
normalization_type (`str`, *optional*, defaults to `"scalenorm"`):
Type of normalization to use in Mega encoder blocks. Choose one of `"scalenorm"`, `"layernorm"`,
`"rmsnorm"`, `"batchnorm"`, or `"syncbatchnorm"` (GPU required for syncbatchnorm)
norm_affine (`bool`, *optional*, defaults to `True`):
If `True`, applies a parameterized affine transformation to inputs during normalization
activation (`str`, *optional*, defaults to `"silu"`):
Activation function to apply within Mega encoder blocks. Choose one of `"silu"`, `"relu"`, `"linear"`,
`"gelu"`, or `"gelu_accurate"`
attention_activation (`str`, *optional*, defaults to `"softmax"`):
Activation function to apply for single-headed self-attention (a la Transformer). Choose one of
`"softmax"`, `"laplace"`, or `"relu2"`
dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for EMA self-attention
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
use_feature_dropout (`bool`, *optional*, defaults to `False`):
Whether to use feature-based (`True`) or standard dropout (`False`)
use_normalized_ffn (`bool`, *optional*, defaults to `True`):
Whether to use the normalized feed-forward sub-layer in Mega blocks (`True`) or pass Mega encoder output
as-is (`False`)
nffn_hidden_size (`int`, *optional*, defaults to 256):
If using the normalized feed-forward network (NFFN) layer within Mega (`use_normalized_ffn = True`), this
is the hidden size of the NFFN
normalize_before_ffn (`bool`, *optional*, defaults to `True`):
Whether to normalize before (`True`) or after (`False`) the feed-forward portion of NFFN
nffn_activation_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the NFFN component.
max_positions (`int`, *optional*, defaults to 2048):
The maximum sequence length to use for positional representations. For `"simple"` relative positional bias,
this is a hard limit on input length; `"rotary"` relative positional bias will extrapolate to longer
sequences
add_token_type_embeddings (`bool`, *optional*, defaults to `True`):
Whether to account for token types in embeddings. Left as optional to maintain compatibility with original
implementation while adding support for token types.
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`MegaModel`]. Only used if
`add_token_type_embeddings = True`
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
ema_delta_alpha_range (`float`, *optional*, defaults to 0.2):
The standard deviation for initializing the delta (damping factor) and alpha (decay factor) parameters in
MegaMultiDimensionDampedEma.
ema_beta_range (`float`, *optional*, defaults to 0.02):
The standard deviation for initializing the beta parameter (expansion matrix) in
MegaMultiDimensionDampedEma.
ema_gamma_omega_range (`float`, *optional*, defaults to 1.0):
The standard deviation for initializing the gamma (projection matrix) and omega (residual weight)
parameters in MultiDimensionEMA.
relative_positional_bias (`str`, *optional*, defaults to `"rotary"`):
Type of relative positional encoding. Choose one of `"rotary"` or `"simple"`. If `"simple"` is selected,
`max_positions` is used as a limit on input size, while `"rotary"` extrapolates beyond `max_positions`.
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
add_lm_hidden_dense_layer (`bool`, *optional*, defaults to `True`):
Whether to include a hidden layer for projection between encoder outputs and LM heads (`True`) or pass
hidden states directly to LM head (`False`). Remains optional for compatibility with original
implementation
Examples:
```python
>>> from transformers import MegaConfig, MegaModel
>>> # Initializing a Mega configuration
>>> configuration = MegaConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = MegaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mega"
def __init__(
self,
vocab_size=30522,
hidden_size=128,
num_hidden_layers=4,
intermediate_size=256,
ema_projection_size=16,
bidirectional=True,
shared_representation_size=64,
use_chunking=False,
chunk_size=-1,
truncation=None,
normalize_before_mega=True,
normalization_type="scalenorm",
norm_affine=True,
activation="silu",
attention_activation="softmax",
dropout_prob=0.1,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
use_feature_dropout=False,
use_normalized_ffn=True,
nffn_hidden_size=256,
normalize_before_ffn=True,
nffn_activation_dropout_prob=0.1,
max_positions=2048,
add_token_type_embeddings=False,
type_vocab_size=2,
initializer_range=0.02,
ema_delta_alpha_range=0.2,
ema_beta_range=0.02,
ema_gamma_omega_range=1.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
relative_positional_bias="rotary",
classifier_dropout=None,
use_cache=True,
add_lm_hidden_dense_layer=True,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.activation = activation
self.attention_activation = attention_activation
self.intermediate_size = intermediate_size
self.ema_projection_size = ema_projection_size
self.bidirectional = bidirectional
self.shared_representation_size = shared_representation_size
self.use_chunking = use_chunking
self.chunk_size = chunk_size
self.truncation = truncation
self.normalize_before_mega = normalize_before_mega
self.normalization_type = normalization_type
self.norm_affine = norm_affine
self.dropout_prob = dropout_prob
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.use_feature_dropout = use_feature_dropout
self.use_normalized_ffn = use_normalized_ffn
self.nffn_hidden_size = nffn_hidden_size
self.normalize_before_ffn = normalize_before_ffn
self.nffn_activation_dropout_prob = nffn_activation_dropout_prob
self.max_positions = max_positions
self.add_token_type_embeddings = add_token_type_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.ema_delta_alpha_range = ema_delta_alpha_range
self.ema_beta_range = ema_beta_range
self.ema_gamma_omega_range = ema_gamma_omega_range
self.relative_positional_bias = relative_positional_bias
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
self.add_lm_hidden_dense_layer = add_lm_hidden_dense_layer
self.num_attention_heads = 1 # not used but required by Hugging Face
class MegaOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/mega/modeling_mega.py
|
# coding=utf-8
# Copyright 2023 The Mega Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MEGA model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_mega import MegaConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "mnaylor/mega-base-wikitext"
_CONFIG_FOR_DOC = "MegaConfig"
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST = [
"mnaylor/mega-base-wikitext",
# See all Mega models at https://huggingface.co/models?filter=mega
]
class MegaEmbeddings(nn.Module):
"""
Mega's basic implementation does not incorporate token type embeddings, so this is a stripped-down version of
RoBERTa's embeddings which optionally includes token types
"""
def __init__(self, config: MegaConfig):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.use_token_types = config.add_token_type_embeddings
if self.use_token_types:
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# registering a buffer here allows model tracing when not passing optional token type IDs
# more info at transformers issue #5664
self.register_buffer(
"token_type_ids", torch.zeros(config.max_positions, dtype=torch.long).expand((1, -1)), persistent=False
)
self.padding_idx = config.pad_token_id
def forward(self, input_ids=None, token_type_ids=None, inputs_embeds=None):
if (input_ids is None) and (inputs_embeds is None):
raise ValueError("Must provide one of input_ids or inputs_embeds")
elif input_ids is not None:
input_shape = input_ids.size()
device = input_ids.device
# get the word embeddings if only IDs are provided
inputs_embeds = self.word_embeddings(input_ids)
else:
input_shape = inputs_embeds.size()[:-1]
device = inputs_embeds.device
# the original Mega implementation did not include token type embeddings, so we add
# an option to use them if desired; if embeddings are present and token type IDs are
# not provided, we will use a registered buffer (which helps with tracing)
if self.use_token_types:
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, : input_shape[1]]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], input_shape[1])
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# access token type embeddings
token_type_embeddings = self.token_type_embeddings(token_type_ids)
# add the token type embeddings to the word embeddings
embeddings = inputs_embeds + token_type_embeddings
else:
embeddings = inputs_embeds
return embeddings
class MegaSimpleRelativePositionalBias(nn.Module):
"""
Simple relative positional embeddings copied from the Mega repo; renamed variables for better readability
"""
def __init__(self, config: MegaConfig):
super().__init__()
self.config = config
self.max_positions = self.config.max_positions if self.config.chunk_size < 0 else self.config.chunk_size
self.rel_pos_bias = nn.Parameter(torch.Tensor(2 * config.max_positions - 1))
def forward(self, seq_len):
if seq_len > self.max_positions:
raise ValueError("Sequence length {} going beyond max length {}".format(seq_len, self.max_positions))
# seq_len * 2 - 1
bias = self.rel_pos_bias[(self.max_positions - seq_len) : (self.max_positions + seq_len - 1)]
# seq_len * 3 - 1
tile = F.pad(bias, (0, seq_len))
# (seq_len * 3 - 1) * seq_len
tile = torch.tile(tile, (seq_len,))
tile = tile[:-seq_len]
# seq_len x (3 * seq_len - 2)
tile = tile.view(seq_len, 3 * seq_len - 2)
start = (2 * seq_len - 1) // 2
end = tile.size(1) - start
tile = tile[:, start:end]
return tile
class MegaRotaryRelativePositionalBias(nn.Module):
"""
Rotary relative bias for positional information; similar in concept to RoPE (i.e. RoFormer) but taken from the Mega
repo due to differences in implementation.
When initialized, produces a positional bias which ranges from position 0 to config.max_positions, but can
extrapolate to longer sequences. Can be indexed according to input position IDs
"""
def __init__(self, config: MegaConfig):
super().__init__()
if config.hidden_size % 2 != 0:
raise RuntimeError("Rotary positional bias requires `hidden_size` to be a multiple of 2")
self.config = config
self.embed_dim = config.shared_representation_size
self.max_positions = self.config.max_positions if self.config.chunk_size < 0 else self.config.chunk_size
self.sine, self.cosine = MegaRotaryRelativePositionalBias.get_sinusoid_embeddings(
config.max_positions, self.embed_dim
)
# alpha and beta parameters for the rotary bias; beta renamed to b_param to avoid clashes with tf/flax weight handling
# in loading pretrained weights
self.alpha = nn.Parameter(torch.Tensor(1, self.embed_dim))
self.b_param = nn.Parameter(torch.Tensor(1, self.embed_dim))
self.register_buffer("_float_tensor", torch.FloatTensor([0.0]))
@staticmethod
def get_sinusoid_embeddings(max_positions: int, embedding_dim: int):
half_dim = embedding_dim // 2
emb = math.log(10000) / half_dim
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(max_positions, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
return torch.sin(emb), torch.cos(emb)
def rotary(self, input):
seq_len, embed_dim = input.size()
chunk_1, chunk_2 = torch.chunk(input, 2, dim=-1)
if self.sine is None or seq_len > self.sine.size(0):
self.sine, self.cosine = MegaRotaryRelativePositionalBias.get_sinusoid_embeddings(seq_len, embed_dim)
self.max_positions = seq_len
self.sine = self.sine.to(self._float_tensor)
self.cosine = self.cosine.to(self._float_tensor)
sin = self.sine[:seq_len]
cos = self.cosine[:seq_len]
return torch.cat([chunk_1 * cos - chunk_2 * sin, chunk_2 * cos + chunk_1 * sin], dim=1)
def forward(self, seq_len):
rotary_alpha = self.rotary(self.alpha.expand(seq_len, self.embed_dim))
rotary_beta = self.rotary(self.b_param.expand(seq_len, self.embed_dim))
bias = torch.einsum("mk,nk->mn", rotary_alpha, rotary_beta)
return bias
class MegaDropout(nn.Module):
"""
A unified class for standard dropout functionality and featurewise dropout.
The original fairseq Mega repo used 2 classes for these, which included some unnecessary handling of training logic
and an unused `inplace` option. The original implementation used torch.nn.functional instead of submodules, which
is retained here as well.
"""
def __init__(self, dropout_probability, is_featurewise=False):
super().__init__()
self.dropout_probability = dropout_probability
self.is_featurewise = is_featurewise
def forward(self, input, batch_first: bool = False):
if self.is_featurewise:
if batch_first:
# (batch_size X sequence_length X feature_dimension)
# -> (batch_size X feature_dimension X sequence_length)
# -> (batch_size X sequence_length X feature_dimension)
return F.dropout2d(
input.transpose(-1, -2), p=self.dropout_probability, training=self.training
).transpose(-1, -2)
else:
if input.dim() != 3:
raise ValueError(
"Feature dropout inputs must be exactly 3-dimensional if inputs are ordered [sequence length, batch size, hidden dimension]"
)
# (sequence_length X batch_size X feature_dimension)
# -> (batch_size X feature_dimension X sequence_length)
# -> (sequence_length X batch_size X feature_dimension)
return F.dropout2d(input.permute(1, 2, 0), p=self.dropout_probability, training=self.training).permute(
2, 0, 1
)
else:
return F.dropout(input, p=self.dropout_probability, training=self.training)
class MegaRMSNorm(nn.Module):
"""
RMSNorm used in Mega implementation. Differs from T5's RMSNorm by applying the weight prior to taking the square
root (as opposed to after in T5)
"""
def __init__(self, number_features, eps=1e-6, affine=True):
super().__init__()
self.num_features = number_features
self.eps = eps
self.affine = affine
if affine:
self.weight = nn.Parameter(torch.Tensor(self.num_features))
else:
self.register_parameter("weight", None)
def forward(self, input):
mean_square = torch.mean(torch.square(input), dim=-1, keepdim=True)
if self.weight is not None:
input = input * self.weight
input * torch.rsqrt(mean_square + self.eps)
return input
class MegaScaleNorm(nn.Module):
"""
Scale normalization introduced in MEGA which is similar to RMSNorm, but uses a single parameter for scalar
multiplication instead of a vector, and applies over a specified dimension
"""
def __init__(self, dim, eps=1e-6, affine=True):
super().__init__()
self.dim = dim
self.eps = eps
self.affine = affine
if affine:
self.scalar = nn.Parameter(torch.Tensor(1))
else:
self.register_parameter("scalar", None)
def forward(self, input):
mean_square = torch.mean(torch.square(input), dim=self.dim, keepdim=True)
if self.scalar is not None:
input = self.scalar * input
output = input * torch.rsqrt(mean_square + self.eps)
return output
class MegaSequenceNorm(nn.Module):
"""
A wrapper class for various layer normalization options used in Mega. Used to handle differences in expectations on
input axis locations for different normalization methods.
"""
def __init__(self, norm_type, embedding_dim, eps=1e-5, affine=True, export=False):
super().__init__()
if norm_type == "layernorm":
self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine=affine)
elif norm_type == "scalenorm":
self.norm = MegaScaleNorm(dim=-1, eps=eps, affine=affine)
elif norm_type == "rmsnorm":
self.norm = MegaRMSNorm(embedding_dim, eps=eps, affine=affine)
elif norm_type == "batchnorm":
self.norm = nn.BatchNorm1d(embedding_dim, eps=eps, affine=affine)
elif norm_type == "syncbatchnorm":
self.norm = nn.SyncBatchNorm(embedding_dim, eps=eps, affine=affine)
else:
raise ValueError("Unknown norm type: {}".format(norm_type))
def forward(self, input):
if isinstance(self.norm, nn.modules.batchnorm._BatchNorm):
if input.dim() != 3:
raise ValueError("BatchNorm inputs must be exactly 3-dimensional")
input = input.permute(1, 2, 0)
input = self.norm(input)
return input.permute(2, 0, 1)
else:
return self.norm(input)
# add this layernorm class to ALL_LAYERNORM_LAYERS
ALL_LAYERNORM_LAYERS.append(MegaSequenceNorm)
class MegaMultiDimensionDampedEma(nn.Module):
"""
Mega's Exponential Moving Average layer, largely left unmodified from the original repo with the exception of
variable names and moving away from the stateful representation of incremental decoding state. See
"https://arxiv.org/abs/2209.10655" for more details.
"""
def __init__(self, config: MegaConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.ndim = config.ema_projection_size
self.bidirectional = config.bidirectional
self.truncation = config.truncation
self.scale = math.sqrt(1.0 / self.ndim)
kernel_dim = 2 * config.hidden_size if self.bidirectional else config.hidden_size
# renamed delta (damping_factor) and alpha (decay_factor) to be more descriptive of what the parameters are doing
self.damping_factor = nn.Parameter(torch.Tensor(kernel_dim, self.ndim, 1))
self.decay_factor = nn.Parameter(torch.Tensor(kernel_dim, self.ndim, 1))
# renamed gamma (kernel_projection_matrix) and beta (ema_expansion_matrix) respectively to avoid HF renaming
# things and align with the paper's description of these params' behavior
self.ema_expansion_matrix = nn.Parameter(torch.Tensor(kernel_dim, self.ndim, 1))
self.kernel_projection_matrix = nn.Parameter(torch.Tensor(kernel_dim, self.ndim))
# renamed omega to residual_weight to describe what it's doing
self.residual_weight = nn.Parameter(torch.Tensor(config.hidden_size))
self._kernel = None
self._coeffs = None
def _compute_ema_coefficients(self):
self._coeffs = None
# convert the alpha and delta parameters (kernel_dim x EMA projection size x 1) to [0, 1] with sigmoid
damping_factor = torch.sigmoid(self.damping_factor)
decay_factor = torch.sigmoid(self.decay_factor)
previous_timestep_weight = 1.0 - damping_factor * decay_factor
return damping_factor, previous_timestep_weight
def _compute_efficient_ema_kernel(self, length: int):
# computes the kernel used for efficient damped EMA applied via FFT convolution
self._kernel = None
# p and q have shape (kernel_dim x ema_projection_size x 1)
damping_factor, previous_timestep_weight = self._compute_ema_coefficients()
# extend the kernel to (kernel_dim X ema_projection_size X sequence_length) and
# multiply q by sequential ints up to the sequence length
vander = torch.arange(length).to(damping_factor).view(1, 1, length) * torch.log(previous_timestep_weight)
kernel = (damping_factor * self.ema_expansion_matrix) * torch.exp(vander)
# (kernel_dim X ema_projection_size X sequence_length) -> (kernel_dim, sequence_length)
return torch.einsum("dnl,dn->dl", kernel, self.kernel_projection_matrix * self.scale)
def get_ema_coefficients(self):
if self.training:
return self._compute_ema_coefficients()
else:
if self._coeffs is None:
self._coeffs = self._compute_ema_coefficients()
return self._coeffs
def get_ema_kernel(self, length: int):
kernel_size = length if self.truncation is None else min(self.truncation, length)
if self.training:
return self._compute_efficient_ema_kernel(kernel_size)
else:
if self._kernel is None or self._kernel.size(-1) < kernel_size:
self._kernel = self._compute_efficient_ema_kernel(kernel_size)
return self._kernel[..., :kernel_size]
def fft_convolution(self, inputs, kernel, length):
# this is a wrapper for repeated use of EMA calculation via FFT (fast Fourier transform) convolution
inputs_fft = torch.fft.rfft(inputs.float(), n=2 * length)
kernel_fft = torch.fft.rfft(kernel.float(), n=2 * length)
convolved_sequence = torch.fft.irfft(inputs_fft * kernel_fft, n=2 * length)
return convolved_sequence
def ema_step(self, inputs, length, past_state=None):
if length == 1:
return self.one_ema_step(inputs, past_state=past_state)
# (kernel_dim X ema_projection_size X 1)
damping_factor, previous_timestep_weight = self.get_ema_coefficients()
# (kernel_dim X ema_projection_size X 1+sequence_length)
vander = torch.arange(length + 1).to(damping_factor).view(1, 1, length + 1) * torch.log(
previous_timestep_weight
)
vander = torch.exp(vander)
if past_state is not None:
# (kernel_dim X ema_projection_size X sequence_length) * (kernel_dim X ema_projection_size X 1)
# -> (kernel_dim X ema_projection_size X sequence_length)
past_ema_proj = vander[:, :, 1:] * (self.kernel_projection_matrix * self.scale).unsqueeze(-1)
# past_state will be (batch_size, kernel_dim, ema_projection_size)
past_ema_state = torch.einsum("bdn,dnl->bdl", past_state, past_ema_proj)
# (kernel_dim X ema_projection_size) * (batch_size X kernel_dim X ema_projection_size)
# -> (batch_size X kernel_dim X ema_projection_size)
past_vandermonde = vander[:, :, -1] * past_state
else:
past_ema_state = None
past_vandermonde = None
# (kernel_dim X ema_projection_size X sequence_length)
vander = vander[:, :, :-1]
kernel = (damping_factor * self.ema_expansion_matrix) * vander
kernel_proj = torch.einsum("dnl,dn->dl", kernel, self.kernel_projection_matrix * self.scale)
ema_output = self.fft_convolution(inputs, kernel_proj, length=length)[..., 0:length]
ema_output = ema_output.type_as(inputs)
if past_ema_state is not None:
ema_output = ema_output + past_ema_state
updated_hidden_state = torch.einsum("bdl,dnl->bdn", inputs, torch.flip(kernel, dims=[2]))
if past_vandermonde is not None:
updated_hidden_state = updated_hidden_state + past_vandermonde
# return a tuple:
# (sequence_length, batch_size, kernel_dim)
# (batch_size, kernel_dim, ema_projection_size)
return ema_output.permute(2, 0, 1), updated_hidden_state
def one_ema_step(self, inputs, past_state=None):
damping_factor, previous_timestep_weight = self.get_ema_coefficients()
# (kernel_dim X ema_projection_size) x (batch_size X kernel_dim X 1)
# -> (batch_size X kernel_dim X ema_projection_size)
updated_state = (damping_factor * self.ema_expansion_matrix).squeeze(-1) * inputs
if past_state is not None:
updated_state = updated_state + previous_timestep_weight.squeeze(-1) * past_state
# (batch_size X kernel_dim)
out = torch.einsum("bdn,dn->bd", updated_state, self.kernel_projection_matrix * self.scale)
# (1 X batch_size X kernel_dim), (batch_size X kernel_dim X ema_projection_size)
return out.unsqueeze(0), updated_state
def forward(
self,
inputs,
attention_mask: Optional[torch.Tensor] = None,
prev_state: Optional[torch.Tensor] = None,
use_cache: bool = False,
) -> torch.Tensor:
"""
Mega's exponential moving average (EMA) sub-layer applied prior to single-headed (traditional) self-attention
Args:
inputs (`torch.Tensor` of shape `(sequence_length, batch_size, hidden_size)`):
Hidden state / embedding input to update via EMA based on FFT convolution
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indicates which inputs are to be ignored (mostly due to padding), where elements are either 1 for *not
masked* or 0 for *masked*
prev_state (`torch.Tensor` of shape `(batch_size, config.ndim)`, *optional*):
The hidden state returned from the previous timestep during incremental decoding.
use_cache (`bool`, default `False`):
Whether to perfom incremental decoding; uses `prev_state` as the prior timestep, and returns the
updated EMA hidden state for use in the next step
Returns:
`tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and
inputs:
- **hidden_states** (`torch.FloatTensor` of shape `(sequence_length, batch_size, hidden_size)`) -- Hidden
states updated by EMA, with same shapes as inputs
- **updated_state** (*optional*, returned when `use_cache=True`) `torch.FloatTensor of shape `(batch_size,
config.ndim)` -- The incremental EMA state for use in the next step of incremental decoding
"""
seq_len, bsz, embed_dim = inputs.size()
if embed_dim != self.embed_dim:
raise ValueError(
f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}"
)
# sequence_length X batch_size X hidden_size
residual = inputs * self.residual_weight
# (sequence_length x batch_size x hidden_size) -> (batch_size x hidden_size x sequence_length)
inputs = inputs.permute(1, 2, 0)
# mask the input: output is a tensor with 0 in the masked positions
if attention_mask is not None:
inputs = inputs * (attention_mask.unsqueeze(1).type_as(inputs))
if self.bidirectional and use_cache:
raise RuntimeError("Bidirectional EMA does not support incremental state")
if use_cache:
out, updated_state = self.ema_step(inputs, seq_len, past_state=prev_state)
# (batch_size X hidden_size) -> (1 x batch_size x hidden_size)
out = F.silu(out + residual)
# if incremental decoding, return the new state along with the output
return out, updated_state
else:
# (hidden_size x sequence_length)
kernel = self.get_ema_kernel(seq_len)
fft_len = seq_len
s_index = 0
kernel_size = kernel.size(1)
if self.bidirectional:
# split the kernel for each direction of EMA
k1, k2 = torch.split(kernel, [self.embed_dim, self.embed_dim], dim=0)
# (hidden_size X 2*sequence_length - 1)
kernel = F.pad(k1, (kernel_size - 1, 0)) + F.pad(k2.flip(-1), (0, kernel_size - 1))
inputs = F.pad(inputs, (kernel_size - 1, 0))
fft_len = fft_len + kernel_size - 1
s_index = 2 * kernel_size - 2
ema_output = self.fft_convolution(inputs, kernel, length=fft_len)[..., s_index : s_index + seq_len]
ema_output = ema_output.type_as(inputs)
# (batch_size X hidden_size X sequence_length) -> (sequence_length X batch_size X hidden_size)
gated_ema_output = F.silu(ema_output.permute(2, 0, 1) + residual)
return gated_ema_output, None
class MegaGatedCrossAttention(nn.Module):
"""
Gated Structured State Attention for use in encoder-decoder model. See Mega paper for more details. Only
modifications from original implementation are variable names, removing the unnecessary `before_attn_fn` and
`static_kv` arguments, and the stateful representation of incremental decoder state.
"""
def __init__(self, config: MegaConfig):
super().__init__()
self.config = config
self.activation = ACT2FN[self.config.activation]
self.attention_activation = self.config.attention_activation
self.scaling = self.config.shared_representation_size**-0.5 if self.attention_activation == "softmax" else None
self.dropout = MegaDropout(self.config.dropout_prob, is_featurewise=self.config.use_feature_dropout)
self.hidden_dropout = MegaDropout(
self.config.hidden_dropout_prob, is_featurewise=self.config.use_feature_dropout
)
# Attention dropout is standard dropout
self.attention_dropout = MegaDropout(self.config.attention_probs_dropout_prob, is_featurewise=False)
self.prenorm = self.config.normalize_before_mega
self.norm = MegaSequenceNorm(
self.config.normalization_type, self.config.hidden_size, affine=self.config.norm_affine
)
self.k_proj = nn.Linear(self.config.hidden_size, self.config.shared_representation_size)
self.v_proj = nn.Linear(self.config.hidden_size, self.config.hidden_size)
self.q_proj = nn.Linear(
self.config.hidden_size, 2 * self.config.hidden_size + self.config.shared_representation_size
)
self.h_proj = nn.Linear(self.config.hidden_size, self.config.hidden_size)
if self.config.relative_positional_bias == "simple":
self.rel_pos_bias = MegaSimpleRelativePositionalBias(config)
elif self.config.relative_positional_bias == "rotary":
self.rel_pos_bias = MegaRotaryRelativePositionalBias(config)
else:
raise ValueError("unknown relative position bias: {}".format(self.config.relative_positional_bias))
self.softmax = nn.Softmax(dim=-1)
def element_attention(self, query, key, key_padding_mask, pidx):
bsz, src_len, _ = key.size()
tgt_len = query.size(1) if pidx is None else pidx + 1
if key_padding_mask is not None:
# (batch_size X source_sequence_length) --> (batch_size X 1 X 1)
lengths = key_padding_mask.sum(dim=-1).view(bsz, 1, 1)
else:
lengths = src_len
# (target_sequence_length X source_sequence_length)
bias = self.rel_pos_bias(max(tgt_len, src_len))[:, :src_len]
if pidx is not None:
if query.size(1) != 1:
raise ValueError("Position offset provided with queries longer than 1 token")
# source_sequence_length
bias = bias[pidx]
else:
# (target_sequence_length X source_sequence_length)
bias = bias[:tgt_len]
# (batch_size X target_sequence_length X source_sequence_length)
qk = torch.bmm(query, key.transpose(1, 2)) / lengths + bias
attn_weights = ACT2FN[self.attention_activation](qk).type_as(qk)
if key_padding_mask is not None:
attn_weights = attn_weights * key_padding_mask.unsqueeze(1)
return attn_weights
def softmax_attention(self, query, key, key_padding_mask, pidx):
bsz, src_len, _ = key.size()
tgt_len = query.size(1) if pidx is None else pidx + 1
# (target_sequence_length X source_sequence_length)
bias = self.rel_pos_bias(max(tgt_len, src_len))[:, :src_len]
if pidx is not None:
if query.size(1) != 1:
raise ValueError("Position offset provided with queries longer than 1 token")
# source_sequence_length
bias = bias[pidx]
else:
# (target_sequence_length X source_sequence_length)
bias = bias[:tgt_len]
# scaled attention
query = query * self.scaling
# (batch_size X target_sequence_length X source_sequence_length)
qk = torch.bmm(query, key.transpose(1, 2)) + bias
if key_padding_mask is not None:
qk = qk.masked_fill((1 - key_padding_mask).unsqueeze(1).to(torch.bool), float("-inf"))
attn_weights = self.softmax(qk).type_as(qk)
return attn_weights
def forward(
self,
query,
key: Optional[torch.Tensor],
value: Optional[torch.Tensor],
key_padding_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
Gated cross-attention used in Mega
Args:
query (`torch.Tensor` of shape `(target_sequence_length, batch_size, hidden_size)`):
The self (or target) sequence input used as query inputs for cross-attention
key (`torch.Tensor` of shape `(source_sequence_length, batch_size, hidden_size)`):
The cross (or source) sequence input with shape used as keys in cross-attention
value (`torch.Tensor` of shape `(source_sequence_length, batch_size, hidden_size)`):
The cross (or source) sequence input with shape used as values in cross-attention
key_padding_mask (`torch.LongTensor` of shape `(batch_size, source_sequence_length)`, *optional*):
Padding mask corresponding to the source sequence, where entries are 1 for *not masked* and 0 for
*masked* tokens
past_key_values (`tuple(torch.FloatTensor)`, *optional*):
If provided, the hidden state returned from the previous timestep during incremental decoding; expects
that prior cross-attention keys and values will be the last two items in the tuple
output_attentions (`bool`, defaults to `False`):
Whether or not to return the cross-attention weights.
use_cache (`bool`, defaults to `False`):
Whether to perfom incremental decoding; uses `prev_state` as the prior timestep, and returns the
updated EMA hidden state for use in the next step
Returns:
`tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and
inputs:
- **hidden_states** (`torch.FloatTensor` of shape `(target_sequence_length, batch_size, hidden_size)`) --
Hidden states from target sequence updated by gated cross-attention
- **attn_weights** (*optional*, returned when `output_attentions=True`) `torch.FloatTensor` of shape
`(batch_size, source_sequence_length, target_sequence_length)` -- The pairwise cross-attention weights
corresponding to each token in the source and target sequences
- **cross_key** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size,
source_sequence_length, config.shared_representation_size)` -- The cross-attention key state for use in
the next step of incremental decoding
- **cross_value** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size,
source_sequence_length, config.hidden_size)` -- The cross-attention value state for use in the next step
of incremental decoding
"""
seq_len, bsz, embed_dim = query.size()
if embed_dim != self.config.hidden_size:
raise ValueError(
f"Unexpected embedding dimension received: input is {embed_dim} but expected {self.config.hidden_size}"
)
if past_key_values is not None:
# make sure the inputs only have a sequence length of 1 if we're doing incremental decoding
if seq_len != 1:
raise ValueError(f"Incremental decoding requested with self-sequence length > 1: {seq_len}")
# expect past_key_values to have (self_key, self_value, self_ema, cross_key, cross_value)
prev_cross_key, prev_cross_value = past_key_values[-2:]
key = value = None
# use the self-attention cache to get the position id of the current step
prev_self_key = past_key_values[0]
num_incremental_steps = prev_self_key.size(1) + 1
else:
prev_cross_key = prev_cross_value = None
# we still need the position id if we're doing incremental decoding (past_key_values will be None for the first step)
num_incremental_steps = 0 if use_cache and (seq_len == 1) else None
full_query = query
if self.prenorm:
full_query = self.norm(full_query)
# (target_sequence_length X batch_size X 2*hidden_size + shared_representation_size)
query_projected = self.q_proj(full_query)
# split the query projections into separate components
# - residual_weight is passed through sigmoid and sent through elementwise multiplication to the gated/weighted targets prior to being added to the query directly
# - target_gate is a silu-gated tensor that is multiplied by the attention-weighted target below prior to residual connection
# - attention_query is the part that is passed to the attention function
residual_weight, target_gate, attention_query = torch.split(
query_projected,
[self.config.hidden_size, self.config.hidden_size, self.config.shared_representation_size],
dim=-1,
)
# (target_sequence_length X batch_size X hidden_size)
residual_weight = torch.sigmoid(residual_weight)
target_gate = F.silu(target_gate)
if key is None:
if value is not None:
raise ValueError("Key and value must be `None` simultaneously")
projected_key = projected_value = None
else:
# (source_sequence_length X batch_size X shared_representation_size)
projected_key = self.k_proj(key)
# (source_sequence_length X batch_size X hidden_size)
projected_value = self.activation(self.v_proj(key))
# (target_sequence_length X batch_size X shared_representation_size)
# -> (batch_size X target_sequence_length X shared_representation_size)
attention_query = attention_query.transpose(0, 1)
if projected_key is not None:
projected_key = projected_key.transpose(0, 1)
if projected_value is not None:
projected_value = projected_value.transpose(0, 1)
# if we're doing incremental decoding, k and v are None and need to be overwritten with past values
if past_key_values is not None:
projected_key = prev_cross_key
projected_value = prev_cross_value
# if we're returning the cache for later use, store these now for later return (can be done without having past_key_values provided)
if use_cache:
updated_cross_key = projected_key
updated_cross_value = projected_value
ctx_len = projected_key.size(1)
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
if key_padding_mask.size(0) != bsz:
raise ValueError("Key padding mask does not align on the batch dimension")
if key_padding_mask.size(1) != ctx_len:
raise ValueError("Key padding mask does not align on the sequence length dimension")
if self.attention_activation == "softmax":
attn_weights = self.softmax_attention(
attention_query, projected_key, key_padding_mask, num_incremental_steps
)
else:
attn_weights = self.element_attention(
attention_query, projected_key, key_padding_mask, num_incremental_steps
)
projected_value = self.hidden_dropout(projected_value, batch_first=True)
kernel = self.attention_dropout(attn_weights)
# (batch_size X target_sequence_length X hidden_size)
# -> (target_sequence_length X batch_size X hidden_size)
weighted_targets = torch.bmm(kernel, projected_value).transpose(0, 1)
# (target_sequence_length X batch_size X hidden_size)
weighted_targets = self.activation(self.h_proj(weighted_targets * target_gate))
weighted_targets = self.dropout(weighted_targets)
out = torch.addcmul(query, residual_weight, weighted_targets - query)
if not self.prenorm:
out = self.norm(out)
outputs = (out, attn_weights) if output_attentions else (out,)
if use_cache:
outputs = outputs + (updated_cross_key, updated_cross_value)
return outputs
class MegaMovingAverageGatedAttention(nn.Module):
"""
Pure PyTorch implementation of Mega block; see https://arxiv.org/abs/2209.10655 and original fairseq implementation
at https://github.com/facebookresearch/mega (copyright Meta Research, licensed under MIT License)
Differences from original implementation include hidden state refactor and fixed inconsistency with additive /
multiplicative attention masks
"""
def __init__(self, config: MegaConfig):
super().__init__()
self.config = config
self.activation = ACT2FN[self.config.activation]
self.scaling = (
self.config.shared_representation_size**-0.5 if self.config.attention_activation == "softmax" else None
)
self.dropout = MegaDropout(self.config.dropout_prob, is_featurewise=self.config.use_feature_dropout)
self.hidden_dropout = MegaDropout(
self.config.hidden_dropout_prob, is_featurewise=self.config.use_feature_dropout
)
# attention dropout is standard dropout
self.attention_dropout = MegaDropout(self.config.attention_probs_dropout_prob, is_featurewise=False)
self.norm = MegaSequenceNorm(
self.config.normalization_type, self.config.hidden_size, affine=self.config.norm_affine
)
self.ema_gate = MegaMultiDimensionDampedEma(config)
self.v_proj = nn.Linear(self.config.hidden_size, self.config.intermediate_size)
self.mx_proj = nn.Linear(
self.config.hidden_size,
self.config.shared_representation_size + self.config.intermediate_size + 2 * self.config.hidden_size,
)
self.h_proj = nn.Linear(self.config.intermediate_size, self.config.hidden_size)
self.qk_weight = nn.Parameter(torch.Tensor(2, self.config.shared_representation_size))
self.qk_bias = nn.Parameter(torch.Tensor(2, self.config.shared_representation_size))
if self.config.relative_positional_bias == "simple":
self.rel_pos_bias = MegaSimpleRelativePositionalBias(config)
elif self.config.relative_positional_bias == "rotary":
self.rel_pos_bias = MegaRotaryRelativePositionalBias(config)
else:
raise ValueError(f"Unknown relative positional bias: {self.config.relative_positional_bias}")
self.softmax = nn.Softmax(dim=-1)
self.attention_function = (
self.softmax_attention if self.config.attention_activation == "softmax" else self.element_attention
)
def element_attention(self, query, key, padding_mask, causal_mask):
"""
Apply element-wise attention via relu^2 or laplace. Same as original implementation but with standardized
causal attention mask. Expects the Hugging Face standard attention mask paradigm: 1 for not masked, and 0 for
masked.
"""
seq_len = key.size(2)
if padding_mask is not None:
# (batch_size X number of chunks X 1)
lengths = padding_mask.sum(-1, keepdim=True)
# (batch_size X number of chunks X 1 X 1)
lengths = lengths.clamp(min=1.0).unsqueeze(-1)
else:
lengths = seq_len
if causal_mask is not None:
lengths = causal_mask.sum(dim=-1, keepdim=True)
# (sequence_length X sequence_length)
bias = self.rel_pos_bias(seq_len)
if seq_len != query.size(2):
if query.size(2) != 1:
raise ValueError("Size mismatch between Q and K in element attention")
# (1 X sequence_length)
bias = bias[-1:]
# (batch_size X number of chunks X sequence_length X sequence_length)
qk = torch.matmul(query, key.transpose(2, 3)) / lengths + bias
attn_weights = ACT2FN[self.config.attention_activation](qk).type_as(qk)
if padding_mask is not None:
attn_weights = attn_weights * padding_mask.unsqueeze(2)
if causal_mask is not None:
attn_weights = attn_weights * causal_mask
return attn_weights
def softmax_attention(self, query, key, padding_mask, causal_mask):
"Standard softmax self-attention, as in the original Transformer paper"
seq_len = key.size(2)
# (sequence_length X sequence_length)
bias = self.rel_pos_bias(seq_len)
if seq_len != query.size(2):
if query.size(2) != 1:
raise ValueError("Size mismatch between Q and K in softmax attention")
# (1 X sequence_length)
bias = bias[-1:]
# scaled attention
query = query * self.scaling
# (batch_size x number of chunks x chunk_size x chunk_size) if chunking
# (batch_size x 1 x sequence_length x sequence_length) otherwise
qk = torch.matmul(query, key.transpose(2, 3)) + bias
# apply causal mask (presumed to be 1/0 for not masked / masked)
# additive, but convert to 0/-inf (which is not explicitly in the Mega source code)
if causal_mask is not None:
additive_causal_mask = torch.zeros_like(causal_mask, dtype=qk.dtype)
additive_causal_mask = additive_causal_mask.masked_fill((1 - causal_mask).bool(), float("-inf"))
qk = qk + additive_causal_mask
if padding_mask is not None:
# 1 for tokens which are *not masked*
# 0 for tokens which are *masked*
# replace masked tokens with -inf to make softmax ignore them
# need to invert the padding mask to match what mega original did
padding_mask = 1 - padding_mask
padding_mask_all = padding_mask.all(dim=-1, keepdim=True)
padding_mask = torch.logical_and(padding_mask, ~padding_mask_all)
qk = qk.masked_fill(padding_mask.unsqueeze(2).to(torch.bool), float("-inf"))
attn_weights = self.softmax(qk).type_as(qk)
return attn_weights
def forward(
self,
input,
padding_mask: Optional[torch.Tensor] = None,
causal_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.Tensor]] = None,
output_attentions=False,
use_cache=False,
):
"""
Mega's self-attention block, which combines multi-headed EMA with traditional self-attention
Args:
input (`torch.Tensor` of shape `(sequence_length, batch_size, hidden_size)`):
Hidden states to be updated by Mega's self-attention
padding_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked*
or 0 for *masked*
causal_mask (`torch.LongTensor` of shape `(sequence_length, sequence_length)`, *optional*):
Indicates which inputs are to be ignored due to causal attention, where elements are either 1 for *not
masked* or 0 for *masked*
past_key_values (`tuple(torch.Tensor)`, *optional*):
The hidden states returned from the previous timestep during incremental decoding; expects that
self-attention key, value, and EMA states are the first 3 entries in the tuple
output_attentions (`bool`, default `False`):
Whether to return self-attention weights
use_cache (`bool`, default `False`):
Whether to perfom incremental decoding; uses `past_key_values` as prior state, and returns the updated
states for use in the next step
Returns:
`tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and
inputs:
- **hidden_states** (`torch.FloatTensor` of shape `(sequence_length, batch_size, hidden_size)`) -- Hidden
states from target sequence updated by Mega's self-attention
- **attn_weights** (*optional*, returned when `output_attentions=True`) `torch.FloatTensor` of shape
`(batch_size, 1, sequence_length, sequence_length)` -- The self-attention weights corresponding to how
each token in the input sequence attends to every other token
- **self_key** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size,
sequence_length, config.shared_representation_size)` -- The self-attention key state for use in the next
step of incremental decoding
- **self_value** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size,
sequence_length, config.hidden_size)` -- The self-attention value state for use in the next step of
incremental decoding
- **self_ema_state** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape
`(batch_size, config.ndim)` The incremental EMA state for use in the next step of incremental decoding.
"""
seq_len, bsz, embed_dim = input.size()
if embed_dim != self.config.hidden_size:
raise ValueError(f"Input embedding dimension should be {self.config.hidden_size}; received {embed_dim}")
# store inputs for residual connection and handle pre-norm if requested
residual = input
if self.config.normalize_before_mega:
input = self.norm(input)
# (sequence_length X batch_size X hidden_size) -> (sequence_length X batch_size X intermediate_size)
value = self.activation(self.v_proj(input))
# unpack the incremental state if provided
# assumed to be (self K, self V, self EMA state, cross K, cross V)
# also assumes that incremental decoding is working one token at a time, so input sequence length must be 1
if self.config.is_decoder and (past_key_values is not None):
if seq_len > 1:
raise ValueError(f"Incremental decoding only supports self sequence length of 1; received {seq_len}")
# the first 3 items in the saved states will be these regardless of whether cross-attention is present
prev_self_key, prev_self_value, prev_ema_state = past_key_values[0:3]
else:
prev_self_key = prev_self_value = prev_ema_state = None
# ema output is (sequence_length x batch_size x hidden_size)
# updated_ema_state will be None if use_cache=False; otherwise (batch_size, config.ndim)
ema_out, updated_ema_state = self.ema_gate(
input, attention_mask=padding_mask, prev_state=prev_ema_state, use_cache=use_cache
)
ema_out = self.dropout(ema_out)
# (sequence_length X batch_size X hidden_size)
# -> (sequence_length X batch_size X 2*hidden_size + config.shared_representation_size + config.intermediate_size)
# - residual_weight -> sigmoid -> applied to residual connection in torch.addcmul
# - query_key_gates -> split into two components: query_key becomes query and key for attention input, gates becomes gating for self-attention output
# - intermediate_state -> added to weighted attention output, sent through activation, and has inputs subtracted during
# torch.addcmul to create the final layer output
base = self.mx_proj(ema_out)
residual_weight, query_key_gates, intermediate_state = torch.split(
base,
[
self.config.hidden_size,
self.config.shared_representation_size + self.config.intermediate_size,
self.config.hidden_size,
],
dim=-1,
)
# (sequence_length X batch_size X hidden_size)
residual_weight = torch.sigmoid(residual_weight)
# (sequence_length X batch_size X shared_representation_size + intermediate_size)
query_key_gates = F.silu(query_key_gates)
# split into two different tensors: one for Q/K usage and the other for gating self-attention
query_key, attention_gate = torch.split(
query_key_gates, [self.config.shared_representation_size, self.config.intermediate_size], dim=-1
)
# (sequence_length X batch_size X shared_representation_size)
# -> (sequence_length X batch_size X 1 X shared_representation_size)
# -> (sequence_length X batch_size X 2 X shared_representation_size)
query_key = query_key.unsqueeze(2) * self.qk_weight + self.qk_bias
# (sequence_length X batch_size X 2 X shared_representation_size)
# -> 2 tensors of (sequence_length X batch_size X shared_representation_size)
query, key = torch.unbind(query_key, dim=2)
# (sequence_length X batch_size X dimension)
# -> (batch_size X sequence_length X dimension)
# where `dimension` is either shared_representation_size (queries and keys) or intermediate_size (values)
query = query.transpose(0, 1)
key = key.transpose(0, 1)
value = value.transpose(0, 1)
if self.config.is_decoder:
# combine history and current to save updated state (if history is provided)
# when chunking is applied, the past states will be None at the end of the chunk, in
# which case, proceed as if no K/V history had been provided
# saved states are stored with shape (batch_size X sequence_length X dimension)
if prev_self_key is not None:
key = torch.cat([prev_self_key, key], dim=1)
if prev_self_value is not None:
value = torch.cat([prev_self_value, value], dim=1)
# if not chunking, store as-is
if not self.config.use_chunking:
updated_self_key = key
updated_self_value = value
else:
curr_len = key.size(1) % self.config.chunk_size
if curr_len == 0:
# if we're chunking and have reached the end of a chunk, wipe out the saved state
updated_self_key = None
updated_self_value = None
else:
updated_self_key = key
updated_self_value = value
ctx_len = key.size(1) # potentially differs from seq_len because of incremental decoding
if not self.config.use_chunking:
# if we're not chunking, treat the entire sequence as one long chunk
# (batch_size X sequence_length X dimension) -> (batch_size X 1 X sequence_length X dimension)
query = query.unsqueeze(1)
key = key.unsqueeze(1)
value = value.unsqueeze(1)
if padding_mask is not None:
# (batch_size X sequence_length) -> (batch_size X 1 X sequence_length)
padding_mask = padding_mask.unsqueeze(1)
else:
# otherwise, split the sequences in the batch into `n_chunks` chunks of size `chunk_size`
if seq_len < self.config.chunk_size:
query = query.unsqueeze(1)
else:
# (batch_size X sequence_length X dimension) -> (batch_size X n_chunks X chunk_size X dimension)
n_chunks = seq_len // self.config.chunk_size
query = query.reshape(bsz, n_chunks, self.config.chunk_size, self.config.shared_representation_size)
if ctx_len < self.config.chunk_size:
key = key.unsqueeze(1)
value = value.unsqueeze(1)
if padding_mask is not None:
padding_mask = padding_mask.unsqueeze(1)
else:
# (batch_size X sequence_length X dimension) -> (batch_size X n_chunks X chunk_size X dimension)
n_chunks = ctx_len // self.config.chunk_size
key = key.reshape(bsz, n_chunks, self.config.chunk_size, self.config.shared_representation_size)
value = value.reshape(bsz, n_chunks, self.config.chunk_size, self.config.intermediate_size)
if padding_mask is not None:
padding_mask = padding_mask.view(bsz, n_chunks, self.config.chunk_size)
# this is in the original Mega implementation to work around fork/join parallelism not supporting optional types
if padding_mask is not None and padding_mask.dim() == 0:
padding_mask = None
attn_weights = self.attention_function(query, key, padding_mask=padding_mask, causal_mask=causal_mask)
value = self.hidden_dropout(value, batch_first=True)
kernel = self.attention_dropout(attn_weights)
# (batch_size x n_chunks x chunk_size x intermediate_size) -> (sequence_length X batch_size X intermediate_size)
weighted_self_output = (
torch.matmul(kernel, value).view(bsz, seq_len, self.config.intermediate_size).transpose(0, 1)
)
# (sequence_length X batch_size X intermediate_size) -> (sequence_length X batch_size X hidden_size)
weighted_self_output = self.activation(intermediate_state + self.h_proj(weighted_self_output * attention_gate))
weighted_self_output = self.dropout(weighted_self_output)
# (sequence_length X batch_size X hidden_size)
out = torch.addcmul(residual, residual_weight, weighted_self_output - residual)
if not self.config.normalize_before_mega:
out = self.norm(out)
return_values = (out, attn_weights) if output_attentions else (out,)
if self.config.is_decoder:
return_values = return_values + (updated_self_key, updated_self_value, updated_ema_state)
return return_values
class MegaNormalizedFeedForwardNetwork(nn.Module):
"""
Normalized feed-forward network used in Mega blocks. Left as-is from original Mega repo aside from retrieving args
from Hugging Face config
"""
def __init__(self, config: MegaConfig):
super().__init__()
self.config = config
self.hidden_dim = config.nffn_hidden_size
self.act_fn = config.activation
self.activation = ACT2FN[config.activation]
self.dropout = MegaDropout(self.config.dropout_prob, is_featurewise=self.config.use_feature_dropout)
self.hidden_dropout = MegaDropout(
self.config.nffn_activation_dropout_prob, is_featurewise=self.config.use_feature_dropout
)
self.prenorm = self.config.normalize_before_ffn
self.norm = MegaSequenceNorm(
self.config.normalization_type, self.config.hidden_size, affine=self.config.norm_affine
)
self.fc1 = nn.Linear(self.config.hidden_size, self.config.nffn_hidden_size)
self.fc2 = nn.Linear(self.config.nffn_hidden_size, self.config.hidden_size)
def forward(self, inputs):
residual = inputs
if self.prenorm:
inputs = self.norm(inputs)
hidden = self.activation(self.fc1(inputs))
hidden = self.hidden_dropout(hidden)
output = self.fc2(hidden)
output = self.dropout(output)
output = output + residual
if not self.prenorm:
output = self.norm(output)
return output
class MegaBlock(nn.Module):
def __init__(self, config: MegaConfig):
super().__init__()
self.seq_len_dim = 1
self.mega_layer = MegaMovingAverageGatedAttention(config)
self.nffn = MegaNormalizedFeedForwardNetwork(config) if config.use_normalized_ffn else None
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.cross_attn = MegaGatedCrossAttention(config)
else:
self.cross_attn = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
causal_mask: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[torch.FloatTensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor]:
"""
A single Mega layer: either encoder or decoder, with optional cross-attention and optional normalized
feed-forward layer
Args:
hidden_states (`torch.Tensor` of shape `(target_sequence_length, batch_size, hidden_size)`):
Hidden states to be updated by the Mega block
attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indicates which entries in the self/target sequence are to be ignored (mostly due to padding), where
elements are either 1 for *not masked* or 0 for *masked*. Causal attention is enforced internally.
causal_mask (`torch.LongTensor` of shape `(sequence_length, sequence_length)`, *optional*):
Indicates which inputs are to be ignored due to causal attention, where elements are either 1 for *not
masked* or 0 for *masked*
encoder_hidden_states (`torch.Tensor`, of shape `(source_sequence_length, batch_size, hidden_size)`, *optional*):
Encoder hidden states to be used for cross-attention (and required for encoder-decoder model setup)
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, source_sequence_length)`, *optional*):
Indicates which entries in the cross/source sequence are to be ignored (mostly due to padding), where
elements are either 1 for *not masked* or 0 for *masked*.
past_key_value (`tuple(torch.Tensor)`, *optional*):
The hidden states returned from the previous timestep during incremental decoding; expects that
self-attention key, value, and EMA states are the first 3 entries in the tuple, and (if doing
cross-attention) cross-attention key and value are the last 2 entries in the tuple
output_attentions (`bool`, default `False`):
Whether to return self-attention weights
use_cache (`bool`, default `False`):
Whether to perfom incremental decoding; uses `past_key_value` as prior state, and returns the updated
states for use in the next step
Returns:
`tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and
inputs:
- **hidden_states** (`torch.FloatTensor` of shape `(target_sequence_length, batch_size, hidden_size)`) --
Hidden states from target sequence updated by Mega
- **self_attn_weights** (*optional*, returned when `output_attentions=True`) `torch.FloatTensor` of shape
`(batch_size, 1, target_sequence_length, target_sequence_length)` -- The self-attention weights
corresponding to how each token in the input sequence attends to every other token
- **cross_attn_weights** (*optional*, returned when `output_attentions=True` and
`config.add_cross_attention=True`) `torch.FloatTensor` of shape `(batch_size, source_sequence_length,
target_sequence_length)` -- Pairwise cross-attention weights between every entry in the source sequence
and target sequence
- **self_key** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size,
sequence_length, config.shared_representation_size)` -- The self-attention key state for use in the next
step of incremental decoding
- **self_value** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size,
sequence_length, config.hidden_size)` -- The self-attention value state for use in the next step of
incremental decoding
- **self_ema_state** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape
`(batch_size, config.ndim)` The incremental EMA state for use in the next step of incremental decoding.
- **cross_key** (*optional*, returned when `use_cache=True` and `config.is_decoder=True`)
`torch.FloatTensor` of shape `(batch_size, source_sequence_length, config.shared_representation_size)` --
The cross-attention key state for use in the next step of incremental decoding
- **cross_value** (*optional*, returned when `use_cache=True` and `config.is_decoder=True`)
`torch.FloatTensor` of shape `(batch_size, source_sequence_length, config.hidden_size)` -- The
cross-attention value state for use in the next step of incremental decoding
"""
# incremental decoding in the MegaMultiDimensionDampedEma module requires that the attention mask has the same
# sequence length as the input tensor; if we're caching incremental states, we assume the input
# sequence length is 1 (Mega will break otherwise), so we take the padding mask for the final
# token in the input (mask is received as [batch X sequence length])
if use_cache and (past_key_value is not None) and (attention_mask is not None):
mega_padding_mask = attention_mask[:, -1].unsqueeze(-1)
else:
mega_padding_mask = attention_mask
mega_outputs = self.mega_layer(
input=hidden_states,
padding_mask=mega_padding_mask,
causal_mask=causal_mask,
past_key_values=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
new_hidden_states = mega_outputs[0]
self_key, self_value, self_ema_state = mega_outputs[-3:] if use_cache else (None, None, None)
self_attention_weights = mega_outputs[1] if output_attentions else None
# optional cross attention
if self.cross_attn is not None:
if encoder_hidden_states is None:
raise ValueError("Requested cross-attention without providing encoder hidden states")
cross_attn_outputs = self.cross_attn(
query=new_hidden_states,
key=encoder_hidden_states,
value=encoder_hidden_states,
key_padding_mask=encoder_attention_mask,
past_key_values=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
# update the hidden state from cross attention
new_hidden_states = cross_attn_outputs[0]
# store cross-attention k/v if caching
cross_key, cross_value = cross_attn_outputs[-2:] if use_cache else (None, None)
cross_attention_weights = cross_attn_outputs[1] if output_attentions else None
# optional NFFN follows cross attention
if self.nffn is not None:
new_hidden_states = self.nffn(new_hidden_states)
outs = (new_hidden_states,)
if output_attentions:
outs = outs + (self_attention_weights,)
if self.cross_attn is not None:
outs = outs + (cross_attention_weights,)
if use_cache:
new_key_values = (
self_key,
self_value,
self_ema_state,
)
if self.cross_attn is not None:
new_key_values = new_key_values + (cross_key, cross_value)
outs = outs + (new_key_values,)
return outs
# copied from transformers.models.roberta.modeling_roberta.RobertaPooler with Roberta->Mega
class MegaPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class MegaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MegaConfig
base_model_prefix = "mega"
supports_gradient_checkpointing = False
_no_split_modules = ["MegaMovingAverageGatedAttention"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, MegaMultiDimensionDampedEma):
with torch.no_grad():
# delta & alpha
nn.init.normal_(module.damping_factor, mean=0.0, std=self.config.ema_delta_alpha_range)
nn.init.normal_(module.decay_factor, mean=0.0, std=self.config.ema_delta_alpha_range)
# beta [1, -1, 1, -1, ...] seems more stable.
val = torch.ones(self.config.ema_projection_size, 1)
if self.config.ema_projection_size > 1:
idx = torch.tensor(list(range(1, self.config.ema_projection_size, 2)))
val.index_fill_(0, idx, -1.0)
module.ema_expansion_matrix.normal_(mean=0.0, std=self.config.ema_beta_range).add_(val)
# gamma & omega
nn.init.normal_(module.kernel_projection_matrix, mean=0.0, std=self.config.ema_gamma_omega_range)
nn.init.normal_(module.residual_weight, mean=0.0, std=self.config.ema_gamma_omega_range)
elif isinstance(module, MegaSimpleRelativePositionalBias):
nn.init.normal_(module.rel_pos_bias, mean=0.0, std=self.config.initializer_range)
elif isinstance(module, MegaRotaryRelativePositionalBias):
nn.init.normal_(module.alpha, mean=0.0, std=self.config.initializer_range)
nn.init.normal_(module.b_param, mean=0.0, std=self.config.initializer_range)
elif isinstance(module, MegaScaleNorm):
if self.config.norm_affine:
nn.init.constant_(module.scalar, 1.0)
elif isinstance(module, MegaRMSNorm):
if self.config.norm_affine:
nn.init.constant_(module.weight, 1.0)
elif isinstance(module, MegaMovingAverageGatedAttention):
# linear layers covered separately by the generic nn.Linear init below
nn.init.normal_(module.qk_weight, mean=0.0, std=self.config.initializer_range)
nn.init.constant_(module.qk_bias, 0.0)
elif isinstance(module, nn.Linear):
# initializes all linear layers in the entire network
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
MEGA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MegaConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MEGA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
This parameter can only be used when the model is initialized with `add_token_type_embeddings` parameter
set to `True`. All the value in this tensor should be always < config.type_vocab_size.
[What are token type IDs?](../glossary#token-type-ids)
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MEGA Model transformer outputting raw hidden-states without any specific head on top.",
MEGA_START_DOCSTRING,
)
class MegaModel(MegaPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added after self-attention, following the architecture described in *Mega: Moving Average
Equipped Gated Attention*_ by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig,
Jonathan May, and Luke Zettlemoyer
To behave as a decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to
`True` and `bidirectional` set to `False`. To be used in a Seq2Seq model, the model needs to initialized with both
`is_decoder=True` and `bidirectional=False` argument as well as `add_cross_attention` set to `True`; an
`encoder_hidden_states` is then expected as an input to the forward pass.
.. _*Mega: Moving Average Equipped Gated Attention*: https://arxiv.org/abs/2209.10655
"""
def __init__(self, config: MegaConfig, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embedding_layer = MegaEmbeddings(config)
self.layers = nn.ModuleList([MegaBlock(config) for _ in range(config.num_hidden_layers)])
self.pooler = MegaPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing (retained from RoBERTa code)
self.post_init()
def get_input_embeddings(self):
return self.embedding_layer.word_embeddings
def set_input_embeddings(self, value):
self.embedding_layer.word_embeddings = value
@add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
device = input_ids.device
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
device = inputs_embeds.device
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if self.config.use_chunking:
input_shape = torch.tensor([input_shape[0], self.config.chunk_size])
batch_size, sequence_length = input_shape
if self.config.use_chunking and (sequence_length > self.config.chunk_size):
if sequence_length % self.config.chunk_size != 0:
raise ValueError(
f"config.use_chunking is activated; input sequence length must be shorter than or a multiple of config.chunk_size\nreceived sequence length of {sequence_length} with chunk size {self.config.chunk_size}"
)
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
# Mega expects the causal mask to be a 2D square matrix of (from) x (to) over the input sequence length
# the HF utility function generates a 3D causal mask which includes batch size, so we'll create a dummy
# mask with the correct device and all ones
temp_mask_for_extension = torch.ones((1, sequence_length), dtype=torch.long, device=device)
causal_mask = self.create_extended_attention_mask_for_decoder(input_shape, temp_mask_for_extension)
# get rid of batch dimension in the generated mask; result is (sequence_length X sequence_length)
causal_mask = causal_mask.squeeze(0)
else:
use_cache = False
causal_mask = None
# if using cache, make sure we have a tuple of tuples which matches the length of our hidden layers
if (past_key_values is not None) and (len(past_key_values) != self.config.num_hidden_layers):
raise ValueError(
f"Received past key/value cache with size mismatch; expected {self.config.num_hidden_layers}, received {len(past_key_values)}"
)
# get embeddings (batch X sequence length X embed dim)
embedding_output = self.embedding_layer(
input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
# transpose for Mega --> (seq len X batch X embed dim)
hidden_states = embedding_output.transpose(0, 1)
# we expect encoder hidden states to also have batch first in line
# with typical Hugging Face behavior (which is also how we return them)
# Mega expects sequence length first, so do the same transpose here
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.transpose(0, 1)
# pass through mega layers
all_hidden_states = (embedding_output,) if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, mega_layer in enumerate(self.layers):
current_decoder_cache = past_key_values[i] if past_key_values is not None else None
mega_outputs = mega_layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_mask=causal_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=current_decoder_cache,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = mega_outputs[0]
if output_hidden_states:
# store layer-wise hidden states in the way that the user expects
# (seq len X batch X embed dim) --> (batch X seq len X embed dim)
all_hidden_states += (hidden_states.transpose(0, 1),)
if output_attentions:
self_attn_weights = mega_outputs[1]
all_self_attentions += (self_attn_weights,)
if self.config.add_cross_attention:
cross_attn_weights = mega_outputs[2]
all_cross_attentions += (cross_attn_weights,)
if use_cache:
updated_cache = mega_outputs[-1]
next_decoder_cache += (updated_cache,)
# transpose final hidden states
hidden_states = hidden_states.transpose(0, 1)
# optional pooling layer
pooled_output = self.pooler(hidden_states) if self.pooler is not None else None
if not return_dict:
return (hidden_states, pooled_output) + (
all_hidden_states,
next_decoder_cache,
all_self_attentions,
all_cross_attentions,
)
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=hidden_states,
pooler_output=pooled_output,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"""MEGA Model with a `language modeling` head on top for CLM fine-tuning.""", MEGA_START_DOCSTRING
)
class MegaForCausalLM(MegaPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: MegaConfig):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `MegaForCausalLM` as a standalone, add `is_decoder=True.`")
self.mega = MegaModel(config, add_pooling_layer=False)
if config.add_lm_hidden_dense_layer:
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.hidden_activation = nn.Tanh()
else:
self.dense = None
self.hidden_activation = None
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MegaForCausalLM, AutoConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("mnaylor/mega-base-wikitext")
>>> config = AutoConfig.from_pretrained("mnaylor/mega-base-wikitext")
>>> config.is_decoder = True
>>> config.bidirectional = False
>>> model = MegaForCausalLM.from_pretrained(
... "mnaylor/mega-base-wikitext", config=config, ignore_mismatched_sizes=True
... )
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.mega(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
if self.dense is not None:
sequence_output = self.dense(sequence_output)
sequence_output = self.hidden_activation(sequence_output)
prediction_scores = self.lm_head(sequence_output)
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past is used
if past_key_values is not None:
input_ids = input_ids[:, -1:]
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@add_start_docstrings("""MEGA Model with a `language modeling` head on top.""", MEGA_START_DOCSTRING)
class MegaForMaskedLM(MegaPreTrainedModel):
_tied_weights_keys = ["mlm_head.weight"]
def __init__(self, config: MegaConfig):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `MegaForMaskedLM`, set `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.mega = MegaModel(config, add_pooling_layer=False)
if config.add_lm_hidden_dense_layer:
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.hidden_activation = nn.Tanh()
else:
self.dense = None
self.hidden_activation = None
self.mlm_head = nn.Linear(config.hidden_size, config.vocab_size)
self.dropout = nn.Dropout(config.dropout_prob)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.mlm_head
def set_output_embeddings(self, new_embeddings):
self.mlm_head = new_embeddings
@add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
expected_output="' Paris'",
expected_loss=0.1,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mega(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
if self.dense is not None:
sequence_output = self.dense(sequence_output)
sequence_output = self.hidden_activation(sequence_output)
prediction_scores = self.mlm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
MEGA Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
MEGA_START_DOCSTRING,
)
class MegaForSequenceClassification(MegaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.mega = MegaModel(config, add_pooling_layer=False)
self.classifier = MegaClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mega(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
MEGA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
MEGA_START_DOCSTRING,
)
class MegaForMultipleChoice(MegaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.mega = MegaModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.mega(
flat_input_ids,
token_type_ids=flat_token_type_ids,
attention_mask=flat_attention_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
MEGA Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
MEGA_START_DOCSTRING,
)
class MegaForTokenClassification(MegaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.mega = MegaModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mega(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Mega
class MegaClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""
MEGA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MEGA_START_DOCSTRING,
)
class MegaForQuestionAnswering(MegaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.mega = MegaModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mega(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/mega/__init__.py
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_import_structure = {
"configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_mega"] = [
"MEGA_PRETRAINED_MODEL_ARCHIVE_LIST",
"MegaForCausalLM",
"MegaForMaskedLM",
"MegaForMultipleChoice",
"MegaForQuestionAnswering",
"MegaForSequenceClassification",
"MegaForTokenClassification",
"MegaModel",
"MegaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/mega/convert_mega_original_pytorch_checkpoint_to_pytorch.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Convert Mega pretrained checkpoint. Built to convert the Masked LM checkpoint located at
https://huggingface.co/mnaylor/mega-wikitext-103
Requirements:
- clone the Mega repo and install fairseq from there
1. git clone https://github.com/facebookresearch/mega.git
2. cd mega && pip install -e
- clone the pretrained weights for the original implementation from the hugging face repo
* use this location as the path for pretrained weights
"""
import argparse
# utilities to import the model weights and config file
import os
import pickle as pkl
# PyTorch + new model classes
import torch
from torch import nn
from transformers import AutoTokenizer, MegaConfig, MegaForMaskedLM
# import the EncoderLayer class used to pretrain
# !! NOTE !! this requires the version of fairseq that is built when you install the Mega source
try:
from fairseq.modules.mega_layer import MegaEncoderLayer
except ImportError:
raise ImportError("You need to install the version of fairseq from the Mega repo!")
# define the wrapper classes used to train the MLM (see colab notebook below)
# https://colab.research.google.com/drive/1qfUO6o5HRdxBblWlw058HVyvaEPhPpH8?usp=sharing
# MegaLM outputs hidden states
class MegaLM(nn.Module):
"The base class for our Mega encoder - given input IDs, embed text and return encoder output"
def __init__(self, mega_args, depth, vocab_size):
super().__init__()
self.mega_args = mega_args
self.embedding_layer = nn.Embedding(vocab_size, self.mega_args.encoder_embed_dim)
self.encoders = nn.ModuleList([MegaEncoderLayer(self.mega_args) for _ in range(depth)])
self.depth = depth
def forward(self, input_ids, attention_mask, batch_first=True, ignore_mask_value=0):
"""
Code for a forward pass - expects input_ids and attention_mask to come from a Hugging Face tokenizer as PyTorch
tensors, and returns a tensor of size (batch, n_classes) containing classification logits
Other options:
- batch_first: boolean indicating whether the batch dimension is first in input_ids (default: True, which
aligns with the HF tokenizer behavior)
- ignore_mask_value: the value in attention_mask that identifies tokens that should be ignored (default: 0,
which aligns with HF tokenizer)
"""
# Mega expects embeddings to be (time, batch, embedding size), but
# Hugging Face returns tokens as (batch, time)
if batch_first:
input_ids = input_ids.T
# to make things more confusing, Mega expects the attention mask to
# be (batch, time), but with values of 0 (normal token) and 1 (ignore token)
# which is the opposite of what HF returns
if ignore_mask_value == 0:
attention_mask = 1 - attention_mask
# get token embeddings from IDs
embeds = self.embedding_layer(input_ids)
# pass through the Mega layers
# input is (time, batch, encoder dim) and output is the same
for encoder in self.encoders:
embeds = encoder(embeds, attention_mask)
# return according to the shape specified
if batch_first:
# (T, B, H) --> (B, T, H)
return torch.transpose(embeds, 0, 1)
else:
return embeds
# renamed from MegaForMaskedLM to avoid confusion with new module
class OriginalMegaForMaskedLM(nn.Module):
"A wrapper class for doing masked language modeling with Mega"
def __init__(self, mega_args, depth, vocab_size):
super().__init__()
self.mega = MegaLM(mega_args, depth, vocab_size)
self.mlm_head = nn.Linear(mega_args.encoder_embed_dim, vocab_size)
self.dropout = nn.Dropout(p=0.1)
def forward(self, input_ids, attention_mask, batch_first=True, ignore_mask_value=0):
"""
Perform a forward pass through the Mega encoder and the masked LM head. Returns logits for each vocabulary
entry.
If `batch_first` (default to align with Hugging Face tokenizer behavior), output will have the shape (Batch
size, Sequence length, Vocab size); otherwise (S, B, V)
"""
encoder_output = self.mega(input_ids, attention_mask, batch_first, ignore_mask_value)
return self.mlm_head(self.dropout(encoder_output))
# code to convert the checkpoint located in the user-specified location
def convert_checkpoint_to_huggingface(pretrained_checkpoint_path, output_path, includes_tokenizer):
with open(os.path.join(pretrained_checkpoint_path, "model_args.pkl"), "rb") as f:
mega_original_args = pkl.load(f)
# load the original encoder
original_mlm = OriginalMegaForMaskedLM(**mega_original_args).eval()
# load its weights
print(
"Original Mega encoder:",
original_mlm.mega.load_state_dict(
torch.load(os.path.join(pretrained_checkpoint_path, "encoder_weights.pt"), map_location="cpu")
),
)
print(
"Original Mega MLM layer:",
original_mlm.mlm_head.load_state_dict(
torch.load(os.path.join(pretrained_checkpoint_path, "mlm_head_weights.pt"), map_location="cpu")
),
)
# create a new config from the old one
hf_config = MegaConfig(
num_hidden_layers=mega_original_args["depth"],
vocab_size=mega_original_args["vocab_size"],
hidden_size=mega_original_args["mega_args"].encoder_embed_dim,
shared_representation_size=mega_original_args["mega_args"].encoder_z_dim,
intermediate_size=mega_original_args["mega_args"].encoder_hidden_dim,
ema_projection_size=mega_original_args["mega_args"].encoder_n_dim,
dropout_prob=mega_original_args["mega_args"].dropout,
attention_probs_dropout_prob=mega_original_args["mega_args"].attention_dropout,
hidden_dropout_prob=mega_original_args["mega_args"].hidden_dropout,
activation=mega_original_args["mega_args"].activation_fn,
attention_activation=mega_original_args["mega_args"].attention_activation_fn,
bidirectional=mega_original_args["mega_args"].bidirectional,
use_chunking=mega_original_args["mega_args"].encoder_chunk_size > 0,
chunk_size=mega_original_args["mega_args"].encoder_chunk_size,
truncation=mega_original_args["mega_args"].truncation_length,
normalization_type=mega_original_args["mega_args"].normalization_type,
normalize_before_mega=True,
norm_affine=True,
use_feature_dropout=mega_original_args["mega_args"].feature_dropout,
relative_positional_bias=mega_original_args["mega_args"].rel_pos_bias,
max_positions=mega_original_args["mega_args"].max_source_positions,
nffn_hidden_size=mega_original_args["mega_args"].encoder_ffn_embed_dim,
normalize_before_ffn=mega_original_args["mega_args"].normalize_before,
# new arguments added for HF implementation
nffn_activation_dropout_prob=0.0,
add_token_type_embeddings=False,
add_lm_hidden_dense_layer=False,
)
hf_mlm = MegaForMaskedLM(hf_config).eval()
# the originl checkpoint just uses nn.Embedding for the word embeddings
# we use a wrapper module for embeddings to add support for positional embeddings
hf_mlm.mega.embedding_layer.word_embeddings.weight = original_mlm.mega.embedding_layer.weight
# modify the state dictionary of the original checkpoint to account for naming issues in the Hugging Face
# ecosystem -- any names containing "beta" or "gamma" aren't safe to use and are renamed upon _load_pretrained,
# also renaming previously confusing parameter names
original_state_dict = original_mlm.mega.encoders.state_dict()
updated_keys = {}
for module_name in original_state_dict.keys():
new_module_name = None
# have to handle gamma, beta, and alpha differently due to their use
# in multiple modules within the original repository;
# beta is used in EMA, MovingAverageGatedAttention, and RotaryRelativePositionalBias, and must be renamed due to flax/tf weights
# the EMA sublayer was renamed from "move" to "ema_gate" for readability, so that is also done here
if "beta" in module_name:
# EMA sub-layers were always called "move" in the original repo
if "move.beta" in module_name:
new_module_name = module_name.replace("move.beta", "ema_gate.ema_expansion_matrix")
elif "mega_layer.beta" in module_name:
new_module_name = module_name.replace("beta", "qk_bias")
else:
new_module_name = module_name.replace("beta", "b_param")
# beta is used in EMA and MovingAverageGatedAttention, and must be renamed due to flax/tf weights
elif "gamma" in module_name:
if "move.gamma" in module_name:
new_module_name = module_name.replace("move.gamma", "ema_gate.kernel_projection_matrix")
elif "mega_layer.gamma" in module_name:
new_module_name = module_name.replace("gamma", "qk_weight")
else:
new_module_name = module_name.replace("gamma", "g_param")
# alpha is used in EMA and positional bias; renaming to improve readability
elif "move.alpha" in module_name:
new_module_name = module_name.replace("move.alpha", "ema_gate.decay_factor")
# delta is only used in EMA; renaming to improve readability
elif "move.delta" in module_name:
new_module_name = module_name.replace("move.delta", "ema_gate.damping_factor")
# omega is only used in EMA; renaming to improve readability
elif "omega" in module_name:
new_module_name = module_name.replace("move.omega", "ema_gate.residual_weight")
if new_module_name:
updated_keys[module_name] = new_module_name
if len(updated_keys) != 0:
print(f"Renaming these keys: {updated_keys.keys()}")
else:
print("No need to rename state dict entries")
for old, new in updated_keys.items():
original_state_dict[new] = original_state_dict.pop(old)
# now attempt to load the state dictionary with updated names
# note that we now call it `mega.layers` instead of `mega.encoders` due to hugging face style
print("HF Mega encoder:", hf_mlm.mega.layers.load_state_dict(original_state_dict))
# load the MLM head weights directly
print(
"HF Mega MLM layer:",
hf_mlm.mlm_head.load_state_dict(
torch.load(os.path.join(pretrained_checkpoint_path, "mlm_head_weights.pt"), map_location="cpu")
),
)
# test on a randomly generated input sequence
input_ids = torch.randint(0, hf_config.vocab_size, size=(4, 256))
input_mask = torch.ones_like(input_ids)
# mask a few tokens to make sure masking is applied appropriately :)
input_mask[:, -10:] = 0
# run forward passes
original_output = original_mlm(input_ids, input_mask, batch_first=True, ignore_mask_value=0)
hf_output = hf_mlm(input_ids, input_mask)[0]
# print shapes and diff
print(f"original output {original_output.shape}")
print(f"hf output {hf_output.shape}")
print(f"max diff: {(original_output - hf_output).max()}") # 0.0
success = torch.allclose(original_output, hf_output, atol=1e-3)
if success:
print("Yay!")
hf_mlm.save_pretrained(output_path)
else:
raise RuntimeError(f"Something's broken :(\nOriginal:\n{original_output}\n\nHF\n{hf_output}\n{hf_mlm}")
if includes_tokenizer:
print("Transferring tokenizer")
tokenizer = AutoTokenizer.from_pretrained(pretrained_checkpoint_path)
tokenizer.save_pretrained(output_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--pretrained_checkpoint_path",
default=None,
type=str,
required=True,
help="Point to the directory containing your model weights using the official Mega repo",
)
parser.add_argument(
"--output_path", default=None, type=str, required=True, help="Location to save the Hugging Face version"
)
parser.add_argument(
"--includes_tokenizer",
action="store_true",
help="Use this flag if there is a Hugging Face tokenizer in the original checkpoint repo",
)
args = parser.parse_args()
convert_checkpoint_to_huggingface(args.pretrained_checkpoint_path, args.output_path, args.includes_tokenizer)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py
|
# coding=utf-8
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TensorFlow Wav2Vec2 model."""
from __future__ import annotations
import warnings
from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutput, TFCausalLMOutput, TFSequenceClassifierOutput
from ...modeling_tf_utils import (
TFPreTrainedModel,
get_initializer,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_wav2vec2 import Wav2Vec2Config
logger = logging.get_logger(__name__)
_HIDDEN_STATES_START_POSITION = 2
_CHECKPOINT_FOR_DOC = "facebook/wav2vec2-base-960h"
_CONFIG_FOR_DOC = "Wav2Vec2Config"
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/wav2vec2-base-960h",
"facebook/wav2vec2-large-960h",
"facebook/wav2vec2-large-960h-lv60",
"facebook/wav2vec2-large-960h-lv60-self",
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
]
LARGE_NEGATIVE = -1e8
@dataclass
class TFWav2Vec2BaseModelOutput(ModelOutput):
"""
Output type of [`TFWav2Vec2BaseModelOutput`], with potential hidden states and attentions.
Args:
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
extract_features (`tf.Tensor` of shape `(batch_size, sequence_length, conv_dim[-1])`):
Sequence of extracted feature vectors of the last convolutional layer of the model.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: tf.Tensor = None
extract_features: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
def _sample_without_replacement(distribution, num_samples):
"""
Categorical sampling without replacement is currently not implemented. The gumbel-max trick will do for now - see
https://github.com/tensorflow/tensorflow/issues/9260 for more info
"""
z = -tf.math.log(tf.random.uniform(shape_list(distribution), 0, 1))
_, indices = tf.nn.top_k(distribution + z, num_samples)
return indices
def _scatter_values_on_batch_indices(values, batch_indices, output_shape):
"""
Scatter function as in PyTorch with indices in format (batch_dim, indixes)
"""
indices_shape = shape_list(batch_indices)
# broadcast batch dim to indices_shape
broad_casted_batch_dims = tf.reshape(
tf.broadcast_to(tf.expand_dims(tf.range(indices_shape[0]), axis=-1), indices_shape), [1, -1]
)
# transform batch_indices to pair_indices
pair_indices = tf.transpose(tf.concat([broad_casted_batch_dims, tf.reshape(batch_indices, [1, -1])], 0))
# scatter values to pair indices
return tf.scatter_nd(pair_indices, tf.reshape(values, [-1]), output_shape)
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
min_masks: int = 0,
) -> tf.Tensor:
"""
Computes random mask spans for a given shape
Args:
shape: the shape for which to compute masks.
should be of size 2 where first element is batch size and 2nd is timesteps
attention_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
mask_prob:
probability for each token to be chosen as start of the span to be masked. this will be multiplied by
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
mask_length: size of the mask
min_masks: minimum number of masked spans
Adapted from [fairseq's
data_utils.py](https://github.com/pytorch/fairseq/blob/e0788f7007a8473a76db573985031f3c94201e79/fairseq/data/data_utils.py#L376).
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
tf.debugging.assert_less(
mask_length,
sequence_length,
message=(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and"
f" `sequence_length`: {sequence_length}`"
),
)
# compute number of masked spans in batch
num_masked_spans = mask_prob * tf.cast(sequence_length, tf.float32) / mask_length + tf.random.uniform((1,))
num_masked_spans = tf.maximum(num_masked_spans, min_masks)
num_masked_spans = tf.cast(num_masked_spans, tf.int32)
# make sure num masked indices <= sequence_length
num_masked_spans = tf.math.minimum(sequence_length // mask_length, num_masked_spans)
num_masked_spans = tf.squeeze(num_masked_spans)
# SpecAugment mask to fill
spec_aug_mask = tf.zeros((batch_size, sequence_length), dtype=tf.int32)
# uniform distribution to sample from, make sure that offset samples are < sequence_length
uniform_dist = tf.ones((batch_size, sequence_length - (mask_length - 1)))
# get random indices to mask
spec_aug_mask_idxs = _sample_without_replacement(uniform_dist, num_masked_spans)
# expand masked indices to masked spans
spec_aug_mask_idxs = tf.expand_dims(spec_aug_mask_idxs, -1)
spec_aug_mask_idxs = tf.tile(spec_aug_mask_idxs, (1, 1, mask_length))
spec_aug_mask_idxs = tf.reshape(spec_aug_mask_idxs, (batch_size, num_masked_spans * mask_length))
offsets = tf.range(mask_length)[tf.newaxis, tf.newaxis, :]
offsets = tf.tile(offsets, (batch_size, num_masked_spans, 1))
offsets = tf.reshape(offsets, (batch_size, num_masked_spans * mask_length))
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# scatter indices to mask
spec_aug_mask = _scatter_values_on_batch_indices(
tf.ones_like(spec_aug_mask_idxs), spec_aug_mask_idxs, tf.shape(spec_aug_mask)
)
return spec_aug_mask
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
class TFWav2Vec2GroupNorm(tf.keras.layers.Layer):
"""
From tensorflow-addons https://www.tensorflow.org/addons/api_docs/python/tfa/layers/GroupNormalization
"""
def __init__(
self,
groups: int = 32,
axis: int = -1,
epsilon: float = 1e-3,
center: bool = True,
scale: bool = True,
beta_initializer: tf.keras.initializers.Initializer = "zeros",
gamma_initializer: tf.keras.initializers.Initializer = "ones",
beta_regularizer: tf.keras.regularizers.Regularizer = None,
gamma_regularizer: tf.keras.regularizers.Regularizer = None,
beta_constraint: tf.keras.constraints.Constraint = None,
gamma_constraint: tf.keras.constraints.Constraint = None,
**kwargs,
):
super().__init__(**kwargs)
self.supports_masking = True
self.groups = groups
self.axis = axis
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = tf.keras.initializers.get(beta_initializer)
self.gamma_initializer = tf.keras.initializers.get(gamma_initializer)
self.beta_regularizer = tf.keras.regularizers.get(beta_regularizer)
self.gamma_regularizer = tf.keras.regularizers.get(gamma_regularizer)
self.beta_constraint = tf.keras.constraints.get(beta_constraint)
self.gamma_constraint = tf.keras.constraints.get(gamma_constraint)
self._check_axis()
def build(self, input_shape):
self._check_if_input_shape_is_none(input_shape)
self._set_number_of_groups_for_instance_norm(input_shape)
self._check_size_of_dimensions(input_shape)
self._create_input_spec(input_shape)
self._add_gamma_weight(input_shape)
self._add_beta_weight(input_shape)
self.built = True
super().build(input_shape)
def call(self, inputs):
input_shape = tf.keras.backend.int_shape(inputs)
tensor_input_shape = tf.shape(inputs)
reshaped_inputs, group_shape = self._reshape_into_groups(inputs, input_shape, tensor_input_shape)
normalized_inputs = self._apply_normalization(reshaped_inputs, input_shape)
is_instance_norm = (input_shape[self.axis] // self.groups) == 1
if not is_instance_norm:
outputs = tf.reshape(normalized_inputs, tensor_input_shape)
else:
outputs = normalized_inputs
return outputs
def get_config(self):
config = {
"groups": self.groups,
"axis": self.axis,
"epsilon": self.epsilon,
"center": self.center,
"scale": self.scale,
"beta_initializer": tf.keras.initializers.serialize(self.beta_initializer),
"gamma_initializer": tf.keras.initializers.serialize(self.gamma_initializer),
"beta_regularizer": tf.keras.regularizers.serialize(self.beta_regularizer),
"gamma_regularizer": tf.keras.regularizers.serialize(self.gamma_regularizer),
"beta_constraint": tf.keras.constraints.serialize(self.beta_constraint),
"gamma_constraint": tf.keras.constraints.serialize(self.gamma_constraint),
}
base_config = super().get_config()
return {**base_config, **config}
def compute_output_shape(self, input_shape):
return input_shape
def _reshape_into_groups(self, inputs, input_shape, tensor_input_shape):
group_shape = [tensor_input_shape[i] for i in range(len(input_shape))]
is_instance_norm = (input_shape[self.axis] // self.groups) == 1
if not is_instance_norm:
group_shape[self.axis] = input_shape[self.axis] // self.groups
group_shape.insert(self.axis, self.groups)
group_shape = tf.stack(group_shape)
reshaped_inputs = tf.reshape(inputs, group_shape)
return reshaped_inputs, group_shape
else:
return inputs, group_shape
def _apply_normalization(self, reshaped_inputs, input_shape):
group_shape = tf.keras.backend.int_shape(reshaped_inputs)
group_reduction_axes = list(range(1, len(group_shape)))
is_instance_norm = (input_shape[self.axis] // self.groups) == 1
if not is_instance_norm:
axis = -2 if self.axis == -1 else self.axis - 1
else:
axis = -1 if self.axis == -1 else self.axis - 1
group_reduction_axes.pop(axis)
mean, variance = tf.nn.moments(reshaped_inputs, group_reduction_axes, keepdims=True)
gamma, beta = self._get_reshaped_weights(input_shape)
normalized_inputs = tf.nn.batch_normalization(
reshaped_inputs,
mean=mean,
variance=variance,
scale=gamma,
offset=beta,
variance_epsilon=self.epsilon,
)
return normalized_inputs
def _get_reshaped_weights(self, input_shape):
broadcast_shape = self._create_broadcast_shape(input_shape)
gamma = None
beta = None
if self.scale:
gamma = tf.reshape(self.gamma, broadcast_shape)
if self.center:
beta = tf.reshape(self.beta, broadcast_shape)
return gamma, beta
def _check_if_input_shape_is_none(self, input_shape):
dim = input_shape[self.axis]
if dim is None:
raise ValueError(
"Axis "
+ str(self.axis)
+ " of input tensor should have a defined dimension but the layer received an input with shape "
+ str(input_shape)
+ "."
)
def _set_number_of_groups_for_instance_norm(self, input_shape):
dim = input_shape[self.axis]
if self.groups == -1:
self.groups = dim
def _check_size_of_dimensions(self, input_shape):
dim = input_shape[self.axis]
if dim < self.groups:
raise ValueError(
"Number of groups ("
+ str(self.groups)
+ ") cannot be more than the number of channels ("
+ str(dim)
+ ")."
)
if dim % self.groups != 0:
raise ValueError(
"Number of groups ("
+ str(self.groups)
+ ") must be a multiple of the number of channels ("
+ str(dim)
+ ")."
)
def _check_axis(self):
if self.axis == 0:
raise ValueError(
"You are trying to normalize your batch axis. Do you want to use tf.layer.batch_normalization instead"
)
def _create_input_spec(self, input_shape):
dim = input_shape[self.axis]
self.input_spec = tf.keras.layers.InputSpec(ndim=len(input_shape), axes={self.axis: dim})
def _add_gamma_weight(self, input_shape):
dim = input_shape[self.axis]
shape = (dim,)
if self.scale:
self.gamma = self.add_weight(
shape=shape,
name="gamma",
initializer=self.gamma_initializer,
regularizer=self.gamma_regularizer,
constraint=self.gamma_constraint,
)
else:
self.gamma = None
def _add_beta_weight(self, input_shape):
dim = input_shape[self.axis]
shape = (dim,)
if self.center:
self.beta = self.add_weight(
shape=shape,
name="beta",
initializer=self.beta_initializer,
regularizer=self.beta_regularizer,
constraint=self.beta_constraint,
)
else:
self.beta = None
def _create_broadcast_shape(self, input_shape):
broadcast_shape = [1] * len(input_shape)
is_instance_norm = (input_shape[self.axis] // self.groups) == 1
if not is_instance_norm:
broadcast_shape[self.axis] = input_shape[self.axis] // self.groups
broadcast_shape.insert(self.axis, self.groups)
else:
broadcast_shape[self.axis] = self.groups
return broadcast_shape
class TFWav2Vec2WeightNormConv1D(tf.keras.layers.Conv1D):
"""Adapted from https://www.tensorflow.org/probability/api_docs/python/tfp/layers/weight_norm/WeightNorm"""
def __init__(self, filters, kernel_size, groups, explicit_padding, **kwargs):
super().__init__(
filters=filters,
kernel_size=kernel_size,
groups=groups,
padding="valid",
use_bias=True,
bias_initializer="he_normal",
**kwargs,
)
self.explicit_padding = explicit_padding
self.filter_axis = 2
self.kernel_norm_axes = tf.constant([0, 1])
def _init_norm(self):
"""Set the norm of the weight vector."""
kernel_norm = tf.sqrt(tf.reduce_sum(tf.square(self.weight_v), axis=self.kernel_norm_axes))
self.weight_g.assign(kernel_norm[:, tf.newaxis, tf.newaxis])
def _normalize_kernel(self):
"""Generate normalized weights."""
kernel = tf.nn.l2_normalize(self.weight_v, axis=self.kernel_norm_axes) * tf.transpose(self.weight_g)
self.kernel = tf.transpose(kernel)
def build(self, input_shape):
if not self.built:
super().build(input_shape)
self.kernel = tf.Variable(tf.transpose(self.kernel), name="weight_v", trainable=True)
self.weight_v = self.kernel
self.weight_g = self.add_weight(
name="weight_g",
shape=(int(self.weight_v.shape[self.filter_axis]), 1, 1),
initializer="ones",
dtype=self.weight_v.dtype,
trainable=True,
)
self._init_norm()
self.bias = self.add_weight(name="bias", shape=(self.filters,), initializer="zeros", trainable=True)
def call(self, inputs):
# TODO Matt: Assigning to attributes in call() is deeply sinful in TensorFlow, as it should be idempotent.
# This whole layer should be replaced by a layer that doesn't inherit from Conv1D, but instead calls
# a functional 1d convolution with normalized weights that it generates (but does not store!)
self._normalize_kernel()
padded_inputs = tf.pad(inputs, ((0, 0), (self.explicit_padding, self.explicit_padding), (0, 0)))
output = super().call(padded_inputs)
return output
class TFWav2Vec2NoLayerNormConvLayer(tf.keras.layers.Layer):
def __init__(self, config: Wav2Vec2Config, layer_id: int = 0, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = tf.keras.layers.Conv1D(
filters=self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
strides=config.conv_stride[layer_id],
use_bias=config.conv_bias,
name="conv",
)
self.activation = get_tf_activation(config.feat_extract_activation)
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "conv", None) is not None:
with tf.name_scope(self.conv.name):
self.conv.build([None, None, self.in_conv_dim])
class TFWav2Vec2LayerNormConvLayer(tf.keras.layers.Layer):
def __init__(self, config: Wav2Vec2Config, layer_id: int = 0, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = tf.keras.layers.Conv1D(
filters=self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
strides=config.conv_stride[layer_id],
use_bias=config.conv_bias,
name="conv",
)
self.layer_norm = tf.keras.layers.LayerNormalization(name="layer_norm", epsilon=config.layer_norm_eps)
self.activation = get_tf_activation(config.feat_extract_activation)
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "conv", None) is not None:
with tf.name_scope(self.conv.name):
self.conv.build([None, None, self.in_conv_dim])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.out_conv_dim])
class TFWav2Vec2GroupNormConvLayer(tf.keras.layers.Layer):
def __init__(self, config: Wav2Vec2Config, layer_id: int = 0, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = tf.keras.layers.Conv1D(
filters=self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
strides=config.conv_stride[layer_id],
use_bias=config.conv_bias,
name="conv",
)
self.activation = get_tf_activation(config.feat_extract_activation)
self.layer_norm = TFWav2Vec2GroupNorm(
groups=self.out_conv_dim, epsilon=config.layer_norm_eps, name="layer_norm"
)
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "conv", None) is not None:
with tf.name_scope(self.conv.name):
self.conv.build([None, None, self.in_conv_dim])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.out_conv_dim])
class TFWav2Vec2PositionalConvEmbedding(tf.keras.layers.Layer):
def __init__(self, config: Wav2Vec2Config, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.conv = TFWav2Vec2WeightNormConv1D(
filters=config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
groups=config.num_conv_pos_embedding_groups,
explicit_padding=config.num_conv_pos_embeddings // 2,
name="conv",
)
self.padding = TFWav2Vec2SamePadLayer(config.num_conv_pos_embeddings)
self.activation = get_tf_activation(config.feat_extract_activation)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "conv", None) is not None:
with tf.name_scope(self.conv.name):
self.conv.build([None, None, self.config.hidden_size])
class TFWav2Vec2SamePadLayer(tf.keras.layers.Layer):
def __init__(self, num_conv_pos_embeddings, **kwargs):
super().__init__(**kwargs)
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
def call(self, hidden_states):
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, : -self.num_pad_remove, :]
return hidden_states
class TFWav2Vec2FeatureEncoder(tf.keras.layers.Layer):
def __init__(self, config: Wav2Vec2Config, **kwargs: Any) -> None:
super().__init__(**kwargs)
if config.feat_extract_norm == "group":
conv_layers = [TFWav2Vec2GroupNormConvLayer(config, layer_id=0, name=f"conv_layers.{0}")] + [
TFWav2Vec2NoLayerNormConvLayer(config, layer_id=i + 1, name=f"conv_layers.{i+1}")
for i in range(config.num_feat_extract_layers - 1)
]
elif config.feat_extract_norm == "layer":
conv_layers = [
TFWav2Vec2LayerNormConvLayer(config, layer_id=i, name=f"conv_layers.{i}")
for i in range(config.num_feat_extract_layers)
]
else:
raise ValueError(
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
)
self.conv_layers = conv_layers
def call(self, input_values):
hidden_states = tf.expand_dims(input_values, -1)
for conv_layer in self.conv_layers:
hidden_states = conv_layer(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "conv_layers", None) is not None:
for conv_layer in self.conv_layers:
with tf.name_scope(conv_layer.name):
conv_layer.build(None)
class TFWav2Vec2FeatureExtractor(TFWav2Vec2FeatureEncoder):
def __init__(self, config, **kwargs):
super().__init__(config, **kwargs)
warnings.warn(
f"The class `{self.__class__.__name__}` has been depreciated "
"and will be removed in Transformers v5. "
f"Use `{self.__class__.__bases__[0].__name__}` instead.",
FutureWarning,
)
class TFWav2Vec2FeatureProjection(tf.keras.layers.Layer):
def __init__(self, config: Wav2Vec2Config, **kwargs):
super().__init__(**kwargs)
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.projection = tf.keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="projection",
)
self.dropout = tf.keras.layers.Dropout(rate=config.feat_proj_dropout)
self.config = config
def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
norm_hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(norm_hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
return hidden_states, norm_hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.conv_dim[-1]])
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, self.config.conv_dim[-1]])
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with TFBart->TFWav2Vec2
class TFWav2Vec2Attention(tf.keras.layers.Layer):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
key_value_states: tf.Tensor | None = None,
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
attention_mask: tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor | None]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {shape_list(attn_weights)}"
),
)
if attention_mask is not None:
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {shape_list(attention_mask)}"
),
)
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=(
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
f" {shape_list(layer_head_mask)}"
),
)
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {shape_list(attn_output)}"
),
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build([None, None, self.embed_dim])
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build([None, None, self.embed_dim])
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build([None, None, self.embed_dim])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.embed_dim])
class TFWav2Vec2FeedForward(tf.keras.layers.Layer):
def __init__(self, config: Wav2Vec2Config, **kwargs):
super().__init__(**kwargs)
self.intermediate_dropout = tf.keras.layers.Dropout(config.activation_dropout)
self.intermediate_dense = tf.keras.layers.Dense(
units=config.intermediate_size,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="intermediate_dense",
)
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
self.output_dense = tf.keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="output_dense",
)
self.output_dropout = tf.keras.layers.Dropout(config.hidden_dropout)
self.config = config
def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states, training=training)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "intermediate_dense", None) is not None:
with tf.name_scope(self.intermediate_dense.name):
self.intermediate_dense.build([None, None, self.config.hidden_size])
if getattr(self, "output_dense", None) is not None:
with tf.name_scope(self.output_dense.name):
self.output_dense.build([None, None, self.config.intermediate_size])
class TFWav2Vec2EncoderLayer(tf.keras.layers.Layer):
def __init__(self, config: Wav2Vec2Config, **kwargs):
super().__init__(**kwargs)
self.attention = TFWav2Vec2Attention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
name="attention",
)
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout)
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.feed_forward = TFWav2Vec2FeedForward(config, name="feed_forward")
self.final_layer_norm = tf.keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="final_layer_norm"
)
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = False,
training: bool = False,
) -> Tuple[tf.Tensor]:
attn_residual = hidden_states
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, training=training
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = attn_residual + hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states + self.feed_forward(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
if getattr(self, "feed_forward", None) is not None:
with tf.name_scope(self.feed_forward.name):
self.feed_forward.build(None)
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.config.hidden_size])
class TFWav2Vec2EncoderLayerStableLayerNorm(tf.keras.layers.Layer):
def __init__(self, config: Wav2Vec2Config, **kwargs):
super().__init__(**kwargs)
self.attention = TFWav2Vec2Attention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
name="attention",
)
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout)
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.feed_forward = TFWav2Vec2FeedForward(config, name="feed_forward")
self.final_layer_norm = tf.keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="final_layer_norm"
)
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = False,
training: bool = False,
) -> Tuple[tf.Tensor]:
attn_residual = hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, training=training
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = attn_residual + hidden_states
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
if getattr(self, "feed_forward", None) is not None:
with tf.name_scope(self.feed_forward.name):
self.feed_forward.build(None)
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.config.hidden_size])
class TFWav2Vec2Encoder(tf.keras.layers.Layer):
def __init__(self, config: Wav2Vec2Config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.pos_conv_embed = TFWav2Vec2PositionalConvEmbedding(config, name="pos_conv_embed")
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout)
self.layer = [TFWav2Vec2EncoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
hidden_states = hidden_states * tf.expand_dims(attention_mask, -1)
attention_mask = _expand_mask(attention_mask)
else:
attention_mask = None
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = np.random.uniform(0, 1)
if training and (dropout_probability < self.config.layerdrop): # skip the layer
continue
layer_outputs = layer_module(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "pos_conv_embed", None) is not None:
with tf.name_scope(self.pos_conv_embed.name):
self.pos_conv_embed.build(None)
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
class TFWav2Vec2EncoderStableLayerNorm(tf.keras.layers.Layer):
def __init__(self, config: Wav2Vec2Config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.pos_conv_embed = TFWav2Vec2PositionalConvEmbedding(config, name="pos_conv_embed")
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout)
self.layer = [
TFWav2Vec2EncoderLayerStableLayerNorm(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)
]
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
hidden_states = hidden_states * tf.expand_dims(attention_mask, -1)
attention_mask = _expand_mask(attention_mask)
else:
attention_mask = None
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.dropout(hidden_states, training=training)
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = np.random.uniform(0, 1)
if training and (dropout_probability < self.config.layerdrop): # skip the layer
continue
layer_outputs = layer_module(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "pos_conv_embed", None) is not None:
with tf.name_scope(self.pos_conv_embed.name):
self.pos_conv_embed.build(None)
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFWav2Vec2MainLayer(tf.keras.layers.Layer):
config_class = Wav2Vec2Config
def __init__(self, config: Wav2Vec2Config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.feature_extractor = TFWav2Vec2FeatureEncoder(config, name="feature_extractor")
self.feature_projection = TFWav2Vec2FeatureProjection(config, name="feature_projection")
if config.do_stable_layer_norm:
self.encoder = TFWav2Vec2EncoderStableLayerNorm(config, name="encoder")
else:
self.encoder = TFWav2Vec2Encoder(config, name="encoder")
def build(self, input_shape=None):
if self.built:
return
self.built = True
if self.config.mask_time_prob > 0.0 or self.config.mask_feature_prob > 0.0:
self.masked_spec_embed = self.add_weight(
shape=(self.config.hidden_size,), initializer="uniform", trainable=True, name="masked_spec_embed"
)
if getattr(self, "feature_extractor", None) is not None:
with tf.name_scope(self.feature_extractor.name):
self.feature_extractor.build(None)
if getattr(self, "feature_projection", None) is not None:
with tf.name_scope(self.feature_projection.name):
self.feature_projection.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor):
"""
Computes the output length of the convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (input_length - kernel_size) // stride + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
return input_lengths
def _mask_hidden_states(self, hidden_states: tf.Tensor, mask_time_indices: tf.Tensor | None = None):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
batch_size, sequence_length, hidden_size = shape_list(hidden_states)
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return hidden_states
if mask_time_indices is not None:
# apply SpecAugment along time axis with given mask_time_indices
hidden_states = tf.where(
tf.cast(mask_time_indices[:, :, tf.newaxis], tf.bool),
self.masked_spec_embed[tf.newaxis, tf.newaxis, :],
hidden_states,
)
elif self.config.mask_time_prob > 0:
# generate indices & apply SpecAugment along time axis
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
min_masks=2,
)
hidden_states = tf.where(
tf.cast(mask_time_indices[:, :, tf.newaxis], tf.bool),
self.masked_spec_embed[tf.newaxis, tf.newaxis, :],
hidden_states,
)
# apply SpecAugment along feature axis
if self.config.mask_feature_prob > 0:
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
)
hidden_states = tf.where(mask_feature_indices[:, tf.newaxis, :], hidden_states, 0)
return hidden_states
@unpack_inputs
def call(
self,
input_values: tf.Tensor,
attention_mask: tf.Tensor | None = None,
token_type_ids: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs: Any,
):
extract_features = self.feature_extractor(tf.cast(input_values, tf.float32), training=training)
# extract_features = tf.transpose(extract_features, perm=(0, 2, 1))
if attention_mask is not None:
# compute real output lengths according to convolution formula
output_lengths = self._get_feat_extract_output_lengths(tf.reduce_sum(attention_mask, -1))
attention_mask = tf.sequence_mask(
output_lengths, maxlen=shape_list(extract_features)[1], dtype=extract_features.dtype
)
hidden_states, extract_features = self.feature_projection(extract_features, training=training)
mask_time_indices = kwargs.get("mask_time_indices", None)
if training:
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = encoder_outputs[0]
if not return_dict:
return (hidden_states, extract_features) + encoder_outputs[1:]
return TFWav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
extract_features=extract_features,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class TFWav2Vec2PreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Wav2Vec2Config
base_model_prefix = "wav2vec2"
main_input_name = "input_values"
@property
def input_signature(self):
return {
"input_values": tf.TensorSpec((None, None), tf.float32, name="input_values"),
"attention_mask": tf.TensorSpec((None, None), tf.float32, name="attention_mask"),
}
@property
def dummy_inputs(self):
return {
"input_values": tf.random.uniform(shape=(1, 500), dtype=tf.float32),
"attention_mask": tf.ones(shape=(1, 500), dtype=tf.float32),
}
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
logger.warning(
f"\n{self.__class__.__name__} has backpropagation operations that are NOT supported on CPU. If you wish "
"to train/fine-tune this model, you need a GPU or a TPU"
)
def _get_feat_extract_output_lengths(self, input_lengths, add_adapter=None):
"""
Computes the output length of the convolutional layers
"""
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
def _conv_out_length(input_length, kernel_size, stride):
return tf.math.floordiv(input_length - kernel_size, stride) + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
if add_adapter:
for _ in range(self.config.num_adapter_layers):
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
return input_lengths
def _get_feature_vector_attention_mask(
self, feature_vector_length: int, attention_mask: tf.Tensor, add_adapter=None
):
non_padded_lengths = tf.math.cumsum(attention_mask, axis=-1)[:, -1]
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)
output_lengths = tf.cast(output_lengths, tf.int32)
batch_size = tf.shape(attention_mask)[0]
# check device here
attention_mask = tf.zeros(
(batch_size, feature_vector_length), dtype=attention_mask.dtype, name="attention_mask"
) # these two operations makes sure that all values before the output lengths idxs are attended to
## check device
attention_mask = tf.tensor_scatter_nd_update(
attention_mask,
indices=tf.stack([tf.range(batch_size), output_lengths - 1], axis=1),
updates=tf.ones([batch_size], dtype=attention_mask.dtype),
)
attention_mask = tf.reverse(attention_mask, axis=[-1])
attention_mask = tf.cumsum(attention_mask, axis=-1)
attention_mask = tf.reverse(attention_mask, axis=[-1])
attention_mask = tf.cast(attention_mask, tf.bool)
return attention_mask
WAV_2_VEC_2_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_values` only and nothing else: `model(input_values)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_values, attention_mask])` or `model([input_values, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_values": input_values, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`Wav2Vec2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
WAV_2_VEC_2_INPUTS_DOCSTRING = r"""
Args:
input_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_values` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_values` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare TFWav2Vec2 Model transformer outputing raw hidden-states without any specific head on top.",
WAV_2_VEC_2_START_DOCSTRING,
)
class TFWav2Vec2Model(TFWav2Vec2PreTrainedModel):
def __init__(self, config: Wav2Vec2Config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.config = config
self.wav2vec2 = TFWav2Vec2MainLayer(config, name="wav2vec2")
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC)
@unpack_inputs
def call(
self,
input_values: tf.Tensor,
attention_mask: tf.Tensor | None = None,
token_type_ids: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
"""
Returns:
Example:
```python
>>> from transformers import AutoProcessor, TFWav2Vec2Model
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
>>> model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1
>>> hidden_states = model(input_values).last_hidden_state
```"""
output_hidden_states = output_hidden_states if output_hidden_states else self.config.output_hidden_states
output_attentions = output_attentions if output_attentions else self.config.output_attentions
return_dict = return_dict if return_dict else self.config.return_dict
outputs = self.wav2vec2(
input_values=input_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "wav2vec2", None) is not None:
with tf.name_scope(self.wav2vec2.name):
self.wav2vec2.build(None)
@add_start_docstrings(
"""TFWav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
WAV_2_VEC_2_START_DOCSTRING,
)
class TFWav2Vec2ForCTC(TFWav2Vec2PreTrainedModel):
def __init__(self, config: Wav2Vec2Config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.wav2vec2 = TFWav2Vec2MainLayer(config, name="wav2vec2")
self.dropout = tf.keras.layers.Dropout(config.final_dropout)
self.lm_head = tf.keras.layers.Dense(config.vocab_size, name="lm_head")
self.output_hidden_size = (
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
)
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.wav2vec2.feature_extractor.trainable = False
@unpack_inputs
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFCausalLMOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_values: tf.Tensor,
attention_mask: tf.Tensor | None = None,
token_type_ids: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
labels: tf.Tensor | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFCausalLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_values` docstring) Tokens with indices set to `-100` are ignored (masked),
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Returns:
Example:
```python
>>> import tensorflow as tf
>>> from transformers import AutoProcessor, TFWav2Vec2ForCTC
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
>>> model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1
>>> logits = model(input_values).logits
>>> predicted_ids = tf.argmax(logits, axis=-1)
>>> transcription = processor.decode(predicted_ids[0])
>>> # compute loss
>>> target_transcription = "A MAN SAID TO THE UNIVERSE SIR I EXIST"
>>> # Pass transcription as `text` to encode labels
>>> labels = processor(text=transcription, return_tensors="tf").input_ids
>>> loss = model(input_values, labels=labels).loss
```"""
outputs = self.wav2vec2(
input_values=input_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, training=training)
logits = self.lm_head(hidden_states)
if labels is not None:
if tf.reduce_max(labels) >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
attention_mask = (
attention_mask if attention_mask is not None else tf.ones_like(input_values, dtype=tf.float32)
)
input_lengths = self.wav2vec2._get_feat_extract_output_lengths(tf.reduce_sum(attention_mask, axis=-1))
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = tf.cast(labels >= 0, tf.int32)
target_lengths = tf.reduce_sum(labels_mask, axis=-1)
loss = tf.nn.ctc_loss(
logits=logits,
labels=labels,
logit_length=input_lengths,
label_length=target_lengths,
blank_index=self.config.pad_token_id,
logits_time_major=False,
)
if self.config.ctc_loss_reduction == "sum":
loss = tf.reduce_sum(loss)
if self.config.ctc_loss_reduction == "mean":
loss = tf.reduce_mean(loss)
loss = tf.reshape(loss, (1,))
else:
loss = None
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return TFCausalLMOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "wav2vec2", None) is not None:
with tf.name_scope(self.wav2vec2.name):
self.wav2vec2.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build([None, None, self.output_hidden_size])
class TFWav2Vec2ForSequenceClassification(TFWav2Vec2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.wav2vec2 = TFWav2Vec2MainLayer(config, name="wav2vec2")
self.num_layers = config.num_hidden_layers + 1
with tf.name_scope(self._name_scope()):
if config.use_weighted_layer_sum:
self.layer_weights = self.add_weight(
shape=(self.num_layers,), initializer="ones", trainable=True, name="layer_weights"
)
self.config = config
self.projector = tf.keras.layers.Dense(units=config.classifier_proj_size, name="projector")
self.classifier = tf.keras.layers.Dense(units=config.num_labels, activation=None, name="classifier")
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.wav2vec2.feature_extractor.trainable = False
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for layer in self.wav2vec2.layers:
layer.trainable = False
@unpack_inputs
def call(
self,
input_values: tf.Tensor,
attention_mask: tf.Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
labels: tf.Tensor | None = None,
training: bool = False,
) -> TFSequenceClassifierOutput | Tuple[tf.Tensor]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = tf.stack(hidden_states, axis=1)
norm_weights = tf.nn.softmax(self.layer_weights, axis=-1)
hidden_states = tf.reduce_sum(hidden_states * tf.reshape(norm_weights, [-1, 1, 1]), axis=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
if attention_mask is None:
pooled_output = tf.reduce_mean(hidden_states, axis=1)
else:
padding_mask = self._get_feature_vector_attention_mask(shape_list(hidden_states)[1], attention_mask)
padding_mask_float = tf.cast(padding_mask, hidden_states.dtype)
hidden_states = tf.multiply(hidden_states, tf.expand_dims(padding_mask_float, axis=-1))
pooled_output = tf.divide(
tf.reduce_sum(hidden_states, axis=1), tf.expand_dims(tf.reduce_sum(padding_mask_float, axis=1), axis=1)
)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
loss = loss_fn(tf.reshape(labels, [-1]), tf.reshape(logits, [-1, self.config.num_labels]))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "wav2vec2", None) is not None:
with tf.name_scope(self.wav2vec2.name):
self.wav2vec2.build(None)
if getattr(self, "projector", None) is not None:
with tf.name_scope(self.projector.name):
self.projector.build([None, None, self.config.hidden_size])
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.classifier_proj_size])
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/wav2vec2/configuration_wav2vec2.py
|
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Wav2Vec2 model configuration"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json",
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}
class Wav2Vec2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Wav2Vec2Model`]. It is used to instantiate an
Wav2Vec2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Wav2Vec2
[facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32):
Vocabulary size of the Wav2Vec2 model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`Wav2Vec2Model`] or [`TFWav2Vec2Model`]. Vocabulary size of the
model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward
method of [`Wav2Vec2Model`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for activations inside the fully connected layer.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
final_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the final projection layer of [`Wav2Vec2ForCTC`].
layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
details.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
feat_extract_norm (`str`, *optional*, defaults to `"group"`):
The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
convolutional layers.
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for output of the feature encoder.
feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probabilitiy for quantized feature encoder states.
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
length of *conv_kernel* defines the number of convolutional layers and has to match the length of
*conv_dim*.
conv_bias (`bool`, *optional*, defaults to `False`):
Whether the 1D convolutional layers have a bias.
num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
embeddings layer.
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
Number of groups of 1D convolutional positional embeddings layer.
do_stable_layer_norm (`bool`, *optional*, defaults to `False`):
Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is
True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is
False` corresponds to applying layer norm after the attention layer.
apply_spec_augment (`bool`, *optional*, defaults to `True`):
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition](https://arxiv.org/abs/1904.08779).
mask_time_prob (`float`, *optional*, defaults to 0.05):
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
mask_time_length (`int`, *optional*, defaults to 10):
Length of vector span along the time axis.
mask_time_min_masks (`int`, *optional*, defaults to 2),:
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
mask_time_min_masks''
mask_feature_prob (`float`, *optional*, defaults to 0.0):
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
True`.
mask_feature_length (`int`, *optional*, defaults to 10):
Length of vector span along the feature axis.
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
step, irrespectively of `mask_feature_prob`. Only relevant if
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
num_codevectors_per_group (`int`, *optional*, defaults to 320):
Number of entries in each quantization codebook (group).
num_codevector_groups (`int`, *optional*, defaults to 2):
Number of codevector groups for product codevector quantization.
contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
The temperature *kappa* in the contrastive loss.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probabilitiy for the output of the feature encoder that's used by the quantizer.
num_negatives (`int`, *optional*, defaults to 100):
Number of negative samples for the contrastive loss.
codevector_dim (`int`, *optional*, defaults to 256):
Dimensionality of the quantized feature vectors.
proj_codevector_dim (`int`, *optional*, defaults to 256):
Dimensionality of the final projection of both the quantized and the transformer features.
diversity_loss_weight (`int`, *optional*, defaults to 0.1):
The weight of the codebook diversity loss component.
ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
instance of [`Wav2Vec2ForCTC`].
ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
of [`Wav2Vec2ForCTC`].
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
instance of [`Wav2Vec2ForSequenceClassification`].
classifier_proj_size (`int`, *optional*, defaults to 256):
Dimensionality of the projection before token mean-pooling for classification.
tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
*XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
*XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
xvector_output_dim (`int`, *optional*, defaults to 512):
Dimensionality of the *XVector* embedding vectors.
add_adapter (`bool`, *optional*, defaults to `False`):
Whether a convolutional network should be stacked on top of the Wav2Vec2 Encoder. Can be very useful for
warm-starting Wav2Vec2 for SpeechEncoderDecoder models.
adapter_kernel_size (`int`, *optional*, defaults to 3):
Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
adapter_stride (`int`, *optional*, defaults to 2):
Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
num_adapter_layers (`int`, *optional*, defaults to 3):
Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
True`.
adapter_attn_dim (`int`, *optional*):
Dimension of the attention adapter weights to be used in each attention block. An example of a model using
attention adapters is [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all).
output_hidden_size (`int`, *optional*):
Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
if `add_adapter is True`.
Example:
```python
>>> from transformers import Wav2Vec2Config, Wav2Vec2Model
>>> # Initializing a Wav2Vec2 facebook/wav2vec2-base-960h style configuration
>>> configuration = Wav2Vec2Config()
>>> # Initializing a model (with random weights) from the facebook/wav2vec2-base-960h style configuration
>>> model = Wav2Vec2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "wav2vec2"
def __init__(
self,
vocab_size=32,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout=0.1,
activation_dropout=0.1,
attention_dropout=0.1,
feat_proj_dropout=0.0,
feat_quantizer_dropout=0.0,
final_dropout=0.1,
layerdrop=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
feat_extract_norm="group",
feat_extract_activation="gelu",
conv_dim=(512, 512, 512, 512, 512, 512, 512),
conv_stride=(5, 2, 2, 2, 2, 2, 2),
conv_kernel=(10, 3, 3, 3, 3, 2, 2),
conv_bias=False,
num_conv_pos_embeddings=128,
num_conv_pos_embedding_groups=16,
do_stable_layer_norm=False,
apply_spec_augment=True,
mask_time_prob=0.05,
mask_time_length=10,
mask_time_min_masks=2,
mask_feature_prob=0.0,
mask_feature_length=10,
mask_feature_min_masks=0,
num_codevectors_per_group=320,
num_codevector_groups=2,
contrastive_logits_temperature=0.1,
num_negatives=100,
codevector_dim=256,
proj_codevector_dim=256,
diversity_loss_weight=0.1,
ctc_loss_reduction="sum",
ctc_zero_infinity=False,
use_weighted_layer_sum=False,
classifier_proj_size=256,
tdnn_dim=(512, 512, 512, 512, 1500),
tdnn_kernel=(5, 3, 3, 1, 1),
tdnn_dilation=(1, 2, 3, 1, 1),
xvector_output_dim=512,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
add_adapter=False,
adapter_kernel_size=3,
adapter_stride=2,
num_adapter_layers=3,
output_hidden_size=None,
adapter_attn_dim=None,
**kwargs,
):
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_activation = feat_extract_activation
self.conv_dim = list(conv_dim)
self.conv_stride = list(conv_stride)
self.conv_kernel = list(conv_kernel)
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_feat_extract_layers = len(self.conv_dim)
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.num_attention_heads = num_attention_heads
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.feat_proj_dropout = feat_proj_dropout
self.final_dropout = final_dropout
self.layerdrop = layerdrop
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.do_stable_layer_norm = do_stable_layer_norm
self.use_weighted_layer_sum = use_weighted_layer_sum
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
)
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
self.apply_spec_augment = apply_spec_augment
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.mask_time_min_masks = mask_time_min_masks
self.mask_feature_prob = mask_feature_prob
self.mask_feature_length = mask_feature_length
self.mask_feature_min_masks = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
self.num_codevectors_per_group = num_codevectors_per_group
self.num_codevector_groups = num_codevector_groups
self.contrastive_logits_temperature = contrastive_logits_temperature
self.feat_quantizer_dropout = feat_quantizer_dropout
self.num_negatives = num_negatives
self.codevector_dim = codevector_dim
self.proj_codevector_dim = proj_codevector_dim
self.diversity_loss_weight = diversity_loss_weight
# ctc loss
self.ctc_loss_reduction = ctc_loss_reduction
self.ctc_zero_infinity = ctc_zero_infinity
# adapter
self.add_adapter = add_adapter
self.adapter_kernel_size = adapter_kernel_size
self.adapter_stride = adapter_stride
self.num_adapter_layers = num_adapter_layers
self.output_hidden_size = output_hidden_size or hidden_size
self.adapter_attn_dim = adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
self.classifier_proj_size = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
self.tdnn_dim = list(tdnn_dim)
self.tdnn_kernel = list(tdnn_kernel)
self.tdnn_dilation = list(tdnn_dilation)
self.xvector_output_dim = xvector_output_dim
@property
def inputs_to_logits_ratio(self):
return functools.reduce(operator.mul, self.conv_stride, 1)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py
|
# coding=utf-8
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Flax Wav2Vec2 model."""
from functools import partial
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_wav2vec2 import Wav2Vec2Config
logger = logging.get_logger(__name__)
@flax.struct.dataclass
class FlaxWav2Vec2BaseModelOutput(ModelOutput):
"""
Output type of [`FlaxWav2Vec2BaseModelOutput`], with potential hidden states and attentions.
Args:
last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
extract_features (`jnp.ndarray` of shape `(batch_size, sequence_length, last_conv_dim)`):
Sequence of extracted feature vectors of the last convolutional layer of the model with `last_conv_dim`
being the dimension of the last convolutional layer.
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: jnp.ndarray = None
extract_features: jnp.ndarray = None
hidden_states: Optional[Tuple[jnp.ndarray]] = None
attentions: Optional[Tuple[jnp.ndarray]] = None
@flax.struct.dataclass
class FlaxWav2Vec2ForPreTrainingOutput(ModelOutput):
"""
Output type of [`FlaxWav2Vec2ForPreTrainingOutput`], with potential hidden states and attentions.
Args:
loss (*optional*, returned when model is in train mode, `jnp.ndarray` of shape `(1,)`):
Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official
paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss.
projected_states (`jnp.ndarray` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked
projected quantized states.
projected_quantized_states (`jnp.ndarray` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive
target vectors for contrastive loss.
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
projected_states: jnp.ndarray = None
projected_quantized_states: jnp.ndarray = None
codevector_perplexity: jnp.ndarray = None
hidden_states: Optional[Tuple[jnp.ndarray]] = None
attentions: Optional[Tuple[jnp.ndarray]] = None
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
attention_mask: Optional[np.ndarray] = None,
min_masks: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
CPU as part of the preprocessing during training.
Args:
shape: the shape for which to compute masks.
should be of size 2 where first element is batch size and 2nd is timesteps
mask_prob:
probability for each token to be chosen as start of the span to be masked. this will be multiplied by
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
mask_length: size of the mask
min_masks: minimum number of masked spans
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and"
f" `sequence_length`: {sequence_length}`"
)
# compute number of masked spans in batch
num_masked_spans = int(mask_prob * sequence_length / mask_length + np.random.rand(1).item())
num_masked_spans = max(num_masked_spans, min_masks)
# make sure num masked indices <= sequence_length
if num_masked_spans * mask_length > sequence_length:
num_masked_spans = sequence_length // mask_length
# SpecAugment mask to fill
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
# get random indices to mask
spec_aug_mask_idxs = np.array(
[
np.random.choice(np.arange(sequence_length - (mask_length - 1)), num_masked_spans, replace=False)
for _ in range(batch_size)
]
)
# expand masked indices to masked spans
spec_aug_mask_idxs = np.broadcast_to(spec_aug_mask_idxs[:, :, None], (batch_size, num_masked_spans, mask_length))
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, num_masked_spans * mask_length)
offsets = np.arange(mask_length)[None, None, :]
offsets = np.broadcast_to(offsets, (batch_size, num_masked_spans, mask_length)).reshape(
batch_size, num_masked_spans * mask_length
)
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# scatter indices to mask
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
if attention_mask is not None:
# make sure padded input ids cannot be masked
spec_aug_mask = np.where(attention_mask, spec_aug_mask, False)
return spec_aug_mask
def _sample_negative_indices(features_shape: Tuple, num_negatives: int, attention_mask: Optional[np.ndarray] = None):
"""
Sample `num_negatives` vectors from feature vectors.
"""
batch_size, sequence_length, hidden_size = features_shape
if sequence_length <= 1:
raise ValueError(
"`features should have `sequence_length` > 1, but are of shape "
f"(batch_size, sequence_length, hidden_size) = ({batch_size, sequence_length, hidden_size})."
)
# get `num_negatives` random vector indices from the same utterance
sampled_negative_indices = []
for batch_idx in range(batch_size):
high = attention_mask[batch_idx].sum() - 1 if attention_mask is not None else sequence_length - 1
sampled_indices_slice = np.random.randint(0, high, size=(num_negatives * sequence_length,))
sampled_negative_indices.append(sampled_indices_slice)
sampled_negative_indices = np.asarray(sampled_negative_indices, dtype=np.int32)
# generate indices of the positive vectors themselves, repeat them `num_negatives` times
feature_indices = np.broadcast_to(np.arange(sequence_length)[:, None], (sequence_length, num_negatives)).flatten()
# avoid sampling the same positive vector, but keep the distribution uniform
sampled_negative_indices[sampled_negative_indices >= feature_indices] += 1
# correct for batch size
for batch_idx in range(1, batch_size):
sampled_negative_indices[batch_idx] += batch_idx * sequence_length
return sampled_negative_indices
WAV_2_VEC_2_START_DOCSTRING = r"""
Wav2Vec2 was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael
Auli.
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`Wav2Vec2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
WAV_2_VEC_2_INPUTS_DOCSTRING = r"""
Args:
input_values (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
conversion into a tensor of type `jnp.ndarray`. See [`Wav2Vec2Processor.__call__`] for details.
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask) .. warning:: `attention_mask` should only be passed
if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor
has `config.return_attention_mask == False`, such as
[wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), `attention_mask` should **not** be
passed to avoid degraded performance when doing batched inference. For such models `input_values` should
simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly
different results depending on whether `input_values` is padded or not.
mask_time_indices (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
masked extracted features in *config.proj_codevector_dim* space.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class FlaxWav2Vec2LayerNormConvLayer(nn.Module):
config: Wav2Vec2Config
layer_id: int = 0
dtype: jnp.dtype = jnp.float32
def setup(self):
self.in_conv_dim = self.config.conv_dim[self.layer_id] if self.layer_id > 0 else 1
self.out_conv_dim = self.config.conv_dim[self.layer_id]
self.conv = nn.Conv(
features=self.config.conv_dim[self.layer_id],
kernel_size=(self.config.conv_kernel[self.layer_id],),
strides=(self.config.conv_stride[self.layer_id],),
use_bias=self.config.conv_bias,
kernel_init=jax.nn.initializers.he_normal(),
padding="VALID",
dtype=self.dtype,
)
self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.activation = ACT2FN[self.config.feat_extract_activation]
def __call__(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
class FlaxConvWithWeightNorm(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv = nn.Conv(
features=self.config.hidden_size,
kernel_size=(self.config.num_conv_pos_embeddings,),
kernel_init=jax.nn.initializers.he_normal(),
padding="VALID",
feature_group_count=self.config.num_conv_pos_embedding_groups,
dtype=self.dtype,
)
weight_shape = (
self.conv.features,
self.conv.features // self.conv.feature_group_count,
self.conv.kernel_size[0],
)
self.weight_v = self.param("weight_v", jax.nn.initializers.he_normal(), weight_shape)
self.weight_g = self.param("weight_g", lambda _: jnp.linalg.norm(self.weight_v, axis=(0, 1))[None, None, :])
self.bias = self.param("bias", jax.nn.initializers.zeros, (self.conv.features,))
self.prev_padding = self.conv.kernel_size[0] // 2
def _get_normed_weights(self):
weight_v_norm = jnp.linalg.norm(self.weight_v, axis=(0, 1))[None, None, :]
normed_weight_v = jnp.divide(self.weight_v, weight_v_norm)
normed_kernel = jnp.multiply(normed_weight_v, self.weight_g)
return normed_kernel
def __call__(self, hidden_states):
kernel = self._get_normed_weights()
hidden_states = jnp.pad(hidden_states, ((0, 0), (self.prev_padding, self.prev_padding), (0, 0)))
hidden_states = self.conv.apply({"params": {"kernel": kernel.T, "bias": self.bias}}, hidden_states)
return hidden_states
class FlaxWav2Vec2PositionalConvEmbedding(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv = FlaxConvWithWeightNorm(self.config, dtype=self.dtype)
self.activation = ACT2FN[self.config.feat_extract_activation]
self.num_pad_remove = 1 if self.config.num_conv_pos_embeddings % 2 == 0 else 0
def __call__(self, hidden_states):
hidden_states = hidden_states.transpose((0, 1, 2))
hidden_states = self.conv(hidden_states)
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, : -self.num_pad_remove, :]
hidden_states = self.activation(hidden_states)
hidden_states = hidden_states.transpose((0, 1, 2))
return hidden_states
class FlaxConvLayersCollection(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
if self.config.feat_extract_norm == "layer":
self.layers = [
FlaxWav2Vec2LayerNormConvLayer(self.config, layer_id=i, name=str(i), dtype=self.dtype)
for i in range(self.config.num_feat_extract_layers)
]
elif self.config.feat_extract_norm == "group":
raise NotImplementedError("At the moment only ``config.feat_extact_norm == 'layer'`` is supported")
else:
raise ValueError(
f"`config.feat_extract_norm` is {self.config.feat_extract_norm}, but has to be one of ['group',"
" 'layer']"
)
def __call__(self, hidden_states):
for i, conv_layer in enumerate(self.layers):
hidden_states = conv_layer(hidden_states)
return hidden_states
class FlaxWav2Vec2FeatureEncoder(nn.Module):
"""Construct the features from raw audio waveform"""
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv_layers = FlaxConvLayersCollection(self.config, dtype=self.dtype)
def __call__(self, input_values, freeze_feature_encoder=False):
hidden_states = input_values[:, :, None]
hidden_states = self.conv_layers(hidden_states)
if freeze_feature_encoder:
hidden_states = jax.lax.stop_gradient(hidden_states)
return hidden_states
class FlaxWav2Vec2FeatureProjection(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.projection = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.feat_proj_dropout)
def __call__(self, hidden_states, deterministic=True):
norm_hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(norm_hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states, norm_hidden_states
class FlaxWav2Vec2Attention(nn.Module):
config: Wav2Vec2Config
embed_dim: int
num_heads: int
dropout: float = 0.0
bias: bool = True
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
def __call__(
self,
hidden_states: jnp.ndarray,
key_value_states: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
"""Input shape: Batch x Time x Channel"""
# get query proj
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
if attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class FlaxWav2Vec2FeedForward(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.intermediate_dropout = nn.Dropout(rate=self.config.activation_dropout)
self.intermediate_dense = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
if isinstance(self.config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[self.config.hidden_act]
else:
self.intermediate_act_fn = self.config.hidden_act
self.output_dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.output_dropout = nn.Dropout(rate=self.config.hidden_dropout)
def __call__(self, hidden_states, deterministic=True):
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states, deterministic=deterministic)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxWav2Vec2EncoderLayerStableLayerNorm(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.attention = FlaxWav2Vec2Attention(
config=self.config,
embed_dim=self.config.hidden_size,
num_heads=self.config.num_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout)
self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.feed_forward = FlaxWav2Vec2FeedForward(self.config, dtype=self.dtype)
self.final_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states, attention_mask=None, deterministic=True, output_attentions=False):
attn_residual = hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states, attn_weights = self.attention(
hidden_states, attention_mask=attention_mask, deterministic=deterministic
)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = attn_residual + hidden_states
hidden_states = hidden_states + self.feed_forward(
self.final_layer_norm(hidden_states), deterministic=deterministic
)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class FlaxWav2Vec2EncoderLayerStableLayerNormCollection(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.layers = [
FlaxWav2Vec2EncoderLayerStableLayerNorm(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
class FlaxWav2Vec2StableLayerNormEncoder(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.pos_conv_embed = FlaxWav2Vec2PositionalConvEmbedding(self.config, dtype=self.dtype)
self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout)
self.layers = FlaxWav2Vec2EncoderLayerStableLayerNormCollection(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask=None,
deterministic=True,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
if attention_mask is not None:
# make sure padded tokens are not attended to
hidden_states = jnp.where(
jnp.broadcast_to(attention_mask[:, :, None], hidden_states.shape), hidden_states, 0
)
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = self.layer_norm(outputs[0])
# update the last element in `hidden_states` after applying `layernorm` above
hidden_states = None
if output_hidden_states:
hidden_states = outputs[1]
hidden_states = hidden_states[:-1] + (last_hidden_state,)
if not return_dict:
outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=outputs.attentions
)
class FlaxWav2Vec2GumbelVectorQuantizer(nn.Module):
"""
Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
"""
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.num_groups = self.config.num_codevector_groups
self.num_vars = self.config.num_codevectors_per_group
if self.config.codevector_dim % self.num_groups != 0:
raise ValueError(
f"`config.codevector_dim {self.config.codevector_dim} must be divisible by"
f" `config.num_codevector_groups` {self.num_groups} for concatenation"
)
# storage for codebook variables (codewords)
self.codevectors = self.param(
"codevectors",
jax.nn.initializers.uniform(),
(1, self.num_groups * self.num_vars, self.config.codevector_dim // self.num_groups),
)
self.weight_proj = nn.Dense(
self.num_groups * self.num_vars,
kernel_init=jax.nn.initializers.normal(1.0),
dtype=self.dtype,
)
@staticmethod
def _compute_perplexity(probs, mask=None):
if mask is not None:
mask_extended = jnp.broadcast_to(mask.flatten()[:, None, None], probs.shape)
probs = jnp.where(mask_extended, probs, jnp.zeros_like(probs))
marginal_probs = probs.sum(axis=0) / mask.sum()
else:
marginal_probs = probs.mean(axis=0)
perplexity = jnp.exp(-jnp.sum(marginal_probs * jnp.log(marginal_probs + 1e-7), axis=-1)).sum()
return perplexity
def __call__(self, hidden_states, mask_time_indices=None, deterministic=True, temperature=1):
batch_size, sequence_length, hidden_size = hidden_states.shape
# project to codevector dim
hidden_states = self.weight_proj(hidden_states)
hidden_states = hidden_states.reshape(batch_size * sequence_length * self.num_groups, -1)
if not deterministic:
# sample code vector probs via gumbel in differentiateable way
gumbel_rng = self.make_rng("gumbel")
gumbels = jax.random.gumbel(gumbel_rng, hidden_states.shape)
codevector_probs = nn.softmax((hidden_states + gumbels) / temperature)
# compute perplexity
codevector_soft_dist = nn.softmax(
hidden_states.reshape(batch_size * sequence_length, self.num_groups, -1), axis=-1
)
perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices)
else:
# take argmax in non-differentiable way
# comptute hard codevector distribution (one hot)
codevector_idx = hidden_states.argmax(axis=-1)
codevector_probs = jax.nn.one_hot(codevector_idx, hidden_states.shape[-1]) * 1.0
codevector_probs = codevector_probs.reshape(batch_size * sequence_length, self.num_groups, -1)
perplexity = self._compute_perplexity(codevector_probs, mask_time_indices)
codevector_probs = codevector_probs.reshape(batch_size * sequence_length, -1)
# use probs to retrieve codevectors
codevectors_per_group = jnp.expand_dims(codevector_probs, axis=-1) * self.codevectors
codevectors = codevectors_per_group.reshape(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
codevectors = codevectors.sum(-2).reshape(batch_size, sequence_length, -1)
return codevectors, perplexity
class FlaxWav2Vec2Adapter(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
# hidden_states require down-projection if feature dims don't match
if self.config.output_hidden_size != self.config.hidden_size:
self.proj = nn.Dense(
self.config.output_hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.proj_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
else:
self.proj = self.proj_layer_norm = None
self.layers = FlaxWav2Vec2AdapterLayersCollection(self.config, dtype=self.dtype)
def __call__(self, hidden_states, deterministic=True):
# down-project hidden_states if required
if self.proj is not None and self.proj_layer_norm is not None:
hidden_states = self.proj(hidden_states)
hidden_states = self.proj_layer_norm(hidden_states)
hidden_states = self.layers(hidden_states)
return hidden_states
class FlaxWav2Vec2AdapterLayer(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv = nn.Conv(
features=2 * self.config.output_hidden_size,
kernel_size=(self.config.adapter_kernel_size,),
strides=(self.config.adapter_stride,),
padding=((1, 1),),
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = nn.glu(hidden_states, axis=2)
return hidden_states
class FlaxWav2Vec2AdapterLayersCollection(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.layers = [
FlaxWav2Vec2AdapterLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_adapter_layers)
]
def __call__(self, hidden_states):
for conv_layer in self.layers:
hidden_states = conv_layer(hidden_states)
return hidden_states
class FlaxWav2Vec2PreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Wav2Vec2Config
base_model_prefix: str = "wav2vec2"
main_input_name = "input_values"
module_class: nn.Module = None
def __init__(
self,
config: Wav2Vec2Config,
input_shape: Tuple = (1, 1024),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_values = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_values)
params_rng, dropout_rng = jax.random.split(rng, 2)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, input_values, attention_mask, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
def __call__(
self,
input_values,
attention_mask=None,
mask_time_indices=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
freeze_feature_encoder: bool = False,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
batch_size, sequence_length = input_values.shape
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
return self.module.apply(
inputs,
jnp.array(input_values, dtype="f4"),
jnp.array(attention_mask, dtype="i4"),
mask_time_indices,
not train,
output_attentions,
output_hidden_states,
freeze_feature_encoder,
return_dict,
rngs=rngs,
)
def _get_feat_extract_output_lengths(
self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None
):
return self.module._get_feat_extract_output_lengths(input_lengths, add_adapter=add_adapter)
class FlaxWav2Vec2Module(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.feature_extractor = FlaxWav2Vec2FeatureEncoder(self.config, dtype=self.dtype)
self.feature_projection = FlaxWav2Vec2FeatureProjection(self.config, dtype=self.dtype)
self.masked_spec_embed = self.param(
"masked_spec_embed", jax.nn.initializers.uniform(), (self.config.hidden_size,)
)
if self.config.do_stable_layer_norm:
self.encoder = FlaxWav2Vec2StableLayerNormEncoder(self.config, dtype=self.dtype)
else:
raise NotImplementedError("``config.do_stable_layer_norm is False`` is currently not supported.")
self.adapter = FlaxWav2Vec2Adapter(self.config, dtype=self.dtype) if self.config.add_adapter else None
def __call__(
self,
input_values,
attention_mask=None,
mask_time_indices=None,
deterministic=True,
output_attentions=None,
output_hidden_states=None,
freeze_feature_encoder=False,
return_dict=None,
):
extract_features = self.feature_extractor(input_values, freeze_feature_encoder=freeze_feature_encoder)
# make sure that no loss is computed on padded inputs
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
extract_features.shape[1], attention_mask, add_adapter=False
)
hidden_states, extract_features = self.feature_projection(extract_features, deterministic=deterministic)
if mask_time_indices is not None: # apply SpecAugment along time axis with given indices
hidden_states = jnp.where(
jnp.broadcast_to(mask_time_indices[:, :, None], hidden_states.shape),
jnp.broadcast_to(self.masked_spec_embed[None, None, :], hidden_states.shape),
hidden_states,
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if self.adapter is not None:
hidden_states = self.adapter(hidden_states)
if not return_dict:
return (hidden_states, extract_features) + encoder_outputs[1:]
return FlaxWav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
extract_features=extract_features,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def _get_feat_extract_output_lengths(
self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None
):
"""
Computes the output length of the convolutional layers
"""
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (input_length - kernel_size) // stride + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
if add_adapter:
for _ in range(self.config.num_adapter_layers):
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
return input_lengths
def _get_feature_vector_attention_mask(
self, feature_vector_length: int, attention_mask: jnp.ndarray, add_adapter=None
):
# Effectively attention_mask.sum(-1), but not inplace to be able to run
# on inference mode.
non_padded_lengths = attention_mask.cumsum(axis=-1)[:, -1]
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)
batch_size = attention_mask.shape[0]
attention_mask = jnp.zeros((batch_size, feature_vector_length), dtype=attention_mask.dtype)
# these two operations makes sure that all values
# before the output lengths indices are attended to
attention_mask = attention_mask.at[jnp.arange(attention_mask.shape[0]), output_lengths - 1].set(1)
attention_mask = jnp.flip(jnp.flip(attention_mask, -1).cumsum(-1), -1).astype("bool")
return attention_mask
@add_start_docstrings(
"The bare Wav2Vec2 Model transformer outputting raw hidden-states without any specific head on top.",
WAV_2_VEC_2_START_DOCSTRING,
)
class FlaxWav2Vec2Model(FlaxWav2Vec2PreTrainedModel):
module_class = FlaxWav2Vec2Module
FLAX_WAV2VEC2_MODEL_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoProcessor, FlaxWav2Vec2Model
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-large-lv60")
>>> model = FlaxWav2Vec2Model.from_pretrained("facebook/wav2vec2-large-lv60")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> input_values = processor(
... ds["speech"][0], sampling_rate=16_000, return_tensors="np"
... ).input_values # Batch size 1
>>> hidden_states = model(input_values).last_hidden_state
```
"""
overwrite_call_docstring(
FlaxWav2Vec2Model,
WAV_2_VEC_2_INPUTS_DOCSTRING + FLAX_WAV2VEC2_MODEL_DOCSTRING,
)
append_replace_return_docstrings(
FlaxWav2Vec2Model, output_type=FlaxWav2Vec2BaseModelOutput, config_class=Wav2Vec2Config
)
class FlaxWav2Vec2ForCTCModule(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.wav2vec2 = FlaxWav2Vec2Module(self.config, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.final_dropout)
self.lm_head = nn.Dense(
self.config.vocab_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(
self,
input_values,
attention_mask=None,
mask_time_indices=None,
deterministic=True,
output_attentions=None,
output_hidden_states=None,
freeze_feature_encoder=False,
return_dict=None,
):
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
mask_time_indices=mask_time_indices,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
freeze_feature_encoder=freeze_feature_encoder,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
logits = self.lm_head(hidden_states)
if not return_dict:
return (logits,) + outputs[2:]
return FlaxCausalLMOutput(logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
def _get_feat_extract_output_lengths(
self,
input_lengths: Union[jnp.ndarray, int],
add_adapter: Optional[bool] = None,
):
"""
Computes the output length of the convolutional layers
"""
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (input_length - kernel_size) // stride + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
if add_adapter:
for _ in range(self.config.num_adapter_layers):
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
return input_lengths
@add_start_docstrings(
"Wav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).",
WAV_2_VEC_2_START_DOCSTRING,
)
class FlaxWav2Vec2ForCTC(FlaxWav2Vec2PreTrainedModel):
module_class = FlaxWav2Vec2ForCTCModule
FLAX_WAV2VEC2_FOR_CTC_DOCSTRING = """
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import AutoProcessor, FlaxWav2Vec2ForCTC
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-large-960h-lv60")
>>> model = FlaxWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> input_values = processor(
... ds["speech"][0], sampling_rate=16_000, return_tensors="np"
... ).input_values # Batch size 1
>>> logits = model(input_values).logits
>>> predicted_ids = jnp.argmax(logits, axis=-1)
>>> transcription = processor.decode(predicted_ids[0])
>>> # should give: "A MAN SAID TO THE UNIVERSE SIR I EXIST"
```
"""
overwrite_call_docstring(
FlaxWav2Vec2ForCTC,
WAV_2_VEC_2_INPUTS_DOCSTRING + FLAX_WAV2VEC2_FOR_CTC_DOCSTRING,
)
append_replace_return_docstrings(FlaxWav2Vec2ForCTC, output_type=FlaxCausalLMOutput, config_class=Wav2Vec2Config)
class FlaxWav2Vec2ForPreTrainingModule(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.wav2vec2 = FlaxWav2Vec2Module(self.config, dtype=self.dtype)
self.dropout_features = nn.Dropout(self.config.feat_quantizer_dropout)
self.quantizer = FlaxWav2Vec2GumbelVectorQuantizer(self.config, dtype=self.dtype)
self.project_q = nn.Dense(
self.config.proj_codevector_dim,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.project_hid = nn.Dense(
self.config.proj_codevector_dim,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(
self,
input_values,
attention_mask=None,
mask_time_indices=None,
gumbel_temperature: int = 1,
deterministic: bool = True,
output_attentions=None,
output_hidden_states=None,
freeze_feature_encoder=False,
return_dict=None,
):
r"""
Returns:
Example:
```python
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
mask_time_indices=mask_time_indices,
deterministic=deterministic,
freeze_feature_encoder=freeze_feature_encoder,
return_dict=return_dict,
)
# project all transformed features (including masked) to final vq dim
transformer_features = self.project_hid(outputs[0])
# quantize all (unmasked) extracted features and project to final vq dim
extract_features = self.dropout_features(outputs[1], deterministic=deterministic)
quantized_features, codevector_perplexity = self.quantizer(
extract_features, mask_time_indices, deterministic=deterministic, temperature=gumbel_temperature
)
quantized_features = self.project_q(quantized_features)
if not return_dict:
return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
return FlaxWav2Vec2ForPreTrainingOutput(
projected_states=transformer_features,
projected_quantized_states=quantized_features,
codevector_perplexity=codevector_perplexity,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def _get_feat_extract_output_lengths(
self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None
):
"""
Computes the output length of the convolutional layers
"""
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (input_length - kernel_size) // stride + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
if add_adapter:
for _ in range(self.config.num_adapter_layers):
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
return input_lengths
@add_start_docstrings("""Wav2Vec2 Model with a quantizer and `VQ` head on top.""", WAV_2_VEC_2_START_DOCSTRING)
class FlaxWav2Vec2ForPreTraining(FlaxWav2Vec2PreTrainedModel):
module_class = FlaxWav2Vec2ForPreTrainingModule
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
# overwrite since has `gumbel_temperature` input
def __call__(
self,
input_values,
attention_mask=None,
mask_time_indices=None,
gumbel_temperature: int = 1,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
gumbel_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
freeze_feature_encoder: bool = False,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
batch_size, sequence_length = input_values.shape
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
if gumbel_rng is not None:
rngs["gumbel"] = gumbel_rng
inputs = {"params": params or self.params}
return self.module.apply(
inputs,
jnp.array(input_values, dtype="f4"),
jnp.array(attention_mask, dtype="i4"),
mask_time_indices,
gumbel_temperature,
not train,
output_attentions,
output_hidden_states,
freeze_feature_encoder,
return_dict,
rngs=rngs,
)
FLAX_WAV2VEC2_FOR_PRETRAINING_DOCSTRING = """
Returns:
Example:
```python
>>> import optax
>>> import numpy as np
>>> import jax.numpy as jnp
>>> from transformers import AutoFeatureExtractor, FlaxWav2Vec2ForPreTraining
>>> from transformers.models.wav2vec2.modeling_flax_wav2vec2 import _compute_mask_indices
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-large-lv60")
>>> model = FlaxWav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-large-lv60")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> input_values = feature_extractor(ds["speech"][0], return_tensors="np").input_values # Batch size 1
>>> # compute masked indices
>>> batch_size, raw_sequence_length = input_values.shape
>>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length)
>>> mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.2, mask_length=2)
>>> outputs = model(input_values, mask_time_indices=mask_time_indices)
>>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states)
>>> cosine_sim = optax.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states)
>>> # show that cosine similarity is much higher than random
>>> assert np.asarray(cosine_sim)[mask_time_indices].mean() > 0.5
```
"""
overwrite_call_docstring(
FlaxWav2Vec2ForPreTraining,
WAV_2_VEC_2_INPUTS_DOCSTRING + FLAX_WAV2VEC2_FOR_PRETRAINING_DOCSTRING,
)
append_replace_return_docstrings(
FlaxWav2Vec2ForPreTraining, output_type=FlaxWav2Vec2ForPreTrainingOutput, config_class=Wav2Vec2Config
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py
|
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Wav2Vec2 checkpoint."""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
Wav2Vec2Config,
Wav2Vec2CTCTokenizer,
Wav2Vec2FeatureExtractor,
Wav2Vec2ForCTC,
Wav2Vec2ForPreTraining,
Wav2Vec2Processor,
logging,
)
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2ForSequenceClassification
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
MAPPING = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
TOP_LEVEL_KEYS = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def read_txt_into_dict(filename):
result = {}
with open(filename, "r") as file:
for line_number, line in enumerate(file):
line = line.strip()
if line:
words = line.split()
key = line_number
value = words[0]
result[key] = value
return result
def set_recursively(key, value, full_name, weight_type, hf_pointer):
for attribute in key.split("."):
hf_pointer = getattr(hf_pointer, attribute)
hf_param_name = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(param_key):
hf_param_name = PARAM_MAPPING[full_name.split(".")[-1]]
weight_type = "param"
if weight_type is not None and weight_type != "param":
hf_shape = getattr(hf_pointer, weight_type).shape
elif weight_type is not None and weight_type == "param":
shape_pointer = hf_pointer
for attribute in hf_param_name.split("."):
shape_pointer = getattr(shape_pointer, attribute)
hf_shape = shape_pointer.shape
# let's reduce dimension
value = value[0]
else:
hf_shape = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}"
)
if weight_type == "weight":
hf_pointer.weight.data = value
elif weight_type == "weight_g":
hf_pointer.weight_g.data = value
elif weight_type == "weight_v":
hf_pointer.weight_v.data = value
elif weight_type == "bias":
hf_pointer.bias.data = value
elif weight_type == "param":
for attribute in hf_param_name.split("."):
hf_pointer = getattr(hf_pointer, attribute)
hf_pointer.data = value
else:
hf_pointer.data = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.")
def rename_dict(key, value, full_name, weight_type, hf_dict):
hf_param_name = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(param_key):
hf_param_name = PARAM_MAPPING[full_name.split(".")[-1]]
weight_type = "param"
if weight_type is not None and weight_type != "param":
full_key = ".".join([key, weight_type])
elif weight_type is not None and weight_type == "param":
full_key = ".".join([key, hf_param_name])
else:
full_key = key
hf_dict[full_key] = value if "lm_head" in full_key else value[0]
PARAM_MAPPING = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def load_wav2vec2_layer(name, value, hf_model=None, hf_dict=None):
is_used = False
for key, mapped_key in MAPPING.items():
mapped_key = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
is_used = True
if "*" in mapped_key:
layer_index = name.split(key)[0].split(".")[-2]
mapped_key = mapped_key.replace("*", layer_index)
if "weight_g" in name:
weight_type = "weight_g"
elif "weight_v" in name:
weight_type = "weight_v"
elif "bias" in name:
weight_type = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
weight_type = "weight"
else:
weight_type = None
if hf_dict is not None:
rename_dict(mapped_key, value, name, weight_type, hf_dict)
else:
set_recursively(mapped_key, value, name, weight_type, hf_model)
return is_used
return is_used
def recursively_load_weights(fairseq_model, hf_model, is_headless):
unused_weights = []
fairseq_dict = fairseq_model.state_dict()
feature_extractor = hf_model.wav2vec2.feature_extractor
for name, value in fairseq_dict.items():
is_used = False
if "conv_layers" in name:
load_conv_layer(
name,
value,
feature_extractor,
unused_weights,
hf_model.config.feat_extract_norm == "group",
)
is_used = True
else:
is_used = load_wav2vec2_layer(name, value, hf_model)
if not is_used:
unused_weights.append(name)
logger.warning(f"Unused weights: {unused_weights}")
def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm):
name = full_name.split("conv_layers.")[-1]
items = name.split(".")
layer_id = int(items[0])
type_id = int(items[1])
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."
)
feature_extractor.conv_layers[layer_id].conv.bias.data = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.")
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."
)
feature_extractor.conv_layers[layer_id].conv.weight.data = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.")
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found."
)
feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.")
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found."
)
feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.")
else:
unused_weights.append(full_name)
@torch.no_grad()
def convert_wav2vec2_checkpoint(
checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True, is_seq_class=False
):
"""
Copy/paste/tweak model's weights to transformers design.
"""
if config_path is not None:
config = Wav2Vec2Config.from_pretrained(config_path)
else:
config = Wav2Vec2Config()
if is_seq_class:
id2label = read_txt_into_dict(dict_path)
config.id2label = id2label
hf_wav2vec = Wav2Vec2ForSequenceClassification(config)
feature_extractor = Wav2Vec2FeatureExtractor(
feature_size=1,
sampling_rate=16000,
padding_value=0,
do_normalize=True,
return_attention_mask=True,
)
feature_extractor.save_pretrained(pytorch_dump_folder_path)
elif is_finetuned:
if dict_path:
target_dict = Dictionary.load(dict_path)
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
config.bos_token_id = target_dict.pad_index
config.pad_token_id = target_dict.bos_index
config.eos_token_id = target_dict.eos_index
config.vocab_size = len(target_dict.symbols)
vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json")
if not os.path.isdir(pytorch_dump_folder_path):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(pytorch_dump_folder_path))
return
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
vocab_dict = target_dict.indices
# fairseq has the <pad> and <s> switched
vocab_dict["<pad>"] = 0
vocab_dict["<s>"] = 1
with open(vocab_path, "w", encoding="utf-8") as vocab_handle:
json.dump(vocab_dict, vocab_handle)
tokenizer = Wav2Vec2CTCTokenizer(
vocab_path,
unk_token=target_dict.unk_word,
pad_token=target_dict.pad_word,
bos_token=target_dict.bos_word,
eos_token=target_dict.eos_word,
word_delimiter_token="|",
do_lower_case=False,
)
return_attention_mask = True if config.feat_extract_norm == "layer" else False
feature_extractor = Wav2Vec2FeatureExtractor(
feature_size=1,
sampling_rate=16000,
padding_value=0,
do_normalize=True,
return_attention_mask=return_attention_mask,
)
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
processor.save_pretrained(pytorch_dump_folder_path)
hf_wav2vec = Wav2Vec2ForCTC(config)
else:
hf_wav2vec = Wav2Vec2ForPreTraining(config)
if is_finetuned or is_seq_class:
model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])}
)
else:
task_arg = argparse.Namespace(task="audio_pretraining")
task = fairseq.tasks.setup_task(task_arg)
model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=task)
model = model[0].eval()
recursively_load_weights(model, hf_wav2vec, not is_finetuned)
hf_wav2vec.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
args = parser.parse_args()
is_finetuned = not args.not_finetuned and not args.is_seq_class
convert_wav2vec2_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/wav2vec2/tokenization_wav2vec2.py
|
# coding=utf-8
# Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for Wav2Vec2."""
import json
import os
import sys
import warnings
from dataclasses import dataclass
from itertools import groupby
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
import numpy as np
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...utils import (
ModelOutput,
PaddingStrategy,
TensorType,
add_end_docstrings,
is_flax_available,
is_tf_available,
is_torch_available,
logging,
to_py_obj,
)
logger = logging.get_logger(__name__)
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
if is_flax_available():
import jax.numpy as jnp # noqa: F401
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"tokenizer_config_file": "tokenizer_config.json",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/vocab.json",
},
"tokenizer_config_file": {
"facebook/wav2vec2-base-960h": (
"https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/tokenizer_config.json"
),
},
}
# Wav2Vec2 has no max input length
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"facebook/wav2vec2-base-960h": sys.maxsize}
WAV2VEC2_KWARGS_DOCSTRING = r"""
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
verbose (`bool`, *optional*, defaults to `True`):
Whether or not to print more information and warnings.
"""
ListOfDict = List[Dict[str, Union[int, str]]]
@dataclass
class Wav2Vec2CTCTokenizerOutput(ModelOutput):
"""
Output type of [` Wav2Vec2CTCTokenizer`], with transcription.
Args:
text (list of `str` or `str`):
Decoded logits in text from. Usually the speech transcription.
char_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`):
Offsets of the decoded characters. In combination with sampling rate and model downsampling rate char
offsets can be used to compute time stamps for each charater. Total logit score of the beam associated with
produced text.
word_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`):
Offsets of the decoded words. In combination with sampling rate and model downsampling rate word offsets
can be used to compute time stamps for each word.
"""
text: Union[List[str], str]
char_offsets: Union[List[ListOfDict], ListOfDict] = None
word_offsets: Union[List[ListOfDict], ListOfDict] = None
class Wav2Vec2CTCTokenizer(PreTrainedTokenizer):
"""
Constructs a Wav2Vec2CTC tokenizer.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to
the superclass for more information regarding such methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sentence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sentence token.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
word_delimiter_token (`str`, *optional*, defaults to `"|"`):
The token used for defining the end of a word.
do_lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to accept lowercase input and lowercase the output when decoding.
target_lang (`str`, *optional*):
A target language the tokenizer should set by default. `target_lang` has to be defined for multi-lingual,
nested vocabulary such as [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all).
**kwargs
Additional keyword arguments passed along to [`PreTrainedTokenizer`]
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
unk_token="<unk>",
pad_token="<pad>",
word_delimiter_token="|",
replace_word_delimiter_char=" ",
do_lower_case=False,
target_lang=None,
**kwargs,
):
self._word_delimiter_token = word_delimiter_token
self.do_lower_case = do_lower_case
self.replace_word_delimiter_char = replace_word_delimiter_char
self.target_lang = target_lang
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.vocab = json.load(vocab_handle)
# if target lang is defined vocab must be a nested dict
# with each target lang being one vocabulary
if target_lang is not None:
self.encoder = self.vocab[target_lang]
else:
self.encoder = self.vocab
self.decoder = {v: k for k, v in self.encoder.items()}
super().__init__(
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
do_lower_case=do_lower_case,
word_delimiter_token=word_delimiter_token,
replace_word_delimiter_char=replace_word_delimiter_char,
target_lang=target_lang,
**kwargs,
)
# make sure that tokens made of several
# characters are not split at tokenization
for token in self.encoder.keys():
if len(token) > 1:
self.add_tokens(AddedToken(token, rstrip=True, lstrip=True, normalized=False))
def set_target_lang(self, target_lang: str):
"""
Set the target language of a nested multi-lingual dictionary
"""
if self.vocab == self.encoder:
raise ValueError(f"{self.vocab} is not a multi-lingual, nested tokenizer. Cannot set target language.")
if target_lang not in self.vocab:
raise ValueError(f"{target_lang} does not exist. Choose one of {', '.join(self.vocab.keys())}.")
self.target_lang = target_lang
self.init_kwargs["target_lang"] = target_lang
self.encoder = self.vocab[target_lang]
self.decoder = {v: k for k, v in self.encoder.items()}
# make sure that tokens made of several
# characters are not split at tokenization
for token in self.encoder.keys():
if len(token) > 1:
self.add_tokens(AddedToken(token, rstrip=True, lstrip=True, normalized=False))
@property
def word_delimiter_token(self) -> str:
"""
`str`: Word delimiter token. Log an error if used while not having been set.
"""
if self._word_delimiter_token is None and self.verbose:
logger.error("Using word_delimiter_token, but it is not set yet.")
return None
return str(self._word_delimiter_token)
@property
def word_delimiter_token_id(self) -> Optional[int]:
"""
`Optional[int]`: Id of the word_delimiter_token in the vocabulary. Returns `None` if the token has not been
set.
"""
if self._word_delimiter_token is None:
return None
return self.convert_tokens_to_ids(self.word_delimiter_token)
@word_delimiter_token.setter
def word_delimiter_token(self, value):
self._word_delimiter_token = value
@word_delimiter_token_id.setter
def word_delimiter_token_id(self, value):
self._word_delimiter_token = self.convert_tokens_to_ids(value)
@property
def vocab_size(self) -> int:
return len(self.decoder)
def get_vocab(self) -> Dict:
vocab = dict(self.encoder)
vocab.update(self.added_tokens_encoder)
return vocab
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
# Overwritten to never strip!
to_add = []
for token in new_tokens:
if isinstance(token, str):
to_add.append(AddedToken(token, rstrip=False, lstrip=False, normalized=False))
else:
to_add.append(token)
return super()._add_tokens(to_add, special_tokens)
def _tokenize(self, text, **kwargs):
"""
Converts a string into a sequence of tokens (string), using the tokenizer.
"""
if self.do_lower_case:
text = text.upper()
return list(text.replace(" ", self.word_delimiter_token))
def _convert_token_to_id(self, token: str) -> int:
"""Converts a token (str) in an index (integer) using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) in a token (str) using the vocab."""
result = self.decoder.get(index, self.unk_token)
return result
def convert_tokens_to_string(
self,
tokens: List[str],
group_tokens: bool = True,
spaces_between_special_tokens: bool = False,
output_char_offsets: bool = False,
output_word_offsets: bool = False,
) -> Dict[str, Union[str, float]]:
"""
Converts a connectionist-temporal-classification (CTC) output tokens into a single string.
"""
if len(tokens) == 0:
return {"text": "", "char_offsets": [], "word_offsets": []}
# group same tokens into non-repeating tokens in CTC style decoding
if group_tokens:
chars, char_repetitions = zip(*((token, len(list(group_iter))) for token, group_iter in groupby(tokens)))
else:
chars = tokens
char_repetitions = len(tokens) * [1]
# filter self.pad_token which is used as CTC-blank token
processed_chars = list(filter(lambda char: char != self.pad_token, chars))
# replace delimiter token
processed_chars = [
self.replace_word_delimiter_char if char == self.word_delimiter_token else char for char in processed_chars
]
# retrieve offsets
char_offsets = word_offsets = None
if output_char_offsets or output_word_offsets:
char_offsets = self._compute_offsets(char_repetitions, chars, self.pad_token)
if len(char_offsets) != len(processed_chars):
raise ValueError(
f"`char_offsets`: {char_offsets} and `processed_tokens`: {processed_chars}"
" have to be of the same length, but are: "
f"`len(offsets)`: {len(char_offsets)} and `len(processed_tokens)`:"
f" {len(processed_chars)}"
)
# set tokens to correct processed token
for i, char in enumerate(processed_chars):
char_offsets[i]["char"] = char
# retrieve word offsets from character offsets
word_offsets = None
if output_word_offsets:
word_offsets = self._get_word_offsets(char_offsets, self.replace_word_delimiter_char)
# don't output chars if not set to True
if not output_char_offsets:
char_offsets = None
# join to string
join_char = " " if spaces_between_special_tokens else ""
string = join_char.join(processed_chars).strip()
if self.do_lower_case:
string = string.lower()
return {"text": string, "char_offsets": char_offsets, "word_offsets": word_offsets}
@staticmethod
def _compute_offsets(
char_repetitions: List[int], chars: List[str], ctc_token: int
) -> List[Dict[str, Union[str, int]]]:
end_indices = np.asarray(char_repetitions).cumsum()
start_indices = np.concatenate(([0], end_indices[:-1]))
offsets = [
{"char": t, "start_offset": s, "end_offset": e} for t, s, e in zip(chars, start_indices, end_indices)
]
# filter out CTC token
offsets = list(filter(lambda offsets: offsets["char"] != ctc_token, offsets))
return offsets
@staticmethod
def _get_word_offsets(
offsets: Dict[str, Union[str, float]], word_delimiter_char: str = " "
) -> Dict[str, Union[str, float]]:
word_offsets = []
last_state = "SPACE"
word = ""
start_offset = 0
end_offset = 0
for i, offset in enumerate(offsets):
char = offset["char"]
state = "SPACE" if char == word_delimiter_char else "WORD"
if state == last_state:
# If we are in the same state as before, we simply repeat what we've done before
end_offset = offset["end_offset"]
word += char
else:
# Switching state
if state == "SPACE":
# Finishing a word
word_offsets.append({"word": word, "start_offset": start_offset, "end_offset": end_offset})
else:
# Starting a new word
start_offset = offset["start_offset"]
end_offset = offset["end_offset"]
word = char
last_state = state
if last_state == "WORD":
word_offsets.append({"word": word, "start_offset": start_offset, "end_offset": end_offset})
return word_offsets
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
if is_split_into_words:
text = " " + text
return (text, kwargs)
def _decode(
self,
token_ids: List[int],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = None,
group_tokens: bool = True,
spaces_between_special_tokens: bool = False,
output_word_offsets: Optional[bool] = False,
output_char_offsets: Optional[bool] = False,
) -> str:
"""
special _decode function is needed for Wav2Vec2Tokenizer because added tokens should be treated exactly the
same as tokens of the base vocabulary and therefore the function `convert_tokens_to_string` has to be called on
the whole token list and not individually on added tokens
"""
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
result = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
result.append(token)
string_output = self.convert_tokens_to_string(
result,
group_tokens=group_tokens,
spaces_between_special_tokens=spaces_between_special_tokens,
output_word_offsets=output_word_offsets,
output_char_offsets=output_char_offsets,
)
text = string_output["text"]
clean_up_tokenization_spaces = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
text = self.clean_up_tokenization(text)
if output_word_offsets or output_char_offsets:
return Wav2Vec2CTCTokenizerOutput(
text=text,
char_offsets=string_output["char_offsets"],
word_offsets=string_output["word_offsets"],
)
else:
return text
# overwritten from `tokenization_utils_base.py` because tokenizer can output
# `ModelOutput` which should not be a list for batched output and
# because we need docs for `output_char_offsets` here
def batch_decode(
self,
sequences: Union[List[int], List[List[int]], "np.ndarray", "torch.Tensor", "tf.Tensor"],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = None,
output_char_offsets: bool = False,
output_word_offsets: bool = False,
**kwargs,
) -> List[str]:
"""
Convert a list of lists of token ids into a list of strings by calling decode.
Args:
sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (`bool`, *optional*):
Whether or not to clean up the tokenization spaces.
output_char_offsets (`bool`, *optional*, defaults to `False`):
Whether or not to output character offsets. Character offsets can be used in combination with the
sampling rate and model downsampling rate to compute the time-stamps of transcribed characters.
<Tip>
Please take a look at the Example of [`~Wav2Vec2CTCTokenizer.decode`] to better understand how to make
use of `output_char_offsets`. [`~Wav2Vec2CTCTokenizer.batch_decode`] works the same way with batched
output.
</Tip>
output_word_offsets (`bool`, *optional*, defaults to `False`):
Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate
and model downsampling rate to compute the time-stamps of transcribed words.
<Tip>
Please take a look at the Example of [`~Wav2Vec2CTCTokenizer.decode`] to better understand how to make
use of `output_word_offsets`. [`~Wav2Vec2CTCTokenizer.batch_decode`] works the same way with batched
output.
</Tip>
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific decode method.
Returns:
`List[str]` or [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`]: The list of decoded
sentences. Will be a [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`] when
`output_char_offsets == True` or `output_word_offsets == True`.
"""
batch_decoded = [
self.decode(
seq,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
output_char_offsets=output_char_offsets,
output_word_offsets=output_word_offsets,
**kwargs,
)
for seq in sequences
]
if output_char_offsets or output_word_offsets:
# transform list of dicts to dict of lists
return Wav2Vec2CTCTokenizerOutput({k: [d[k] for d in batch_decoded] for k in batch_decoded[0]})
return batch_decoded
# overwritten from `tokenization_utils_base.py` because we need docs for `output_char_offsets`
# and `output_word_offsets` here
def decode(
self,
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = None,
output_char_offsets: bool = False,
output_word_offsets: bool = False,
**kwargs,
) -> str:
"""
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
tokens and clean up tokenization spaces.
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
Args:
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (`bool`, *optional*):
Whether or not to clean up the tokenization spaces.
output_char_offsets (`bool`, *optional*, defaults to `False`):
Whether or not to output character offsets. Character offsets can be used in combination with the
sampling rate and model downsampling rate to compute the time-stamps of transcribed characters.
<Tip>
Please take a look at the example below to better understand how to make use of `output_char_offsets`.
</Tip>
output_word_offsets (`bool`, *optional*, defaults to `False`):
Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate
and model downsampling rate to compute the time-stamps of transcribed words.
<Tip>
Please take a look at the example below to better understand how to make use of `output_word_offsets`.
</Tip>
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific decode method.
Returns:
`str` or [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`]: The list of decoded
sentences. Will be a [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`] when
`output_char_offsets == True` or `output_word_offsets == True`.
Example:
```python
>>> # Let's see how to retrieve time steps for a model
>>> from transformers import AutoTokenizer, AutoFeatureExtractor, AutoModelForCTC
>>> from datasets import load_dataset
>>> import datasets
>>> import torch
>>> # import model, feature extractor, tokenizer
>>> model = AutoModelForCTC.from_pretrained("facebook/wav2vec2-base-960h")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
>>> # load first sample of English common_voice
>>> dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True)
>>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000))
>>> dataset_iter = iter(dataset)
>>> sample = next(dataset_iter)
>>> # forward sample through model to get greedily predicted transcription ids
>>> input_values = feature_extractor(sample["audio"]["array"], return_tensors="pt").input_values
>>> logits = model(input_values).logits[0]
>>> pred_ids = torch.argmax(logits, axis=-1)
>>> # retrieve word stamps (analogous commands for `output_char_offsets`)
>>> outputs = tokenizer.decode(pred_ids, output_word_offsets=True)
>>> # compute `time_offset` in seconds as product of downsampling ratio and sampling_rate
>>> time_offset = model.config.inputs_to_logits_ratio / feature_extractor.sampling_rate
>>> word_offsets = [
... {
... "word": d["word"],
... "start_time": round(d["start_offset"] * time_offset, 2),
... "end_time": round(d["end_offset"] * time_offset, 2),
... }
... for d in outputs.word_offsets
... ]
>>> # compare word offsets with audio `en_train_0/common_voice_en_19121553.mp3` online on the dataset viewer:
>>> # https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/en
>>> word_offsets[:3]
[{'word': 'THE', 'start_time': 0.7, 'end_time': 0.78}, {'word': 'TRICK', 'start_time': 0.88, 'end_time': 1.08}, {'word': 'APPEARS', 'start_time': 1.2, 'end_time': 1.64}]
```"""
# Convert inputs to python lists
token_ids = to_py_obj(token_ids)
return self._decode(
token_ids=token_ids,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
output_char_offsets=output_char_offsets,
output_word_offsets=output_word_offsets,
**kwargs,
)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
return (vocab_file,)
class Wav2Vec2Tokenizer(PreTrainedTokenizer):
"""
Constructs a Wav2Vec2 tokenizer.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to
the superclass for more information regarding such methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sentence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sentence token.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
word_delimiter_token (`str`, *optional*, defaults to `"|"`):
The token used for defining the end of a word.
do_lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the output when decoding.
do_normalize (`bool`, *optional*, defaults to `False`):
Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly
improve the performance for some models, *e.g.*,
[wav2vec2-lv60](https://huggingface.co/models?search=lv60).
return_attention_mask (`bool`, *optional*, defaults to `False`):
Whether or not [`~Wav2Vec2Tokenizer.__call__`] should return `attention_mask`.
<Tip>
Wav2Vec2 models that have set `config.feat_extract_norm == "group"`, such as
[wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), have **not** been trained using
`attention_mask`. For such models, `input_values` should simply be padded with 0 and no `attention_mask`
should be passed.
For Wav2Vec2 models that have set `config.feat_extract_norm == "layer"`, such as
[wav2vec2-lv60](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self), `attention_mask` should be
passed for batched inference.
</Tip>
**kwargs
Additional keyword arguments passed along to [`PreTrainedTokenizer`]
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = {
"vocab_file": {
"facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/vocab.json"
},
"tokenizer_config_file": {
"facebook/wav2vec2-base-960h": (
"https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/tokenizer.json"
),
},
}
model_input_names = ["input_values", "attention_mask"]
def __init__(
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
unk_token="<unk>",
pad_token="<pad>",
word_delimiter_token="|",
do_lower_case=False,
do_normalize=False,
return_attention_mask=False,
**kwargs,
):
warnings.warn(
"The class `Wav2Vec2Tokenizer` is deprecated and will be removed in version 5 of Transformers. Please use"
" `Wav2Vec2Processor` or `Wav2Vec2CTCTokenizer` instead.",
FutureWarning,
)
self._word_delimiter_token = word_delimiter_token
self.do_lower_case = do_lower_case
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
super().__init__(
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
do_lower_case=do_lower_case,
do_normalize=do_normalize,
return_attention_mask=return_attention_mask,
word_delimiter_token=word_delimiter_token,
**kwargs,
)
@property
def word_delimiter_token(self) -> str:
"""
`str`: Padding token. Log an error if used while not having been set.
"""
if self._word_delimiter_token is None and self.verbose:
logger.error("Using word_delimiter_token, but it is not set yet.")
return None
return str(self._word_delimiter_token)
@property
def word_delimiter_token_id(self) -> Optional[int]:
"""
`Optional[int]`: Id of the word_delimiter_token in the vocabulary. Returns `None` if the token has not been
set.
"""
if self._word_delimiter_token is None:
return None
return self.convert_tokens_to_ids(self.word_delimiter_token)
@word_delimiter_token.setter
def word_delimiter_token(self, value):
self._word_delimiter_token = value
@word_delimiter_token_id.setter
def word_delimiter_token_id(self, value):
self._word_delimiter_token = self.convert_tokens_to_ids(value)
@add_end_docstrings(WAV2VEC2_KWARGS_DOCSTRING)
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
padding: Union[bool, str, PaddingStrategy] = False,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
sequences.
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy array or a list of list of float values. Must be mono channel audio, not
stereo, i.e. single float per timestep.
"""
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
# make sure input is in list format
if is_batched and not isinstance(raw_speech[0], np.ndarray):
raw_speech = [np.asarray(speech) for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech)
# always return batch
if not is_batched:
raw_speech = [raw_speech]
# zero-mean and unit-variance normalization
if self.do_normalize:
raw_speech = [(x - np.mean(x)) / np.sqrt(np.var(x) + 1e-5) for x in raw_speech]
# convert into correct format for padding
encoded_inputs = BatchEncoding({"input_values": raw_speech})
padded_inputs = self.pad(
encoded_inputs,
padding=padding,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=self.return_attention_mask,
return_tensors=return_tensors,
verbose=verbose,
)
return padded_inputs
@property
def vocab_size(self) -> int:
return len(self.decoder)
def get_vocab(self) -> Dict:
return dict(self.encoder, **self.added_tokens_encoder)
def _convert_token_to_id(self, token: str) -> int:
"""Converts a token (str) in an index (integer) using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) in a token (str) using the vocab."""
result = self.decoder.get(index, self.unk_token)
return result
def convert_tokens_to_string(self, tokens: List[str]) -> str:
"""
Converts a connectionist-temporal-classification (CTC) output tokens into a single string.
"""
# group same tokens into non-repeating tokens in CTC style decoding
grouped_tokens = [token_group[0] for token_group in groupby(tokens)]
# filter self.pad_token which is used as CTC-blank token
filtered_tokens = list(filter(lambda token: token != self.pad_token, grouped_tokens))
# replace delimiter token
string = "".join([" " if token == self.word_delimiter_token else token for token in filtered_tokens]).strip()
if self.do_lower_case:
string = string.lower()
return string
def _decode(
self,
token_ids: List[int],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = None,
**kwargs,
) -> str:
"""
special _decode function is needed for Wav2Vec2Tokenizer because added tokens should be treated exactly the
same as tokens of the base vocabulary and therefore the function `convert_tokens_to_string` has to be called on
the whole token list and not individually on added tokens
"""
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
result = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
result.append(token)
text = self.convert_tokens_to_string(result)
clean_up_tokenization_spaces = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
clean_text = self.clean_up_tokenization(text)
return clean_text
else:
return text
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
return (vocab_file,)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/wav2vec2/processing_wav2vec2.py
|
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Speech processor class for Wav2Vec2
"""
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
from .feature_extraction_wav2vec2 import Wav2Vec2FeatureExtractor
from .tokenization_wav2vec2 import Wav2Vec2CTCTokenizer
class Wav2Vec2Processor(ProcessorMixin):
r"""
Constructs a Wav2Vec2 processor which wraps a Wav2Vec2 feature extractor and a Wav2Vec2 CTC tokenizer into a single
processor.
[`Wav2Vec2Processor`] offers all the functionalities of [`Wav2Vec2FeatureExtractor`] and [`PreTrainedTokenizer`].
See the docstring of [`~Wav2Vec2Processor.__call__`] and [`~Wav2Vec2Processor.decode`] for more information.
Args:
feature_extractor (`Wav2Vec2FeatureExtractor`):
An instance of [`Wav2Vec2FeatureExtractor`]. The feature extractor is a required input.
tokenizer ([`PreTrainedTokenizer`]):
An instance of [`PreTrainedTokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "Wav2Vec2FeatureExtractor"
tokenizer_class = "AutoTokenizer"
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
try:
return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
except OSError:
warnings.warn(
f"Loading a tokenizer inside {cls.__name__} from a config that does not"
" include a `tokenizer_class` attribute is deprecated and will be "
"removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`"
" attribute to either your `config.json` or `tokenizer_config.json` "
"file to suppress this warning: ",
FutureWarning,
)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(pretrained_model_name_or_path, **kwargs)
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
return cls(feature_extractor=feature_extractor, tokenizer=tokenizer)
def __call__(self, *args, **kwargs):
"""
When used in normal mode, this method forwards all its arguments to Wav2Vec2FeatureExtractor's
[`~Wav2Vec2FeatureExtractor.__call__`] and returns its output. If used in the context
[`~Wav2Vec2Processor.as_target_processor`] this method forwards all its arguments to PreTrainedTokenizer's
[`~PreTrainedTokenizer.__call__`]. Please refer to the docstring of the above two methods for more information.
"""
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*args, **kwargs)
if "raw_speech" in kwargs:
warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.")
audio = kwargs.pop("raw_speech")
else:
audio = kwargs.pop("audio", None)
sampling_rate = kwargs.pop("sampling_rate", None)
text = kwargs.pop("text", None)
if len(args) > 0:
audio = args[0]
args = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process.")
if audio is not None:
inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
if text is not None:
encodings = self.tokenizer(text, **kwargs)
if text is None:
return inputs
elif audio is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def pad(self, *args, **kwargs):
"""
When used in normal mode, this method forwards all its arguments to Wav2Vec2FeatureExtractor's
[`~Wav2Vec2FeatureExtractor.pad`] and returns its output. If used in the context
[`~Wav2Vec2Processor.as_target_processor`] this method forwards all its arguments to PreTrainedTokenizer's
[`~PreTrainedTokenizer.pad`]. Please refer to the docstring of the above two methods for more information.
"""
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor.pad(*args, **kwargs)
input_features = kwargs.pop("input_features", None)
labels = kwargs.pop("labels", None)
if len(args) > 0:
input_features = args[0]
args = args[1:]
if input_features is not None:
input_features = self.feature_extractor.pad(input_features, *args, **kwargs)
if labels is not None:
labels = self.tokenizer.pad(labels, **kwargs)
if labels is None:
return input_features
elif input_features is None:
return labels
else:
input_features["labels"] = labels["input_ids"]
return input_features
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@contextmanager
def as_target_processor(self):
"""
Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning
Wav2Vec2.
"""
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your audio inputs, or in a separate call."
)
self._in_target_context_manager = True
self.current_processor = self.tokenizer
yield
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/wav2vec2/__init__.py
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_import_structure = {
"configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"],
"feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"],
"processing_wav2vec2": ["Wav2Vec2Processor"],
"tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_wav2vec2"] = [
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ForAudioFrameClassification",
"Wav2Vec2ForCTC",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2ForPreTraining",
"Wav2Vec2ForSequenceClassification",
"Wav2Vec2ForXVector",
"Wav2Vec2Model",
"Wav2Vec2PreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_wav2vec2"] = [
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWav2Vec2ForCTC",
"TFWav2Vec2Model",
"TFWav2Vec2PreTrainedModel",
"TFWav2Vec2ForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_wav2vec2"] = [
"FlaxWav2Vec2ForCTC",
"FlaxWav2Vec2ForPreTraining",
"FlaxWav2Vec2Model",
"FlaxWav2Vec2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wav2vec2 import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, Wav2Vec2Config
from .feature_extraction_wav2vec2 import Wav2Vec2FeatureExtractor
from .processing_wav2vec2 import Wav2Vec2Processor
from .tokenization_wav2vec2 import Wav2Vec2CTCTokenizer, Wav2Vec2Tokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wav2vec2 import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
Wav2Vec2ForAudioFrameClassification,
Wav2Vec2ForCTC,
Wav2Vec2ForMaskedLM,
Wav2Vec2ForPreTraining,
Wav2Vec2ForSequenceClassification,
Wav2Vec2ForXVector,
Wav2Vec2Model,
Wav2Vec2PreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wav2vec2 import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWav2Vec2ForCTC,
TFWav2Vec2ForSequenceClassification,
TFWav2Vec2Model,
TFWav2Vec2PreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wav2vec2 import (
FlaxWav2Vec2ForCTC,
FlaxWav2Vec2ForPreTraining,
FlaxWav2Vec2Model,
FlaxWav2Vec2PreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/wav2vec2/feature_extraction_wav2vec2.py
|
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Feature extractor class for Wav2Vec2
"""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
logger = logging.get_logger(__name__)
class Wav2Vec2FeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a Wav2Vec2 feature extractor.
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods.
Args:
feature_size (`int`, defaults to 1):
The feature dimension of the extracted features.
sampling_rate (`int`, defaults to 16000):
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
padding_value (`float`, defaults to 0.0):
The value that is used to fill the padding values.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly
improve the performance for some models, *e.g.*,
[wav2vec2-lv60](https://huggingface.co/models?search=lv60).
return_attention_mask (`bool`, *optional*, defaults to `False`):
Whether or not [`~Wav2Vec2FeatureExtractor.__call__`] should return `attention_mask`.
<Tip>
Wav2Vec2 models that have set `config.feat_extract_norm == "group"`, such as
[wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), have **not** been trained using
`attention_mask`. For such models, `input_values` should simply be padded with 0 and no `attention_mask`
should be passed.
For Wav2Vec2 models that have set `config.feat_extract_norm == "layer"`, such as
[wav2vec2-lv60](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self), `attention_mask` should be
passed for batched inference.
</Tip>"""
model_input_names = ["input_values", "attention_mask"]
def __init__(
self,
feature_size=1,
sampling_rate=16000,
padding_value=0.0,
return_attention_mask=False,
do_normalize=True,
**kwargs,
):
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
@staticmethod
def zero_mean_unit_var_norm(
input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0
) -> List[np.ndarray]:
"""
Every array in the list is normalized to have zero mean and unit variance
"""
if attention_mask is not None:
attention_mask = np.array(attention_mask, np.int32)
normed_input_values = []
for vector, length in zip(input_values, attention_mask.sum(-1)):
normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7)
if length < normed_slice.shape[0]:
normed_slice[length:] = padding_value
normed_input_values.append(normed_slice)
else:
normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values]
return normed_input_values
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
padding: Union[bool, str, PaddingStrategy] = False,
max_length: Optional[int] = None,
truncation: bool = False,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
sampling_rate: Optional[int] = None,
**kwargs,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model one or several sequence(s).
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
stereo, i.e. single float per timestep.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`):
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific feature_extractor's default.
[What are attention masks?](../glossary#attention-mask)
<Tip>
Wav2Vec2 models that have set `config.feat_extract_norm == "group"`, such as
[wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), have **not** been trained using
`attention_mask`. For such models, `input_values` should simply be padded with 0 and no
`attention_mask` should be passed.
For Wav2Vec2 models that have set `config.feat_extract_norm == "layer"`, such as
[wav2vec2-lv60](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self), `attention_mask` should
be passed for batched inference.
</Tip>
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors.
padding_value (`float`, defaults to 0.0):
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
f" {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
# always return batch
if not is_batched:
raw_speech = [raw_speech]
# convert into correct format for padding
encoded_inputs = BatchFeature({"input_values": raw_speech})
padded_inputs = self.pad(
encoded_inputs,
padding=padding,
max_length=max_length,
truncation=truncation,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
# convert input values to correct format
input_values = padded_inputs["input_values"]
if not isinstance(input_values[0], np.ndarray):
padded_inputs["input_values"] = [np.asarray(array, dtype=np.float32) for array in input_values]
elif (
not isinstance(input_values, np.ndarray)
and isinstance(input_values[0], np.ndarray)
and input_values[0].dtype is np.dtype(np.float64)
):
padded_inputs["input_values"] = [array.astype(np.float32) for array in input_values]
elif isinstance(input_values, np.ndarray) and input_values.dtype is np.dtype(np.float64):
padded_inputs["input_values"] = input_values.astype(np.float32)
# convert attention_mask to correct format
attention_mask = padded_inputs.get("attention_mask")
if attention_mask is not None:
padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask]
# zero-mean and unit-variance normalization
if self.do_normalize:
attention_mask = (
attention_mask
if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD
else None
)
padded_inputs["input_values"] = self.zero_mean_unit_var_norm(
padded_inputs["input_values"], attention_mask=attention_mask, padding_value=self.padding_value
)
if return_tensors is not None:
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
return padded_inputs
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/wav2vec2/modeling_wav2vec2.py
|
# coding=utf-8
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Wav2Vec2 model."""
import math
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_outputs import (
BaseModelOutput,
CausalLMOutput,
MaskedLMOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
Wav2Vec2BaseModelOutput,
XVectorOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
cached_file,
is_safetensors_available,
logging,
replace_return_docstrings,
)
from .configuration_wav2vec2 import Wav2Vec2Config
WAV2VEC2_ADAPTER_PT_FILE = "adapter.{}.bin"
WAV2VEC2_ADAPTER_SAFE_FILE = "adapter.{}.safetensors"
if is_safetensors_available():
from safetensors.torch import load_file as safe_load_file
logger = logging.get_logger(__name__)
_HIDDEN_STATES_START_POSITION = 2
# General docstring
_CONFIG_FOR_DOC = "Wav2Vec2Config"
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/wav2vec2-base-960h"
_EXPECTED_OUTPUT_SHAPE = [1, 292, 768]
# CTC docstring
_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'"
_CTC_EXPECTED_LOSS = 53.48
# Audio class docstring
_SEQ_CLASS_CHECKPOINT = "superb/wav2vec2-base-superb-ks"
_SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'"
_SEQ_CLASS_EXPECTED_LOSS = 6.54
# Frame class docstring
_FRAME_CLASS_CHECKPOINT = "anton-l/wav2vec2-base-superb-sd"
_FRAME_EXPECTED_OUTPUT = [0, 0]
# Speaker Verification docstring
_XVECTOR_CHECKPOINT = "anton-l/wav2vec2-base-superb-sv"
_XVECTOR_EXPECTED_OUTPUT = 0.98
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/wav2vec2-base-960h",
"facebook/wav2vec2-large-960h",
"facebook/wav2vec2-large-960h-lv60",
"facebook/wav2vec2-large-960h-lv60-self",
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
]
@dataclass
class Wav2Vec2ForPreTrainingOutput(ModelOutput):
"""
Output type of [`Wav2Vec2ForPreTraining`], with potential hidden states and attentions.
Args:
loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official
paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss.
projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked
projected quantized states.
projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive
target vectors for contrastive loss.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
contrastive_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`):
The contrastive loss (L_m) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) .
diversity_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`):
The diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) .
"""
loss: Optional[torch.FloatTensor] = None
projected_states: torch.FloatTensor = None
projected_quantized_states: torch.FloatTensor = None
codevector_perplexity: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
contrastive_loss: Optional[torch.FloatTensor] = None
diversity_loss: Optional[torch.FloatTensor] = None
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
attention_mask: Optional[torch.LongTensor] = None,
min_masks: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
CPU as part of the preprocessing during training.
Args:
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
the first element is the batch size and the second element is the length of the axis to span.
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
independently generated mask spans of length `mask_length` is computed by
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
actual percentage will be smaller.
mask_length: size of the mask
min_masks: minimum number of masked spans
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
each batch dimension.
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
f" and `sequence_length`: {sequence_length}`"
)
# epsilon is used for probabilistic rounding
epsilon = np.random.rand(1).item()
def compute_num_masked_span(input_length):
"""Given input length, compute how many spans should be masked"""
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
num_masked_span = max(num_masked_span, min_masks)
# make sure num masked span <= sequence_length
if num_masked_span * mask_length > sequence_length:
num_masked_span = sequence_length // mask_length
# make sure num_masked span is also <= input_length - (mask_length - 1)
if input_length - (mask_length - 1) < num_masked_span:
num_masked_span = max(input_length - (mask_length - 1), 0)
return num_masked_span
# compute number of masked spans in batch
input_lengths = (
attention_mask.sum(-1).detach().tolist()
if attention_mask is not None
else [sequence_length for _ in range(batch_size)]
)
# SpecAugment mask to fill
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
spec_aug_mask_idxs = []
max_num_masked_span = compute_num_masked_span(sequence_length)
if max_num_masked_span == 0:
return spec_aug_mask
for input_length in input_lengths:
# compute num of masked spans for this input
num_masked_span = compute_num_masked_span(input_length)
# get random indices to mask
spec_aug_mask_idx = np.random.choice(
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
)
# pick first sampled index that will serve as a dummy index to pad vector
# to ensure same dimension for all batches due to probabilistic rounding
# Picking first sample just pads those vectors twice.
if len(spec_aug_mask_idx) == 0:
# this case can only happen if `input_length` is strictly smaller then
# `sequence_length` in which case the last token has to be a padding
# token which we can use as a dummy mask id
dummy_mask_idx = sequence_length - 1
else:
dummy_mask_idx = spec_aug_mask_idx[0]
spec_aug_mask_idx = np.concatenate(
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
)
spec_aug_mask_idxs.append(spec_aug_mask_idx)
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
# expand masked indices to masked spans
spec_aug_mask_idxs = np.broadcast_to(
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
)
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
# add offset to the starting indexes so that indexes now create a span
offsets = np.arange(mask_length)[None, None, :]
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
batch_size, max_num_masked_span * mask_length
)
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# ensure that we cannot have indices larger than sequence_length
if spec_aug_mask_idxs.max() > sequence_length - 1:
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
# scatter indices to mask
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
return spec_aug_mask
def _sample_negative_indices(
features_shape: Tuple, num_negatives: int, mask_time_indices: Optional[np.ndarray] = None
):
"""
Sample `num_negatives` vectors from feature vectors.
"""
batch_size, sequence_length = features_shape
# generate indices of the positive vectors themselves, repeat them `num_negatives` times
sequence_length_range = np.arange(sequence_length)
# get `num_negatives` random vector indices from the same utterance
sampled_negative_indices = np.zeros(shape=(batch_size, sequence_length, num_negatives), dtype=np.int32)
mask_time_indices = (
mask_time_indices.astype(bool) if mask_time_indices is not None else np.ones(features_shape, dtype=bool)
)
for batch_idx in range(batch_size):
high = mask_time_indices[batch_idx].sum() - 1
mapped_masked_indices = sequence_length_range[mask_time_indices[batch_idx]]
feature_indices = np.broadcast_to(np.arange(high + 1)[:, None], (high + 1, num_negatives))
sampled_indices = np.random.randint(0, high, size=(high + 1, num_negatives))
# avoid sampling the same positive vector, but keep the distribution uniform
sampled_indices[sampled_indices >= feature_indices] += 1
# remap to actual indices
sampled_negative_indices[batch_idx][mask_time_indices[batch_idx]] = mapped_masked_indices[sampled_indices]
# correct for batch size
sampled_negative_indices[batch_idx] += batch_idx * sequence_length
return sampled_negative_indices
class Wav2Vec2NoLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
class Wav2Vec2LayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.activation(hidden_states)
return hidden_states
class Wav2Vec2GroupNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
class Wav2Vec2PositionalConvEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
padding=config.num_conv_pos_embeddings // 2,
groups=config.num_conv_pos_embedding_groups,
)
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
self.conv = weight_norm(self.conv, name="weight", dim=2)
deepspeed.zero.register_external_parameter(self, self.conv.weight_v)
deepspeed.zero.register_external_parameter(self, self.conv.weight_g)
else:
self.conv = weight_norm(self.conv, name="weight", dim=2)
self.padding = Wav2Vec2SamePadLayer(config.num_conv_pos_embeddings)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
class Wav2Vec2SamePadLayer(nn.Module):
def __init__(self, num_conv_pos_embeddings):
super().__init__()
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
def forward(self, hidden_states):
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
return hidden_states
class Wav2Vec2FeatureEncoder(nn.Module):
"""Construct the features from raw audio waveform"""
def __init__(self, config):
super().__init__()
if config.feat_extract_norm == "group":
conv_layers = [Wav2Vec2GroupNormConvLayer(config, layer_id=0)] + [
Wav2Vec2NoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1)
]
elif config.feat_extract_norm == "layer":
conv_layers = [
Wav2Vec2LayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)
]
else:
raise ValueError(
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
)
self.conv_layers = nn.ModuleList(conv_layers)
self.gradient_checkpointing = False
self._requires_grad = True
def _freeze_parameters(self):
for param in self.parameters():
param.requires_grad = False
self._requires_grad = False
def forward(self, input_values):
hidden_states = input_values[:, None]
# make sure hidden_states require grad for gradient_checkpointing
if self._requires_grad and self.training:
hidden_states.requires_grad = True
for conv_layer in self.conv_layers:
if self._requires_grad and self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
conv_layer.__call__,
hidden_states,
)
else:
hidden_states = conv_layer(hidden_states)
return hidden_states
class Wav2Vec2FeatureExtractor(Wav2Vec2FeatureEncoder):
def __init__(self, config):
super().__init__(config)
warnings.warn(
f"The class `{self.__class__.__name__}` has been depreciated "
"and will be removed in Transformers v5. "
f"Use `{self.__class__.__bases__[0].__name__}` instead.",
FutureWarning,
)
class Wav2Vec2FeatureProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps)
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
self.dropout = nn.Dropout(config.feat_proj_dropout)
def forward(self, hidden_states):
# non-projected hidden states are needed for quantization
norm_hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(norm_hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states, norm_hidden_states
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Wav2Vec2
class Wav2Vec2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[Wav2Vec2Config] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class Wav2Vec2FeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.output_dropout = nn.Dropout(config.hidden_dropout)
def forward(self, hidden_states):
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states)
return hidden_states
class Wav2Vec2EncoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = Wav2Vec2Attention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = Wav2Vec2FeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
attn_residual = hidden_states
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states + self.feed_forward(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class Wav2Vec2EncoderLayerStableLayerNorm(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = Wav2Vec2Attention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = Wav2Vec2FeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
if getattr(config, "adapter_attn_dim", None) is not None:
self.adapter_layer = Wav2Vec2AttnAdapterLayer(config)
else:
self.adapter_layer = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
attn_residual = hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
if self.adapter_layer is not None:
hidden_states = hidden_states + self.adapter_layer(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class Wav2Vec2Encoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList([Wav2Vec2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
# make sure padded tokens output 0
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states[~expand_attention_mask] = 0
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
for layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class Wav2Vec2EncoderStableLayerNorm(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList(
[Wav2Vec2EncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
# make sure padded tokens are not attended to
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states[~expand_attention_mask] = 0
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.dropout(hidden_states)
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
for layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
# XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class Wav2Vec2GumbelVectorQuantizer(nn.Module):
"""
Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
"""
def __init__(self, config):
super().__init__()
self.num_groups = config.num_codevector_groups
self.num_vars = config.num_codevectors_per_group
if config.codevector_dim % self.num_groups != 0:
raise ValueError(
f"`config.codevector_dim {config.codevector_dim} must be divisible "
f"by `config.num_codevector_groups` {self.num_groups} for concatenation"
)
# storage for codebook variables (codewords)
self.codevectors = nn.Parameter(
torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups)
)
self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars)
# can be decayed for training
self.temperature = 2
@staticmethod
def _compute_perplexity(probs, mask=None):
if mask is not None:
mask_extended = mask.flatten()[:, None, None].expand(probs.shape)
probs = torch.where(mask_extended, probs, torch.zeros_like(probs))
marginal_probs = probs.sum(dim=0) / mask.sum()
else:
marginal_probs = probs.mean(dim=0)
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
return perplexity
def forward(self, hidden_states, mask_time_indices=None):
batch_size, sequence_length, hidden_size = hidden_states.shape
# project to codevector dim
hidden_states = self.weight_proj(hidden_states)
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
if self.training:
# sample code vector probs via gumbel in differentiateable way
codevector_probs = nn.functional.gumbel_softmax(
hidden_states.float(), tau=self.temperature, hard=True
).type_as(hidden_states)
# compute perplexity
codevector_soft_dist = torch.softmax(
hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1
)
perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices)
else:
# take argmax in non-differentiable way
# comptute hard codevector distribution (one hot)
codevector_idx = hidden_states.argmax(dim=-1)
codevector_probs = hidden_states.new_zeros(hidden_states.shape).scatter_(
-1, codevector_idx.view(-1, 1), 1.0
)
codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1)
perplexity = self._compute_perplexity(codevector_probs, mask_time_indices)
codevector_probs = codevector_probs.view(batch_size * sequence_length, -1)
# use probs to retrieve codevectors
codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors
codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1)
return codevectors, perplexity
class Wav2Vec2Adapter(nn.Module):
def __init__(self, config):
super().__init__()
# feature dim might need to be down-projected
if config.output_hidden_size != config.hidden_size:
self.proj = nn.Linear(config.hidden_size, config.output_hidden_size)
self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size)
else:
self.proj = self.proj_layer_norm = None
self.layers = nn.ModuleList(Wav2Vec2AdapterLayer(config) for _ in range(config.num_adapter_layers))
self.layerdrop = config.layerdrop
def forward(self, hidden_states):
# down project hidden_states if necessary
if self.proj is not None and self.proj_layer_norm is not None:
hidden_states = self.proj(hidden_states)
hidden_states = self.proj_layer_norm(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
for layer in self.layers:
layerdrop_prob = np.random.random()
if not self.training or (layerdrop_prob > self.layerdrop):
hidden_states = layer(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
class Wav2Vec2AdapterLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
config.output_hidden_size,
2 * config.output_hidden_size,
config.adapter_kernel_size,
stride=config.adapter_stride,
padding=1,
)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = nn.functional.glu(hidden_states, dim=1)
return hidden_states
class Wav2Vec2AttnAdapterLayer(nn.Module):
def __init__(self, config):
"""
Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed
up training throughput.
"""
super().__init__()
self.input_dim = config.adapter_attn_dim
self.hidden_dim = config.hidden_size
self.norm = nn.LayerNorm(self.hidden_dim)
self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim)
self.act_fn = nn.ReLU()
self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim)
def forward(self, hidden_states: torch.FloatTensor):
hidden_states = self.norm(hidden_states)
hidden_states = self.linear_1(hidden_states)
hidden_states = self.act_fn(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class Wav2Vec2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Wav2Vec2Config
base_model_prefix = "wav2vec2"
main_input_name = "input_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
# Wav2Vec2ForPreTraining last 2 linear layers need standard Linear init.
if isinstance(module, Wav2Vec2ForPreTraining):
module.project_hid.reset_parameters()
module.project_q.reset_parameters()
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
# gumbel softmax requires special init
elif isinstance(module, Wav2Vec2GumbelVectorQuantizer):
module.weight_proj.weight.data.normal_(mean=0.0, std=1)
module.weight_proj.bias.data.zero_()
nn.init.uniform_(module.codevectors)
elif isinstance(module, Wav2Vec2PositionalConvEmbedding):
nn.init.normal_(
module.conv.weight,
mean=0,
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
)
nn.init.constant_(module.conv.bias, 0)
elif isinstance(module, Wav2Vec2FeatureProjection):
k = math.sqrt(1 / module.projection.in_features)
nn.init.uniform_(module.projection.weight, a=-k, b=k)
nn.init.uniform_(module.projection.bias, a=-k, b=k)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
def _get_feat_extract_output_lengths(
self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None
):
"""
Computes the output length of the convolutional layers
"""
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
if add_adapter:
for _ in range(self.config.num_adapter_layers):
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
return input_lengths
def _get_feature_vector_attention_mask(
self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None
):
# Effectively attention_mask.sum(-1), but not inplace to be able to run
# on inference mode.
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)
output_lengths = output_lengths.to(torch.long)
batch_size = attention_mask.shape[0]
attention_mask = torch.zeros(
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
)
# these two operations makes sure that all values before the output lengths idxs are attended to
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
return attention_mask
def _get_adapters(self):
if self.config.adapter_attn_dim is None:
raise ValueError(f"{self.__class__} has no adapter layers. Make sure to define `config.adapter_attn_dim`.")
adapter_weights = {}
for name, module in self.named_modules():
if isinstance(module, Wav2Vec2AttnAdapterLayer):
for param_name, param in module.named_parameters():
adapter_weights[".".join([name, param_name])] = param
if isinstance(self, Wav2Vec2ForCTC):
for name, param in self.lm_head.named_parameters():
adapter_weights[".".join(["lm_head", name])] = param
return adapter_weights
def init_adapter_layers(self):
"""
(Re-)initialize attention adapter layers and lm head for adapter-only fine-tuning
"""
# init attention adapters
for module in self.modules():
if isinstance(module, Wav2Vec2AttnAdapterLayer):
self._init_weights(module)
# init lm head
if isinstance(self, Wav2Vec2ForCTC):
self._init_weights(self.lm_head)
def load_adapter(self, target_lang: str, force_load=True, **kwargs):
r"""
Load a language adapter model from a pre-trained adapter model.
Parameters:
target_lang (`str`):
Has to be a language id of an existing adapter weight. Adapter weights are stored in the format
adapter.<lang>.safetensors or adapter.<lang>.bin
force_load (`bool`, defaults to `True`):
Whether the weights shall be loaded even if `target_lang` matches `self.target_lang`.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
file exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether or not to only look at local files (i.e., do not try to download the model).
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
<Tip>
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
</Tip>
mirror (`str`, *optional*):
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
Please refer to the mirror site for more information.
<Tip>
Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
use this method in a firewalled environment.
</Tip>
Examples:
```python
>>> from transformers import Wav2Vec2ForCTC, AutoProcessor
>>> ckpt = "facebook/mms-1b-all"
>>> processor = AutoProcessor.from_pretrained(ckpt)
>>> model = Wav2Vec2ForCTC.from_pretrained(ckpt, target_lang="eng")
>>> # set specific language
>>> processor.tokenizer.set_target_lang("spa")
>>> model.load_adapter("spa")
```
"""
if self.config.adapter_attn_dim is None:
raise ValueError(f"Cannot load_adapter for {target_lang} if `config.adapter_attn_dim` is not defined.")
if target_lang == self.target_lang and not force_load:
logger.warning(f"Adapter weights are already set to {target_lang}.")
return
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
token = kwargs.pop("token", None)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
token = use_auth_token
model_path_or_id = self.config._name_or_path
state_dict = None
# 1. Let's first try loading a safetensors adapter weight
if use_safetensors is not False:
filepath = WAV2VEC2_ADAPTER_SAFE_FILE.format(target_lang)
try:
weight_path = cached_file(
model_path_or_id,
filename=filepath,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
cache_dir=cache_dir,
)
state_dict = safe_load_file(weight_path)
except EnvironmentError:
if use_safetensors:
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
# to the original exception.
raise
except Exception:
# For any other exception, we throw a generic error.
if use_safetensors:
raise EnvironmentError(
f"Can't load the model for '{model_path_or_id}'. If you were trying to load it"
" from 'https://huggingface.co/models', make sure you don't have a local directory with the"
f" same name. Otherwise, make sure '{model_path_or_id}' is the correct path to a"
f" directory containing a file named {filepath}."
)
# 2. If this didn't work let's try loading a PyTorch adapter weight
if state_dict is None:
filepath = WAV2VEC2_ADAPTER_PT_FILE.format(target_lang)
try:
weight_path = cached_file(
model_path_or_id,
filename=filepath,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
cache_dir=cache_dir,
)
state_dict = torch.load(weight_path, map_location="cpu", weights_only=True)
except EnvironmentError:
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
# to the original exception.
raise
except Exception:
# For any other exception, we throw a generic error.
raise EnvironmentError(
f"Can't load the model for '{model_path_or_id}'. If you were trying to load it"
" from 'https://huggingface.co/models', make sure you don't have a local directory with the"
f" same name. Otherwise, make sure '{model_path_or_id}' is the correct path to a"
f" directory containing a file named {filepath}."
)
adapter_weights = self._get_adapters()
unexpected_keys = set(state_dict.keys()) - set(adapter_weights.keys())
missing_keys = set(adapter_weights.keys()) - set(state_dict.keys())
if len(unexpected_keys) > 0:
raise ValueError(f"The adapter weights {weight_path} has unexpected keys: {', '.join(unexpected_keys)}.")
elif len(missing_keys) > 0:
raise ValueError(f"The adapter weights {weight_path} has missing keys: {', '.join(missing_keys)}.")
# make sure now vocab size is correct
target_vocab_size = state_dict["lm_head.weight"].shape[0]
if target_vocab_size != self.config.vocab_size:
self.lm_head = nn.Linear(
self.config.output_hidden_size, target_vocab_size, device=self.device, dtype=self.dtype
)
self.config.vocab_size = target_vocab_size
# make sure that adapter weights are put in exactly the same precision and device placement and overwritten adapter weights
state_dict = {k: v.to(adapter_weights[k]) for k, v in state_dict.items()}
self.load_state_dict(state_dict, strict=False)
# set target language corectly
self.target_lang = target_lang
WAV_2_VEC_2_START_DOCSTRING = r"""
Wav2Vec2 was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael
Auli.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving etc.).
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`Wav2Vec2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
WAV_2_VEC_2_INPUTS_DOCSTRING = r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
<Tip warning={true}>
`attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask ==
True`. For all models whose processor has `config.return_attention_mask == False`, such as
[wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), `attention_mask` should **not** be
passed to avoid degraded performance when doing batched inference. For such models `input_values` should
simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly
different results depending on whether `input_values` is padded or not.
</Tip>
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Wav2Vec2 Model transformer outputting raw hidden-states without any specific head on top.",
WAV_2_VEC_2_START_DOCSTRING,
)
class Wav2Vec2Model(Wav2Vec2PreTrainedModel):
def __init__(self, config: Wav2Vec2Config):
super().__init__(config)
self.config = config
self.feature_extractor = Wav2Vec2FeatureEncoder(config)
self.feature_projection = Wav2Vec2FeatureProjection(config)
# model only needs masking vector if mask prob is > 0.0
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
if config.do_stable_layer_norm:
self.encoder = Wav2Vec2EncoderStableLayerNorm(config)
else:
self.encoder = Wav2Vec2Encoder(config)
self.adapter = Wav2Vec2Adapter(config) if config.add_adapter else None
# Initialize weights and apply final processing
self.post_init()
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.feature_extractor._freeze_parameters()
def _mask_hidden_states(
self,
hidden_states: torch.FloatTensor,
mask_time_indices: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return hidden_states
# generate indices & apply SpecAugment along time axis
batch_size, sequence_length, hidden_size = hidden_states.size()
if mask_time_indices is not None:
# apply SpecAugment along time axis with given mask_time_indices
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
elif self.config.mask_time_prob > 0 and self.training:
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
attention_mask=attention_mask,
min_masks=self.config.mask_time_min_masks,
)
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
if self.config.mask_feature_prob > 0 and self.training:
# generate indices & apply SpecAugment along feature axis
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
min_masks=self.config.mask_feature_min_masks,
)
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
hidden_states[mask_feature_indices] = 0
return hidden_states
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Wav2Vec2BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
extract_features = self.feature_extractor(input_values)
extract_features = extract_features.transpose(1, 2)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
extract_features.shape[1], attention_mask, add_adapter=False
)
hidden_states, extract_features = self.feature_projection(extract_features)
hidden_states = self._mask_hidden_states(
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if self.adapter is not None:
hidden_states = self.adapter(hidden_states)
if not return_dict:
return (hidden_states, extract_features) + encoder_outputs[1:]
return Wav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
extract_features=extract_features,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings("""Wav2Vec2 Model with a quantizer and `VQ` head on top.""", WAV_2_VEC_2_START_DOCSTRING)
class Wav2Vec2ForPreTraining(Wav2Vec2PreTrainedModel):
def __init__(self, config: Wav2Vec2Config):
super().__init__(config)
self.wav2vec2 = Wav2Vec2Model(config)
self.dropout_features = nn.Dropout(config.feat_quantizer_dropout)
self.quantizer = Wav2Vec2GumbelVectorQuantizer(config)
self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim)
self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim)
# Initialize weights and apply final processing
self.post_init()
def set_gumbel_temperature(self, temperature: int):
"""
Set the Gumbel softmax temperature to a given value. Only necessary for training
"""
self.quantizer.temperature = temperature
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.wav2vec2.feature_extractor._freeze_parameters()
@staticmethod
def compute_contrastive_logits(
target_features: torch.FloatTensor,
negative_features: torch.FloatTensor,
predicted_features: torch.FloatTensor,
temperature: int = 0.1,
):
"""
Compute logits for contrastive loss based using cosine similarity as the distance measure between
`[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied.
"""
target_features = torch.cat([target_features, negative_features], dim=0)
logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1).type_as(
target_features
)
# apply temperature
logits = logits / temperature
return logits
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Wav2Vec2ForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.BoolTensor] = None,
sampled_negative_indices: Optional[torch.BoolTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Wav2Vec2ForPreTrainingOutput]:
r"""
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
masked extracted features in *config.proj_codevector_dim* space.
sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*):
Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss.
Required input for pre-training.
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoFeatureExtractor, Wav2Vec2ForPreTraining
>>> from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices, _sample_negative_indices
>>> from datasets import load_dataset
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
>>> model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1
>>> # compute masked indices
>>> batch_size, raw_sequence_length = input_values.shape
>>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item()
>>> mask_time_indices = _compute_mask_indices(
... shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2
... )
>>> sampled_negative_indices = _sample_negative_indices(
... features_shape=(batch_size, sequence_length),
... num_negatives=model.config.num_negatives,
... mask_time_indices=mask_time_indices,
... )
>>> mask_time_indices = torch.tensor(data=mask_time_indices, device=input_values.device, dtype=torch.long)
>>> sampled_negative_indices = torch.tensor(
... data=sampled_negative_indices, device=input_values.device, dtype=torch.long
... )
>>> with torch.no_grad():
... outputs = model(input_values, mask_time_indices=mask_time_indices)
>>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states)
>>> cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)
>>> # show that cosine similarity is much higher than random
>>> cosine_sim[mask_time_indices.to(torch.bool)].mean() > 0.5
tensor(True)
>>> # for contrastive loss training model should be put into train mode
>>> model = model.train()
>>> loss = model(
... input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices
... ).loss
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if mask_time_indices is not None:
mask_time_indices = mask_time_indices.to(torch.bool)
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
mask_time_indices=mask_time_indices,
return_dict=return_dict,
)
# 1. project all transformed features (including masked) to final vq dim
transformer_features = self.project_hid(outputs[0])
# 2. quantize all (unmasked) extracted features and project to final vq dim
extract_features = self.dropout_features(outputs[1])
if attention_mask is not None:
# compute reduced attention_mask correponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
extract_features.shape[1], attention_mask, add_adapter=False
)
quantized_features, codevector_perplexity = self.quantizer(
extract_features, mask_time_indices=mask_time_indices
)
quantized_features = self.project_q(quantized_features)
loss = contrastive_loss = diversity_loss = None
if sampled_negative_indices is not None:
batch_size, sequence_length, hidden_size = quantized_features.shape
# for training, we sample negatives
# 3. sample K negatives (distractors) quantized states for contrastive loss
# if attention_mask is passed, make sure that padded feature vectors cannot be sampled
# sample negative quantized vectors BTC => (BxT)C
negative_quantized_features = quantized_features.view(-1, hidden_size)[
sampled_negative_indices.long().view(-1)
]
negative_quantized_features = negative_quantized_features.view(
batch_size, sequence_length, -1, hidden_size
).permute(2, 0, 1, 3)
# 4. compute logits, corresponding to `logs = sim(c_t, [q_t, \sim{q}_t]) / \kappa`
# of equation (3) in https://arxiv.org/pdf/2006.11477.pdf
logits = self.compute_contrastive_logits(
quantized_features[None, :],
negative_quantized_features,
transformer_features,
self.config.contrastive_logits_temperature,
)
# 5. if a negative vector is identical to the positive (i.e. when codebook utilization is low),
# its cosine similarity will be masked
neg_is_pos = (quantized_features == negative_quantized_features).all(-1)
if neg_is_pos.any():
logits[1:][neg_is_pos] = float("-inf")
# 6. compute contrastive loss \mathbf{L}_m = cross_entropy(logs) =
# -log(exp(sim(c_t, q_t)/\kappa) / \sum_{\sim{q}} exp(sim(c_t, \sim{q})/\kappa))
logits = logits.transpose(0, 2).reshape(-1, logits.size(0))
target = ((1 - mask_time_indices.long()) * -100).transpose(0, 1).flatten()
contrastive_loss = nn.functional.cross_entropy(logits.float(), target, reduction="sum")
# 7. compute diversity loss: \mathbf{L}_d
num_codevectors = self.config.num_codevectors_per_group * self.config.num_codevector_groups
diversity_loss = ((num_codevectors - codevector_perplexity) / num_codevectors) * mask_time_indices.sum()
# 8. \mathbf{L} = \mathbf{L}_m + \alpha * \mathbf{L}_d
loss = contrastive_loss + self.config.diversity_loss_weight * diversity_loss
if not return_dict:
if loss is not None:
return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
return Wav2Vec2ForPreTrainingOutput(
loss=loss,
projected_states=transformer_features,
projected_quantized_states=quantized_features,
codevector_perplexity=codevector_perplexity,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
contrastive_loss=contrastive_loss,
diversity_loss=diversity_loss,
)
@add_start_docstrings("""Wav2Vec2 Model with a `language modeling` head on top.""", WAV_2_VEC_2_START_DOCSTRING)
class Wav2Vec2ForMaskedLM(Wav2Vec2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
warnings.warn(
"The class `Wav2Vec2ForMaskedLM` is deprecated. Please use `Wav2Vec2ForCTC` instead.", FutureWarning
)
self.wav2vec2 = Wav2Vec2Model(config)
self.dropout = nn.Dropout(config.final_dropout)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
def forward(
self,
input_values: torch.FloatTensor,
attention_mask: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, MaskedLMOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.wav2vec2(
input_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.lm_head(hidden_states)
if not return_dict:
output = (logits,) + outputs[2:]
return output
return MaskedLMOutput(logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
@add_start_docstrings(
"""Wav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
WAV_2_VEC_2_START_DOCSTRING,
"""
target_lang (`str`, *optional*):
Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or
adapter.<lang>.bin. Only relevant when using an instance of [`Wav2Vec2ForCTC`] with adapters. Uses 'eng' by
default.
""",
)
class Wav2Vec2ForCTC(Wav2Vec2PreTrainedModel):
def __init__(self, config, target_lang: Optional[str] = None):
super().__init__(config)
self.wav2vec2 = Wav2Vec2Model(config)
self.dropout = nn.Dropout(config.final_dropout)
self.target_lang = target_lang
if config.vocab_size is None:
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that "
"does not define the vocabulary size of the language model head. Please "
"instantiate the model as follows: `Wav2Vec2ForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
"or define `vocab_size` of your model's configuration."
)
output_hidden_size = (
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
)
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def tie_weights(self):
"""
This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
passing `target_lang=...` to `from_pretrained(...)`.
This method is **not** supposed to be called by the user and is prone to be changed in the future.
"""
# Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to
# correctly load adapter layers for Wav2Vec2 so that we do not have to introduce a new API to
# [`PreTrainedModel`]. While slightly hacky, Wav2Vec2 never has to tie input and output embeddings, so that it is
# ok to repurpose this function here.
target_lang = self.target_lang
if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None:
raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.")
elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None:
logger.info("By default `target_lang` is set to 'eng'.")
elif target_lang is not None:
self.load_adapter(target_lang, force_load=True)
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.wav2vec2.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.wav2vec2.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_CTC_EXPECTED_OUTPUT,
expected_loss=_CTC_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
config.vocab_size - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if labels.max() >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
# retrieve loss input_lengths from attention_mask
attention_mask = (
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
)
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
flattened_targets = labels.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=False):
loss = nn.functional.ctc_loss(
log_probs,
flattened_targets,
input_lengths,
target_lengths,
blank=self.config.pad_token_id,
reduction=self.config.ctc_loss_reduction,
zero_infinity=self.config.ctc_zero_infinity,
)
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"""
Wav2Vec2 Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like
SUPERB Keyword Spotting.
""",
WAV_2_VEC_2_START_DOCSTRING,
)
class Wav2Vec2ForSequenceClassification(Wav2Vec2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
if hasattr(config, "add_adapter") and config.add_adapter:
raise ValueError(
"Sequence classification does not support the use of Wav2Vec2 adapters (config.add_adapter=True)"
)
self.wav2vec2 = Wav2Vec2Model(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.wav2vec2.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.wav2vec2.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_SEQ_CLASS_CHECKPOINT,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
if attention_mask is None:
pooled_output = hidden_states.mean(dim=1)
else:
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
hidden_states[~padding_mask] = 0.0
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Wav2Vec2 Model with a frame classification head on top for tasks like Speaker Diarization.
""",
WAV_2_VEC_2_START_DOCSTRING,
)
class Wav2Vec2ForAudioFrameClassification(Wav2Vec2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
if hasattr(config, "add_adapter") and config.add_adapter:
raise ValueError(
"Audio frame classification does not support the use of Wav2Vec2 adapters (config.add_adapter=True)"
)
self.wav2vec2 = Wav2Vec2Model(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.num_labels = config.num_labels
self.init_weights()
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.wav2vec2.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.wav2vec2.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_FRAME_CLASS_CHECKPOINT,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_FRAME_EXPECTED_OUTPUT,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class AMSoftmaxLoss(nn.Module):
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
super(AMSoftmaxLoss, self).__init__()
self.scale = scale
self.margin = margin
self.num_labels = num_labels
self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True)
self.loss = nn.CrossEntropyLoss()
def forward(self, hidden_states, labels):
labels = labels.flatten()
weight = nn.functional.normalize(self.weight, dim=0)
hidden_states = nn.functional.normalize(hidden_states, dim=1)
cos_theta = torch.mm(hidden_states, weight)
psi = cos_theta - self.margin
onehot = nn.functional.one_hot(labels, self.num_labels)
logits = self.scale * torch.where(onehot.bool(), psi, cos_theta)
loss = self.loss(logits, labels)
return loss
class TDNNLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id]
self.out_conv_dim = config.tdnn_dim[layer_id]
self.kernel_size = config.tdnn_kernel[layer_id]
self.dilation = config.tdnn_dilation[layer_id]
self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim)
self.activation = nn.ReLU()
def forward(self, hidden_states):
hidden_states = hidden_states.unsqueeze(1)
hidden_states = nn.functional.unfold(
hidden_states,
(self.kernel_size, self.in_conv_dim),
stride=(1, self.in_conv_dim),
dilation=(self.dilation, 1),
)
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.kernel(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
@add_start_docstrings(
"""
Wav2Vec2 Model with an XVector feature extraction head on top for tasks like Speaker Verification.
""",
WAV_2_VEC_2_START_DOCSTRING,
)
class Wav2Vec2ForXVector(Wav2Vec2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.wav2vec2 = Wav2Vec2Model(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0])
tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))]
self.tdnn = nn.ModuleList(tdnn_layers)
self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim)
self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim)
self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels)
self.init_weights()
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.wav2vec2.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.wav2vec2.parameters():
param.requires_grad = False
def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the TDNN layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (input_length - kernel_size) // stride + 1
for kernel_size in self.config.tdnn_kernel:
input_lengths = _conv_out_length(input_lengths, kernel_size, 1)
return input_lengths
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_XVECTOR_CHECKPOINT,
output_type=XVectorOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_XVECTOR_EXPECTED_OUTPUT,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, XVectorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
for tdnn_layer in self.tdnn:
hidden_states = tdnn_layer(hidden_states)
# Statistic Pooling
if attention_mask is None:
mean_features = hidden_states.mean(dim=1)
std_features = hidden_states.std(dim=1)
else:
feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1))
tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths)
mean_features = []
std_features = []
for i, length in enumerate(tdnn_output_lengths):
mean_features.append(hidden_states[i, :length].mean(dim=0))
std_features.append(hidden_states[i, :length].std(dim=0))
mean_features = torch.stack(mean_features)
std_features = torch.stack(std_features)
statistic_pooling = torch.cat([mean_features, std_features], dim=-1)
output_embeddings = self.feature_extractor(statistic_pooling)
logits = self.classifier(output_embeddings)
loss = None
if labels is not None:
loss = self.objective(logits, labels)
if not return_dict:
output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return XVectorOutput(
loss=loss,
logits=logits,
embeddings=output_embeddings,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_s3prl_checkpoint_to_pytorch.py
|
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Hubert checkpoint."""
import argparse
import torch
from transformers import (
Wav2Vec2Config,
Wav2Vec2FeatureExtractor,
Wav2Vec2ForAudioFrameClassification,
Wav2Vec2ForSequenceClassification,
Wav2Vec2ForXVector,
logging,
)
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def convert_classification(base_model_name, hf_config, downstream_dict):
model = Wav2Vec2ForSequenceClassification.from_pretrained(base_model_name, config=hf_config)
model.projector.weight.data = downstream_dict["projector.weight"]
model.projector.bias.data = downstream_dict["projector.bias"]
model.classifier.weight.data = downstream_dict["model.post_net.linear.weight"]
model.classifier.bias.data = downstream_dict["model.post_net.linear.bias"]
return model
def convert_diarization(base_model_name, hf_config, downstream_dict):
model = Wav2Vec2ForAudioFrameClassification.from_pretrained(base_model_name, config=hf_config)
model.classifier.weight.data = downstream_dict["model.linear.weight"]
model.classifier.bias.data = downstream_dict["model.linear.bias"]
return model
def convert_xvector(base_model_name, hf_config, downstream_dict):
model = Wav2Vec2ForXVector.from_pretrained(base_model_name, config=hf_config)
model.projector.weight.data = downstream_dict["connector.weight"]
model.projector.bias.data = downstream_dict["connector.bias"]
for i, kernel_size in enumerate(hf_config.tdnn_kernel):
model.tdnn[i].kernel.weight.data = downstream_dict[
f"model.framelevel_feature_extractor.module.{i}.kernel.weight"
]
model.tdnn[i].kernel.bias.data = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"]
model.feature_extractor.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"]
model.feature_extractor.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"]
model.classifier.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"]
model.classifier.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"]
model.objective.weight.data = downstream_dict["objective.W"]
return model
@torch.no_grad()
def convert_s3prl_checkpoint(base_model_name, config_path, checkpoint_path, model_dump_path):
"""
Copy/paste/tweak model's weights to transformers design.
"""
checkpoint = torch.load(checkpoint_path, map_location="cpu")
downstream_dict = checkpoint["Downstream"]
hf_config = Wav2Vec2Config.from_pretrained(config_path)
hf_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
base_model_name, return_attention_mask=True, do_normalize=False
)
arch = hf_config.architectures[0]
if arch.endswith("ForSequenceClassification"):
hf_model = convert_classification(base_model_name, hf_config, downstream_dict)
elif arch.endswith("ForAudioFrameClassification"):
hf_model = convert_diarization(base_model_name, hf_config, downstream_dict)
elif arch.endswith("ForXVector"):
hf_model = convert_xvector(base_model_name, hf_config, downstream_dict)
else:
raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}")
if hf_config.use_weighted_layer_sum:
hf_model.layer_weights.data = checkpoint["Featurizer"]["weights"]
hf_feature_extractor.save_pretrained(model_dump_path)
hf_model.save_pretrained(model_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
args = parser.parse_args()
convert_s3prl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/chinese_clip/configuration_chinese_clip.py
|
# coding=utf-8
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Chinese-CLIP model configuration"""
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"OFA-Sys/chinese-clip-vit-base-patch16": (
"https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/resolve/main/config.json"
),
}
class ChineseCLIPTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate a
Chinese CLIP model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Chinese CLIP
[OFA-Sys/chinese-clip-vit-base-patch16](https:
//huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the CHINESE_CLIP model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`ChineseCLIPModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`ChineseCLIPModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
Example:
```python
>>> from transformers import ChineseCLIPTextConfig, ChineseCLIPTextModel
>>> # Initializing a ChineseCLIPTextConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
>>> configuration = ChineseCLIPTextConfig()
>>> # Initializing a ChineseCLIPTextModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
>>> model = ChineseCLIPTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "chinese_clip_text_model"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
initializer_factor=1.0,
layer_norm_eps=1e-12,
pad_token_id=0,
position_embedding_type="absolute",
use_cache=True,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from ChineseCLIPConfig
if config_dict.get("model_type") == "chinese_clip":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class ChineseCLIPVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate an
ChineseCLIP model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the ChineseCLIP
[OFA-Sys/chinese-clip-vit-base-patch16](https:
//huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
projection_dim (`int`, *optional*, defaults to 512):
Dimentionality of text and vision projection layers.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 32):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import ChineseCLIPVisionConfig, ChineseCLIPVisionModel
>>> # Initializing a ChineseCLIPVisionConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
>>> configuration = ChineseCLIPVisionConfig()
>>> # Initializing a ChineseCLIPVisionModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
>>> model = ChineseCLIPVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "chinese_clip_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
projection_dim=512,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=32,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from ChineseCLIPConfig
if config_dict.get("model_type") == "chinese_clip":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class ChineseCLIPConfig(PretrainedConfig):
r"""
[`ChineseCLIPConfig`] is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used
to instantiate Chinese-CLIP model according to the specified arguments, defining the text model and vision model
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the
Chinese-CLIP [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`ChineseCLIPTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`ChineseCLIPVisionConfig`].
projection_dim (`int`, *optional*, defaults to 512):
Dimentionality of text and vision projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The inital value of the *logit_scale* paramter. Default is used as per the original ChineseCLIP
implementation.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import ChineseCLIPConfig, ChineseCLIPModel
>>> # Initializing a ChineseCLIPConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
>>> configuration = ChineseCLIPConfig()
>>> # Initializing a ChineseCLIPModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
>>> model = ChineseCLIPModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a ChineseCLIPConfig from a ChineseCLIPTextConfig and a ChineseCLIPVisionConfig
>>> # Initializing a ChineseCLIPTextConfig and ChineseCLIPVisionConfig configuration
>>> config_text = ChineseCLIPTextConfig()
>>> config_vision = ChineseCLIPVisionConfig()
>>> config = ChineseCLIPConfig.from_text_vision_configs(config_text, config_vision)
```"""
model_type = "chinese_clip"
def __init__(
self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
):
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
text_config_dict = kwargs.pop("text_config_dict", None)
vision_config_dict = kwargs.pop("vision_config_dict", None)
super().__init__(**kwargs)
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
text_config = {}
# This is the complete result when using `text_config_dict`.
_text_config_dict = ChineseCLIPTextConfig(**text_config_dict).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
message = (
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
f'The value `text_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`text_config_dict` is provided which will be used to initialize `ChineseCLIPTextConfig`. "
f'The value `text_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict)
if vision_config_dict is not None:
if vision_config is None:
vision_config = {}
# This is the complete result when using `vision_config_dict`.
_vision_config_dict = ChineseCLIPVisionConfig(**vision_config_dict).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
_vision_config_dict["id2label"] = {
str(key): value for key, value in _vision_config_dict["id2label"].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
message = (
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`vision_config_dict` is provided which will be used to initialize "
f'`ChineseCLIPVisionConfig`. The value `vision_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `ChineseCLIPTextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. initializing the `ChineseCLIPVisionConfig` with default values.")
self.text_config = ChineseCLIPTextConfig(**text_config)
self.vision_config = ChineseCLIPVisionConfig(**vision_config)
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
self.initializer_factor = 1.0
self.initializer_range = 0.02
@classmethod
def from_text_vision_configs(
cls, text_config: ChineseCLIPTextConfig, vision_config: ChineseCLIPVisionConfig, **kwargs
):
r"""
Instantiate a [`ChineseCLIPConfig`] (or a derived class) from Chinese-CLIP text model configuration and
Chinese-CLIP vision model configuration. Returns:
[`ChineseCLIPConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
class ChineseCLIPOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
]
)
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
def generate_dummy_inputs(
self,
processor: "ProcessorMixin",
batch_size: int = -1,
seq_length: int = -1,
framework: Optional["TensorType"] = None,
) -> Mapping[str, Any]:
text_input_dict = super().generate_dummy_inputs(
processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
)
image_input_dict = super().generate_dummy_inputs(
processor.image_processor, batch_size=batch_size, framework=framework
)
return {**text_input_dict, **image_input_dict}
@property
def default_onnx_opset(self) -> int:
return 14
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/chinese_clip/modeling_chinese_clip.py
|
# coding=utf-8
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Chinese-CLIP model."""
import math
from dataclasses import dataclass
from typing import Any, List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPooling,
BaseModelOutputWithPoolingAndCrossAttentions,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_chinese_clip import ChineseCLIPConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "OFA-Sys/chinese-clip-vit-base-patch16"
_CONFIG_FOR_DOC = "ChineseCLIPConfig"
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
"OFA-Sys/chinese-clip-vit-base-patch16",
# See all Chinese-CLIP models at https://huggingface.co/models?filter=chinese_clip
]
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
# Copied from transformers.models.clip.modeling_clip.contrastive_loss
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
def chinese_clip_loss(similarity: torch.Tensor) -> torch.Tensor:
caption_loss = contrastive_loss(similarity)
image_loss = contrastive_loss(similarity.t())
return (caption_loss + image_loss) / 2.0
@dataclass
class ChineseCLIPOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of
[`ChineseCLIPTextModel`].
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of
[`ChineseCLIPVisionModel`].
text_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
The output of the [`ChineseCLIPTextModel`].
vision_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
The output of the [`ChineseCLIPVisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits_per_image: torch.FloatTensor = None
logits_per_text: torch.FloatTensor = None
text_embeds: torch.FloatTensor = None
image_embeds: torch.FloatTensor = None
text_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
vision_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->ChineseCLIPText
class ChineseCLIPTextEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->ChineseCLIP
class ChineseCLIPVisionEmbeddings(nn.Module):
def __init__(self, config: ChineseCLIPVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ChineseCLIPText
class ChineseCLIPTextSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in ChineseCLIPTextModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->ChineseCLIPText
class ChineseCLIPTextSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ChineseCLIPText
class ChineseCLIPTextAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = ChineseCLIPTextSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = ChineseCLIPTextSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class ChineseCLIPVisionAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->ChineseCLIPText
class ChineseCLIPTextIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->ChineseCLIPText
class ChineseCLIPTextOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->ChineseCLIPVision
class ChineseCLIPVisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ChineseCLIPText
class ChineseCLIPTextLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = ChineseCLIPTextAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = ChineseCLIPTextAttention(config, position_embedding_type="absolute")
self.intermediate = ChineseCLIPTextIntermediate(config)
self.output = ChineseCLIPTextOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class ChineseCLIPVisionLayer(nn.Module):
def __init__(self, config: ChineseCLIPConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = ChineseCLIPVisionAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = ChineseCLIPVisionMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->ChineseCLIPText
class ChineseCLIPTextPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class ChineseCLIPPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ChineseCLIPConfig
base_model_prefix = "chinese_clip"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, ChineseCLIPVisionEmbeddings):
factor = self.config.initializer_factor
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
elif isinstance(module, ChineseCLIPTextEmbeddings):
nn.init.normal_(module.word_embeddings.weight, mean=0.0, std=self.config.initializer_range)
nn.init.normal_(module.position_embeddings.weight, mean=0.0, std=self.config.initializer_range)
nn.init.normal_(module.token_type_embeddings.weight, mean=0.0, std=self.config.initializer_range)
for embedding in [module.word_embeddings, module.position_embeddings, module.token_type_embeddings]:
if embedding.padding_idx is not None:
embedding.weight.data[embedding.padding_idx].zero_()
elif isinstance(module, ChineseCLIPVisionAttention):
factor = self.config.initializer_factor
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (module.embed_dim**-0.5) * factor
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
elif isinstance(module, ChineseCLIPVisionMLP):
factor = self.config.initializer_factor
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
nn.init.normal_(module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
elif isinstance(module, ChineseCLIPModel):
nn.init.normal_(
module.text_projection.weight,
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
)
nn.init.normal_(
module.visual_projection.weight,
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
CHINESE_CLIP_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`ChineseCLIPConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
CHINESE_CLIP_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
CHINESE_CLIP_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
CHINESE_CLIP_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ChineseCLIPText
class ChineseCLIPTextEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([ChineseCLIPTextLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class ChineseCLIPVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`ChineseCLIPVisionEncoderLayer`].
Args:
config: ChineseCLIPConfig
"""
def __init__(self, config: ChineseCLIPConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([ChineseCLIPVisionLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class ChineseCLIPVisionTransformer(nn.Module):
def __init__(self, config: ChineseCLIPVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = ChineseCLIPVisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.encoder = ChineseCLIPVisionEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The text model from CHINESE_CLIP without any head or projection on top.",
CHINESE_CLIP_START_DOCSTRING,
)
class ChineseCLIPTextModel(ChineseCLIPPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
config_class = ChineseCLIPTextConfig
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = ChineseCLIPTextEmbeddings(config)
self.encoder = ChineseCLIPTextEncoder(config)
self.pooler = ChineseCLIPTextPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"""The vision model from CHINESE_CLIP without any head or projection on top.""",
CHINESE_CLIP_START_DOCSTRING,
)
class ChineseCLIPVisionModel(ChineseCLIPPreTrainedModel):
config_class = ChineseCLIPVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: ChineseCLIPVisionConfig):
super().__init__(config)
self.vision_model = ChineseCLIPVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import CLIPProcessor, ChineseCLIPVisionModel
>>> model = ChineseCLIPVisionModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> processor = CLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@add_start_docstrings(CHINESE_CLIP_START_DOCSTRING)
class ChineseCLIPModel(ChineseCLIPPreTrainedModel):
config_class = ChineseCLIPConfig
def __init__(self, config: ChineseCLIPConfig):
super().__init__(config)
if not isinstance(config.text_config, ChineseCLIPTextConfig):
raise ValueError(
"config.text_config is expected to be of type ChineseCLIPTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, ChineseCLIPVisionConfig):
raise ValueError(
"config.vision_config is expected to be of type ChineseCLIPVisionConfig but is of type"
f" {type(config.vision_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
self.projection_dim = config.projection_dim
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.text_model = ChineseCLIPTextModel(text_config, add_pooling_layer=False)
self.vision_model = ChineseCLIPVisionTransformer(vision_config)
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CHINESE_CLIP_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the final [CLS] hidden state of Text-Transformer.
Examples:
```python
>>> from transformers import AutoTokenizer, ChineseCLIPModel
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> tokenizer = AutoTokenizer.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> inputs = tokenizer(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
>>> text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
```"""
# Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[0][:, 0, :]
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the final [CLS] hidden state of Vision-Transformer.
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, ChineseCLIPModel
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
>>> image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
```"""
# Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = vision_outputs[1] # pooled_output
image_features = self.visual_projection(pooled_output)
return image_features
@add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ChineseCLIPOutput, config_class=ChineseCLIPConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ChineseCLIPOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, ChineseCLIPModel
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], images=image, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```"""
# Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[1]
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs[0][:, 0, :]
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.t()
loss = None
if return_loss:
loss = chinese_clip_loss(logits_per_text)
if not return_dict:
# fix the None pooled_output of text_outputs to conform with dict_output
pooled_output = text_outputs[1]
if pooled_output is None:
text_outputs = (text_outputs[0],) + text_outputs[2:]
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return ChineseCLIPOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/chinese_clip/__init__.py
|
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_import_structure = {
"configuration_chinese_clip": [
"CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ChineseCLIPConfig",
"ChineseCLIPOnnxConfig",
"ChineseCLIPTextConfig",
"ChineseCLIPVisionConfig",
],
"processing_chinese_clip": ["ChineseCLIPProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_chinese_clip"] = ["ChineseCLIPFeatureExtractor"]
_import_structure["image_processing_chinese_clip"] = ["ChineseCLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_chinese_clip"] = [
"CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ChineseCLIPModel",
"ChineseCLIPPreTrainedModel",
"ChineseCLIPTextModel",
"ChineseCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_chinese_clip import (
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
ChineseCLIPConfig,
ChineseCLIPOnnxConfig,
ChineseCLIPTextConfig,
ChineseCLIPVisionConfig,
)
from .processing_chinese_clip import ChineseCLIPProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_chinese_clip import (
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
ChineseCLIPModel,
ChineseCLIPPreTrainedModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/chinese_clip/image_processing_chinese_clip.py
|
# coding=utf-8
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Chinese-CLIP."""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
convert_to_rgb,
get_resize_output_image_size,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
logger = logging.get_logger(__name__)
if is_vision_available():
import PIL
class ChineseCLIPImageProcessor(BaseImageProcessor):
r"""
Constructs a Chinese-CLIP image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
`preprocess` method.
crop_size (`Dict[str, int]` *optional*, defaults to 224):
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.do_convert_rgb = do_convert_rgb
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input
image.
"""
size = get_size_dict(size, default_to_square=False)
output_size = get_resize_output_image_size(
image, size=(size["height"], size["width"]), default_to_square=False, input_data_format=input_data_format
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: int = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size)
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# PIL RGBA images are converted to RGB
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/chinese_clip/convert_chinese_clip_original_pytorch_to_hf.py
|
# coding=utf-8
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
from transformers import ChineseCLIPConfig, ChineseCLIPModel
def copy_attn_layer(hf_attn_layer, pt_weights, prefix):
q_proj, k_proj, v_proj = pt_weights[f"{prefix}.in_proj_weight"].chunk(3, dim=0)
q_proj_bias, k_proj_bias, v_proj_bias = pt_weights[f"{prefix}.in_proj_bias"].chunk(3, dim=0)
out_proj_weights = pt_weights[f"{prefix}.out_proj.weight"]
out_proj_bias = pt_weights[f"{prefix}.out_proj.bias"]
hf_attn_layer.q_proj.weight.data = q_proj
hf_attn_layer.q_proj.bias.data = q_proj_bias
hf_attn_layer.k_proj.weight.data = k_proj
hf_attn_layer.k_proj.bias.data = k_proj_bias
hf_attn_layer.v_proj.weight.data = v_proj
hf_attn_layer.v_proj.bias.data = v_proj_bias
hf_attn_layer.out_proj.weight.data = out_proj_weights
hf_attn_layer.out_proj.bias.data = out_proj_bias
def copy_mlp(hf_mlp, pt_weights, prefix):
copy_linear(hf_mlp.fc1, pt_weights, f"{prefix}.c_fc")
copy_linear(hf_mlp.fc2, pt_weights, f"{prefix}.c_proj")
def copy_linear(hf_linear, pt_weights, prefix):
hf_linear.weight.data = pt_weights[f"{prefix}.weight"].data
hf_linear.bias.data = pt_weights[f"{prefix}.bias"].data
def copy_layer(hf_layer, pt_weights, prefix):
# copy layer norms
copy_linear(hf_layer.layer_norm1, pt_weights, f"{prefix}.ln_1")
copy_linear(hf_layer.layer_norm2, pt_weights, f"{prefix}.ln_2")
# copy MLP
copy_mlp(hf_layer.mlp, pt_weights, f"{prefix}.mlp")
# copy attn
copy_attn_layer(hf_layer.self_attn, pt_weights, f"{prefix}.attn")
def copy_layers(hf_layers, pt_weights, prefix):
for layer_id, hf_layer in enumerate(hf_layers):
copy_layer(hf_layer, pt_weights, f"{prefix}.{layer_id}")
def copy_text_model_and_projection(hf_model, pt_weights):
# copy projection
hf_model.text_projection.weight.data = pt_weights["text_projection"].data.T
# copy text encoder
for name, param in hf_model.text_model.named_parameters():
param.data = pt_weights[f"bert.{name}"].data
def copy_vision_model_and_projection(hf_model, pt_weights):
# copy projection
hf_model.visual_projection.weight.data = pt_weights["visual.proj"].data.T
# copy layer norms
copy_linear(hf_model.vision_model.pre_layrnorm, pt_weights, "visual.ln_pre")
copy_linear(hf_model.vision_model.post_layernorm, pt_weights, "visual.ln_post")
# copy embeddings
hf_model.vision_model.embeddings.patch_embedding.weight.data = pt_weights["visual.conv1.weight"].data
hf_model.vision_model.embeddings.class_embedding.data = pt_weights["visual.class_embedding"].data
hf_model.vision_model.embeddings.position_embedding.weight.data = pt_weights["visual.positional_embedding"].data
# copy encoder
copy_layers(hf_model.vision_model.encoder.layers, pt_weights, "visual.transformer.resblocks")
@torch.no_grad()
def convert_chinese_clip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None):
"""
Copy/paste/tweak model's weights to transformers design.
"""
assert config_path is not None, "Please specify the ChineseCLIP model config of the corresponding model size."
config = ChineseCLIPConfig.from_pretrained(config_path)
hf_model = ChineseCLIPModel(config).eval()
pt_weights = torch.load(checkpoint_path, map_location="cpu")["state_dict"]
pt_weights = {(name[7:] if name.startswith("module.") else name): value for name, value in pt_weights.items()}
copy_text_model_and_projection(hf_model, pt_weights)
copy_vision_model_and_projection(hf_model, pt_weights)
hf_model.logit_scale.data = pt_weights["logit_scale"].data
hf_model.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
help="Path to the output folder storing converted hf PyTorch model.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to original github format ChineseCLIP checkpoint."
)
parser.add_argument(
"--config_path", default=None, required=True, type=str, help="Path to hf config.json of model to convert."
)
args = parser.parse_args()
convert_chinese_clip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
print("The conversion is finished!")
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/chinese_clip/processing_chinese_clip.py
|
# coding=utf-8
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for Chinese-CLIP
"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class ChineseCLIPProcessor(ProcessorMixin):
r"""
Constructs a Chinese-CLIP processor which wraps a Chinese-CLIP image processor and a Chinese-CLIP tokenizer into a
single processor.
[`ChineseCLIPProcessor`] offers all the functionalities of [`ChineseCLIPImageProcessor`] and [`BertTokenizerFast`].
See the [`~ChineseCLIPProcessor.__call__`] and [`~ChineseCLIPProcessor.decode`] for more information.
Args:
image_processor ([`ChineseCLIPImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`BertTokenizerFast`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "ChineseCLIPImageProcessor"
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
if text is not None:
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
if images is not None:
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
if text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
@property
def feature_extractor_class(self):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
FutureWarning,
)
return self.image_processor_class
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/chinese_clip/feature_extraction_chinese_clip.py
|
# coding=utf-8
# Copyright 2021 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for Chinese-CLIP."""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
logger = logging.get_logger(__name__)
class ChineseCLIPFeatureExtractor(ChineseCLIPImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use ChineseCLIPImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/nougat/__init__.py
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_vision_available
_import_structure = {
"processing_nougat": ["NougatProcessor"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_nougat_fast"] = ["NougatTokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["image_processing_nougat"] = ["NougatImageProcessor"]
if TYPE_CHECKING:
from .processing_nougat import NougatProcessor
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nougat_fast import NougatTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_nougat import NougatImageProcessor
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/nougat/convert_nougat_to_hf.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Nougat checkpoints using the original `nougat` library. URL:
https://github.com/facebookresearch/nougat/tree/main"""
import argparse
import torch
from huggingface_hub import hf_hub_download
from nougat import NougatModel
from nougat.dataset.rasterize import rasterize_paper
from nougat.utils.checkpoint import get_checkpoint
from PIL import Image
from transformers import (
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
NougatImageProcessor,
NougatProcessor,
NougatTokenizerFast,
VisionEncoderDecoderModel,
)
def get_configs(model):
original_config = model.config
encoder_config = DonutSwinConfig(
image_size=original_config.input_size,
patch_size=4,
depths=original_config.encoder_layer,
num_heads=[4, 8, 16, 32],
window_size=original_config.window_size,
embed_dim=128,
)
decoder_config = MBartConfig(
is_decoder=True,
is_encoder_decoder=False,
add_cross_attention=True,
decoder_layers=original_config.decoder_layer,
max_position_embeddings=original_config.max_position_embeddings,
vocab_size=len(
model.decoder.tokenizer
), # several special tokens are added to the vocab of XLMRobertaTokenizer, see repo on the hub (added_tokens.json)
scale_embedding=True,
add_final_layer_norm=True,
tie_word_embeddings=False,
)
return encoder_config, decoder_config
# Copied from transformers.models.donut.convert_donut_to_pytorch.rename_key
def rename_key(name):
if "encoder.model" in name:
name = name.replace("encoder.model", "encoder")
if "decoder.model" in name:
name = name.replace("decoder.model", "decoder")
if "patch_embed.proj" in name:
name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection")
if "patch_embed.norm" in name:
name = name.replace("patch_embed.norm", "embeddings.norm")
if name.startswith("encoder"):
if "layers" in name:
name = "encoder." + name
if "attn.proj" in name:
name = name.replace("attn.proj", "attention.output.dense")
if "attn" in name and "mask" not in name:
name = name.replace("attn", "attention.self")
if "norm1" in name:
name = name.replace("norm1", "layernorm_before")
if "norm2" in name:
name = name.replace("norm2", "layernorm_after")
if "mlp.fc1" in name:
name = name.replace("mlp.fc1", "intermediate.dense")
if "mlp.fc2" in name:
name = name.replace("mlp.fc2", "output.dense")
if name == "encoder.norm.weight":
name = "encoder.layernorm.weight"
if name == "encoder.norm.bias":
name = "encoder.layernorm.bias"
return name
# Copied from transformers.models.donut.convert_donut_to_pytorch.convert_state_dict
def convert_state_dict(orig_state_dict, model):
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if "qkv" in key:
key_split = key.split(".")
layer_num = int(key_split[3])
block_num = int(key_split[5])
dim = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.weight"
] = val[:dim, :]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.weight"
] = val[dim : dim * 2, :]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.weight"
] = val[-dim:, :]
else:
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.bias"
] = val[:dim]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.bias"
] = val[dim : dim * 2]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.bias"
] = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
orig_state_dict[rename_key(key)] = val
return orig_state_dict
def convert_nougat_checkpoint(model_tag, pytorch_dump_folder_path=None, push_to_hub=False):
# load original model
checkpoint_path = get_checkpoint(None, model_tag)
original_model = NougatModel.from_pretrained(checkpoint_path)
original_model.eval()
# load HuggingFace model
encoder_config, decoder_config = get_configs(original_model)
encoder = DonutSwinModel(encoder_config)
decoder = MBartForCausalLM(decoder_config)
model = VisionEncoderDecoderModel(encoder=encoder, decoder=decoder)
model.eval()
state_dict = original_model.state_dict()
new_state_dict = convert_state_dict(state_dict, model)
model.load_state_dict(new_state_dict)
# verify results on PDF
filepath = hf_hub_download(repo_id="ysharma/nougat", filename="input/nougat.pdf", repo_type="space")
images = rasterize_paper(pdf=filepath, return_pil=True)
image = Image.open(images[0])
tokenizer_file = checkpoint_path / "tokenizer.json"
tokenizer = NougatTokenizerFast(tokenizer_file=str(tokenizer_file))
tokenizer.pad_token = "<pad>"
tokenizer.bos_token = "<s>"
tokenizer.eos_token = "</s>"
tokenizer.unk_token = "<unk>"
tokenizer.model_max_length = original_model.config.max_length
size = {"height": original_model.config.input_size[0], "width": original_model.config.input_size[1]}
image_processor = NougatImageProcessor(
do_align_long_axis=original_model.config.align_long_axis,
size=size,
)
processor = NougatProcessor(image_processor=image_processor, tokenizer=tokenizer)
# verify pixel_values
pixel_values = processor(image, return_tensors="pt").pixel_values
original_pixel_values = original_model.encoder.prepare_input(image).unsqueeze(0)
assert torch.allclose(original_pixel_values, pixel_values)
# verify patch embeddings
original_patch_embed = original_model.encoder.model.patch_embed(pixel_values)
patch_embeddings, _ = model.encoder.embeddings(pixel_values)
assert torch.allclose(original_patch_embed, patch_embeddings)
# verify encoder hidden states
original_last_hidden_state = original_model.encoder(pixel_values)
last_hidden_state = model.encoder(pixel_values).last_hidden_state
assert torch.allclose(original_last_hidden_state, last_hidden_state, atol=1e-2)
# NOTE original model does not use tied weights for embeddings of decoder
original_embeddings = original_model.decoder.model.model.decoder.embed_tokens
embeddings = model.decoder.model.decoder.embed_tokens
assert torch.allclose(original_embeddings.weight, embeddings.weight, atol=1e-3)
# verify decoder hidden states
prompt = "hello world"
decoder_input_ids = original_model.decoder.tokenizer(
prompt, add_special_tokens=False, return_tensors="pt"
).input_ids
decoder_attention_mask = torch.ones_like(decoder_input_ids)
original_logits = original_model(
image_tensors=pixel_values, decoder_input_ids=decoder_input_ids, attention_mask=decoder_attention_mask
).logits
logits = model(
pixel_values,
decoder_input_ids=decoder_input_ids[:, :-1],
decoder_attention_mask=decoder_attention_mask[:, :-1],
).logits
assert torch.allclose(original_logits, logits, atol=1e-3)
# verify generation
outputs = model.generate(
pixel_values,
min_length=1,
max_length=30,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[
[tokenizer.unk_token_id],
],
return_dict_in_generate=True,
do_sample=False,
)
generated = tokenizer.batch_decode(outputs.sequences, skip_special_tokens=True)[0]
if model_tag == "0.1.0-base":
expected_generation = "# Nougat: Neural Optical Understanding for Academic Documents\n\nLukas Blecher\n\nCorrespondence to: lblec"
elif model_tag == "0.1.0-small":
expected_generation = (
"# Nougat: Neural Optical Understanding for Academic Documents\n\nLukas Blecher\n\nCorrespondence to: lble"
)
else:
raise ValueError(f"Unexpected model tag: {model_tag}")
assert generated == expected_generation
print("Looks ok!")
if pytorch_dump_folder_path is not None:
print(f"Saving model and processor to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
tag_to_name = {"0.1.0-base": "nougat-base", "0.1.0-small": "nougat-small"}
model_name = tag_to_name[model_tag]
model.push_to_hub(f"facebook/{model_name}")
processor.push_to_hub(f"facebook/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_tag",
default="0.1.0-base",
required=False,
type=str,
choices=["0.1.0-base", "0.1.0-small"],
help="Tag of the original model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
required=False,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the converted model and processor to the 🤗 hub.",
)
args = parser.parse_args()
convert_nougat_checkpoint(args.model_tag, args.pytorch_dump_folder_path, args.push_to_hub)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/nougat/tokenization_nougat_fast.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fast tokenizer class for Nougat.
"""
import re
from functools import partial
from multiprocessing import Pool
from typing import List, Union
import numpy as np
from transformers.tokenization_utils_base import INIT_TOKENIZER_DOCSTRING
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.utils import add_end_docstrings
from ...utils import is_levenshtein_available, is_nltk_available, logging, requires_backends
if is_levenshtein_available():
from Levenshtein import ratio
if is_nltk_available():
import nltk
logger = logging.get_logger(__name__)
INIT_TOKENIZER_DOCSTRING += """
tokenizer_object ([`tokenizers.Tokenizer`]):
A [`tokenizers.Tokenizer`] object from 🤗 tokenizers to instantiate from. See [Using tokenizers from 🤗
tokenizers](../fast_tokenizers) for more information.
tokenizer_file ([`str`]):
A path to a local JSON file representing a previously serialized [`tokenizers.Tokenizer`] object from 🤗
tokenizers.
"""
PRETRAINED_VOCAB_FILES_MAP = {
"tokenizer_file": {
"facebook/nougat-base": "https://huggingface.co/facebook/nougat-base/tokenizer/blob/main/tokenizer.json",
},
}
VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"facebook/nougat-base": 3584}
def markdown_compatible(text: str) -> str:
"""
Make text compatible with Markdown formatting.
This function makes various text formatting adjustments to make it compatible with Markdown.
Args:
text (`str`):
The input text to be made Markdown-compatible.
Returns:
`str`: The Markdown-compatible text.
"""
# equation tag
# Replace lines that start with a pattern like (decimal) \[some text\] with \[[some text] \tag{decimal}\].
text = re.sub(r"^\(([\d.]+[a-zA-Z]?)\) \\\[(.+?)\\\]$", r"\[\2 \\tag{\1}\]", text, flags=re.M)
# Replace lines that start with a pattern like \[some text\] (decimal) with \[[some text] \tag{decimal}\].
text = re.sub(r"^\\\[(.+?)\\\] \(([\d.]+[a-zA-Z]?)\)$", r"\[\1 \\tag{\2}\]", text, flags=re.M)
# Replace lines that start with a pattern like \[some text\] (digits) \[another text\] with \[[some text] \tag{digits}\] [another text].
text = re.sub(
r"^\\\[(.+?)\\\] \(([\d.]+[a-zA-Z]?)\) (\\\[.+?\\\])$",
r"\[\1 \\tag{\2}\] \3",
text,
flags=re.M,
)
# multi line
text = text.replace(r"\. ", ". ")
# bold formatting
text = text.replace(r"\bm{", r"\mathbf{").replace(r"{\\bm ", r"\mathbf{")
text = re.sub(r"\\mbox{ ?\\boldmath\$(.*?)\$}", r"\\mathbf{\1}", text)
# Reformat urls (http, ftp and https only) to markdown [url](url) clickable format
text = re.sub(
r"((?:http|ftp|https):\/\/(?:[\w_-]+(?:(?:\.[\w_-]+)+))(?:[\w.,@?^=%&:\/~+#-]*[\w@?^=%&\/~+#-]))",
r"[\1](\1)",
text,
)
# algorithms
text = re.sub(r"```\s*(.+?)\s*```", r"```\n\1\n```", text, flags=re.S)
return text
def normalize_list_like_lines(generation):
"""
Normalize lines in the given text that resemble list items. The function looks for lines that start optionally with
'-' or '*', possibly followed by Roman numerals or digits indicating nesting levels. The function reformats such
lines to make them more structured.
Args:
generation (str): The input text containing lines that need to be normalized.
Returns:
str: The input text with the list-like lines normalized.
Note:
The function uses regular expressions to identify and reformat the list-like lines. The patterns capture
optional bullet points, nesting levels indicated by numerals, and the actual list item content. The
normalization adjusts the bullet point style and nesting levels based on the captured patterns.
"""
# This matches lines starting with - or *, not followed by - or * (lists)
# that are then numbered by digits \d or roman numerals (one or more)
# and then, optional additional numbering of this line is captured
# this is then fed to re.finditer.
pattern = r"(?:^)(-|\*)?(?!-|\*) ?((?:\d|[ixv])+ )?.+? (-|\*) (((?:\d|[ixv])+)\.(\d|[ixv]) )?.*(?:$)"
for match in reversed(list(re.finditer(pattern, generation, flags=re.I | re.M))):
start, stop = match.span()
delim = match.group(3) + " "
splits = match.group(0).split(delim)
replacement = ""
if match.group(1) is not None:
splits = splits[1:]
delim1 = match.group(1) + " "
else:
delim1 = ""
continue # Skip false positives
pre, post = generation[:start], generation[stop:]
for i, item in enumerate(splits):
level = 0
potential_numeral, _, rest = item.strip().partition(" ")
if not rest:
continue
# Infer current nesting level based on detected numbering
if re.match(r"^[\dixv]+((?:\.[\dixv])?)+$", potential_numeral, flags=re.I | re.M):
level = potential_numeral.count(".")
replacement += (
("\n" if i > 0 else "") + ("\t" * level) + (delim if i > 0 or start == 0 else delim1) + item.strip()
)
if post == "":
post = "\n"
generation = pre + replacement + post
return generation
def find_next_punctuation(text: str, start_idx=0):
"""
Find the index of the next punctuation mark.
Args:
text (`str`):
String to examine
start_idx (`int`, *optional*)
Index where to start
"""
for i in range(start_idx, len(text)):
if text[i] in [".", "?", "!", "\n"]:
return i
return None
def truncate_repetitions(text: str, min_len: int = 30) -> str:
"""
Attempt to truncate repeating segments in the input string.
This function looks for the longest repeating substring at the end of the input string and truncates it to appear
only once. To be considered for removal, repetitions need to be continuous.
Args:
text (`str`):
The input raw prediction to be truncated.
min_len (int):
The minimum length of the repeating segment.
Returns:
`str`: The input string with repeated segments truncated.
"""
text_lower = text.lower()
text_length = len(text_lower)
if text_length < 2 * min_len:
return text
# try to find a length at which the tail is repeating
max_repetition_length = None
for repetition_length in range(min_len, int(text_length / 2)):
# check if there is a repetition at the end
same = True
for i in range(0, repetition_length):
if text_lower[text_length - repetition_length - i - 1] != text_lower[text_length - i - 1]:
same = False
break
if same:
max_repetition_length = repetition_length
if max_repetition_length is None:
return text
lcs = text_lower[-max_repetition_length:]
# remove all but the last repetition
substituted_text = text
substituted_text_lower = text_lower
while substituted_text_lower.endswith(lcs):
substituted_text = substituted_text[:-max_repetition_length]
substituted_text_lower = substituted_text_lower[:-max_repetition_length]
# this is the tail with the repetitions
repeating_tail = text_lower[len(substituted_text_lower) :]
# add until next punctuation and make sure last sentence is not repeating
substituted_text_lower_out = substituted_text_lower
while True:
sentence_end = find_next_punctuation(text_lower, len(substituted_text_lower_out))
sentence_start = find_next_punctuation(text_lower[::-1], len(substituted_text_lower_out))
if sentence_end and sentence_start:
sentence = text_lower[sentence_start:sentence_end]
substituted_text_lower_out = text_lower[: sentence_end + 1]
if sentence in repeating_tail:
break
else:
break
text_out = text[: len(substituted_text_lower_out)]
return text_out
def remove_numbers(lines):
def _clean(s):
return re.sub(r"(?:[\d_]|\*\*)", "", s).strip()
if isinstance(lines, str):
return _clean(lines)
out = []
for l in lines:
out.append(_clean(l))
return out
def get_slices(lines, clean_lines):
"""
Get slices of text based on specific criteria within the lines.
This function identifies and returns slices of text from the input lines based on certain conditions.
These conditions were chosen by the Nougat authors:
- The slice is less than 200 characters long.
- The slice is more than 3 characters long.
- The slice does not start with "[MISSING_PAGE".
- The slice is either the same as the next slice or the ratio of the two in terms of Levensthein distance is
greater than 0.9.
Args:
lines (`List[str]`):
The list of lines containing the text.
clean_lines (`List[str]`):
A cleaned version of the text (without numbers).
Returns:
`List[tuple]`: A list of tuples representing the start and end indices of text slices.
"""
indices = np.zeros(len(lines))
for i in range(len(lines) - 1):
j = i + 1
while not clean_lines[j] and j < len(lines) - 1:
j += 1
if (
len(clean_lines[i]) < 200
and len(clean_lines[i]) > 3
and len(clean_lines[j]) < 200
and len(clean_lines[j]) > 3
and not clean_lines[i].startswith("[MISSING_PAGE")
and (clean_lines[i] == clean_lines[j] or ratio(clean_lines[i], clean_lines[j]) > 0.9)
):
indices[i:j] = 1
ids = np.where(indices)[0]
slices = []
if len(ids) == 0:
return slices
j0 = 0
for j, x in enumerate(np.diff(ids) > 3):
if x:
slices.append((ids[j0], ids[j] + 2))
j0 = j + 1
slices.append((ids[j0], ids[-1] + 2))
return [sli for sli in slices if sli[1] - sli[0] > 15]
def remove_slice_from_lines(lines, clean_text, slice) -> str:
"""
Remove a slice of text from the lines based on specific criteria.
This function identifies a slice of text within the lines and removes it based on certain conditions.
Args:
lines (list of str): The list of lines containing the text.
clean_text (list of str): A cleaned version of the text (without numbers).
slice (tuple): A tuple representing the start and end indices of the slice to be removed.
Returns:
str: The removed slice of text as a single string.
"""
base = clean_text[slice[0]]
section = list(slice)
check_start_flag = False
# backwards pass, at most 5 lines
for line_idx in range(max(0, slice[0] - 1), max(0, slice[0] - 5), -1):
if not lines[line_idx]:
continue
if lines[line_idx] == "## References":
section[0] = line_idx
break
elif ratio(base, remove_numbers(lines[line_idx])) < 0.9:
section[0] = line_idx + 1
potential_ref = remove_numbers(lines[max(0, line_idx - 1)].partition("* [")[-1])
if len(potential_ref) >= 0.75 * len(base) and ratio(base, potential_ref) < 0.9:
section[0] = line_idx
check_start_flag = True
break
# forward pass, at most 5 lines
for line_idx in range(min(len(lines), slice[1]), min(len(lines), slice[1] + 5)):
if ratio(base, remove_numbers(lines[line_idx])) < 0.9:
section[1] = line_idx
break
if len(lines) <= section[1]:
section[1] = len(lines) - 1
to_delete = "\n".join(lines[section[0] : section[1] + 1])
# cut off next page content
itera, iterb = enumerate(lines[section[1] - 1]), enumerate(lines[section[1]])
while True:
try:
(ia, a) = next(itera)
while a.isnumeric():
(ia, a) = next(itera)
(ib, b) = next(iterb)
while b.isnumeric():
(ib, b) = next(iterb)
if a != b:
break
except StopIteration:
break
if check_start_flag and "* [" in to_delete:
to_delete = "* [" + to_delete.partition("* [")[-1]
try:
delta = len(lines[section[1]]) - ib - 1
if delta > 0:
to_delete = to_delete[:-delta]
except UnboundLocalError:
pass
return to_delete.strip()
@add_end_docstrings(INIT_TOKENIZER_DOCSTRING)
class NougatTokenizerFast(PreTrainedTokenizerFast):
"""
Fast tokenizer for Nougat (backed by HuggingFace tokenizers library).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods. This class mainly adds Nougat-specific
methods for postprocessing the generated text.
Args:
vocab_file (`str`, *optional*):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
contains the vocabulary necessary to instantiate a tokenizer.
tokenizer_file (`str`, *optional*):
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
clean_up_tokenization_spaces (`str`, *optional*, defaults to `False`):
Wether to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra
spaces.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = None
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
clean_up_tokenization_spaces=False,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token="<pad>",
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
**kwargs,
)
self.vocab_file = vocab_file
def remove_hallucinated_references(self, text: str) -> str:
"""
Remove hallucinated or missing references from the text.
This function identifies and removes references that are marked as missing or hallucinated from the input text.
Args:
text (`str`):
The input text containing references.
Returns:
`str`: The text with hallucinated references removed.
"""
lines = text.split("\n")
if len(lines) == 0:
return ""
clean_lines = remove_numbers(lines)
slices = get_slices(lines, clean_lines)
to_delete = []
for slice in slices:
to_delete.append(remove_slice_from_lines(lines, clean_lines, slice))
for to_delete in reversed(to_delete):
text = text.replace(to_delete, "\n\n[MISSING_PAGE_POST]\n\n")
text = re.sub(
r"## References\n+\[MISSING_PAGE_POST(:\d+)?\]",
"\n\n[MISSING_PAGE_POST\\1]",
text,
)
return text
def correct_tables(self, generation: str) -> str:
"""
Takes a generated string and fixes tables/tabulars to make them match the markdown format needed.
Args:
generation (str): The generated text to be postprocessed.
Returns:
str: The postprocessed text.
Example:
```python
correct_tables("\\begin{table} \\begin{tabular}{l l} & \\ \\end{tabular} \\end{table}")
"\\begin{table}\n\\begin{tabular}{l l} & \\ \\end{tabular}\n\\end{table}"
```
"""
# remove obvious wrong tables
for l in generation.split("\n"):
if l.count("\\begin{tabular}") > 15 or l.count("\\multicolumn") > 60 or l.count("&") > 400:
generation = generation.replace(l, "")
# whitespace corrections
generation = generation.replace("\\begin{table} \\begin{tabular}", "\\begin{table}\n\\begin{tabular}")
generation = generation.replace("\\end{tabular} \\end{table}", "\\end{tabular}\n\\end{table}")
generation = generation.replace("\\end{table} Tab", "\\end{table}\nTab")
generation = re.sub(r"(^.+)\\begin{tab", r"\1\n\\begin{tab", generation, flags=re.M)
# Remove left-aligned empty LaTeX tabular blocks.
generation = generation.replace(r"\begin{tabular}{l l} & \\ \end{tabular}", "")
# Remove tabulars with just 2 newline characters.
generation = generation.replace("\\begin{tabular}{}\n\n\\end{tabular}", "")
return generation
def post_process_single(self, generation: str, fix_markdown: bool = True) -> str:
"""
Postprocess a single generated text. Regular expressions used here are taken directly from the Nougat article
authors. These expressions are commented for clarity and tested end-to-end in most cases.
Args:
generation (str): The generated text to be postprocessed.
fix_markdown (bool, optional): Whether to perform Markdown formatting fixes. Default is True.
Returns:
str: The postprocessed text.
"""
generation = re.sub(
r"(?:\n|^)#+ \d*\W? ?(.{100,})", r"\n\1", generation
) # too long section titles probably are none
generation = generation.strip()
# Remove LaTeX left margin tag
generation = generation.replace("\n* [leftmargin=*]\n", "\n")
# Remove lines with markdown headings starting with #, with numerals,
# and possibly roman numerals with trailing spaces and newlines
generation = re.sub(r"^#+ (?:\.?(?:\d|[ixv])+)*\s*(?:$|\n\s*)", "", generation, flags=re.M)
# most likely hallucinated titles
lines = generation.split("\n")
if lines[-1].startswith("#") and lines[-1].lstrip("#").startswith(" ") and len(lines) > 1:
logger.info("Likely hallucinated title at the end of the page: " + lines[-1])
generation = "\n".join(lines[:-1])
# obvious repetition detection
generation = truncate_repetitions(generation)
# Reference corrections
generation = self.remove_hallucinated_references(generation)
# Remove lines starting with asterisks and numbers like "*[1]" and followed by capital letters and periods (ie too long references)
generation = re.sub(r"^\* \[\d+\](\s?[A-W]\.+\s?){10,}.*$", "", generation, flags=re.M)
# Remove empty brackets after a reference number in brackets. *[12][]ABC will become *[12]ABC
generation = re.sub(r"^(\* \[\d+\])\[\](.*)$", r"\1\2", generation, flags=re.M)
# Remove single characters before or after 2 new lines
generation = re.sub(r"(^\w\n\n|\n\n\w$)", "", generation)
# pmc math artifact correction
generation = re.sub(
r"([\s.,()])_([a-zA-Z0-9])__([a-zA-Z0-9]){1,3}_([\s.,:()])",
r"\1\(\2_{\3}\)\4",
generation,
)
generation = re.sub(r"([\s.,\d])_([a-zA-Z0-9])_([\s.,\d;])", r"\1\(\2\)\3", generation)
# footnote mistakes
generation = re.sub(
r"(\nFootnote .*?:) (?:footnotetext|thanks):\W*(.*(?:\n\n|$))",
r"\1 \2",
generation,
)
# TODO Come up with footnote formatting inside a table
generation = re.sub(r"\[FOOTNOTE:.+?\](.*?)\[ENDFOOTNOTE\]", "", generation)
# itemize post processing
generation = normalize_list_like_lines(generation)
if generation.endswith((".", "}")):
generation += "\n\n"
if re.match(r"[A-Z0-9,;:]$", generation):
# add space in case it there is a comma or word ending
generation += " "
elif generation.startswith(("#", "**", "\\begin")):
generation = "\n\n" + generation
elif generation.split("\n")[-1].startswith(("#", "Figure", "Table")):
generation = generation + "\n\n"
else:
try:
last_word = generation.split(" ")[-1]
if last_word in nltk.corpus.words.words():
generation += " "
except LookupError:
# add space just in case. Will split words but better than concatenating them
generation += " "
# table corrections
generation = self.correct_tables(generation)
# Remove optional, empty square brackets after begin{array}
generation = generation.replace("\\begin{array}[]{", "\\begin{array}{")
# Remove empty or malformed LaTeX tabular blocks with 2 or more columns specified, with spaces and ampersands.
generation = re.sub(
r"\\begin{tabular}{([clr ]){2,}}\s*[& ]*\s*(\\\\)? \\end{tabular}",
"",
generation,
)
# Remove lines containing "S.A.B." one or more times. Was included in Nougat's code.
generation = re.sub(r"(\*\*S\. A\. B\.\*\*\n+){2,}", "", generation)
# Remove markdown-style headers that are incomplete or empty on multiple lines.
generation = re.sub(r"^#+( [\[\d\w])?$", "", generation, flags=re.M)
# Remove lines with just one period.
generation = re.sub(r"^\.\s*$", "", generation, flags=re.M)
# Replace instances of three or more newlines with just two newlines.
generation = re.sub(r"\n{3,}", "\n\n", generation)
if fix_markdown:
return markdown_compatible(generation)
else:
return generation
def post_process_generation(
self,
generation: Union[str, List[str]],
fix_markdown: bool = True,
num_workers: int = None,
) -> Union[str, List[str]]:
"""
Postprocess a generated text or a list of generated texts.
This function can be used to perform postprocessing on generated text, such as fixing Markdown formatting.
Postprocessing is quite slow so it is recommended to use multiprocessing to speed up the process.
Args:
generation (Union[str, List[str]]):
The generated text or a list of generated texts.
fix_markdown (`bool`, *optional*, defaults to `True`):
Whether to perform Markdown formatting fixes.
num_workers (`int`, *optional*):
Optional number of workers to pass to leverage multiprocessing (postprocessing several texts in
parallel).
Returns:
Union[str, List[str]]: The postprocessed text or list of postprocessed texts.
"""
requires_backends(self, ["nltk", "levenshtein"])
if isinstance(generation, list):
if num_workers is not None and isinstance(num_workers, int):
with Pool(num_workers) as p:
return p.map(partial(self.post_process_single, fix_markdown=fix_markdown), generation)
else:
return [self.post_process_single(s, fix_markdown=fix_markdown) for s in generation]
else:
return self.post_process_single(generation, fix_markdown=fix_markdown)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/nougat/processing_nougat.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Nougat.
"""
from typing import Dict, List, Optional, Union
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput, TruncationStrategy
from ...processing_utils import ProcessorMixin
from ...utils import PaddingStrategy, TensorType
class NougatProcessor(ProcessorMixin):
r"""
Constructs a Nougat processor which wraps a Nougat image processor and a Nougat tokenizer into a single processor.
[`NougatProcessor`] offers all the functionalities of [`NougatImageProcessor`] and [`NougatTokenizerFast`]. See the
[`~NougatProcessor.__call__`] and [`~NougatProcessor.decode`] for more information.
Args:
image_processor ([`NougatImageProcessor`]):
An instance of [`NougatImageProcessor`]. The image processor is a required input.
tokenizer ([`NougatTokenizerFast`]):
An instance of [`NougatTokenizerFast`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
def __call__(
self,
images=None,
text=None,
do_crop_margin: bool = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: "PILImageResampling" = None, # noqa: F821
do_thumbnail: bool = None,
do_align_long_axis: bool = None,
do_pad: bool = None,
do_rescale: bool = None,
rescale_factor: Union[int, float] = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
input_data_format: Optional[Union[str, "ChannelDimension"]] = None, # noqa: F821
text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text_pair_target: Optional[
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
is_split_into_words: bool = False,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
):
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process.")
if images is not None:
inputs = self.image_processor(
images,
do_crop_margin=do_crop_margin,
do_resize=do_resize,
size=size,
resample=resample,
do_thumbnail=do_thumbnail,
do_align_long_axis=do_align_long_axis,
do_pad=do_pad,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
return_tensors=return_tensors,
data_format=data_format,
input_data_format=input_data_format,
)
if text is not None:
encodings = self.tokenizer(
text,
text_pair=text_pair,
text_target=text_target,
text_pair_target=text_pair_target,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
is_split_into_words=is_split_into_words,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
)
if text is None:
return inputs
elif images is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_process_generation(self, *args, **kwargs):
"""
This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.post_process_generation`].
Please refer to the docstring of this method for more information.
"""
return self.tokenizer.post_process_generation(*args, **kwargs)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/nougat/image_processing_nougat.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Nougat."""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
get_resize_output_image_size,
pad,
resize,
to_channel_dimension_format,
to_pil_image,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
from ...utils.import_utils import is_cv2_available, is_vision_available
logger = logging.get_logger(__name__)
if is_cv2_available():
pass
if is_vision_available():
import PIL
class NougatImageProcessor(BaseImageProcessor):
r"""
Constructs a Nougat image processor.
Args:
do_crop_margin (`bool`, *optional*, defaults to `True`):
Whether to crop the image margins.
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 896, "width": 672}`):
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_thumbnail (`bool`, *optional*, defaults to `True`):
Whether to resize the image using thumbnail method.
do_align_long_axis (`bool`, *optional*, defaults to `False`):
Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
do_pad (`bool`, *optional*, defaults to `True`):
Whether to pad the images to the largest image size in the batch.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
Image standard deviation.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_crop_margin: bool = True,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_thumbnail: bool = True,
do_align_long_axis: bool = False,
do_pad: bool = True,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 896, "width": 672}
size = get_size_dict(size)
self.do_crop_margin = do_crop_margin
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_thumbnail = do_thumbnail
self.do_align_long_axis = do_align_long_axis
self.do_pad = do_pad
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def python_find_non_zero(self, image: np.array):
"""This is a reimplementation of a findNonZero function equivalent to cv2."""
non_zero_indices = np.column_stack(np.nonzero(image))
idxvec = non_zero_indices[:, [1, 0]]
idxvec = idxvec.reshape(-1, 1, 2)
return idxvec
def python_bounding_rect(self, coordinates):
"""This is a reimplementation of a BoundingRect function equivalent to cv2."""
min_values = np.min(coordinates, axis=(0, 1)).astype(int)
max_values = np.max(coordinates, axis=(0, 1)).astype(int)
x_min, y_min = min_values[0], min_values[1]
width = max_values[0] - x_min + 1
height = max_values[1] - y_min + 1
return x_min, y_min, width, height
def crop_margin(
self,
image: np.array,
gray_threshold: int = 200,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.array:
"""
Crops the margin of the image. Gray pixels are considered margin (i.e., pixels with a value below the
threshold).
Args:
image (`np.array`):
The image to be cropped.
gray_threshold (`int`, *optional*, defaults to `200`)
Value below which pixels are considered to be gray.
data_format (`ChannelDimension`, *optional*):
The channel dimension format of the output image. If unset, will use the inferred format from the
input.
input_data_format (`ChannelDimension`, *optional*):
The channel dimension format of the input image. If unset, will use the inferred format from the input.
"""
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
image = to_pil_image(image, input_data_format=input_data_format)
data = np.array(image.convert("L")).astype(np.uint8)
max_val = data.max()
min_val = data.min()
if max_val == min_val:
image = np.array(image)
image = (
to_channel_dimension_format(image, data_format, input_data_format)
if data_format is not None
else image
)
return image
data = (data - min_val) / (max_val - min_val) * 255
gray = data < gray_threshold
coords = self.python_find_non_zero(gray)
x_min, y_min, width, height = self.python_bounding_rect(coords)
image = image.crop((x_min, y_min, x_min + width, y_min + height))
image = np.array(image).astype(np.uint8)
image = to_channel_dimension_format(image, input_data_format, ChannelDimension.LAST)
image = (
to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
)
return image
# Copied from transformers.models.donut.image_processing_donut.DonutImageProcessor.align_long_axis
def align_long_axis(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Align the long axis of the image to the longest axis of the specified size.
Args:
image (`np.ndarray`):
The image to be aligned.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to align the long axis to.
data_format (`str` or `ChannelDimension`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
Returns:
`np.ndarray`: The aligned image.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = size["height"], size["width"]
if (output_width < output_height and input_width > input_height) or (
output_width > output_height and input_width < input_height
):
image = np.rot90(image, 3)
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def pad_image(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pad the image to the specified size at the top, bottom, left and right.
Args:
image (`np.ndarray`):
The image to be padded.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to pad the image to.
data_format (`str` or `ChannelDimension`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
output_height, output_width = size["height"], size["width"]
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
delta_width = output_width - input_width
delta_height = output_height - input_height
pad_top = delta_height // 2
pad_left = delta_width // 2
pad_bottom = delta_height - pad_top
pad_right = delta_width - pad_left
padding = ((pad_top, pad_bottom), (pad_left, pad_right))
return pad(image, padding, data_format=data_format, input_data_format=input_data_format)
# Copied from transformers.models.donut.image_processing_donut.DonutImageProcessor.thumbnail
def thumbnail(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image to make a thumbnail. The image is resized so that no dimension is larger than any
corresponding dimension of the specified size.
Args:
image (`np.ndarray`):
The image to be resized.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to resize the image to.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
The resampling filter to use.
data_format (`Optional[Union[str, ChannelDimension]]`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = size["height"], size["width"]
# We always resize to the smallest of either the input or output size.
height = min(input_height, output_height)
width = min(input_width, output_width)
if height == input_height and width == input_width:
return image
if input_height > input_width:
width = int(input_width * height / input_height)
elif input_width > input_height:
height = int(input_height * width / input_width)
return resize(
image,
size=(height, width),
resample=resample,
reducing_gap=2.0,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
# Copied from transformers.models.donut.image_processing_donut.DonutImageProcessor.resize
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resizes `image` to `(height, width)` specified by `size` using the PIL library.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size)
shortest_edge = min(size["height"], size["width"])
output_size = get_resize_output_image_size(
image, size=shortest_edge, default_to_square=False, input_data_format=input_data_format
)
resized_image = resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return resized_image
def preprocess(
self,
images: ImageInput,
do_crop_margin: bool = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_thumbnail: bool = None,
do_align_long_axis: bool = None,
do_pad: bool = None,
do_rescale: bool = None,
rescale_factor: Union[int, float] = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255.
do_crop_margin (`bool`, *optional*, defaults to `self.do_crop_margin`):
Whether to crop the image margins.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to min(size["height"],
size["width"]) with the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_thumbnail (`bool`, *optional*, defaults to `self.do_thumbnail`):
Whether to resize the image using thumbnail method.
do_align_long_axis (`bool`, *optional*, defaults to `self.do_align_long_axis`):
Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
Whether to pad the images to the largest image size in the batch.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image by the specified scale `rescale_factor`.
rescale_factor (`int` or `float`, *optional*, defaults to `self.rescale_factor`):
Scale factor to use if rescaling the image.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: defaults to the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_crop_margin = do_crop_margin if do_crop_margin is not None else self.do_crop_margin
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
resample = resample if resample is not None else self.resample
do_thumbnail = do_thumbnail if do_thumbnail is not None else self.do_thumbnail
do_align_long_axis = do_align_long_axis if do_align_long_axis is not None else self.do_align_long_axis
do_pad = do_pad if do_pad is not None else self.do_pad
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_pad and size is None:
raise ValueError("Size must be specified if do_pad is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_crop_margin:
images = [self.crop_margin(image, input_data_format=input_data_format) for image in images]
if do_align_long_axis:
images = [self.align_long_axis(image, size=size, input_data_format=input_data_format) for image in images]
if do_resize:
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_thumbnail:
images = [self.thumbnail(image=image, size=size, input_data_format=input_data_format) for image in images]
if do_pad:
images = [self.pad_image(image=image, size=size, input_data_format=input_data_format) for image in images]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Feature extractor class for SeamlessM4T
"""
from typing import List, Optional, Union
import numpy as np
from ...utils import is_torch_available
if is_torch_available():
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
logger = logging.get_logger(__name__)
class SeamlessM4TFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a SeamlessM4T feature extractor.
This feature extractor inherits from [`SequenceFeatureExtractor`] which contains most of the main methods. Users
should refer to this superclass for more information regarding those methods.
This class extracts mel-filter bank features from raw speech.
Args:
feature_size (`int`, *optional*, defaults to 80):
The feature dimension of the extracted features.
sampling_rate (`int`, *optional*, defaults to 16000):
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
num_mel_bins (`int`, *optional*, defaults to 80):
Number of Mel-frequency bins.
padding_value (`float`, *optional*, defaults to 0.0):
The value that is used to fill the padding vectors.
stride (`int`, *optional*, defaults to 2):
Stride used to reshape audios from shape (batch_size,num_frames,num_mel_bins) to
(batch_size,num_frames//stride,num_mel_bins*stride).
"""
model_input_names = ["input_features", "attention_mask"]
def __init__(
self,
feature_size=80,
sampling_rate=16000,
num_mel_bins=80,
padding_value=0.0,
stride=2,
**kwargs,
):
self.num_mel_bins = num_mel_bins
self.return_attention_mask = True
self.stride = stride
mel_filters = mel_filter_bank(
num_frequency_bins=256,
num_mel_filters=self.num_mel_bins,
min_frequency=20,
max_frequency=sampling_rate // 2,
sampling_rate=sampling_rate,
norm=None,
mel_scale="kaldi",
triangularize_in_mel_space=True,
)
self.mel_filters = np.pad(mel_filters, ((0, 1), (0, 0)))
self.window = window_function(400, "povey", periodic=False)
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def zero_mean_unit_var_norm(
input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0
) -> List[np.ndarray]:
"""
Every array in the list is normalized to have zero mean and unit variance
"""
if attention_mask is not None:
attention_mask = np.array(attention_mask, np.int32)
normed_input_values = []
for vector, length in zip(input_values, attention_mask.sum(-1)):
normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7)
if length < normed_slice.shape[0]:
normed_slice[length:] = padding_value
normed_input_values.append(normed_slice)
else:
normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values]
return normed_input_values
def _extract_fbank_features(
self,
waveform: np.ndarray,
) -> np.ndarray:
"""
Get mel-filter bank features using TorchAudio. Note that TorchAudio requires 16-bit signed integers as inputs
and hence the waveform should not be normalized before feature extraction.
"""
# by default, it extracts the left channel if stereo
if len(waveform.shape) == 2:
waveform = waveform[0]
waveform = np.squeeze(waveform) * (2**15) # Kaldi compliance: 16-bit signed integers
features = spectrogram(
waveform,
self.window,
frame_length=400,
hop_length=160,
fft_length=512,
power=2.0,
center=False,
preemphasis=0.97,
mel_filters=self.mel_filters,
log_mel="log",
mel_floor=1.192092955078125e-07,
remove_dc_offset=True,
).T
return features
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
padding: Union[bool, str, PaddingStrategy] = True,
pad_to_multiple_of: Optional[int] = 2,
max_length: Optional[int] = None,
truncation: bool = False,
return_tensors: Optional[Union[str, TensorType]] = None,
sampling_rate: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
do_normalize_per_mel_bins: Optional[bool] = True,
**kwargs,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model one or several sequence(s).
Args:
raw_speech (`np.ndarray`, `torch.Tensor`, `List[float]`, `List[np.ndarray]`, `List[torch.Tensor]`,
`List[List[float]]`, `List[List[List[float]]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array,
a torch tensor, a list of float values, a list of numpy arrays, a list of torch tensors,
a list of list of float values or a list of a list of list of float values.
If `raw_speech` is a one-dimensional `np.ndarray`, `torch.Tensor` or a `List[float]`, `raw_speech` is
considered a single-channel, single-sample sound. In all other cases, the first dimension of
`raw_speech`, whether from an `np.ndarray`, a `torch.Tensor` or a `List[...]`,
corresponds to the number of samples in the batch, and the number of channels
(i.e. mono or stereo character) is derived from the other dimensions
(1D -> single-channel waveform batches; 2D-> stereo-channel waveform batches).
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
pad_to_multiple_of (`int`, *optional*, defaults to 2):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`):
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific feature_extractor's default.
[What are attention masks?](../glossary#attention-mask)
<Tip>
For SeamlessM4T models, `attention_mask` should always be passed for batched inference, to avoid subtle
bugs.
</Tip>
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors.
do_normalize_per_mel_bins (`bool`, *optional*, defaults to `True`):
Whether or not to zero-mean unit-variance normalize the input per mel-channel.
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to the tokenizer or the feature
extractor.
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
f" {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
return_attention_mask = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 3:
raise ValueError(f"Only mono-channel or stereo-channel audio is supported for input to {self}")
acceptable_types = (
(torch.Tensor, np.ndarray, tuple, list) if is_torch_available() else (np.ndarray, tuple, list)
)
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], acceptable_types))
)
if is_batched:
raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [raw_speech]
# extract fbank features
features = [self._extract_fbank_features(waveform) for waveform in raw_speech]
if do_normalize_per_mel_bins:
# torch defaults to ddof=1, and numpy defaults to ddof=0
features = [
(x - np.expand_dims(x.mean(0), 0)) / np.sqrt(np.expand_dims(x.var(0, ddof=1), 0) + 1e-7)
for x in features
]
# convert into correct format for padding
encoded_inputs = BatchFeature({"input_features": features})
padded_inputs = self.pad(
encoded_inputs,
padding=padding,
max_length=max_length,
truncation=truncation,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=True,
return_tensors="np",
)
# SeamlessM4T needs to process extracted features
input_features = padded_inputs.get("input_features")
attention_mask = padded_inputs.pop("attention_mask")
batch_size, num_frames, num_channels = input_features.shape
remainder = num_frames % self.stride
if remainder != 0:
input_features = input_features[:, :num_frames, :]
attention_mask = attention_mask[:, :num_frames]
input_features = np.reshape(
input_features, (batch_size, num_frames // self.stride, num_channels * self.stride)
)
indices = np.arange(0, num_frames)
attention_mask = attention_mask[:, indices % self.stride == 1]
padded_inputs["input_features"] = input_features
if return_attention_mask:
padded_inputs["attention_mask"] = attention_mask
if return_tensors is not None:
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
return padded_inputs
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/seamless_m4t/convert_fairseq2_to_hf.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Converting Meta SeamlessM4T checkpoints from seamless_communication to HF."""
import argparse
import os
from pathlib import Path
import torch
from accelerate.utils.modeling import find_tied_parameters
from seamless_communication.models.inference.translator import Translator
from transformers import (
SeamlessM4TConfig,
SeamlessM4TFeatureExtractor,
SeamlessM4TModel,
SeamlessM4TProcessor,
SeamlessM4TTokenizer,
)
from transformers.utils import logging
UNIT_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kan__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tam__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__", ] # fmt: skip
VOCODER_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__",] # fmt: skip
MEDIUM_SUPPORTED_LANGUAGES = ["ace","ace_Latn","acm","acq","aeb","afr","ajp","aka","amh","apc","arb","ars","ary","arz","asm","ast","awa","ayr","azb","azj","bak","bam","ban","bel","bem","ben","bho","bjn","bjn_Latn","bod","bos","bug","bul","cat","ceb","ces","cjk","ckb","crh","cym","dan","deu","dik","dyu","dzo","ell","eng","epo","est","eus","ewe","fao","pes","fij","fin","fon","fra","fur","fuv","gla","gle","glg","grn","guj","hat","hau","heb","hin","hne","hrv","hun","hye","ibo","ilo","ind","isl","ita","jav","jpn","kab","kac","kam","kan","kas","kas_Deva","kat","knc","knc_Latn","kaz","kbp","kea","khm","kik","kin","kir","kmb","kon","kor","kmr","lao","lvs","lij","lim","lin","lit","lmo","ltg","ltz","lua","lug","luo","lus","mag","mai","mal","mar","min","mkd","plt","mlt","mni","khk","mos","mri","zsm","mya","nld","nno","nob","npi","nso","nus","nya","oci","gaz","ory","pag","pan","pap","pol","por","prs","pbt","quy","ron","run","rus","sag","san","sat","scn","shn","sin","slk","slv","smo","sna","snd","som","sot","spa","als","srd","srp","ssw","sun","swe","swh","szl","tam","tat","tel","tgk","tgl","tha","tir","taq","taq_Tfng","tpi","tsn","tso","tuk","tum","tur","twi","tzm","uig","ukr","umb","urd","uzn","vec","vie","war","wol","xho","ydd","yor","yue","cmn","cmn_Hant","zul",] # fmt: skip
LARGE_SUPPORTED_LANGUAGES = ["afr","amh","arb","ary","arz","asm","azj","bel","ben","bos","bul","cat","ceb","ces","ckb","cmn","cmn_Hant","cym","dan","deu","ell","eng","est","eus","fin","fra","fuv","gaz","gle","glg","guj","heb","hin","hrv","hun","hye","ibo","ind","isl","ita","jav","jpn","kan","kat","kaz","khk","khm","kir","kor","lao","lit","lug","luo","lvs","mai","mal","mar","mkd","mlt","mni","mya","nld","nno","nob","npi","nya","ory","pan","pbt","pes","pol","por","ron","rus","sat","slk","slv","sna","snd","som","spa","srp","swe","swh","tam","tel","tgk","tgl","tha","tur","ukr","urd","uzn","vie","yor","yue","zlm","zul",] # fmt: skip
def assert_param_count(model_1, model_2):
count_1 = sum(p[1].numel() for p in model_1.named_parameters() if "final_proj" not in p[0])
count_2 = sum(p[1].numel() for p in model_2.named_parameters() if "final_proj" not in p[0])
assert count_1 == count_2, f"{model_1.__class__}: {count_1} != {model_2.__class__}: {count_2}"
def param_count(model):
return sum(p[1].numel() for p in model.named_parameters() if "final_proj" not in p[0])
def _grab_best_device(use_gpu=True):
if torch.cuda.device_count() > 0 and use_gpu:
device = "cuda"
else:
device = "cpu"
return torch.device(device)
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
vocoder_convert_list = [
("ups", "hifi_gan.upsampler"),
("conv_pre", "hifi_gan.conv_pre"),
("resblocks", "hifi_gan.resblocks"),
("conv_post", "hifi_gan.conv_post"),
("lang", "language_embedding"),
("spkr", "speaker_embedding"),
("dict.", "unit_embedding."),
("dur_predictor.conv1.0", "dur_predictor.conv1"),
("dur_predictor.conv2.0", "dur_predictor.conv2"),
]
# order is important
wav2vec_convert_list = [
("speech_encoder_frontend.model_dim_proj", "feature_projection.projection"),
("speech_encoder_frontend.post_extract_layer_norm", "feature_projection.layer_norm"),
("speech_encoder_frontend.pos_encoder.conv", "encoder.pos_conv_embed.conv"),
("speech_encoder.inner.layers", "encoder.layers"),
("speech_encoder.inner_layer_norm", "encoder.layer_norm"),
("speech_encoder.adaptor_layers", "adapter.layers"),
("inner_proj", "intermediate_dense"),
("self_attn.output_proj", "self_attn.linear_out"),
("output_proj", "output_dense"),
("self_attn.k_proj", "self_attn.linear_k"),
("self_attn.v_proj", "self_attn.linear_v"),
("self_attn.q_proj", "self_attn.linear_q"),
("self_attn.sdpa.u_bias", "self_attn.pos_bias_u"),
("self_attn.sdpa.v_bias", "self_attn.pos_bias_v"),
("self_attn.sdpa.r_proj", "self_attn.linear_pos"),
("conv.pointwise_conv1", "conv_module.pointwise_conv1"),
("conv.pointwise_conv2", "conv_module.pointwise_conv2"),
("conv.depthwise_conv", "conv_module.depthwise_conv"),
("conv.batch_norm", "conv_module.batch_norm"),
("conv_layer_norm", "conv_module.layer_norm"),
("speech_encoder.proj1", "intermediate_ffn.intermediate_dense"),
("speech_encoder.proj2", "intermediate_ffn.output_dense"),
("speech_encoder.layer_norm", "inner_layer_norm"),
]
t2u_convert_list = [
("t2u_model.final_proj", "lm_head"),
("t2u_model.", "model."),
("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"),
("encoder_decoder_attn", "cross_attention"),
("linear_k", "k_proj"),
("linear_v", "v_proj"),
("linear_q", "q_proj"),
("ffn.inner_proj", "ffn.fc1"),
("ffn.output_proj", "ffn.fc2"),
("output_proj", "out_proj"),
("decoder_frontend.embed", "decoder.embed_tokens"),
]
text_convert_list = [
("text_encoder.", ""),
("text_decoder.", ""),
("text_encoder_frontend.embed", "embed_tokens"),
("text_decoder_frontend.embed", "embed_tokens"),
("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"),
("encoder_decoder_attn", "cross_attention"),
("linear_k", "k_proj"),
("linear_v", "v_proj"),
("linear_q", "q_proj"),
("ffn.inner_proj", "ffn.fc1"),
("ffn.output_proj", "ffn.fc2"),
("output_proj", "out_proj"),
("final_proj", "lm_head"),
]
CUR_PATH = os.path.dirname(os.path.abspath(__file__))
default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache")
CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "huggingface", "hub")
def _load_hf_config(model_type="medium"):
if model_type == "medium":
kwargs = {
"vocab_size": 256206,
"t2u_vocab_size": 10082,
"hidden_size": 1024,
"max_position_embeddings": 4096,
"encoder_layers": 12,
"decoder_layers": 12,
"encoder_ffn_dim": 4096,
"decoder_ffn_dim": 4096,
"t2u_encoder_layers": 4,
"t2u_decoder_layers": 4,
"speech_encoder_layers": 12,
}
return SeamlessM4TConfig(**kwargs)
else:
return SeamlessM4TConfig()
def _convert_model(
original_model,
hf_model,
convert_list,
device,
unwanted_prefix="model.",
filter_state_dict="speech",
exclude_state_dict=None,
):
state_dict = original_model.state_dict()
# filter func
if isinstance(filter_state_dict, str):
def filter_func(x):
return filter_state_dict in x[0]
else:
def filter_func(item):
if exclude_state_dict is not None and exclude_state_dict in item[0]:
return False
for filter_el in filter_state_dict:
if filter_el in item[0]:
return True
return False
state_dict = dict(filter(filter_func, state_dict.items()))
for k, v in list(state_dict.items()):
new_k = k[len(unwanted_prefix) :]
for old_layer_name, new_layer_name in convert_list:
if old_layer_name in new_k:
new_k = new_k.replace(old_layer_name, new_layer_name)
# must do it by hand
if ".layer_norm" in new_k and new_k.split(".layer_norm")[0][-1].isnumeric():
new_k = new_k.replace("layer_norm", "final_layer_norm")
state_dict[new_k] = state_dict.pop(k)
extra_keys = set(state_dict.keys()) - set(hf_model.state_dict().keys())
extra_keys = set(extra_keys)
missing_keys = set(hf_model.state_dict().keys()) - set(state_dict.keys())
missing_keys = set({k for k in missing_keys if "final_logits_bias" not in k})
if len(extra_keys) != 0:
raise ValueError(f"extra keys found: {extra_keys}")
if len(missing_keys) != 0:
raise ValueError(f"missing keys: {missing_keys}")
hf_model.load_state_dict(state_dict, strict=False)
n_params = param_count(hf_model)
logger.info(f"model loaded: {round(n_params/1e6,1)}M params")
hf_model.eval()
hf_model.to(device)
del state_dict
return hf_model
def load_model(save_dir, model_type, repo_id):
"""
Meta SeamlessM4T is made of 8 main components:
- speech_encoder (#1) and speech_encoder_frontend (#2)
- t2u_model (#3)
- text_encoder (#4) and text_encoder_frontend (#5)
- text_decoder (#6) [and text_decoder_frontend (#5) = equals to text_encoder_frontend]
- final_proj (#7)
- vocoder (#8)
"""
device = _grab_best_device()
if model_type == "medium":
name = "seamlessM4T_medium"
else:
name = "seamlessM4T_large"
original_model = Translator(name, "vocoder_36langs", device, torch.float32)
######### TOKENIZER
langs = MEDIUM_SUPPORTED_LANGUAGES if model_type == "medium" else LARGE_SUPPORTED_LANGUAGES
langs = [f"__{lang}__" for lang in langs]
vocab_file = os.path.join(os.path.expanduser("~"), "tokenizer", model_type, "tokenizer.model")
save_dir = os.path.join(save_dir, name)
Path(save_dir).mkdir(exist_ok=True)
tokenizer = SeamlessM4TTokenizer(vocab_file, additional_special_tokens=langs)
sanity_check_lang_id = tokenizer.convert_tokens_to_ids("__fra__")
tokenizer.save_pretrained(save_dir)
tokenizer = SeamlessM4TTokenizer.from_pretrained(save_dir)
if sanity_check_lang_id != tokenizer.convert_tokens_to_ids("__fra__"):
raise ValueError(
f"Error in tokenizer saving/loading - __fra__ lang id is not coherent: {sanity_check_lang_id} vs {tokenizer.convert_tokens_to_ids('__fra__')}"
)
####### get language to ids dict
text_decoder_lang_code_to_id = {lang.replace("__", ""): tokenizer.convert_tokens_to_ids(lang) for lang in langs}
# offset: vocoder unit vocab size + 5 (for EOS/PAD/BOS/UNK/MSK) + len(supported_languages)
t2u_lang_code_to_id = {
code.replace("__", ""): i + 10005 + len(UNIT_SUPPORTED_LANGUAGES)
for i, code in enumerate(UNIT_SUPPORTED_LANGUAGES)
}
vocoder_lang_code_to_id = {code.replace("__", ""): i for i, code in enumerate(VOCODER_SUPPORTED_LANGUAGES)}
######### FE
fe = SeamlessM4TFeatureExtractor(language_code=langs)
fe.save_pretrained(save_dir)
fe = SeamlessM4TFeatureExtractor.from_pretrained(save_dir)
processor = SeamlessM4TProcessor(feature_extractor=fe, tokenizer=tokenizer)
processor.save_pretrained(save_dir)
processor.push_to_hub(repo_id=repo_id, create_pr=True)
processor = SeamlessM4TProcessor.from_pretrained(save_dir)
######## Model
# init model
hf_config = _load_hf_config(model_type)
hf_model = SeamlessM4TModel(hf_config)
hf_model.generation_config.__setattr__("text_decoder_lang_to_code_id", text_decoder_lang_code_to_id)
hf_model.generation_config.__setattr__("t2u_lang_code_to_id", t2u_lang_code_to_id)
hf_model.generation_config.__setattr__("vocoder_lang_code_to_id", vocoder_lang_code_to_id)
# -1. take care of vocoder
# similarly to speech T5 must apply and remove weight norm
hf_model.vocoder.apply_weight_norm()
hf_model.vocoder = _convert_model(
original_model,
hf_model.vocoder,
vocoder_convert_list,
device,
unwanted_prefix="vocoder.code_generator.",
filter_state_dict="vocoder",
)
hf_model.vocoder.remove_weight_norm()
# 1. take care of speech encoder
wav2vec = hf_model.speech_encoder
hf_model.speech_encoder = _convert_model(
original_model, wav2vec, wav2vec_convert_list, device, unwanted_prefix="model.", filter_state_dict="speech"
)
# 2. take care of t2u
hf_model.t2u_model = _convert_model(
original_model,
hf_model.t2u_model,
t2u_convert_list,
device,
unwanted_prefix="model.",
filter_state_dict="t2u_model",
)
# 3. take care of text encoder
hf_model.text_encoder = _convert_model(
original_model,
hf_model.text_encoder,
text_convert_list,
device,
unwanted_prefix="model.",
filter_state_dict=["model.text_encoder"],
exclude_state_dict="t2u_model",
)
# 4. take care of text decoder
hf_model.text_decoder = _convert_model(
original_model,
hf_model.text_decoder,
text_convert_list,
device,
unwanted_prefix="model.",
filter_state_dict=["model.text_decoder"],
exclude_state_dict="t2u_model",
)
# 5. take care of final proj
hf_model.lm_head = _convert_model(
original_model,
hf_model.lm_head,
[("final_proj.", "")],
device,
unwanted_prefix="model.",
filter_state_dict=["model.final_proj"],
exclude_state_dict="t2u_model",
)
# sanity check
print(find_tied_parameters(hf_model))
count_1 = param_count(hf_model)
count_2 = param_count(original_model)
print(f"HF MODEL:{count_1}, ORIGINAL_MODEL: {count_2}, diff:{count_1 - count_2}")
print(f"HF MODEL excluding embeddings:{hf_model.num_parameters(exclude_embeddings=True)}")
del original_model
hf_model.generation_config._from_model_config = False
hf_model.save_pretrained(save_dir)
hf_model.push_to_hub(repo_id=repo_id, create_pr=True)
hf_model = SeamlessM4TModel.from_pretrained(save_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_type",
default="medium",
type=str,
help="Model type.",
)
parser.add_argument(
"--save_dir",
default="/home/ubuntu/weights",
type=str,
help="Path to the output PyTorch model.",
)
parser.add_argument(
"--repo_id",
default="facebook/hf-seamless-m4t-medium",
type=str,
help="Repo ID.",
)
args = parser.parse_args()
load_model(args.save_dir, args.model_type, args.repo_id)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/seamless_m4t/configuration_seamless_m4t.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" SeamlessM4T model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/hf-seamless-m4t-medium": "https://huggingface.co/facebook/hf-seamless-m4t-medium/resolve/main/config.json",
# See all SeamlessM4T models at https://huggingface.co/models?filter=seamless_m4t
}
class SeamlessM4TConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`~SeamlessM4TModel`]. It is used to instantiate an
SeamlessM4T model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the SeamlessM4T
["facebook/hf-seamless-m4t-medium"](https://huggingface.co/"facebook/hf-seamless-m4t-medium") architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256102):
Vocabulary size of the SeamlessM4T model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`~SeamlessM4TModel`], [`~SeamlessM4TForTextToSpeech`] or
[`~SeamlessM4TForTextToText`].
t2u_vocab_size (`int`, *optional*, defaults to 10082):
Unit vocabulary size of the SeamlessM4T model. Defines the number of different unit tokens that can be
represented by the `inputs_ids` passed when calling the Text-To-Units sub-model of [`~SeamlessM4TModel`],
[`~SeamlessM4TForSpeechToSpeech`] or [`~SeamlessM4TForTextToSpeech`].
> Parameters shared across sub-models
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the "intermediate" layers in the architecture.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model text encoder and decoder might ever be used with. Typically set
this to something large just in case (e.g., 512 or 1024 or 2048).
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether the model is used as an encoder/decoder or not.
encoder_layerdrop (`float`, *optional*, defaults to 0.05):
The LayerDrop probability for the encoders. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.05):
The LayerDrop probability for the decoders. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the decoder and feed-forward layers. If string,
`"gelu"`, `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, decoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all attention layers.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for all activation layers in the model.
scale_embedding (`bool`, *optional*, defaults to `True`):
Scale embeddings by diving by sqrt(d_model).
> Text encoder and text decoder specific parameters
encoder_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer text encoder.
encoder_ffn_dim (`int`, *optional*, defaults to 8192):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text encoder.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer text encoder.
decoder_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer text decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 8192):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text decoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer text decoder.
decoder_start_token_id (`int`, *optional*, defaults to 3):
If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token. Only
applied in the text decoder.
max_new_tokens (`int`, *optional*, defaults to 256):
The maximum numbers of text tokens to generate, ignoring the number of tokens in the prompt.
pad_token_id (`int`, *optional*, defaults to 0):
The id of the _padding_ text token. Only applied to the text-decoder model.
bos_token_id (`int`, *optional*, defaults to 2):
The id of the _beginning-of-stream_ text token. Only applied to the text-decoder model.
eos_token_id (`int`, *optional*, defaults to 3):
The id of the _end-of-stream_ text token. Only applied to the text-decoder model.
> Speech encoder specific parameters
speech_encoder_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer speech encoder.
speech_encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer speech encoder.
speech_encoder_intermediate_size (`int`, *optional*, defaults to 4096):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer speech encoder.
speech_encoder_hidden_act (`str` or `function`, *optional*, defaults to `"swish"`):
The non-linear activation function (function or string) in the speech encoder. If string, `"gelu"`,
`"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported.
speech_encoder_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for all layers in the speech encoder.
add_adapter (`bool`, *optional*, defaults to `True`):
Add an adapter layer on top of the speech encoder.
speech_encoder_layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability for the speech encoder. See the [LayerDrop paper](see
https://arxiv.org/abs/1909.11556) for more details.
feature_projection_input_dim (`int`, *optional*, defaults to 160):
Input dimension of the input feature projection of the speech encoder, i.e the dimension after processing
input audios with [`SeamlessM4TFeatureExtractor`].
num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
embeddings layer of the speech encoder.
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
Number of groups of 1D convolutional positional embeddings layer of the speech encoder.
adaptor_kernel_size (`int`, *optional*, defaults to 8):
Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
adaptor_stride (`int`, *optional*, defaults to 8):
Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
adaptor_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all layers in the speech adapter.
num_adapter_layers (`int`, *optional*, defaults to 1):
Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
True`.
position_embeddings_type (`str`, *optional*, defaults to `"relative"`):
Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left
`None` no relative position embedding is applied. Only applied to the speech encoder.
rotary_embedding_base (`int`, *optional*, defaults to 10000):
If `"rotary"` position embeddings are used, defines the size of the embedding base. Only applied to the
speech encoder.
max_source_positions (`int`, *optional*, defaults to 4096):
if `"relative"` position embeddings are used, defines the maximum source input positions. Only applied to
the speech encoder.
conv_depthwise_kernel_size (`int`, *optional*, defaults to 31):
Kernel size of convolutional depthwise 1D layer in Conformer blocks. Only applied to the speech encoder.
> Text-To-Unit (t2u) model specific parameters
t2u_bos_token_id (`int`, *optional*, defaults to 0):
The id of the _beginning-of-stream_ unit token. Only applied to the text-to-unit seq2seq model.
t2u_pad_token_id (`int`, *optional*, defaults to 1):
The id of the _padding_ unit token. Only applied to the text-to-unit seq2seq model.
t2u_eos_token_id (`int`, *optional*, defaults to 2):
The id of the _end-of-stream_ unit token. Only applied to the text-to-unit seq2seq model.
t2u_decoder_start_token_id (`int`, *optional*, defaults to 2):
If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token. Only
applied to the text-to-unit seq2seq model.
t2u_max_new_tokens (`int`, *optional*, defaults to 1024):
The maximum numbers of unit tokens to generate, ignoring the number of tokens in the prompt. Only applied
to the text-to-unit seq2seq model.
t2u_encoder_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer text-to-unit encoder.
t2u_encoder_ffn_dim (`int`, *optional*, defaults to 8192):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text-to-unit encoder.
t2u_encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer text-to-unit encoder.
t2u_decoder_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer text-to-unit decoder.
t2u_decoder_ffn_dim (`int`, *optional*, defaults to 8192):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text-to-unit decoder.
t2u_decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer text-to-unit decoder.
t2u_max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model text-to-unit component might ever be used with. Typically set
this to something large just in case (e.g., 512 or 1024 or 2048).
> Hifi-Gan Vocoder specific parameters
sampling_rate (`int`, *optional*, defaults to 16000):
The sampling rate at which the output audio will be generated, expressed in hertz (Hz).
upsample_initial_channel (`int`, *optional*, defaults to 512):
The number of input channels into the hifi-gan upsampling network. Applies to the vocoder only.
upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[5, 4, 4, 2, 2]`):
A tuple of integers defining the stride of each 1D convolutional layer in the vocoder upsampling network.
The length of *upsample_rates* defines the number of convolutional layers and has to match the length of
*upsample_kernel_sizes*. Applies to the vocoder only.
upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[11, 8, 8, 4, 4]`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the vocoder upsampling
network. The length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match
the length of *upsample_rates*. Applies to the vocoder only.
resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`):
A tuple of integers defining the kernel sizes of the vocoder 1D convolutional layers in the multi-receptive
field fusion (MRF) module. Applies to the vocoder only.
resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`):
A nested tuple of integers defining the dilation rates of the vocoder dilated 1D convolutional layers in
the multi-receptive field fusion (MRF) module. Applies to the vocoder only.
leaky_relu_slope (`float`, *optional*, defaults to 0.1):
The angle of the negative slope used by the leaky ReLU activation in the vocoder. Applies to the vocoder
only.
unit_hifi_gan_vocab_size (`int`, *optional*, defaults to 10000):
Vocabulary size of the SeamlessM4T vocoder. Defines the number of different unit tokens that can be
represented by the `inputs_ids` passed when calling the vocoder of [`~SeamlessM4TModel`],
[`~SeamlessM4TForSpeechToSpeech`] or [`~SeamlessM4TForTextToSpeech`].
unit_embed_dim (`int`, *optional*, defaults to 1280):
The projection dimension of the input ids given to the hifi-gan vocoder. Applies to the vocoder only.
lang_embed_dim (`int`, *optional*, defaults to 256):
The projection dimension of the target language given to the hifi-gan vocoder. Applies to the vocoder only.
spkr_embed_dim (`int`, *optional*, defaults to 256):
The projection dimension of the speaker id given to the hifi-gan vocoder. Applies to the vocoder only.
vocoder_num_langs (`int`, *optional*, defaults to 36):
Number of langs supported by the vocoder. Might be different from `t2u_num_langs`.
vocoder_num_spkrs (`int`, *optional*, defaults to 200):
Number of speakers supported by the vocoder.
variance_predictor_kernel_size (`int`, *optional*, defaults to 3):
Kernel size of the duration predictor. Applies to the vocoder only.
var_pred_dropout (`float`, *optional*, defaults to 0.5):
The dropout probabilitiy of the duration predictor. Applies to the vocoder only.
vocoder_offset (`int`, *optional*, defaults to 4):
Offset the unit token ids by this number to account for symbol tokens. Applies to the vocoder only.
```python
>>> from transformers import SeamlessM4TModel, SeamlessM4TConfig
>>> # Initializing a SeamlessM4T "facebook/hf-seamless-m4t-medium" style configuration
>>> configuration = SeamlessM4TConfig()
>>> # Initializing a model from the "facebook/hf-seamless-m4t-medium" style configuration
>>> model = SeamlessM4TModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "seamless_m4t"
def __init__(
self,
vocab_size=256102,
t2u_vocab_size=10082,
# shared config
hidden_size=1024,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
max_position_embeddings=1024,
is_encoder_decoder=True,
encoder_layerdrop=0.05,
decoder_layerdrop=0.05,
activation_function="relu",
dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
scale_embedding=True,
# text encoder|decoder
encoder_layers=24,
encoder_ffn_dim=8192,
encoder_attention_heads=16,
decoder_layers=24,
decoder_ffn_dim=8192,
decoder_attention_heads=16,
decoder_start_token_id=3,
max_new_tokens=256,
pad_token_id=0,
bos_token_id=2,
eos_token_id=3,
# speech_encoder
speech_encoder_layers=24,
speech_encoder_attention_heads=16,
speech_encoder_intermediate_size=4096,
speech_encoder_hidden_act="swish",
speech_encoder_dropout=0.0,
add_adapter=True,
speech_encoder_layerdrop=0.1,
feature_projection_input_dim=160,
num_conv_pos_embeddings=128,
num_conv_pos_embedding_groups=16,
adaptor_kernel_size=8,
adaptor_stride=8,
adaptor_dropout=0.1,
num_adapter_layers=1,
position_embeddings_type="relative",
rotary_embedding_base=10000,
max_source_positions=4096,
conv_depthwise_kernel_size=31,
# t2u config
t2u_bos_token_id=0,
t2u_pad_token_id=1,
t2u_eos_token_id=2,
t2u_decoder_start_token_id=2,
t2u_max_new_tokens=1024,
t2u_encoder_layers=6,
t2u_encoder_ffn_dim=8192,
t2u_encoder_attention_heads=16,
t2u_decoder_layers=6,
t2u_decoder_ffn_dim=8192,
t2u_decoder_attention_heads=16,
t2u_max_position_embeddings=2048,
# hifi-gan vocoder config
sampling_rate=16000,
upsample_initial_channel=512,
upsample_rates=[5, 4, 4, 2, 2],
upsample_kernel_sizes=[11, 8, 8, 4, 4],
resblock_kernel_sizes=[3, 7, 11],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
leaky_relu_slope=0.1,
# specific to Code Hifi-Gan
unit_hifi_gan_vocab_size=10000,
unit_embed_dim=1280,
lang_embed_dim=256,
spkr_embed_dim=256,
vocoder_num_langs=36,
vocoder_num_spkrs=200,
variance_predictor_kernel_size=3,
var_pred_dropout=0.5,
vocoder_offset=4,
**kwargs,
):
# overall_config
self.vocab_size = vocab_size
self.t2u_vocab_size = t2u_vocab_size
self.hidden_size = hidden_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.max_position_embeddings = max_position_embeddings
self.use_cache = use_cache
self.max_new_tokens = max_new_tokens
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.activation_function = activation_function
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.scale_embedding = scale_embedding
# for proper config init
self.num_attention_heads = decoder_attention_heads
self.num_hidden_layers = decoder_layers
# text|unit encoder|decoder
self.encoder_layers = encoder_layers
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_attention_heads = encoder_attention_heads
self.decoder_layers = decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_attention_heads = decoder_attention_heads
# speech_encoder
self.speech_encoder_layers = speech_encoder_layers
self.speech_encoder_hidden_act = speech_encoder_hidden_act
self.speech_encoder_dropout = speech_encoder_dropout
self.speech_encoder_attention_heads = speech_encoder_attention_heads
self.speech_encoder_layerdrop = speech_encoder_layerdrop
self.speech_encoder_intermediate_size = speech_encoder_intermediate_size
self.feature_projection_input_dim = feature_projection_input_dim
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.adaptor_kernel_size = adaptor_kernel_size
self.adaptor_stride = adaptor_stride
self.adaptor_dropout = adaptor_dropout
self.num_adapter_layers = num_adapter_layers
self.position_embeddings_type = position_embeddings_type
self.rotary_embedding_base = rotary_embedding_base
self.max_source_positions = max_source_positions
self.conv_depthwise_kernel_size = conv_depthwise_kernel_size
self.add_adapter = add_adapter
# t2u config
self.t2u_bos_token_id = t2u_bos_token_id
self.t2u_pad_token_id = t2u_pad_token_id
self.t2u_eos_token_id = t2u_eos_token_id
self.t2u_decoder_start_token_id = t2u_decoder_start_token_id
self.t2u_max_new_tokens = t2u_max_new_tokens
self.t2u_encoder_layers = t2u_encoder_layers
self.t2u_encoder_ffn_dim = t2u_encoder_ffn_dim
self.t2u_encoder_attention_heads = t2u_encoder_attention_heads
self.t2u_decoder_layers = t2u_decoder_layers
self.t2u_decoder_ffn_dim = t2u_decoder_ffn_dim
self.t2u_decoder_attention_heads = t2u_decoder_attention_heads
self.t2u_max_position_embeddings = t2u_max_position_embeddings
# hifi-gan vocoder config
# original parameters specific to Hifi-Gan
self.sampling_rate = sampling_rate
self.upsample_initial_channel = upsample_initial_channel
self.upsample_rates = upsample_rates
self.upsample_kernel_sizes = upsample_kernel_sizes
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.leaky_relu_slope = leaky_relu_slope
# specific to Code Hifi-Gan
self.unit_hifi_gan_vocab_size = unit_hifi_gan_vocab_size
self.unit_embed_dim = unit_embed_dim
self.lang_embed_dim = lang_embed_dim
self.spkr_embed_dim = spkr_embed_dim
self.vocoder_num_langs = vocoder_num_langs
self.vocoder_num_spkrs = vocoder_num_spkrs
self.variance_predictor_kernel_size = variance_predictor_kernel_size
self.var_pred_dropout = var_pred_dropout
self.vocoder_offset = vocoder_offset
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
is_encoder_decoder=is_encoder_decoder,
max_position_embeddings=max_position_embeddings,
**kwargs,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/seamless_m4t/__init__.py
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_seamless_m4t": ["SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP", "SeamlessM4TConfig"],
"feature_extraction_seamless_m4t": ["SeamlessM4TFeatureExtractor"],
"processing_seamless_m4t": ["SeamlessM4TProcessor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_seamless_m4t"] = ["SeamlessM4TTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_seamless_m4t_fast"] = ["SeamlessM4TTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_seamless_m4t"] = [
"SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST",
"SeamlessM4TForTextToSpeech",
"SeamlessM4TForSpeechToSpeech",
"SeamlessM4TForTextToText",
"SeamlessM4TForSpeechToText",
"SeamlessM4TModel",
"SeamlessM4TPreTrainedModel",
"SeamlessM4TCodeHifiGan",
"SeamlessM4THifiGan",
"SeamlessM4TTextToUnitForConditionalGeneration",
"SeamlessM4TTextToUnitModel",
]
if TYPE_CHECKING:
from .configuration_seamless_m4t import SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP, SeamlessM4TConfig
from .feature_extraction_seamless_m4t import SeamlessM4TFeatureExtractor
from .processing_seamless_m4t import SeamlessM4TProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_seamless_m4t import SeamlessM4TTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_seamless_m4t_fast import SeamlessM4TTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_seamless_m4t import (
SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST,
SeamlessM4TCodeHifiGan,
SeamlessM4TForSpeechToSpeech,
SeamlessM4TForSpeechToText,
SeamlessM4TForTextToSpeech,
SeamlessM4TForTextToText,
SeamlessM4THifiGan,
SeamlessM4TModel,
SeamlessM4TPreTrainedModel,
SeamlessM4TTextToUnitForConditionalGeneration,
SeamlessM4TTextToUnitModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/seamless_m4t/modeling_seamless_m4t.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch SeamlessM4T model."""
import copy
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...deepspeed import is_deepspeed_zero3_enabled
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Wav2Vec2BaseModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_seamless_m4t import SeamlessM4TConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/hf-seamless-m4t-medium"
_CONFIG_FOR_DOC = "SeamlessM4TConfig"
SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/hf-seamless-m4t-medium",
# See all SeamlessM4T models at https://huggingface.co/models?filter=seamless_m4t
]
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP = {
"microsoft/speecht5_hifigan": "https://huggingface.co/microsoft/speecht5_hifigan/resolve/main/config.json",
}
@dataclass
class SeamlessM4TGenerationOutput(ModelOutput):
"""
Class defining the generated outputs from [`SeamlessM4TModel`], [`SeamlessM4TForTextToText`],
[`SeamlessM4TForTextToSpeech`], [`SeamlessM4TForSpeechToSpeech`] and [`SeamlessM4TForTextToSpeech`].
Args:
waveform (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
The final audio waveform predicted by the model.
waveform_lengths (`torch.IntTensor` of shape `(batch_size,)`, *optional*):
The length in samples of each element in the `waveform` batch.
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
The generated translated sequences. This is the output of the text-to-text or the speech-to-text models.
The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished
early due to the `eos_token_id`.
unit_sequences (`torch.LongTensor` of shape `(batch_size, unit_sequence_length)`, *optional*):
The generated translated unit sequences. This is the output of the text-to-units model. The second
dimension (unit_sequence_length) is either equal to `t2u_max_length` or shorter if all batches finished
early due to the `t2u_eos_token_id`.
"""
waveform: Optional[torch.FloatTensor] = None
waveform_lengths: Optional[torch.IntTensor] = None
sequences: Optional[Tuple[torch.FloatTensor]] = None
unit_sequences: Optional[Tuple[torch.FloatTensor]] = None
SEAMLESS_M4T_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`~SeamlessM4TConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SEAMLESS_M4T_INPUTS_DOCSTRING_FIRST_PART = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
[`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
"""
SEAMLESS_M4T_INPUTS_DOCSTRING_TEXT_PART = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
"""
SEAMLESS_M4T_INPUTS_DOCSTRING_SPEECH_PART = r"""
Args:
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
[`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
"""
SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART = r"""
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should read [`modeling_bart._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape`(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
M4T_MODEL_INPUTS_DOCSTRING = SEAMLESS_M4T_INPUTS_DOCSTRING_FIRST_PART + SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART
M4T_TEXT_INPUTS_DOCSTRING = SEAMLESS_M4T_INPUTS_DOCSTRING_TEXT_PART + SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART
M4T_SPEECH_INPUTS_DOCSTRING = SEAMLESS_M4T_INPUTS_DOCSTRING_SPEECH_PART + SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART
############ UTILS ################
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
def _compute_new_attention_mask(hidden_states: torch.Tensor, seq_lens: torch.Tensor):
"""
Computes an attention mask of the form `(batch, seq_len)` with an attention for each element in the batch that
stops at the corresponding element in `seq_lens`.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, *)`):
The sequences to mask, where `*` is any number of sequence-specific dimensions including none.
seq_lens (`torch.Tensor` of shape `(batch)`:
Each element represents the length of the sequence at the same index in `hidden_states`
Returns:
`torch.FloatTensor`: The float attention mask of shape `(batch, seq_len)`
"""
batch_size, mask_seq_len = hidden_states.shape[:2]
indices = torch.arange(mask_seq_len, device=seq_lens.device).expand(batch_size, -1)
bool_mask = indices >= seq_lens.unsqueeze(1).expand(-1, mask_seq_len)
mask = hidden_states.new_ones((batch_size, mask_seq_len))
mask = mask.masked_fill(bool_mask, 0)
return mask
def format_speech_generation_kwargs(kwargs):
"""
Format kwargs for SeamlessM4T models that generate speech, attribute kwargs to either the text generation or the
speech generation models.
Args:
kwargs (`dict`)`:
Keyword arguments are of two types:
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
except for `decoder_input_ids` which will only be passed through the text components.
- With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
text model and speech model respectively. It has the priority over the keywords without a prefix.
This means you can, for example, specify a generation strategy for one generation but not for the
other.
"""
# attribute kwargs to models
kwargs_text = {}
kwargs_speech = {}
for key, value in kwargs.items():
if key.startswith("text_"):
key = key[len("text_") :]
kwargs_text[key] = value
elif key.startswith("speech_"):
key = key[len("speech_") :]
kwargs_speech[key] = value
else:
# If the key is already in a specific config, then it's been set with a
# submodules specific value and we don't override
if key not in kwargs_text:
kwargs_text[key] = value
if key not in kwargs_speech:
kwargs_speech[key] = value
return kwargs_text, kwargs_speech
############ SPEECH ENCODER related code ################
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->SeamlessM4TConformer, feat_extract_activation->speech_encoder_hidden_act
class SeamlessM4TConformerPositionalConvEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
padding=config.num_conv_pos_embeddings // 2,
groups=config.num_conv_pos_embedding_groups,
)
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
self.conv = weight_norm(self.conv, name="weight", dim=2)
deepspeed.zero.register_external_parameter(self, self.conv.weight_v)
deepspeed.zero.register_external_parameter(self, self.conv.weight_g)
else:
self.conv = weight_norm(self.conv, name="weight", dim=2)
self.padding = SeamlessM4TConformerSamePadLayer(config.num_conv_pos_embeddings)
self.activation = ACT2FN[config.speech_encoder_hidden_act]
def forward(self, hidden_states):
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRotaryPositionalEmbedding with Wav2Vec2->SeamlessM4T, num_attention_heads->speech_encoder_attention_heads
class SeamlessM4TConformerRotaryPositionalEmbedding(nn.Module):
"""Rotary positional embedding
Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf
"""
def __init__(self, config):
super().__init__()
dim = config.hidden_size // config.speech_encoder_attention_heads
base = config.rotary_embedding_base
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.cached_sequence_length = None
self.cached_rotary_positional_embedding = None
def forward(self, hidden_states):
sequence_length = hidden_states.shape[1]
if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None:
return self.cached_rotary_positional_embedding
self.cached_sequence_length = sequence_length
# Embeddings are computed in the dtype of the inv_freq constant
time_stamps = torch.arange(sequence_length).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq)
embeddings = torch.cat((freqs, freqs), dim=-1)
cos_embeddings = embeddings.cos()[:, None, None, :]
sin_embeddings = embeddings.sin()[:, None, None, :]
# Computed embeddings are cast to the dtype of the hidden state inputs
self.cached_rotary_positional_embedding = torch.stack([cos_embeddings, sin_embeddings]).type_as(hidden_states)
return self.cached_rotary_positional_embedding
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRelPositionalEmbedding with Wav2Vec2->SeamlessM4T
class SeamlessM4TConformerRelPositionalEmbedding(nn.Module):
"""Relative positional encoding module."""
def __init__(self, config):
super().__init__()
self.max_len = config.max_source_positions
self.d_model = config.hidden_size
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, self.max_len))
def extend_pe(self, x):
# Reset the positional encodings
if self.pe is not None:
# self.pe contains both positive and negative parts
# the length of self.pe is 2 * input_len - 1
if self.pe.size(1) >= x.size(1) * 2 - 1:
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` is the position of query vector and `j` is the
# position of key vector. We use positive relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pe_positive = torch.zeros(x.size(1), self.d_model)
pe_negative = torch.zeros(x.size(1), self.d_model)
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.d_model)
)
pe_positive[:, 0::2] = torch.sin(position * div_term)
pe_positive[:, 1::2] = torch.cos(position * div_term)
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
# Reverse the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
pe_negative = pe_negative[1:].unsqueeze(0)
pe = torch.cat([pe_positive, pe_negative], dim=1)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, hidden_states: torch.Tensor):
self.extend_pe(hidden_states)
start_idx = self.pe.size(1) // 2 - hidden_states.size(1) + 1
end_idx = self.pe.size(1) // 2 + hidden_states.size(1)
relative_position_embeddings = self.pe[:, start_idx:end_idx]
return relative_position_embeddings
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSamePadLayer with Wav2Vec2->SeamlessM4T
class SeamlessM4TConformerSamePadLayer(nn.Module):
def __init__(self, num_conv_pos_embeddings):
super().__init__()
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
def forward(self, hidden_states):
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
return hidden_states
class SeamlessM4TConformerFeatureProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.layer_norm = nn.LayerNorm(config.feature_projection_input_dim, eps=config.layer_norm_eps)
self.projection = nn.Linear(config.feature_projection_input_dim, config.hidden_size)
self.dropout = nn.Dropout(config.speech_encoder_dropout)
def forward(self, hidden_states):
# non-projected hidden states are needed for quantization
norm_hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(norm_hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class SeamlessM4TConformerFeedForward(nn.Module):
def __init__(self, config, act_fn=None, dropout=None):
super().__init__()
dropout = dropout if dropout is not None else config.speech_encoder_dropout
act_fn = act_fn if act_fn is not None else config.speech_encoder_hidden_act
self.intermediate_dropout = nn.Dropout(dropout)
self.intermediate_dense = nn.Linear(config.hidden_size, config.speech_encoder_intermediate_size)
self.intermediate_act_fn = ACT2FN[act_fn] if isinstance(act_fn, str) else act_fn
self.output_dense = nn.Linear(config.speech_encoder_intermediate_size, config.hidden_size)
self.output_dropout = nn.Dropout(dropout)
def forward(self, hidden_states):
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states)
return hidden_states
class SeamlessM4TConformerConvolutionModule(nn.Module):
"""Convolution block used in the conformer block"""
def __init__(self, config):
super().__init__()
if (config.conv_depthwise_kernel_size - 1) % 2 == 1:
raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding")
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.pointwise_conv1 = nn.Conv1d(
config.hidden_size,
2 * config.hidden_size,
kernel_size=1,
stride=1,
padding=0,
bias=False,
)
self.glu = nn.GLU(dim=1)
self.depthwise_conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
config.conv_depthwise_kernel_size,
stride=1,
padding="same",
groups=config.hidden_size,
bias=False,
)
self.batch_norm = nn.BatchNorm1d(config.hidden_size)
self.activation = ACT2FN[config.speech_encoder_hidden_act]
self.pointwise_conv2 = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=1,
stride=1,
padding=0,
bias=False,
)
self.dropout = nn.Dropout(config.speech_encoder_dropout)
def forward(self, hidden_states, attention_mask=None):
hidden_states = self.layer_norm(hidden_states)
# Ensure that we do not leak padded positions in depthwise convolution.
# Put 0 where necessary
if attention_mask is not None:
hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0)
# exchange the temporal dimension and the feature dimension
hidden_states = hidden_states.transpose(1, 2)
# GLU mechanism
# => (batch, 2*channel, dim)
hidden_states = self.pointwise_conv1(hidden_states)
# => (batch, channel, dim)
hidden_states = self.glu(hidden_states)
# 1D Depthwise Conv
hidden_states = self.depthwise_conv(hidden_states)
hidden_states = self.batch_norm(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.pointwise_conv2(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
class SeamlessM4TConformerSelfAttention(nn.Module):
"""Construct a SeamlessM4TConformerSelfAttention object.
Can be enhanced with rotary or relative position embeddings.
"""
def __init__(self, config, use_position_embeddings=True):
super().__init__()
self.head_size = config.hidden_size // config.speech_encoder_attention_heads
self.num_heads = config.speech_encoder_attention_heads
self.position_embeddings_type = config.position_embeddings_type if use_position_embeddings else None
self.linear_q = nn.Linear(config.hidden_size, config.hidden_size)
self.linear_k = nn.Linear(config.hidden_size, config.hidden_size)
self.linear_v = nn.Linear(config.hidden_size, config.hidden_size)
self.linear_out = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(p=config.speech_encoder_dropout)
if self.position_embeddings_type == "relative":
# linear transformation for positional encoding
self.linear_pos = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
self.pos_bias_v = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
relative_position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# self-attention mechanism
batch_size, sequence_length, hidden_size = hidden_states.size()
# make sure query/key states can be != value states
query_key_states = hidden_states
value_states = hidden_states
if self.position_embeddings_type == "rotary":
if relative_position_embeddings is None:
raise ValueError(
"`relative_position_embeddings` has to be defined when `self.position_embeddings_type == 'rotary'"
)
query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings)
# project query_key_states and value_states
query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size)
# => (batch, head, time1, d_k)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
if self.position_embeddings_type == "relative":
if relative_position_embeddings is None:
raise ValueError(
"`relative_position_embeddings` has to be defined when `self.position_embeddings_type =="
" 'relative'"
)
# apply relative_position_embeddings to qk scores
# as proposed in Transformer_XL: https://arxiv.org/abs/1901.02860
scores = self._apply_relative_embeddings(
query=query, key=key, relative_position_embeddings=relative_position_embeddings
)
else:
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size)
# apply attention_mask if necessary
if attention_mask is not None:
scores = scores + attention_mask
# => (batch, head, time1, time2)
probs = torch.softmax(scores, dim=-1)
probs = self.dropout(probs)
# => (batch, head, time1, d_k)
hidden_states = torch.matmul(probs, value)
# => (batch, time1, hidden_size)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size)
hidden_states = self.linear_out(hidden_states)
return hidden_states, probs
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_rotary_embedding
def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings):
batch_size, sequence_length, hidden_size = hidden_states.size()
hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size)
cos = relative_position_embeddings[0, :sequence_length, ...]
sin = relative_position_embeddings[1, :sequence_length, ...]
# rotate hidden_states with rotary embeddings
hidden_states = hidden_states.transpose(0, 1)
rotated_states_begin = hidden_states[..., : self.head_size // 2]
rotated_states_end = hidden_states[..., self.head_size // 2 :]
rotated_states = torch.cat((-rotated_states_end, rotated_states_begin), dim=rotated_states_begin.ndim - 1)
hidden_states = (hidden_states * cos) + (rotated_states * sin)
hidden_states = hidden_states.transpose(0, 1)
hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size)
return hidden_states
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_relative_embeddings
def _apply_relative_embeddings(self, query, key, relative_position_embeddings):
# 1. project positional embeddings
# => (batch, head, 2*time1-1, d_k)
proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings)
proj_relative_position_embeddings = proj_relative_position_embeddings.view(
relative_position_embeddings.size(0), -1, self.num_heads, self.head_size
)
proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(1, 2)
proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(2, 3)
# 2. Add bias to query
# => (batch, head, time1, d_k)
query = query.transpose(1, 2)
q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2)
q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2)
# 3. attention score: first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# => (batch, head, time1, time2)
scores_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1))
# 4. then compute matrix b and matrix d
# => (batch, head, time1, 2*time1-1)
scores_bd = torch.matmul(q_with_bias_v, proj_relative_position_embeddings)
# 5. shift matrix b and matrix d
zero_pad = torch.zeros((*scores_bd.size()[:3], 1), device=scores_bd.device, dtype=scores_bd.dtype)
scores_bd_padded = torch.cat([zero_pad, scores_bd], dim=-1)
scores_bd_padded_shape = scores_bd.size()[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2])
scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape)
scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd)
scores_bd = scores_bd[:, :, :, : scores_bd.size(-1) // 2 + 1]
# 6. sum matrices
# => (batch, head, time1, time2)
scores = (scores_ac + scores_bd) / math.sqrt(self.head_size)
return scores
class SeamlessM4TConformerEncoderLayer(nn.Module):
"""Conformer block based on https://arxiv.org/abs/2005.08100."""
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerEncoderLayer.__init__ with Wav2Vec2->SeamlessM4T, attention_dropout->speech_encoder_dropout, torch.nn->nn
def __init__(self, config):
super().__init__()
embed_dim = config.hidden_size
dropout = config.speech_encoder_dropout
# Feed-forward 1
self.ffn1_layer_norm = nn.LayerNorm(embed_dim)
self.ffn1 = SeamlessM4TConformerFeedForward(config)
# Self-Attention
self.self_attn_layer_norm = nn.LayerNorm(embed_dim)
self.self_attn_dropout = nn.Dropout(dropout)
self.self_attn = SeamlessM4TConformerSelfAttention(config)
# Conformer Convolution
self.conv_module = SeamlessM4TConformerConvolutionModule(config)
# Feed-forward 2
self.ffn2_layer_norm = nn.LayerNorm(embed_dim)
self.ffn2 = SeamlessM4TConformerFeedForward(config)
self.final_layer_norm = nn.LayerNorm(embed_dim)
def forward(
self,
hidden_states,
attention_mask: Optional[torch.Tensor] = None,
relative_position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
conv_attention_mask: Optional[torch.Tensor] = None,
):
hidden_states = hidden_states
# 1. Feed-Forward 1 layer
residual = hidden_states
hidden_states = self.ffn1_layer_norm(hidden_states)
hidden_states = self.ffn1(hidden_states)
hidden_states = hidden_states * 0.5 + residual
residual = hidden_states
# 2. Self-Attention layer
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weigts = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
relative_position_embeddings=relative_position_embeddings,
output_attentions=output_attentions,
)
hidden_states = self.self_attn_dropout(hidden_states)
hidden_states = hidden_states + residual
# 3. Convolutional Layer
residual = hidden_states
hidden_states = self.conv_module(hidden_states, attention_mask=conv_attention_mask)
hidden_states = residual + hidden_states
# 4. Feed-Forward 2 Layer
residual = hidden_states
hidden_states = self.ffn2_layer_norm(hidden_states)
hidden_states = self.ffn2(hidden_states)
hidden_states = hidden_states * 0.5 + residual
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states, attn_weigts
class SeamlessM4TConformerEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
if config.position_embeddings_type == "relative":
self.embed_positions = SeamlessM4TConformerRelPositionalEmbedding(config)
elif config.position_embeddings_type == "rotary":
self.embed_positions = SeamlessM4TConformerRotaryPositionalEmbedding(config)
else:
self.embed_positions = None
self.dropout = nn.Dropout(config.speech_encoder_dropout)
self.layers = nn.ModuleList(
[SeamlessM4TConformerEncoderLayer(config) for _ in range(config.speech_encoder_layers)]
)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
conv_attention_mask = attention_mask
if attention_mask is not None:
# make sure padded tokens output 0
hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0)
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
hidden_states = self.dropout(hidden_states)
if self.embed_positions is not None:
relative_position_embeddings = self.embed_positions(hidden_states)
else:
relative_position_embeddings = None
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = (
True if self.training and (dropout_probability < self.config.speech_encoder_layerdrop) else False
)
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
relative_position_embeddings,
)
else:
layer_outputs = layer(
hidden_states,
attention_mask=attention_mask,
relative_position_embeddings=relative_position_embeddings,
output_attentions=output_attentions,
conv_attention_mask=conv_attention_mask,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class SeamlessM4TConformerAdapterLayer(nn.Module):
def __init__(self, config):
super().__init__()
embed_dim = config.hidden_size
dropout = config.adaptor_dropout
self.kernel_size = config.adaptor_kernel_size
self.stride = config.adaptor_stride
# 1. residual convolution
self.residual_layer_norm = nn.LayerNorm(embed_dim)
self.residual_conv = nn.Conv1d(
embed_dim,
2 * embed_dim,
self.kernel_size,
stride=self.stride,
padding=self.stride // 2,
)
self.activation = nn.GLU(dim=1)
# Self-Attention
self.self_attn_layer_norm = nn.LayerNorm(embed_dim)
self.self_attn_conv = nn.Conv1d(
embed_dim,
2 * embed_dim,
self.kernel_size,
stride=self.stride,
padding=self.stride // 2,
)
self.self_attn = SeamlessM4TConformerSelfAttention(config, use_position_embeddings=False)
self.self_attn_dropout = nn.Dropout(dropout)
# Feed-forward
self.ffn_layer_norm = nn.LayerNorm(embed_dim)
self.ffn = SeamlessM4TConformerFeedForward(config, act_fn="relu", dropout=dropout)
def _compute_sub_sample_lengths_from_attention_mask(self, attention_mask):
pad = self.kernel_size // 2
seq_lens = attention_mask.size(1) - (1 - attention_mask.int()).sum(1)
seq_lens = ((seq_lens + 2 * pad - self.kernel_size) / self.stride) + 1
return seq_lens.floor()
def forward(
self,
hidden_states,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
residual = self.residual_layer_norm(hidden_states)
# Apply pooling to the residual to match the sequence length of the
# multi-head attention output.
# (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len)
residual = residual.transpose(1, 2)
residual = self.residual_conv(residual)
residual = self.activation(residual)
# (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim)
residual = residual.transpose(1, 2)
hidden_states = self.self_attn_layer_norm(hidden_states)
# Apply pooling before feeding to the multihead-attention layer.
# (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len)
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.self_attn_conv(hidden_states)
hidden_states = self.activation(hidden_states)
# (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim)
hidden_states = hidden_states.transpose(1, 2)
if attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
hidden_states.device
)
attention_mask = _compute_new_attention_mask(hidden_states=hidden_states, seq_lens=sub_sampled_lengths)
attention_mask = _prepare_4d_attention_mask(
attention_mask,
hidden_states.dtype,
)
# The rest of the computation is identical to a vanilla Transformer
# encoder layer.
hidden_states, attn_weigths = self.self_attn(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.self_attn_dropout(hidden_states)
hidden_states = hidden_states + residual
residual = hidden_states
hidden_states = self.ffn_layer_norm(hidden_states)
hidden_states = self.ffn(hidden_states) + residual
return hidden_states
class SeamlessM4TConformerAdapter(nn.Module):
def __init__(self, config):
super().__init__()
self.layers = nn.ModuleList(SeamlessM4TConformerAdapterLayer(config) for _ in range(config.num_adapter_layers))
def forward(self, hidden_states, attention_mask):
# down project hidden_states if necessary
for layer in self.layers:
hidden_states = layer(hidden_states, attention_mask)
return hidden_states
############ TEXT / UNITS related code ################
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding
class SeamlessM4TSinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__()
self.offset = 2
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.register_buffer("weights", emb_weights, persistent=False)
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
"""
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(
self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0
):
if input_ids is not None:
bsz, seq_len = input_ids.size()
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
input_ids.device
)
else:
bsz, seq_len = inputs_embeds.size()[:-1]
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
# expand embeddings if needed
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
class SeamlessM4TAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
# Copied from transformers.models.bart.modeling_bart.BartAttention.__init__ with Bart->SeamlessM4T
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[SeamlessM4TConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if encoder_hidden_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = encoder_hidden_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == encoder_hidden_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `encoder_hidden_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == encoder_hidden_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.nllb_moe.modeling_nllb_moe.NllbMoeDenseActDense with NllbMoe->SeamlessM4T,DenseActDense->FeedForwardNetwork, d_model->hidden_size
class SeamlessM4TFeedForwardNetwork(nn.Module):
def __init__(self, config: SeamlessM4TConfig, ffn_dim: int):
super().__init__()
self.fc1 = nn.Linear(config.hidden_size, ffn_dim)
self.fc2 = nn.Linear(ffn_dim, config.hidden_size)
self.dropout = nn.Dropout(config.activation_dropout)
self.act = ACT2FN[config.activation_function]
def forward(self, hidden_states):
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.fc2.weight, torch.Tensor)
and hidden_states.dtype != self.fc2.weight.dtype
and (self.fc2.weight.dtype != torch.int8 and self.fc2.weight.dtype != torch.uint8)
):
hidden_states = hidden_states.to(self.fc2.weight.dtype)
hidden_states = self.fc2(hidden_states)
return hidden_states
class SeamlessM4TEncoderLayer(nn.Module):
def __init__(self, config: SeamlessM4TConfig, encoder_ffn_dim=None, encoder_attention_heads=None):
super().__init__()
encoder_ffn_dim = config.encoder_ffn_dim if encoder_ffn_dim is None else encoder_ffn_dim
encoder_attention_heads = (
config.encoder_attention_heads if encoder_attention_heads is None else encoder_attention_heads
)
self.embed_dim = config.hidden_size
self.self_attn = SeamlessM4TAttention(
embed_dim=self.embed_dim,
num_heads=encoder_attention_heads,
dropout=config.attention_dropout,
)
self.attn_dropout = nn.Dropout(config.dropout)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.ffn = SeamlessM4TFeedForwardNetwork(config, ffn_dim=encoder_ffn_dim)
self.ffn_layer_norm = nn.LayerNorm(config.hidden_size)
self.ffn_dropout = nn.Dropout(config.activation_dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`):
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
large negative values.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.attn_dropout(hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.ffn_layer_norm(hidden_states)
hidden_states = self.ffn(hidden_states)
hidden_states = self.ffn_dropout(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class SeamlessM4TDecoderLayer(nn.Module):
def __init__(self, config: SeamlessM4TConfig, decoder_ffn_dim=None, decoder_attention_heads=None):
super().__init__()
decoder_ffn_dim = config.decoder_ffn_dim if decoder_ffn_dim is None else decoder_ffn_dim
decoder_attention_heads = (
config.decoder_attention_heads if decoder_attention_heads is None else decoder_attention_heads
)
self.embed_dim = config.hidden_size
self.self_attn = SeamlessM4TAttention(
embed_dim=self.embed_dim,
num_heads=decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.attn_dropout = nn.Dropout(config.dropout)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.cross_attention = SeamlessM4TAttention(
self.embed_dim, decoder_attention_heads, config.attention_dropout, is_decoder=True
)
self.cross_attention_layer_norm = nn.LayerNorm(self.embed_dim)
self.ffn = SeamlessM4TFeedForwardNetwork(config, ffn_dim=decoder_ffn_dim)
self.ffn_layer_norm = nn.LayerNorm(config.hidden_size)
self.ffn_dropout = nn.Dropout(config.activation_dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`):
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`):
encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by
very large negative values.
past_key_value (`Tuple(torch.FloatTensor)`):
cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.attn_dropout(hidden_states)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.cross_attention_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.cross_attention(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
past_key_value=cross_attn_past_key_value,
attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.attn_dropout(hidden_states)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value += cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.ffn_layer_norm(hidden_states)
hidden_states = self.ffn(hidden_states)
hidden_states = self.ffn_dropout(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, present_key_value)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
############ SUB-MODELS related code ################
class SeamlessM4TPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SeamlessM4TConfig
base_model_prefix = "seamless_m4t"
supports_gradient_checkpointing = True
_no_split_modules = ["SeamlessM4TEncoderLayer", "SeamlessM4TDecoderLayer", "SeamlessM4TConformerEncoderLayer"]
def _init_weights(self, module):
"""Initialize the weights"""
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, SeamlessM4TConformerSelfAttention):
if hasattr(module, "pos_bias_u"):
nn.init.xavier_uniform_(module.pos_bias_u)
if hasattr(module, "pos_bias_v"):
nn.init.xavier_uniform_(module.pos_bias_v)
elif isinstance(module, SeamlessM4TConformerPositionalConvEmbedding):
nn.init.normal_(
module.conv.weight,
mean=0,
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
)
nn.init.constant_(module.conv.bias, 0)
elif isinstance(module, SeamlessM4TConformerFeatureProjection):
k = math.sqrt(1 / module.projection.in_features)
nn.init.uniform_(module.projection.weight, a=-k, b=k)
nn.init.uniform_(module.projection.bias, a=-k, b=k)
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
def _compute_sub_sample_lengths_from_attention_mask(self, attention_mask):
kernel_size, stride = self.config.adaptor_kernel_size, self.config.adaptor_stride
pad = kernel_size // 2
seq_lens = attention_mask.size(1) - (1 - attention_mask.int()).sum(1)
seq_lens = ((seq_lens + 2 * pad - kernel_size) / stride) + 1
return seq_lens.floor()
def compute_last_hidden_states_per_sample(
self,
hidden_states: Tuple[Tuple[torch.Tensor]],
beam_indices: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Computes the last hidden states.
Parameters:
hidden_states (`Tuple[Tuple[torch.Tensor]]`):
The generated hidden states. Tuple (one element for each generated token) of tuples (one element for
each layer of the decoder) of torch.FloatTensor of shape (batch_size*num_beams*num_return_sequences,
generated_length, hidden_size).
beam_indices (`torch.LongTensor`, *optional*):
Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
`(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at
generate-time.
Return:
`torch.Tensor`: A `torch.Tensor` of shape `(batch_size*num_return_sequences, sequence_length, hidden_size)`
containing
the last hidden states.
```"""
# 1. First, let's compute last_hidden_states from hidden_states.
# For each generation step, takes the hidden state from the last layer.
# shape: (batch_size*vocab_size*num_return_sequences, # generation_steps, hidden_dim)
last_hidden_states = torch.concat([hidden_states[-1] for hidden_states in hidden_states], dim=1)
# 2. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent
# to a beam search approach were the first (and only) beam is always selected
# in that case, return directly last_hidden_states
if beam_indices is None:
return last_hidden_states
# 3. cut beam_indices to longest beam length
beam_indices_mask = beam_indices < 0
max_beam_length = (1 - beam_indices_mask.long()).sum(-1).max()
beam_indices = beam_indices.clone()[:, :max_beam_length]
beam_indices_mask = beam_indices_mask[:, :max_beam_length]
# 4. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards anyways
beam_indices[beam_indices_mask] = 0
# 5. expand beam_indices to last_hidden_states dim
beam_indices = beam_indices.unsqueeze(-1)
beam_indices = beam_indices.expand(-1, -1, last_hidden_states.shape[-1])
# 6. select the right candidate for each beam
# in other words, new_last_hidden_states[i,j,k] = last_hidden_states[beam_indices[i,j,k], j, k] for all i, j, k
last_hidden_states = torch.gather(last_hidden_states, 0, beam_indices)
return last_hidden_states
@add_start_docstrings(
"""Transformer speech encoder consisting of *config.speech_encoder_layers* conformer self attention layers.
Each layer is a [`SeamlessM4TConformerEncoderLayer`].""",
SEAMLESS_M4T_START_DOCSTRING,
)
class SeamlessM4TSpeechEncoder(SeamlessM4TPreTrainedModel):
main_input_name = "input_features"
def __init__(self, config: SeamlessM4TConfig):
super().__init__(config)
self.feature_projection = SeamlessM4TConformerFeatureProjection(config)
self.encoder = SeamlessM4TConformerEncoder(config)
self.intermediate_ffn = SeamlessM4TConformerFeedForward(config, act_fn="relu", dropout=0.0)
self.adapter = SeamlessM4TConformerAdapter(config) if config.add_adapter else None
self.inner_layer_norm = nn.LayerNorm(config.hidden_size)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_features: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_features is None:
raise ValueError(
"""Both `input_features` and `inputs_embeds` are `None` in `SeamlessM4TSpeechEncoder.forward`.
Make sure one of them is not `None`."""
)
hidden_states = self.feature_projection(input_features)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
expanded_hidden_states = self.intermediate_ffn(hidden_states)
hidden_states = hidden_states + 0.5 * expanded_hidden_states
if self.adapter is not None:
hidden_states = self.adapter(hidden_states, attention_mask=attention_mask)
hidden_states = self.inner_layer_norm(hidden_states)
if not return_dict:
return (hidden_states,) + encoder_outputs[1:]
return Wav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
# inspired from MBart and NllbMoe
@add_start_docstrings(
"Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`SeamlessM4TEncoderLayer`].",
SEAMLESS_M4T_START_DOCSTRING,
"""
embed_tokens (`nn.Embedding`, *optional*):
Input embedding
is_t2u_encoder (`bool`, *optional*, defaults to `False`):
indicates if it belongs to the text-to-units model, in which case it won't have input embeddings
""",
)
class SeamlessM4TEncoder(SeamlessM4TPreTrainedModel):
def __init__(
self,
config: SeamlessM4TConfig,
embed_tokens: Optional[nn.Embedding] = None,
is_t2u_encoder: bool = False,
):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
self.padding_idx = config.pad_token_id
embed_dim = config.hidden_size
self.is_t2u_encoder = is_t2u_encoder
self.max_source_positions = config.max_position_embeddings
if not self.is_t2u_encoder:
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = SeamlessM4TSinusoidalPositionalEmbedding(
self.max_source_positions,
embed_dim,
self.padding_idx,
)
layers = []
for _ in range(config.encoder_layers):
layers.append(
SeamlessM4TEncoderLayer(
config,
encoder_attention_heads=config.encoder_attention_heads,
encoder_ffn_dim=config.encoder_ffn_dim,
)
)
self.layers = nn.ModuleList(layers)
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and self.is_t2u_encoder:
raise ValueError(
"You cannot pass input_ids to the encoder of the text_to_units model. Pass inputs_embeds instead."
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
if not self.is_t2u_encoder:
embed_pos = self.embed_positions(input)
hidden_states = inputs_embeds + embed_pos.to(inputs_embeds.device)
else:
hidden_states = inputs_embeds
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.forward,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
@add_start_docstrings(
"Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SeamlessM4TDecoderLayer`].",
SEAMLESS_M4T_START_DOCSTRING,
"""
embed_tokens (`nn.Embedding`, *optional*):
Input embedding
""",
)
class SeamlessM4TDecoder(SeamlessM4TPreTrainedModel):
def __init__(
self,
config: SeamlessM4TConfig,
embed_tokens: Optional[nn.Embedding] = None,
):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0
if embed_tokens is not None:
# if embed_tokens defined, use its shape instead
self.embed_tokens = nn.Embedding(embed_tokens.num_embeddings, embed_tokens.embedding_dim, self.padding_idx)
self.embed_tokens.weight = embed_tokens.weight
else:
self.embed_tokens = nn.Embedding(self.vocab_size, config.hidden_size, self.padding_idx)
self.embed_positions = SeamlessM4TSinusoidalPositionalEmbedding(
self.max_target_positions,
config.hidden_size,
padding_idx=self.padding_idx,
)
layers = []
for _ in range(config.decoder_layers):
layers.append(
SeamlessM4TDecoderLayer(
config,
decoder_attention_heads=config.decoder_attention_heads,
decoder_ffn_dim=config.decoder_ffn_dim,
)
)
self.layers = nn.ModuleList(layers)
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input, past_key_values_length=past_key_values_length)
hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[1],)
if output_attentions:
all_self_attns += (layer_outputs[2],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[3],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"Transformer bare text-to-unit encoder-decoder. The encoder is a [`SeamlessM4TEncoder`] without embeddings and the decoder is a [`SeamlessM4TDecoder`].",
SEAMLESS_M4T_START_DOCSTRING,
"""
embed_tokens_decoder (`nn.Embedding`, *optional*): input embedding of the decoder.
""",
)
class SeamlessM4TTextToUnitModel(SeamlessM4TPreTrainedModel):
def __init__(
self,
config: SeamlessM4TConfig,
embed_tokens_decoder: Optional[nn.Embedding] = None,
):
super().__init__(config)
self.encoder = SeamlessM4TEncoder(config, is_t2u_encoder=True)
self.decoder = SeamlessM4TDecoder(config, embed_tokens_decoder)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"Transformer text-to-unit encoder-decoder with a language model head. The base encoder-decoder model is a [`SeamlessM4TTextToUnit`].",
SEAMLESS_M4T_START_DOCSTRING,
"""
embed_tokens_decoder (`nn.Embedding`, *optional*): input embedding of the decoder.
""",
)
class SeamlessM4TTextToUnitForConditionalGeneration(SeamlessM4TPreTrainedModel):
_keys_to_ignore_on_load_missing = [
"vocoder",
"speech_encoder",
"text_encoder",
"text_decoder",
]
_tied_weights_keys = ["decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(
self,
config: SeamlessM4TConfig,
embed_tokens_decoder: Optional[nn.Embedding] = None,
):
# update config - used principaly for bos_token_id etc.
config = copy.deepcopy(config)
for param, val in config.to_dict().items():
if param.startswith("t2u_"):
config.__setattr__(param[4:], val)
super().__init__(config)
self.model = SeamlessM4TTextToUnitModel(config, embed_tokens_decoder)
self.lm_head = nn.Linear(config.hidden_size, config.t2u_vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.encoder
def get_decoder(self):
return self.model.decoder
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
@add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.t2u_pad_token_id, self.config.t2u_decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"use_cache": use_cache,
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.t2u_pad_token_id, self.config.t2u_decoder_start_token_id)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
def _tie_weights(self) -> None:
if getattr(self.config, "tie_word_embeddings", True):
output_embeddings = self.get_output_embeddings()
if output_embeddings is not None:
self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
############ VOCODER related code ################
HIFIGAN_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`SeamlessM4TConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
# Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock
class HifiGanResidualBlock(nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1):
super().__init__()
self.leaky_relu_slope = leaky_relu_slope
self.convs1 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=dilation[i],
padding=self.get_padding(kernel_size, dilation[i]),
)
for i in range(len(dilation))
]
)
self.convs2 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
for _ in range(len(dilation))
]
)
def get_padding(self, kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
def apply_weight_norm(self):
for layer in self.convs1:
nn.utils.weight_norm(layer)
for layer in self.convs2:
nn.utils.weight_norm(layer)
def remove_weight_norm(self):
for layer in self.convs1:
nn.utils.remove_weight_norm(layer)
for layer in self.convs2:
nn.utils.remove_weight_norm(layer)
def forward(self, hidden_states):
for conv1, conv2 in zip(self.convs1, self.convs2):
residual = hidden_states
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv1(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv2(hidden_states)
hidden_states = hidden_states + residual
return hidden_states
class SeamlessM4TVariancePredictor(nn.Module):
def __init__(self, config):
super().__init__()
embed_dim = config.unit_embed_dim
kernel_size = config.variance_predictor_kernel_size
var_pred_dropout = config.var_pred_dropout
self.conv1 = nn.Conv1d(
embed_dim,
embed_dim,
kernel_size=kernel_size,
padding=(kernel_size - 1) // 2,
)
self.activation_fuction = nn.ReLU()
self.ln1 = nn.LayerNorm(embed_dim)
self.dropout_module = nn.Dropout(p=var_pred_dropout)
self.conv2 = nn.Conv1d(
embed_dim,
embed_dim,
kernel_size=kernel_size,
padding=1,
)
self.ln2 = nn.LayerNorm(embed_dim)
self.proj = nn.Linear(embed_dim, 1)
def forward(self, hidden_states: Tensor) -> Tensor:
# Input: B x T x C; Output: B x T
hidden_states = self.conv1(hidden_states.transpose(1, 2))
hidden_states = self.activation_fuction(hidden_states).transpose(1, 2)
hidden_states = self.dropout_module(self.ln1(hidden_states))
hidden_states = self.conv2(hidden_states.transpose(1, 2))
hidden_states = self.activation_fuction(hidden_states).transpose(1, 2)
hidden_states = self.dropout_module(self.ln2(hidden_states))
return self.proj(hidden_states).squeeze(dim=2)
class SeamlessM4THifiGan(nn.Module):
def __init__(self, config: SeamlessM4TConfig):
super().__init__()
model_in_dim = config.unit_embed_dim + config.lang_embed_dim + config.spkr_embed_dim
self.leaky_relu_slope = config.leaky_relu_slope
self.num_kernels = len(config.resblock_kernel_sizes)
self.num_upsamples = len(config.upsample_rates)
self.conv_pre = nn.Conv1d(
model_in_dim,
config.upsample_initial_channel,
kernel_size=7,
stride=1,
padding=3,
)
self.upsampler = nn.ModuleList()
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
self.upsampler.append(
nn.ConvTranspose1d(
config.upsample_initial_channel // (2**i),
config.upsample_initial_channel // (2 ** (i + 1)),
kernel_size=kernel_size,
stride=upsample_rate,
padding=(kernel_size - upsample_rate) // 2,
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.upsampler)):
channels = config.upsample_initial_channel // (2 ** (i + 1))
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3)
def forward(self, input_embeds: torch.FloatTensor) -> torch.FloatTensor:
r"""
Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch
of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech
waveform.
Args:
spectrogram (`torch.FloatTensor`):
Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length,
model_in_dim)`, or un-batched and of shape `(sequence_length, model_in_dim)`. Note that `model_in_dim`
is the sum of `config.unit_embed_dim`, `config.lang_embed_dim` and `config.spkr_embed_dim`.
Returns:
`torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of
shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`.
"""
hidden_states = self.conv_pre(input_embeds)
for i in range(self.num_upsamples):
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = self.upsampler[i](hidden_states)
res_state = self.resblocks[i * self.num_kernels](hidden_states)
for j in range(1, self.num_kernels):
res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
hidden_states = res_state / self.num_kernels
hidden_states = nn.functional.leaky_relu(hidden_states)
hidden_states = self.conv_post(hidden_states)
hidden_states = torch.tanh(hidden_states)
# remove seq-len dim since this collapses to 1
waveform = hidden_states.squeeze(1)
return waveform
@add_start_docstrings(
"""Code HiFi-GAN vocoder as described in this [repository](https://github.com/facebookresearch/speech-resynthesis).""",
HIFIGAN_START_DOCSTRING,
)
class SeamlessM4TCodeHifiGan(PreTrainedModel):
config_class = SeamlessM4TConfig
main_input_name = "input_embeds"
_no_split_modules = []
def __init__(self, config):
super().__init__(config)
self.pad_token_id = config.t2u_pad_token_id
self.dur_predictor = SeamlessM4TVariancePredictor(config)
self.unit_embedding = nn.Embedding(config.unit_hifi_gan_vocab_size, config.unit_embed_dim)
self.speaker_embedding = nn.Embedding(config.vocoder_num_spkrs, config.spkr_embed_dim)
self.language_embedding = nn.Embedding(config.vocoder_num_langs, config.lang_embed_dim)
self.hifi_gan = SeamlessM4THifiGan(config)
# Initialize weights and apply final processing
self.post_init()
def _get_dur_output_lengths(self, input_ids, dur_out):
"""
Computes the output length after the duration layer.
"""
unit_lengths = (input_ids != self.pad_token_id).sum(1)
# take care of edge cases where no padding or too many padding
unit_lengths = torch.clamp(unit_lengths, 0, dur_out.shape[1] - 1)
cumulative_dur_out = torch.cumsum(dur_out, dim=1)
unit_lengths = cumulative_dur_out.gather(dim=1, index=unit_lengths.unsqueeze(1)).squeeze()
return unit_lengths
def _get_output_hifigan_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the hifigan convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride, pad, dilation=1):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (
torch.div(input_length + 2 * pad - dilation * (kernel_size - 1) - 1, stride, rounding_mode="floor") + 1
)
def _transpose_conv_out_length(input_length, kernel_size, stride, pad, dilation=1):
return (input_length - 1) * stride - 2 * pad + dilation * (kernel_size - 1) + 1
# conv_pre
input_lengths = _conv_out_length(input_lengths, 7, 1, 3)
# upsampler
for i, (upsample_rate, kernel_size) in enumerate(
zip(self.config.upsample_rates, self.config.upsample_kernel_sizes)
):
input_lengths = _transpose_conv_out_length(
input_lengths, kernel_size, upsample_rate, (kernel_size - upsample_rate) // 2
)
# resblock
for i in range(len(self.config.upsample_rates)):
for kernel_size, dilation in zip(self.config.resblock_kernel_sizes, self.config.resblock_dilation_sizes):
for dil in dilation:
input_lengths = _conv_out_length(
input_lengths, kernel_size, 1, (kernel_size - 1) * dil // 2, dilation=dil
)
for dil in dilation:
input_lengths = _conv_out_length(input_lengths, kernel_size, 1, (kernel_size - 1) // 2, dilation=1)
# conv_post
input_lengths = _conv_out_length(input_lengths, 7, 1, 3)
return input_lengths
def forward(
self, input_ids: torch.LongTensor, spkr_id: torch.Tensor, lang_id: torch.Tensor
) -> Tuple[torch.Tensor]:
"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTextToUnitForConditionalGeneration`]. [What are input
IDs?](../glossary#input-ids)
spkr_id (`int`, *optional*):
The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
tgt_lang (`str`, *optional*):
The language id to use as target language for translation.
"""
hidden_states = self.unit_embedding(input_ids).transpose(1, 2)
spkr = self.speaker_embedding(spkr_id).transpose(1, 2)
lang = self.language_embedding(lang_id).transpose(1, 2)
log_dur_pred = self.dur_predictor(hidden_states.transpose(1, 2))
dur_out = torch.clamp(torch.round((torch.exp(log_dur_pred) - 1)).long(), min=1)
# B x C x T
if hidden_states.size(0) == 1:
hidden_states = torch.repeat_interleave(hidden_states, dur_out.view(-1), dim=2)
else:
# if batched sample, need to interleave per sample, and pad -> loss of parallelism
if hidden_states.shape[0] > 1 and self.training:
logger.warning(
"""`self.training=True` and you use batching. You lose parallelism during the hifigan
forward pass because the samples are interleaved."""
)
hidden_states = [
torch.repeat_interleave(hidden_state, duration, dim=-1).transpose(0, 1)
for (hidden_state, duration) in zip(hidden_states, dur_out)
]
hidden_states = nn.utils.rnn.pad_sequence(hidden_states, batch_first=True).transpose(1, 2)
spkr = spkr.repeat(1, 1, hidden_states.shape[-1])
lang = lang.repeat(1, 1, hidden_states.shape[-1])
hidden_states = torch.cat([lang, hidden_states, spkr], dim=1)
hidden_states = self.hifi_gan(hidden_states)
unit_lengths = self._get_dur_output_lengths(input_ids, dur_out)
lengths = self._get_output_hifigan_lengths(unit_lengths)
return hidden_states, lengths
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, nn.Conv1d, nn.ConvTranspose1d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def apply_weight_norm(self):
nn.utils.weight_norm(self.hifi_gan.conv_pre)
for layer in self.hifi_gan.upsampler:
nn.utils.weight_norm(layer)
for layer in self.hifi_gan.resblocks:
layer.apply_weight_norm()
nn.utils.weight_norm(self.hifi_gan.conv_post)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.hifi_gan.conv_pre)
for layer in self.hifi_gan.upsampler:
nn.utils.remove_weight_norm(layer)
for layer in self.hifi_gan.resblocks:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.hifi_gan.conv_post)
############ WHOLE MODEL related code ################
@add_start_docstrings(
"The text-to-text SeamlessM4T Model transformer which can be used for T2TT.",
SEAMLESS_M4T_START_DOCSTRING,
)
class SeamlessM4TForTextToText(SeamlessM4TPreTrainedModel):
_keys_to_ignore_on_load_missing = ["speech_encoder", "t2u_model", "vocoder"]
main_input_name = "input_ids"
_tied_weights_keys = [
"lm_head.weight",
"text_encoder.embed_tokens.weight",
"text_decoder.embed_tokens.weight",
]
def __init__(self, config: SeamlessM4TConfig):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.text_encoder = SeamlessM4TEncoder(config, self.shared)
self.text_decoder = SeamlessM4TDecoder(config, self.shared)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.text_encoder
def get_decoder(self):
return self.text_decoder
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.text_decoder.embed_tokens
def set_input_embeddings(self, value):
self.text_encoder.embed_tokens = value
self.text_decoder.embed_tokens = value
self.shared = value
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.lm_head, self.shared)
@add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_attention_mask = attention_mask
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
outputs = decoder_outputs + encoder_outputs
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def generate(
self,
input_ids=None,
tgt_lang=None,
generation_config=None,
logits_processor=None,
stopping_criteria=None,
prefix_allowed_tokens_fn=None,
synced_gpus=False,
**kwargs,
):
"""
Generates sequences of token ids.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
input_ids (`torch.Tensor` of varying shape depending on the modality, *optional*):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
Retrieval](https://arxiv.org/abs/2010.00904).
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. The possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
# prepare text_decoder_input_ids
text_decoder_input_ids = kwargs.pop("decoder_input_ids", None)
# overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
if tgt_lang is not None:
batch_size = len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds"))
if hasattr(self.generation_config, "text_decoder_lang_to_code_id"):
# also accept __xxx__
tgt_lang = tgt_lang.replace("__", "")
if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id:
raise ValueError(
f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in
{', '.join(self.generation_config.text_decoder_lang_to_code_id.keys())}"""
)
# tgt_lang gets priority over decoder input ids
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
else:
raise ValueError(
"""This model generation config doesn't have a `text_decoder_lang_to_code_id` key which maps
the target language to the right token id. Make sure to load the right generation config."""
)
else:
# only a warning, otherwise errors appear in the tests
logger.warning(
"""You must either specify a `tgt_lang` or pass a correct `text_decoder_input_ids` to get
a correct generation, otherwise the generation will probably make no sense."""
)
return super().generate(
input_ids,
generation_config,
logits_processor,
stopping_criteria,
prefix_allowed_tokens_fn,
synced_gpus,
decoder_input_ids=text_decoder_input_ids,
**kwargs,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"use_cache": use_cache,
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"The speech-to-text SeamlessM4T Model transformer which can be used for S2TT.",
SEAMLESS_M4T_START_DOCSTRING,
)
class SeamlessM4TForSpeechToText(SeamlessM4TPreTrainedModel):
_keys_to_ignore_on_load_missing = ["text_decoder", "t2u_model", "vocoder"]
main_input_name = "input_features"
_tied_weights_keys = [
"lm_head.weight",
"text_decoder.embed_tokens.weight",
]
def __init__(self, config: SeamlessM4TConfig):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.speech_encoder = SeamlessM4TSpeechEncoder(config)
self.text_decoder = SeamlessM4TDecoder(config, self.shared)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.speech_encoder
def get_decoder(self):
return self.text_decoder
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.text_decoder.embed_tokens
def set_input_embeddings(self, value):
self.text_decoder.embed_tokens = value
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.lm_head, self.shared)
@add_start_docstrings_to_model_forward(M4T_SPEECH_INPUTS_DOCSTRING)
def forward(
self,
input_features: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.speech_encoder(
input_features=input_features,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_attention_mask = attention_mask
if attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
encoder_outputs[0].device
)
encoder_attention_mask = _compute_new_attention_mask(
hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
outputs = decoder_outputs + encoder_outputs
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def generate(
self,
input_features=None,
tgt_lang=None,
generation_config=None,
logits_processor=None,
stopping_criteria=None,
prefix_allowed_tokens_fn=None,
synced_gpus=False,
**kwargs,
):
"""
Generates sequences of token ids.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
[`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
Retrieval](https://arxiv.org/abs/2010.00904).
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. The possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
text_decoder_input_ids = kwargs.pop("decoder_input_ids", None)
# overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
if tgt_lang is not None:
inputs = kwargs.get("input_embeds") if input_features is None else input_features
inputs = (
inputs
if inputs is not None
else kwargs.get("encoder_outputs", {"last_hidden_state": None})["last_hidden_state"]
)
batch_size = len(inputs)
if hasattr(self.generation_config, "text_decoder_lang_to_code_id"):
# also accept __xxx__
tgt_lang = tgt_lang.replace("__", "")
if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id:
raise ValueError(
f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in
{', '.join(self.generation_config.text_decoder_lang_to_code_id.keys())}"""
)
# tgt_lang gets priority over decoder input ids
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
else:
raise ValueError(
"""This model generation config doesn't have a `text_decoder_lang_to_code_id` key which maps
the target language to the right token id. Make sure to load the right generation config."""
)
else:
# only a warning, otherwise errors appear in the tests
logger.warning(
"""You must either specify a `tgt_lang` or pass a correct `text_decoder_input_ids` to get
a correct generation, otherwise the generation will probably make no sense."""
)
return super().generate(
input_features,
generation_config,
logits_processor,
stopping_criteria,
prefix_allowed_tokens_fn,
synced_gpus,
decoder_input_ids=text_decoder_input_ids,
**kwargs,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"use_cache": use_cache,
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"The text-to-speech SeamlessM4T Model transformer which can be used for T2ST.",
SEAMLESS_M4T_START_DOCSTRING,
)
class SeamlessM4TForTextToSpeech(SeamlessM4TPreTrainedModel):
_keys_to_ignore_on_load_missing = ["speech_encoder"]
main_input_name = "input_ids"
_tied_weights_keys = [
"lm_head.weight",
"text_encoder.embed_tokens.weight",
"text_decoder.embed_tokens.weight",
]
def __init__(self, config: SeamlessM4TConfig):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.text_encoder = SeamlessM4TEncoder(config, self.shared)
self.text_decoder = SeamlessM4TDecoder(config, self.shared)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
self.t2u_model = SeamlessM4TTextToUnitForConditionalGeneration(config)
self.vocoder = SeamlessM4TCodeHifiGan(config)
def get_encoder(self):
return self.text_encoder
def get_decoder(self):
return self.text_decoder
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.text_decoder.embed_tokens
def set_input_embeddings(self, value):
self.text_encoder.embed_tokens = value
self.text_decoder.embed_tokens = value
self.shared = value
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.lm_head, self.shared)
@add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
# if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
logger.warning(
"This is the same forward method as `SeamlessM4TForTextToText`."
"It doesn't use the text-to-unit model `SeamlessM4TTextToUnitForConditionalGeneration`."
"If you want to generate speech, use the `.generate` method."
)
encoder_outputs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_attention_mask = attention_mask
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
outputs = decoder_outputs + encoder_outputs
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.Tensor] = None,
return_intermediate_token_ids: Optional[bool] = None,
tgt_lang: Optional[str] = None,
spkr_id: Optional[int] = 0,
**kwargs,
) -> Union[torch.Tensor, SeamlessM4TGenerationOutput]:
"""
Generates translated audio waveforms.
<Tip>
This method successively calls the `.generate` function of two different sub-models. You can specify keyword
arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments
that will be passed to one of them.
For example, calling `.generate(input_ids, num_beams=4, speech_do_sample=True)` will successively perform
beam-search decoding on the text model, and multinomial beam-search sampling on the speech model.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
return_intermediate_token_ids (`bool`, *optional*):
If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want
to get translated text alongside the audio.
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
spkr_id (`int`, *optional*, defaults to 0):
The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword
arguments are of two types:
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
except for `decoder_input_ids` which will only be passed through the text components.
- With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
text model and speech model respectively. It has the priority over the keywords without a prefix.
This means you can, for example, specify a generation strategy for one generation but not for the
other.
Returns:
`Union[SeamlessM4TGenerationOutput, Tuple[Tensor]]`:
- If `return_intermediate_token_ids`, returns [`SeamlessM4TGenerationOutput`].
- If not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size,
sequence_length)`and and `waveform_lengths` which gives the length of each sample.
"""
batch_size = len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds"))
if tgt_lang is None:
raise ValueError("You must specify a `tgt_lang` to generate translated speech.")
else:
# also accept __xxx__
tgt_lang = tgt_lang.replace("__", "")
for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]:
lang_code_to_id = getattr(self.generation_config, key, None)
if lang_code_to_id is None:
raise ValueError(
f"""This model generation config doesn't have a `{key}` key which maps the target language
to the right token id. Make sure to load the right generation config."""
)
elif tgt_lang not in lang_code_to_id:
raise ValueError(
f"""`tgt_lang={tgt_lang}` is not supported by this model.
Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4T supports
more languages for text translation than for speech synthesis."""
)
kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs)
kwargs_text["output_hidden_states"] = True
kwargs_text["return_dict_in_generate"] = True
kwargs_text["output_scores"] = True
text_decoder_input_ids = kwargs_text.get("decoder_input_ids")
# overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
kwargs_text["decoder_input_ids"] = text_decoder_input_ids
# first generation
text_generation_output = super().generate(input_ids, **kwargs_text)
sequences = text_generation_output.sequences
# prepare second generation
num_return_sequences = len(sequences) // batch_size
attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None))
encoder_hidden_states = text_generation_output.encoder_hidden_states[-1]
# take care of num_return_sequences
# take most probable hidden states per batch of return_sequences
# (batch_size*num_return_sequences, ...) -> (batch_size,...)
if num_return_sequences > 1:
idx_most_probable_sequences_per_batch = text_generation_output.sequences_scores.view(batch_size, -1)
idx_most_probable_sequences_per_batch = idx_most_probable_sequences_per_batch.argmax(-1)
idx_most_probable_sequences_per_batch = (
idx_most_probable_sequences_per_batch + torch.arange(batch_size).to(self.device) * num_return_sequences
)
sequences = sequences[idx_most_probable_sequences_per_batch]
# get decoder last hidden state - must do a pass through the text decoder
t2u_input_embeds = self.text_decoder(
input_ids=sequences,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
).last_hidden_state
pad_token_id = self.generation_config.pad_token_id
# Compute new attention mask
seq_lens = (sequences != pad_token_id).int().sum(1)
t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens)
kwargs_speech["attention_mask"] = t2u_model_attention_mask
# Compute t2u decoder_input_ids
t2u_decoder_input_ids = kwargs_speech.get("decoder_input_ids")
t2u_tgt_lang_id = self.generation_config.t2u_lang_code_to_id.get(tgt_lang)
t2u_decoder_input_ids = torch.tensor([[self.config.t2u_eos_token_id, t2u_tgt_lang_id]] * batch_size).to(
self.device
)
kwargs_speech["decoder_input_ids"] = t2u_decoder_input_ids
# second generation
unit_ids = self.t2u_model.generate(inputs_embeds=t2u_input_embeds, **kwargs_speech)
output_unit_ids = unit_ids.detach().clone()
# get rid of t2u_decoder_input_ids
unit_ids = unit_ids[:, kwargs_speech["decoder_input_ids"].shape[1] :]
# replace eos per pad
unit_ids[unit_ids == self.config.t2u_eos_token_id] = self.config.t2u_pad_token_id
# offset of control symbols
unit_ids = torch.where(
unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset
)
vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang)
vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids)).to(self.device)
spkr_id = torch.tensor([[spkr_id]] * len(unit_ids)).to(self.device)
waveform, waveform_lengths = self.vocoder(input_ids=unit_ids, spkr_id=spkr_id, lang_id=vocoder_tgt_lang_id)
if return_intermediate_token_ids:
return SeamlessM4TGenerationOutput(
waveform=waveform,
waveform_lengths=waveform_lengths,
sequences=sequences,
unit_sequences=output_unit_ids,
)
return waveform, waveform_lengths
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"use_cache": use_cache,
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"The speech-to-speech SeamlessM4T Model transformer which can be used for S2ST.",
SEAMLESS_M4T_START_DOCSTRING,
)
class SeamlessM4TForSpeechToSpeech(SeamlessM4TPreTrainedModel):
_keys_to_ignore_on_load_missing = ["text_encoder"]
main_input_name = "input_features"
_tied_weights_keys = [
"lm_head.weight",
"text_decoder.embed_tokens.weight",
]
def __init__(self, config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.speech_encoder = SeamlessM4TSpeechEncoder(config)
self.text_decoder = SeamlessM4TDecoder(config, self.shared)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
self.t2u_model = SeamlessM4TTextToUnitForConditionalGeneration(config)
self.vocoder = SeamlessM4TCodeHifiGan(config)
def get_encoder(self):
return self.speech_encoder
def get_decoder(self):
return self.text_decoder
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.text_decoder.embed_tokens
def set_input_embeddings(self, value):
self.text_decoder.embed_tokens = value
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.lm_head, self.shared)
@add_start_docstrings_to_model_forward(M4T_SPEECH_INPUTS_DOCSTRING)
def forward(
self,
input_features: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
# if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
logger.warning(
"This is the same forward method as `SeamlessM4TForSpeechToText`. It doesn't use `self.t2u_model`."
"If you want to generate speech, use the `generate` method."
)
encoder_outputs = self.speech_encoder(
input_features=input_features,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_attention_mask = attention_mask
if attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
encoder_outputs[0].device
)
encoder_attention_mask = _compute_new_attention_mask(
hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
outputs = decoder_outputs + encoder_outputs
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@torch.no_grad()
def generate(
self,
input_features: Optional[torch.Tensor] = None,
return_intermediate_token_ids: Optional[bool] = None,
tgt_lang: Optional[str] = None,
spkr_id: Optional[int] = 0,
**kwargs,
) -> Union[torch.Tensor, SeamlessM4TGenerationOutput]:
"""
Generates translated audio waveforms.
<Tip>
This method successively calls the `.generate` function of two different sub-models. You can specify keyword
arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments
that will be passed to one of them.
For example, calling `.generate(input_features, num_beams=4, speech_do_sample=True)` will successively perform
beam-search decoding on the text model, and multinomial beam-search sampling on the speech model.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Args:
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
[`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
return_intermediate_token_ids (`bool`, *optional*):
If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want
to get translated text alongside the audio.
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
spkr_id (`int`, *optional*, defaults to 0):
The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword
arguments are of two types:
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
except for `decoder_input_ids` which will only be passed through the text components.
- With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
text model and speech model respectively. It has the priority over the keywords without a prefix.
This means you can, for example, specify a generation strategy for one generation but not for the
other.
Returns:
`Union[SeamlessM4TGenerationOutput, Tuple[Tensor]]`:
- If `return_intermediate_token_ids`, returns [`SeamlessM4TGenerationOutput`].
- If not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size,
sequence_length)`and and `waveform_lengths` which gives the length of each sample.
"""
batch_size = len(input_features) if input_features is not None else len(kwargs.get("inputs_embeds"))
if tgt_lang is None:
raise ValueError("You must specify a `tgt_lang` to generate translated speech.")
else:
# also accept __xxx__
tgt_lang = tgt_lang.replace("__", "")
for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]:
lang_code_to_id = getattr(self.generation_config, key, None)
if lang_code_to_id is None:
raise ValueError(
f"""This model generation config doesn't have a `{key}` key which maps the target language
to the right token id. Make sure to load the right generation config."""
)
elif tgt_lang not in lang_code_to_id:
raise ValueError(
f"""`tgt_lang={tgt_lang}` is not supported by this model.
Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4T supports
more languages for text translation than for speech synthesis."""
)
kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs)
kwargs_text["output_hidden_states"] = True
kwargs_text["return_dict_in_generate"] = True
kwargs_text["output_scores"] = True
text_decoder_input_ids = kwargs_text.get("decoder_input_ids")
# overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
kwargs_text["decoder_input_ids"] = text_decoder_input_ids
# first generation
text_generation_output = super().generate(input_features, **kwargs_text)
sequences = text_generation_output.sequences
# prepare second generation
num_return_sequences = len(sequences) // batch_size
attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None))
# get last_hidden_state from encoder
encoder_hidden_states = self.speech_encoder(input_features=input_features, attention_mask=attention_mask)[0]
# input modality = speech so new attention mask for the decoder
if attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
encoder_hidden_states.device
)
attention_mask = _compute_new_attention_mask(
hidden_states=encoder_hidden_states, seq_lens=sub_sampled_lengths
)
# take care of num_return_sequences
# take most probable hidden states per batch of return_sequences
# (batch_size*num_return_sequences, ...) -> (batch_size,...)
if num_return_sequences > 1:
idx_most_probable_sequences_per_batch = text_generation_output.sequences_scores.view(batch_size, -1)
idx_most_probable_sequences_per_batch = idx_most_probable_sequences_per_batch.argmax(-1)
idx_most_probable_sequences_per_batch = (
idx_most_probable_sequences_per_batch + torch.arange(batch_size).to(self.device) * num_return_sequences
)
sequences = sequences[idx_most_probable_sequences_per_batch]
# get decoder last hidden state - must do a pass through the text decoder
t2u_input_embeds = self.text_decoder(
input_ids=sequences,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
).last_hidden_state
pad_token_id = self.generation_config.pad_token_id
# Compute new attention mask
seq_lens = (sequences != pad_token_id).int().sum(1)
t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens)
kwargs_speech["attention_mask"] = t2u_model_attention_mask
# Compute t2u decoder_input_ids
t2u_decoder_input_ids = kwargs_speech.get("decoder_input_ids")
t2u_tgt_lang_id = self.generation_config.t2u_lang_code_to_id.get(tgt_lang)
t2u_decoder_input_ids = torch.tensor([[self.config.t2u_eos_token_id, t2u_tgt_lang_id]] * batch_size).to(
self.device
)
kwargs_speech["decoder_input_ids"] = t2u_decoder_input_ids
# second generation
unit_ids = self.t2u_model.generate(inputs_embeds=t2u_input_embeds, **kwargs_speech)
output_unit_ids = unit_ids.detach().clone()
# get rid of t2u_decoder_input_ids
unit_ids = unit_ids[:, kwargs_speech["decoder_input_ids"].shape[1] :]
# replace eos per pad
unit_ids[unit_ids == self.config.t2u_eos_token_id] = self.config.t2u_pad_token_id
# offset of control symbols
unit_ids = torch.where(
unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset
)
vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang)
vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids)).to(self.device)
spkr_id = torch.tensor([[spkr_id]] * len(unit_ids)).to(self.device)
waveform, waveform_lengths = self.vocoder(input_ids=unit_ids, spkr_id=spkr_id, lang_id=vocoder_tgt_lang_id)
if return_intermediate_token_ids:
return SeamlessM4TGenerationOutput(
waveform=waveform,
waveform_lengths=waveform_lengths,
sequences=sequences,
unit_sequences=output_unit_ids,
)
return waveform, waveform_lengths
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"use_cache": use_cache,
}
@add_start_docstrings(
"The original SeamlessM4T Model transformer which can be used for every tasks available (S2ST, S2TT, T2TT, T2ST).",
SEAMLESS_M4T_START_DOCSTRING,
"""
current_modality (`str`, *optional*, defaults to `"text"`):
Default modality. Used to initialize the model.
""",
)
class SeamlessM4TModel(SeamlessM4TPreTrainedModel):
_tied_weights_keys = [
"lm_head.weight",
"text_encoder.embed_tokens.weight",
"text_decoder.embed_tokens.weight",
]
def __init__(self, config, current_modality="text"):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.text_encoder = SeamlessM4TEncoder(config, self.shared)
self.speech_encoder = SeamlessM4TSpeechEncoder(config)
self.text_decoder = SeamlessM4TDecoder(config, self.shared)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
self.current_modality = current_modality
if current_modality == "speech":
self.main_input_name = "input_features"
# these models already call post_init in their initialization
self.t2u_model = SeamlessM4TTextToUnitForConditionalGeneration(config)
self.vocoder = SeamlessM4TCodeHifiGan(config)
def set_modality(self, modality="text"):
if modality == "text":
self.main_input_name = "input_ids"
self.current_modality = "text"
elif modality == "speech":
self.main_input_name = "input_features"
self.current_modality = "speech"
else:
raise ValueError(f"`modality={modality}` is not a valid modality. It must be `text` or `speech`.")
def get_encoder(self):
if self.current_modality == "text":
return self.text_encoder
else:
return self.speech_encoder
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.text_decoder.embed_tokens
def set_input_embeddings(self, value):
self.text_encoder.embed_tokens = value
self.text_decoder.embed_tokens = value
self.shared = value
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.lm_head, self.shared)
@add_start_docstrings_to_model_forward(M4T_MODEL_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
input_features: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
if input_ids is None and input_features is None and inputs_embeds is None and encoder_outputs is None:
raise ValueError(
"`input_ids`,`input_features`, `inputs_embeds` and `encoder_outputs` are all empty. Make sure at least one of them is not."
)
elif input_features is not None:
if input_ids is not None:
logger.warning(
"`input_ids` is not `None` but `input_features` has been given."
"`input_features` will be used in priority through the `speech_encoder`. "
"Make sure that `input_features` and `input_ids` are mutually exclusive."
)
if inputs_embeds is not None:
logger.warning(
"`inputs_embeds` is not `None` but `input_features` has been given."
"`input_features` will be used in priority through `speech_encoder`. "
"`inputs_embeds` will be ignored."
)
# if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
logger.warning(
"This calls the same method `forward` as `SeamlessM4TForTextToText` and `SeamlessM4TForSpeechToText`"
"depending on the input modality. If you want to generate speech, use the `generate` method."
)
self.set_modality("speech")
encoder_outputs = self.speech_encoder(
input_features=input_features,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif input_ids is not None or inputs_embeds is not None:
# if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
logger.warning(
"This calls the same method `forward` as `SeamlessM4TForTextToText` and `SeamlessM4TForSpeechToText`"
"depending on the input modality. If you want to generate speech, use the `generate` method."
)
self.set_modality("text")
encoder_outputs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_attention_mask = attention_mask
# input modality = speech so new attention mask
if self.current_modality == "speech" and attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
encoder_outputs[0].device
)
encoder_attention_mask = _compute_new_attention_mask(
hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
outputs = decoder_outputs + encoder_outputs
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.Tensor] = None,
input_features: Optional[torch.Tensor] = None,
return_intermediate_token_ids: Optional[bool] = None,
tgt_lang: Optional[str] = None,
spkr_id: Optional[int] = 0,
generate_speech: Optional[bool] = True,
**kwargs,
) -> Union[torch.Tensor, SeamlessM4TGenerationOutput]:
"""
Generates translated token ids and/or translated audio waveforms.
<Tip>
This method successively calls the `.generate` function of two different sub-models. You can specify keyword
arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments
that will be passed to one of them.
For example, calling `.generate(input_ids=input_ids, num_beams=4, speech_do_sample=True)` will successively
perform beam-search decoding on the text model, and multinomial beam-search sampling on the speech model.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`, *optional*):
Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
[`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
return_intermediate_token_ids (`bool`, *optional*):
If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want
to get translated text alongside the audio. Note that if `generate_speech=True`, this parameter will be
ignored.
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
spkr_id (`int`, *optional*, defaults to 0):
The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
generate_speech (`bool`, *optional*, defaults to `True`):
If `False`, will only returns the text tokens and won't generate speech.
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword
arguments are of two types:
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
except for `decoder_input_ids` which will only be passed through the text components.
- With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
text model and speech model respectively. It has the priority over the keywords without a prefix.
This means you can, for example, specify a generation strategy for one generation but not for the
other.
Returns:
`Union[SeamlessM4TGenerationOutput, Tuple[Tensor], ModelOutput]`:
- If `generate_speech` and `return_intermediate_token_ids`, returns [`SeamlessM4TGenerationOutput`].
- If `generate_speech` and not `return_intermediate_token_ids`, returns a tuple composed of waveforms of
shape `(batch_size, sequence_length)`and and `waveform_lengths` which gives the length of each sample.
- If `generate_speech=False`, it will returns `ModelOutput`.
"""
if input_ids is None and input_features is None and kwargs.get("inputs_embeds", None) is None:
raise ValueError(
"`input_ids`,`input_features` and `inputs_embeds` are all empty. Make sure at least one of them is not."
)
if generate_speech and tgt_lang is None:
raise ValueError("You must specify a `tgt_lang` to generate translated speech.")
if tgt_lang is not None:
# also accept __xxx__
tgt_lang = tgt_lang.replace("__", "")
for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]:
lang_code_to_id = getattr(self.generation_config, key, None)
if lang_code_to_id is None:
raise ValueError(
f"""This model generation config doesn't have a `{key}` key which maps the target language
to the right token id. Make sure to load the right generation config."""
)
elif tgt_lang not in lang_code_to_id:
raise ValueError(
f"""`tgt_lang={tgt_lang}` is not supported by this model.
Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4T supports
more languages for text translation than for speech synthesis."""
)
batch_size = (
len(input_features)
if input_features is not None
else (len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds")))
)
kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs)
kwargs_text["output_hidden_states"] = True
kwargs_text["return_dict_in_generate"] = True
kwargs_text["output_scores"] = True
text_decoder_input_ids = kwargs_text.get("decoder_input_ids")
# overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
if tgt_lang is not None:
# tgt_lang gets priority over decoder input ids
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
kwargs_text["decoder_input_ids"] = text_decoder_input_ids
# first generation
if input_features is not None:
self.set_modality("speech")
if input_ids is not None:
logger.warning(
"`input_features` and `input_ids` are both non empty. `input_features` will be used in priority "
"through the speech encoder. Make sure `input_features=None` if you want to use the text encoder."
)
text_generation_output = super().generate(input_features=input_features, **kwargs_text)
else:
self.set_modality("text")
text_generation_output = super().generate(input_ids=input_ids, input_features=None, **kwargs_text)
sequences = text_generation_output.sequences
if not generate_speech:
return text_generation_output
# prepare second generation
num_return_sequences = len(sequences) // batch_size
attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None))
# get encoder last hidden states
if self.current_modality == "speech":
# get last_hidden_state from encoder - must do a pass through the speech encoder
encoder_hidden_states = self.speech_encoder(
input_features=input_features, attention_mask=attention_mask
).last_hidden_state
# input modality = speech so new attention mask for the decoder
if attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
encoder_hidden_states.device
)
attention_mask = _compute_new_attention_mask(
hidden_states=encoder_hidden_states, seq_lens=sub_sampled_lengths
)
else:
encoder_hidden_states = text_generation_output.encoder_hidden_states[-1]
# take care of num_return_sequences
# take most probable hidden states per batch of return_sequences
# (batch_size*num_return_sequences, ...) -> (batch_size,...)
if num_return_sequences > 1:
idx_most_probable_sequences_per_batch = text_generation_output.sequences_scores.view(batch_size, -1)
idx_most_probable_sequences_per_batch = idx_most_probable_sequences_per_batch.argmax(-1)
idx_most_probable_sequences_per_batch = (
idx_most_probable_sequences_per_batch + torch.arange(batch_size).to(self.device) * num_return_sequences
)
sequences = sequences[idx_most_probable_sequences_per_batch]
# get decoder last hidden state - must do a pass through the text decoder
t2u_input_embeds = self.text_decoder(
input_ids=sequences,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
).last_hidden_state
pad_token_id = self.generation_config.pad_token_id
# Compute new attention mask
seq_lens = (sequences != pad_token_id).int().sum(1)
t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens)
kwargs_speech["attention_mask"] = t2u_model_attention_mask
# Compute t2u decoder_input_ids
t2u_decoder_input_ids = kwargs_speech.get("decoder_input_ids")
t2u_tgt_lang_id = self.generation_config.t2u_lang_code_to_id.get(tgt_lang)
t2u_decoder_input_ids = torch.tensor([[self.config.t2u_eos_token_id, t2u_tgt_lang_id]] * batch_size).to(
self.device
)
kwargs_speech["decoder_input_ids"] = t2u_decoder_input_ids
# second generation
unit_ids = self.t2u_model.generate(inputs_embeds=t2u_input_embeds, **kwargs_speech)
output_unit_ids = unit_ids.detach().clone()
# get rid of t2u_decoder_input_ids
unit_ids = unit_ids[:, kwargs_speech["decoder_input_ids"].shape[1] :]
# replace eos per pad
unit_ids[unit_ids == self.config.t2u_eos_token_id] = self.config.t2u_pad_token_id
# offset of control symbols
unit_ids = torch.where(
unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset
)
vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang)
vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids)).to(self.device)
spkr_id = torch.tensor([[spkr_id]] * len(unit_ids)).to(self.device)
waveform, waveform_lengths = self.vocoder(input_ids=unit_ids, spkr_id=spkr_id, lang_id=vocoder_tgt_lang_id)
if return_intermediate_token_ids:
return SeamlessM4TGenerationOutput(
waveform=waveform,
waveform_lengths=waveform_lengths,
sequences=sequences,
unit_sequences=output_unit_ids,
)
return waveform, waveform_lengths
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"use_cache": use_cache,
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/seamless_m4t/processing_seamless_m4t.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Audio/Text processor class for SeamlessM4T
"""
from ...processing_utils import ProcessorMixin
class SeamlessM4TProcessor(ProcessorMixin):
r"""
Constructs a SeamlessM4T processor which wraps a SeamlessM4T feature extractor and a SeamlessM4T tokenizer into a
single processor.
[`SeamlessM4TProcessor`] offers all the functionalities of [`SeamlessM4TFeatureExtractor`] and
[`SeamlessM4TTokenizerFast`]. See the [`~SeamlessM4TProcessor.__call__`] and [`~SeamlessM4TProcessor.decode`] for
more information.
Args:
feature_extractor ([`SeamlessM4TFeatureExtractor`]):
The audio processor is a required input.
tokenizer ([`SeamlessM4TTokenizerFast`]):
The tokenizer is a required input.
"""
feature_extractor_class = "SeamlessM4TFeatureExtractor"
tokenizer_class = ("SeamlessM4TTokenizer", "SeamlessM4TTokenizerFast")
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
def __call__(self, text=None, audios=None, src_lang=None, tgt_lang=None, **kwargs):
"""
Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text`
and `kwargs` arguments to SeamlessM4TTokenizerFast's [`~SeamlessM4TTokenizerFast.__call__`] if `text` is not
`None` to encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to
SeamlessM4TFeatureExtractor's [`~SeamlessM4TFeatureExtractor.__call__`] if `audios` is not `None`. Please refer
to the doctsring of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case
of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels,
and T the sample length of the audio.
src_lang (`str`, *optional*):
The language code of the input texts/audios. If not specified, the last `src_lang` specified will be
used.
tgt_lang (`str`, *optional*):
The code of the target language. If not specified, the last `tgt_lang` specified will be used.
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to the feature extractor and/or the
tokenizer.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **input_features** -- Audio input features to be fed to a model. Returned when `audios` is not `None`.
"""
sampling_rate = kwargs.pop("sampling_rate", None)
if text is None and audios is None:
raise ValueError("You have to specify either text or audios. Both cannot be none.")
elif text is not None and audios is not None:
raise ValueError(
"Text and audios are mututally exclusive when passed to `SeamlessM4T`. Specify one or another."
)
elif text is not None:
if tgt_lang is not None:
self.tokenizer.tgt_lang = tgt_lang
if src_lang is not None:
self.tokenizer.src_lang = src_lang
encoding = self.tokenizer(text, **kwargs)
return encoding
else:
encoding = self.feature_extractor(audios, sampling_rate=sampling_rate, **kwargs)
return encoding
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to SeamlessM4TTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
Please refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to SeamlessM4TTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
feature_extractor_input_names = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/seamless_m4t/tokenization_seamless_m4t_fast.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fast Tokenization class for SeamlessM4T."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple, Union
from tokenizers import processors
from ...tokenization_utils import (
BatchEncoding,
PreTokenizedInput,
TextInput,
)
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_seamless_m4t import SeamlessM4TTokenizer
else:
SeamlessM4TTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/hf-seamless-m4t-medium": "https://huggingface.co/facebook/hf-seamless-m4t-medium/resolve/main/vocab.txt",
},
"tokenizer_file": {
"facebook/hf-seamless-m4t-medium": "https://huggingface.co/facebook/hf-seamless-m4t-medium/resolve/main/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"facebook/hf-seamless-m4t-medium": 2048,
}
class SeamlessM4TTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" SeamlessM4T tokenizer (backed by HuggingFace's *tokenizers* library). Based on
[BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
The tokenization method is `<language code> <tokens> <eos>` for source language documents, and `<eos> <language
code> <tokens> <eos>` for target language documents.
Examples:
```python
>>> from transformers import SeamlessM4TTokenizerFast
>>> tokenizer = SeamlessM4TTokenizerFast.from_pretrained(
... "facebook/hf-seamless-m4t-medium", src_lang="eng", tgt_lang="fra"
... )
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie."
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt")
```
Args:
vocab_file (`str`, *optional*):
Path to the vocabulary file.
tokenizer_file (`str`, *optional*):
The path to a tokenizer file to use instead of the vocab file.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
src_lang (`str`, *optional*, defaults to `"eng"`):
The language to use as source language for translation.
tgt_lang (`str`, *optional*, defaults to `"fra"`):
The language to use as target language for translation.
additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*):
A tuple or a list of additional special tokens.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
slow_tokenizer_class = SeamlessM4TTokenizer
model_input_names = ["input_ids", "attention_mask"]
prefix_tokens: List[int] = []
suffix_tokens: List[int] = []
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
src_lang="eng",
tgt_lang="fra",
additional_special_tokens=None,
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
unk_token=unk_token,
pad_token=pad_token,
src_lang=src_lang,
tgt_lang=tgt_lang,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
self.vocab_file = vocab_file
self._src_lang = f"__{src_lang}__" if "__" not in src_lang else src_lang
self._tgt_lang = f"__{tgt_lang}__" if "__" not in tgt_lang else tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
self.set_tgt_lang_special_tokens(self._tgt_lang)
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
@property
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.src_lang
def src_lang(self) -> str:
return self._src_lang
@src_lang.setter
def src_lang(self, new_src_lang: str) -> None:
if "__" not in new_src_lang:
self._src_lang = f"__{new_src_lang}__"
else:
self._src_lang = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def tgt_lang(self) -> str:
return self._tgt_lang
@tgt_lang.setter
def tgt_lang(self, new_tgt_lang: str) -> None:
if "__" not in new_tgt_lang:
self._tgt_lang = f"__{new_tgt_lang}__"
else:
self._tgt_lang = new_tgt_lang
self.set_tgt_lang_special_tokens(self._tgt_lang)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. The special tokens depend on calling set_lang.
An SeamlessM4T sequence has the following format, where `X` represents the sequence:
- `input_ids` (for encoder) `[src_lang_code] X [eos]`
- `decoder_input_ids`: (for decoder) `[eos, tgt_lang_code] X [eos]`
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
separator.
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
# Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def _build_translation_inputs(
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
):
"""Used by translation pipeline, to prepare inputs for the generate function"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
self.src_lang = src_lang
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
if "__" not in tgt_lang:
tgt_lang = f"__{tgt_lang}__"
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
inputs["forced_bos_token_id"] = tgt_lang_id
return inputs
# Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast.prepare_seq2seq_batch with "fra_Latn"->"fra", "eng_Latn"->"eng"
def prepare_seq2seq_batch(
self,
src_texts: List[str],
src_lang: str = "eng",
tgt_texts: Optional[List[str]] = None,
tgt_lang: str = "fra",
**kwargs,
) -> BatchEncoding:
self.src_lang = src_lang
self.tgt_lang = tgt_lang
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
# Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast._switch_to_input_mode
def _switch_to_input_mode(self):
return self.set_src_lang_special_tokens(self.src_lang)
# Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast._switch_to_target_mode
def _switch_to_target_mode(self):
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def set_src_lang_special_tokens(self, src_lang) -> None:
"""Reset the special tokens to the source lang setting.
Prefix=[src_lang_code], suffix = [eos]
"""
self.cur_lang_code = self.convert_tokens_to_ids(src_lang)
if self.cur_lang_code == self.unk_token_id:
logger.warning_once(
f"`tgt_lang={src_lang}` has not be found in the `vocabulary`. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id."
)
self.init_kwargs["src_lang"] = src_lang
self.prefix_tokens = [self.cur_lang_code]
self.suffix_tokens = [self.eos_token_id]
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
self._tokenizer.post_processor = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
)
def set_tgt_lang_special_tokens(self, lang: str) -> None:
"""Reset the special tokens to the target lang setting.
Prefix=[eos, tgt_lang_code] and suffix=[eos].
"""
self.cur_lang_code = self.convert_tokens_to_ids(lang)
if self.cur_lang_code == self.unk_token_id:
logger.warning_once(
f"`tgt_lang={lang}` has not be found in the `vocabulary`. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id."
)
self.init_kwargs["tgt_lang"] = lang
self.prefix_tokens = [self.eos_token_id, self.cur_lang_code]
self.suffix_tokens = [self.eos_token_id]
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
self._tokenizer.post_processor = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
)
# Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
@classmethod
def _from_pretrained(
cls,
resolved_vocab_files,
pretrained_model_name_or_path,
init_configuration,
*init_inputs,
token=None,
cache_dir=None,
local_files_only=False,
_commit_hash=None,
_is_local=False,
**kwargs,
):
tokenizer = super()._from_pretrained(
resolved_vocab_files,
pretrained_model_name_or_path,
init_configuration,
*init_inputs,
token=token,
cache_dir=cache_dir,
local_files_only=local_files_only,
_commit_hash=_commit_hash,
_is_local=_is_local,
**kwargs,
)
# ensure also set after from pretrained
tokenizer.set_src_lang_special_tokens(tokenizer._src_lang)
tokenizer.set_tgt_lang_special_tokens(tokenizer._tgt_lang)
return tokenizer
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text_pair_target: Optional[
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
] = None,
padding: Union[bool, str, PaddingStrategy] = True,
pad_to_multiple_of: Optional[int] = 2,
src_lang: Optional[str] = None,
tgt_lang: Optional[str] = None,
**kwargs,
):
"""
Args:
text (`str`, `List[str]`, `List[List[str]]`, *optional*):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
text_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
src_lang (`str`, *optional*):
A string representing the source language. If not specified, the last `src_lang` specified (either
during initialization or when calling this tokenizer) will be used.
tgt_lang (`str`, *optional*):
A string representing the target language. If not specified, the last `tgt_lang` specified (either
during initialization or when calling this tokenizer) will be used.
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to [`PreTrainedTokenizerFast.__call__`].
"""
if src_lang is not None:
self.src_lang = src_lang
if tgt_lang is not None:
self.tgt_lang = tgt_lang
output = super().__call__(
text=text,
text_pair=text_pair,
text_target=text_target,
text_pair_target=text_pair_target,
padding=padding,
pad_to_multiple_of=pad_to_multiple_of,
**kwargs,
)
return output
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/seamless_m4t/tokenization_seamless_m4t.py
|
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for SeamlessM4T."""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...convert_slow_tokenizer import import_protobuf
from ...tokenization_utils import (
BatchEncoding,
PreTokenizedInput,
PreTrainedTokenizer,
TextInput,
)
from ...tokenization_utils_base import AddedToken
from ...utils import PaddingStrategy, logging
logger = logging.get_logger(__name__)
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/hf-seamless-m4t-medium": (
"https://huggingface.co/facebook/hf-seamless-m4t-medium/blob/main/sentencepiece.bpe.model"
),
}
}
SPIECE_UNDERLINE = "▁"
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"facebook/hf-seamless-m4t-medium": 2048,
}
class SeamlessM4TTokenizer(PreTrainedTokenizer):
"""
Construct a SeamlessM4T tokenizer.
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
[SentencePiece](https://github.com/google/sentencepiece).
The tokenization method is `<language code> <tokens> <eos>` for source language documents, and `<eos> <language
code> <tokens> <eos>` for target language documents.
Examples:
```python
>>> from transformers import SeamlessM4TTokenizer
>>> tokenizer = SeamlessM4TTokenizer.from_pretrained(
... "facebook/hf-seamless-m4t-medium", src_lang="eng", tgt_lang="fra"
... )
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie."
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt")
```
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
tokenizer_file (`str`, *optional*):
The path to a tokenizer file to use instead of the vocab file.
src_lang (`str`, *optional*, defaults to `"eng"`):
The language to use as source language for translation.
tgt_lang (`str`, *optional*, defaults to `"fra"`):
The language to use as target language for translation.
sp_model_kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments to pass to the model initialization.
additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*):
A tuple or a list of additional special tokens. Can be used to specify the list of languages that will be
supported by the tokenizer.
"""
vocab_files_names = VOCAB_FILES_NAMES
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
model_input_names = ["input_ids", "attention_mask"]
prefix_tokens: List[int] = []
suffix_tokens: List[int] = []
def __init__(
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
tokenizer_file=None,
src_lang="eng",
tgt_lang="fra",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
additional_special_tokens=None,
**kwargs,
):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
# Add this unused argument to keep some important Copied from statements
self.legacy = False
self.vocab_file = vocab_file
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
# spm | '<unk>' | '<s>' | '</s>' | 'an' | 'en' | '_d' | 'er' | 'in' | '_s' | '_a'
# fairseq | '<pad>' | '<unk>' | '<s>' | '</s>' | 'an' | 'en' | '▁d' | 'er' | 'in' | '▁s'
# Mimic fairseq token-to-id alignment for the first 4 token
self._added_tokens_decoder = {
0: AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token,
1: AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token,
2: AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token,
3: AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token,
}
# The first "real" token "an" has position 4 in the original fairseq vocab and position 3 in the spm vocab
self.fairseq_offset = 1
self.sp_model_size = len(self.sp_model)
self._src_lang = f"__{src_lang}__" if "__" not in src_lang else src_lang
self._tgt_lang = f"__{tgt_lang}__" if "__" not in tgt_lang else tgt_lang
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
tokenizer_file=tokenizer_file,
src_lang=src_lang,
tgt_lang=tgt_lang,
additional_special_tokens=additional_special_tokens,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
self.set_src_lang_special_tokens(self._src_lang)
self.set_tgt_lang_special_tokens(self._tgt_lang)
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.__getstate__
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
return state
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.__setstate__
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
@property
def vocab_size(self):
return len(self.sp_model)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text_pair_target: Optional[
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
] = None,
padding: Union[bool, str, PaddingStrategy] = True,
pad_to_multiple_of: Optional[int] = 2,
src_lang: Optional[str] = None,
tgt_lang: Optional[str] = None,
**kwargs,
):
"""
Args:
text (`str`, `List[str]`, `List[List[str]]`, *optional*):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
text_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
src_lang (`str`, *optional*):
A string representing the source language. If not specified, the last `src_lang` specified (either
during initialization or when calling this tokenizer) will be used.
tgt_lang (`str`, *optional*):
A string representing the target language. If not specified, the last `tgt_lang` specified (either
during initialization or when calling this tokenizer) will be used.
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to [`PreTrainedTokenizer.__call__`].
"""
if src_lang is not None:
self.src_lang = src_lang
if tgt_lang is not None:
self.tgt_lang = tgt_lang
output = super().__call__(
text=text,
text_pair=text_pair,
text_target=text_target,
text_pair_target=text_pair_target,
padding=padding,
pad_to_multiple_of=pad_to_multiple_of,
**kwargs,
)
return BatchEncoding(output, tensor_type=kwargs.get("return_tensors"))
@property
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.src_lang
def src_lang(self) -> str:
return self._src_lang
@src_lang.setter
def src_lang(self, new_src_lang: str) -> None:
if "__" not in new_src_lang:
self._src_lang = f"__{new_src_lang}__"
else:
self._src_lang = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def tgt_lang(self) -> str:
return self._tgt_lang
@tgt_lang.setter
def tgt_lang(self, new_tgt_lang: str) -> None:
if "__" not in new_tgt_lang:
self._tgt_lang = f"__{new_tgt_lang}__"
else:
self._tgt_lang = new_tgt_lang
self.set_tgt_lang_special_tokens(self._tgt_lang)
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
prefix_ones = [1] * len(self.prefix_tokens)
suffix_ones = [1] * len(self.suffix_tokens)
if token_ids_1 is None:
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An NLLB sequence has the following format, where `X` represents the sequence:
- `input_ids` (for encoder) `X [eos, src_lang_code]`
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
separator.
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def _build_translation_inputs(
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
):
"""Used by translation pipeline, to prepare inputs for the generate function"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model.")
self.src_lang = src_lang
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
if "__" not in tgt_lang:
tgt_lang = f"__{tgt_lang}__"
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
inputs["forced_bos_token_id"] = tgt_lang_id
return inputs
def get_vocab(self):
vocab = {
self.convert_ids_to_tokens(i): i for i in range(self.fairseq_offset, self.vocab_size + self.fairseq_offset)
}
vocab.update(self.added_tokens_encoder)
return vocab
@property
def unk_token_length(self):
return len(self.sp_model.encode(str(self.unk_token)))
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
def get_spm_processor(self, from_slow=False):
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
if self.legacy or from_slow: # no dependency on protobuf
tokenizer.Load(self.vocab_file)
return tokenizer
with open(self.vocab_file, "rb") as f:
sp_model = f.read()
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
model = model_pb2.ModelProto.FromString(sp_model)
normalizer_spec = model_pb2.NormalizerSpec()
normalizer_spec.add_dummy_prefix = False
model.normalizer_spec.MergeFrom(normalizer_spec)
sp_model = model.SerializeToString()
tokenizer.LoadFromSerializedProto(sp_model)
return tokenizer
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]:
"""
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
first token is special.
"""
if self.legacy or len(text) == 0:
return super().tokenize(text, **kwargs)
tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs)
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
tokens = tokens[1:]
return tokens
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
def _tokenize(self, text, **kwargs):
"""
Returns a tokenized string.
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
"""
tokens = self.sp_model.encode(text, out_type=str)
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
return tokens
# 1. Encode string + prefix ex: "<unk> Hey"
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
spm_id = self.sp_model.PieceToId(token)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
if tokens[0].startswith(SPIECE_UNDERLINE):
tokens[0] = tokens[0][1:]
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
return out_string
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.prepare_seq2seq_batch with eng_Latn->eng, fra_Latn->fra
def prepare_seq2seq_batch(
self,
src_texts: List[str],
src_lang: str = "eng",
tgt_texts: Optional[List[str]] = None,
tgt_lang: str = "fra",
**kwargs,
) -> BatchEncoding:
self.src_lang = src_lang
self.tgt_lang = tgt_lang
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer._switch_to_input_mode
def _switch_to_input_mode(self):
return self.set_src_lang_special_tokens(self.src_lang)
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer._switch_to_target_mode
def _switch_to_target_mode(self):
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def set_src_lang_special_tokens(self, src_lang) -> None:
"""Reset the special tokens to the source lang setting.
Prefix=[src_lang_code], suffix = [eos]
"""
self.cur_lang_code = self.convert_tokens_to_ids(src_lang)
self.init_kwargs["src_lang"] = src_lang
if self.cur_lang_code == self.unk_token_id:
logger.warning_once(
f"`src_lang={src_lang}` has not be found in the vocabulary. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id."
)
self.prefix_tokens = [self.cur_lang_code]
self.suffix_tokens = [self.eos_token_id]
# https://github.com/facebookresearch/fairseq2/blob/c53f18e6be6b8b46b722f2249b8397b7eccd7ad3/src/fairseq2/models/nllb/tokenizer.py#L112-L116
def set_tgt_lang_special_tokens(self, lang: str) -> None:
"""Reset the special tokens to the target lang setting.
Prefix=[eos, tgt_lang_code] and suffix=[eos].
"""
self.cur_lang_code = self.convert_tokens_to_ids(lang)
self.init_kwargs["tgt_lang"] = lang
if self.cur_lang_code == self.unk_token_id:
logger.warning_once(
f"`tgt_lang={lang}` has not be found in the vocabulary. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id."
)
self.prefix_tokens = [self.eos_token_id, self.cur_lang_code]
self.suffix_tokens = [self.eos_token_id]
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/mask2former/configuration_mask2former.py
|
# coding=utf-8
# Copyright 2022 Meta Platforms, Inc.and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Mask2Former model configuration"""
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/mask2former-swin-small-coco-instance": (
"https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
logger = logging.get_logger(__name__)
class Mask2FormerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Mask2FormerModel`]. It is used to instantiate a
Mask2Former model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Mask2Former
[facebook/mask2former-swin-small-coco-instance](https://huggingface.co/facebook/mask2former-swin-small-coco-instance)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Currently, Mask2Former only supports the [Swin Transformer](swin) as backbone.
Args:
backbone_config (`PretrainedConfig` or `dict`, *optional*, defaults to `SwinConfig()`):
The configuration of the backbone model. If unset, the configuration corresponding to
`swin-base-patch4-window12-384` will be used.
feature_size (`int`, *optional*, defaults to 256):
The features (channels) of the resulting feature maps.
mask_feature_size (`int`, *optional*, defaults to 256):
The masks' features size, this value will also be used to specify the Feature Pyramid Network features'
size.
hidden_dim (`int`, *optional*, defaults to 256):
Dimensionality of the encoder layers.
encoder_feedforward_dim (`int`, *optional*, defaults to 1024):
Dimension of feedforward network for deformable detr encoder used as part of pixel decoder.
encoder_layers (`int`, *optional*, defaults to 6):
Number of layers in the deformable detr encoder used as part of pixel decoder.
decoder_layers (`int`, *optional*, defaults to 10):
Number of layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder.
dim_feedforward (`int`, *optional*, defaults to 2048):
Feature dimension in feedforward network for transformer decoder.
pre_norm (`bool`, *optional*, defaults to `False`):
Whether to use pre-LayerNorm or not for transformer decoder.
enforce_input_projection (`bool`, *optional*, defaults to `False`):
Whether to add an input projection 1x1 convolution even if the input channels and hidden dim are identical
in the Transformer decoder.
common_stride (`int`, *optional*, defaults to 4):
Parameter used for determining number of FPN levels used as part of pixel decoder.
ignore_value (`int`, *optional*, defaults to 255):
Category id to be ignored during training.
num_queries (`int`, *optional*, defaults to 100):
Number of queries for the decoder.
no_object_weight (`int`, *optional*, defaults to 0.1):
The weight to apply to the null (no object) class.
class_weight (`int`, *optional*, defaults to 2.0):
The weight for the cross entropy loss.
mask_weight (`int`, *optional*, defaults to 5.0):
The weight for the mask loss.
dice_weight (`int`, *optional*, defaults to 5.0):
The weight for the dice loss.
train_num_points (`str` or `function`, *optional*, defaults to 12544):
Number of points used for sampling during loss calculation.
oversample_ratio (`float`, *optional*, defaults to 3.0):
Oversampling parameter used for calculating no. of sampled points
importance_sample_ratio (`float`, *optional*, defaults to 0.75):
Ratio of points that are sampled via importance sampling.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
init_xavier_std (`float`, *optional*, defaults to 1.0):
The scaling factor used for the Xavier initialization gain in the HM Attention map module.
use_auxiliary_loss (`boolean``, *optional*, defaults to `True`):
If `True` [`Mask2FormerForUniversalSegmentationOutput`] will contain the auxiliary losses computed using
the logits from each decoder's stage.
feature_strides (`List[int]`, *optional*, defaults to `[4, 8, 16, 32]`):
Feature strides corresponding to features generated from backbone network.
output_auxiliary_logits (`bool`, *optional*):
Should the model output its `auxiliary_logits` or not.
Examples:
```python
>>> from transformers import Mask2FormerConfig, Mask2FormerModel
>>> # Initializing a Mask2Former facebook/mask2former-swin-small-coco-instance configuration
>>> configuration = Mask2FormerConfig()
>>> # Initializing a model (with random weights) from the facebook/mask2former-swin-small-coco-instance style configuration
>>> model = Mask2FormerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "mask2former"
backbones_supported = ["swin"]
attribute_map = {"hidden_size": "hidden_dim"}
def __init__(
self,
backbone_config: Optional[Dict] = None,
feature_size: int = 256,
mask_feature_size: int = 256,
hidden_dim: int = 256,
encoder_feedforward_dim: int = 1024,
activation_function: str = "relu",
encoder_layers: int = 6,
decoder_layers: int = 10,
num_attention_heads: int = 8,
dropout: float = 0.0,
dim_feedforward: int = 2048,
pre_norm: bool = False,
enforce_input_projection: bool = False,
common_stride: int = 4,
ignore_value: int = 255,
num_queries: int = 100,
no_object_weight: float = 0.1,
class_weight: float = 2.0,
mask_weight: float = 5.0,
dice_weight: float = 5.0,
train_num_points: int = 12544,
oversample_ratio: float = 3.0,
importance_sample_ratio: float = 0.75,
init_std: float = 0.02,
init_xavier_std: float = 1.0,
use_auxiliary_loss: bool = True,
feature_strides: List[int] = [4, 8, 16, 32],
output_auxiliary_logits: bool = None,
**kwargs,
):
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.")
backbone_config = CONFIG_MAPPING["swin"](
image_size=224,
in_channels=3,
patch_size=4,
embed_dim=96,
depths=[2, 2, 18, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
drop_path_rate=0.3,
use_absolute_embeddings=False,
out_features=["stage1", "stage2", "stage3", "stage4"],
)
if isinstance(backbone_config, dict):
backbone_model_type = backbone_config.pop("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. "
f"Supported model types: {','.join(self.backbones_supported)}"
)
self.backbone_config = backbone_config
self.feature_size = feature_size
self.mask_feature_size = mask_feature_size
self.hidden_dim = hidden_dim
self.encoder_feedforward_dim = encoder_feedforward_dim
self.activation_function = activation_function
self.encoder_layers = encoder_layers
self.decoder_layers = decoder_layers
self.num_attention_heads = num_attention_heads
self.dropout = dropout
self.dim_feedforward = dim_feedforward
self.pre_norm = pre_norm
self.enforce_input_projection = enforce_input_projection
self.common_stride = common_stride
self.ignore_value = ignore_value
self.num_queries = num_queries
self.no_object_weight = no_object_weight
self.class_weight = class_weight
self.mask_weight = mask_weight
self.dice_weight = dice_weight
self.train_num_points = train_num_points
self.oversample_ratio = oversample_ratio
self.importance_sample_ratio = importance_sample_ratio
self.init_std = init_std
self.init_xavier_std = init_xavier_std
self.use_auxiliary_loss = use_auxiliary_loss
self.feature_strides = feature_strides
self.output_auxiliary_logits = output_auxiliary_logits
self.num_hidden_layers = decoder_layers
super().__init__(**kwargs)
@classmethod
def from_backbone_config(cls, backbone_config: PretrainedConfig, **kwargs):
"""Instantiate a [`Mask2FormerConfig`] (or a derived class) from a pre-trained backbone model configuration.
Args:
backbone_config ([`PretrainedConfig`]):
The backbone configuration.
Returns:
[`Mask2FormerConfig`]: An instance of a configuration object
"""
return cls(
backbone_config=backbone_config,
**kwargs,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/mask2former/modeling_mask2former.py
|
# coding=utf-8
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Mask2Former model."""
import math
import warnings
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
from torch import Tensor, nn
from ... import AutoBackbone
from ...activations import ACT2FN
from ...file_utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_scipy_available,
replace_return_docstrings,
requires_backends,
)
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithCrossAttentions
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_mask2former import Mask2FormerConfig
if is_scipy_available():
from scipy.optimize import linear_sum_assignment
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "Mask2FormerConfig"
_CHECKPOINT_FOR_DOC = "facebook/mask2former-swin-small-coco-instance"
_IMAGE_PROCESSOR_FOR_DOC = "Mask2FormerImageProcessor"
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/mask2former-swin-small-coco-instance",
# See all mask2former models at https://huggingface.co/models?filter=mask2former
]
@dataclass
class Mask2FormerPixelDecoderOutput(ModelOutput):
"""
Mask2Former's pixel decoder module output, practically a Multi-Scale Deformable Attention based decoder. It returns
the mask features and the multiscale features.
Args:
multi_scale_features (`tuple(torch.FloatTensor)`):
Tuple of multi-scale features of scales [1/8, 1/16, 1/32] and shape `(batch_size, num_channels, height,
width)`from the Multi-Scale Deformable Attenntion based Pixel Decoder.
mask_features (`torch.FloatTensor`):
Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel Decoder
Layer.
attentions (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights from pixel decoder. Returned when `output_attentions=True` is passed
or when `config.output_attentions=True`
"""
multi_scale_features: Tuple[torch.FloatTensor] = None
mask_features: torch.FloatTensor = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class Mask2FormerMaskedAttentionDecoderOutput(BaseModelOutputWithCrossAttentions):
"""
Base class for outputs of the Transformer decoder. This class adds two attributes to
BaseModelOutputWithCrossAttentions for mask predictions logits and a tuple of intermediate decoder activations,
i.e. the output of each decoder layer, each of them gone through a layernorm.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs. Returned when `output_hidden_states=True`.
attentions (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads. Returned when `output_attentions=True`.
masks_queries_logits (`tuple(torch.FloatTensor)` of shape `(batch_size, num_queries, height, width)`):
Tuple of mask predictions from all layers of the transformer decoder.
intermediate_hidden_states (`tuple(torch.FloatTensor)` of shape `(num_queries, 1, hidden_size)`):
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
layernorm.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[torch.FloatTensor] = None
masks_queries_logits: Tuple[torch.FloatTensor] = None
intermediate_hidden_states: Tuple[torch.FloatTensor] = None
@dataclass
class Mask2FormerPixelLevelModuleOutput(ModelOutput):
"""
Mask2Former's pixel level module output. It returns the output of the encoder (optional) and all hidden states
(multi-scale features) from the `decoder`. By default, the `encoder` is a Swin Backbone and the `decoder` is a
Multi-Scale Deformable Attention based decoder.
The `decoder_last_hidden_state` are the **per-pixel embeddings** while `decoder_hidden_states` refer to multi-scale
feature maps produced using **multi-scaling strategy** defined in the paper.
Args:
encoder_last_hidden_state (`torch.FloatTensor`):
Last hidden states (final feature map of shape `(batch_size, num_channels, height, width)`) of the last
stage of the encoder.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden states (also
called feature maps) of the model at the output of each stage. Returned if output_hidden_states is set to
True.
decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)):
1/4 scale features from the last Pixel Decoder Layer.
decoder_hidden_states (`tuple(torch.FloatTensor)`):
Tuple of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden states (also
called feature maps) of the model at the output of each stage.
"""
encoder_last_hidden_state: torch.FloatTensor = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_last_hidden_state: torch.FloatTensor = None
decoder_hidden_states: Tuple[torch.FloatTensor] = None
@dataclass
class Mask2FormerModelOutput(ModelOutput):
"""
Class for outputs of [`Mask2FormerModel`]. This class returns all the needed hidden states to compute the logits.
Args:
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*):
Last hidden states (final feature map) of the last stage of the encoder model (backbone). Returned when
`output_hidden_states=True` is passed.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder
model at the output of each stage. Returned when `output_hidden_states=True` is passed.
pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*):
Last hidden states (final feature map) of the last stage of the pixel decoder model.
pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, , *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel
decoder model at the output of each stage. Returned when `output_hidden_states=True` is passed.
transformer_decoder_last_hidden_state (`tuple(torch.FloatTensor)`):
Final output of the transformer decoder `(batch_size, sequence_length, hidden_size)`.
transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the
transformer decoder at the output of each stage. Returned when `output_hidden_states=True` is passed.
transformer_decoder_intermediate_states (`tuple(torch.FloatTensor)` of shape `(num_queries, 1, hidden_size)`):
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
layernorm.
masks_queries_logits (`tuple(torch.FloatTensor)` of shape `(batch_size, num_queries, height, width)`)
Mask Predictions from each layer in the transformer decoder.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed):
Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Self attentions weights from transformer decoder.
"""
encoder_last_hidden_state: torch.FloatTensor = None
pixel_decoder_last_hidden_state: torch.FloatTensor = None
transformer_decoder_last_hidden_state: torch.FloatTensor = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
transformer_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
transformer_decoder_intermediate_states: Tuple[torch.FloatTensor] = None
masks_queries_logits: Tuple[torch.FloatTensor] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class Mask2FormerForUniversalSegmentationOutput(ModelOutput):
"""
Class for outputs of [`Mask2FormerForUniversalSegmentationOutput`].
This output can be directly passed to [`~Mask2FormerImageProcessor.post_process_semantic_segmentation`] or
[`~Mask2FormerImageProcessor.post_process_instance_segmentation`] or
[`~Mask2FormerImageProcessor.post_process_panoptic_segmentation`] to compute final segmentation maps. Please, see
[`~Mask2FormerImageProcessor] for details regarding usage.
Args:
loss (`torch.Tensor`, *optional*):
The computed loss, returned when labels are present.
class_queries_logits (`torch.FloatTensor`):
A tensor of shape `(batch_size, num_queries, num_labels + 1)` representing the proposed classes for each
query. Note the `+ 1` is needed because we incorporate the null class.
masks_queries_logits (`torch.FloatTensor`):
A tensor of shape `(batch_size, num_queries, height, width)` representing the proposed masks for each
query.
auxiliary_logits (`List[Dict(str, torch.FloatTensor)]`, *optional*):
List of class and mask predictions from each layer of the transformer decoder.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Last hidden states (final feature map) of the last stage of the encoder model (backbone).
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder
model at the output of each stage.
pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Last hidden states (final feature map) of the last stage of the pixel decoder model.
pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel
decoder model at the output of each stage.
transformer_decoder_last_hidden_state (`tuple(torch.FloatTensor)`):
Final output of the transformer decoder `(batch_size, sequence_length, hidden_size)`.
transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the
transformer decoder at the output of each stage.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Self and Cross Attentions weights from transformer decoder.
"""
loss: Optional[torch.FloatTensor] = None
class_queries_logits: torch.FloatTensor = None
masks_queries_logits: torch.FloatTensor = None
auxiliary_logits: Optional[List[Dict[str, torch.FloatTensor]]] = None
encoder_last_hidden_state: torch.FloatTensor = None
pixel_decoder_last_hidden_state: torch.FloatTensor = None
transformer_decoder_last_hidden_state: torch.FloatTensor = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
transformer_decoder_hidden_states: Optional[torch.FloatTensor] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
# Adapted from https://github.com/facebookresearch/detectron2/blob/main/projects/PointRend/point_rend/point_features.py
def sample_point(
input_features: torch.Tensor, point_coordinates: torch.Tensor, add_dim=False, **kwargs
) -> torch.Tensor:
"""
A wrapper around `torch.nn.functional.grid_sample` to support 3D point_coordinates tensors.
Args:
input_features (`torch.Tensor` of shape (batch_size, channels, height, width)):
A tensor that contains features map on a height * width grid
point_coordinates (`torch.Tensor` of shape (batch_size, num_points, 2) or (batch_size, grid_height, grid_width,:
2)):
A tensor that contains [0, 1] * [0, 1] normalized point coordinates
add_dim (`bool`):
boolean value to keep track of added dimension
Returns:
point_features (`torch.Tensor` of shape (batch_size, channels, num_points) or (batch_size, channels,
height_grid, width_grid):
A tensor that contains features for points in `point_coordinates`.
"""
if point_coordinates.dim() == 3:
add_dim = True
point_coordinates = point_coordinates.unsqueeze(2)
# use nn.function.grid_sample to get features for points in `point_coordinates` via bilinear interpolation
point_features = torch.nn.functional.grid_sample(input_features, 2.0 * point_coordinates - 1.0, **kwargs)
if add_dim:
point_features = point_features.squeeze(3)
return point_features
# Copied from transformers.models.maskformer.modeling_maskformer.dice_loss
def dice_loss(inputs: Tensor, labels: Tensor, num_masks: int) -> Tensor:
r"""
Compute the DICE loss, similar to generalized IOU for masks as follows:
$$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x \cap y }{x \cup y + 1}} $$
In practice, since `labels` is a binary mask, (only 0s and 1s), dice can be computed as follow
$$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x * y }{x + y + 1}} $$
Args:
inputs (`torch.Tensor`):
A tensor representing a mask.
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
num_masks (`int`):
The number of masks present in the current batch, used for normalization.
Returns:
`torch.Tensor`: The computed loss.
"""
probs = inputs.sigmoid().flatten(1)
numerator = 2 * (probs * labels).sum(-1)
denominator = probs.sum(-1) + labels.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
loss = loss.sum() / num_masks
return loss
def sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor, num_masks: int) -> torch.Tensor:
r"""
Args:
inputs (`torch.Tensor`):
A float tensor of arbitrary shape.
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
loss (`torch.Tensor`): The computed loss.
"""
criterion = nn.BCEWithLogitsLoss(reduction="none")
cross_entropy_loss = criterion(inputs, labels)
loss = cross_entropy_loss.mean(1).sum() / num_masks
return loss
# Copied from transformers.models.maskformer.modeling_maskformer.pair_wise_dice_loss
def pair_wise_dice_loss(inputs: Tensor, labels: Tensor) -> Tensor:
"""
A pair wise version of the dice loss, see `dice_loss` for usage.
Args:
inputs (`torch.Tensor`):
A tensor representing a mask
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
`torch.Tensor`: The computed loss between each pairs.
"""
inputs = inputs.sigmoid().flatten(1)
numerator = 2 * torch.matmul(inputs, labels.T)
# using broadcasting to get a [num_queries, NUM_CLASSES] matrix
denominator = inputs.sum(-1)[:, None] + labels.sum(-1)[None, :]
loss = 1 - (numerator + 1) / (denominator + 1)
return loss
def pair_wise_sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
r"""
A pair wise version of the cross entropy loss, see `sigmoid_cross_entropy_loss` for usage.
Args:
inputs (`torch.Tensor`):
A tensor representing a mask.
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
loss (`torch.Tensor`): The computed loss between each pairs.
"""
height_and_width = inputs.shape[1]
criterion = nn.BCEWithLogitsLoss(reduction="none")
cross_entropy_loss_pos = criterion(inputs, torch.ones_like(inputs))
cross_entropy_loss_neg = criterion(inputs, torch.zeros_like(inputs))
loss_pos = torch.matmul(cross_entropy_loss_pos, labels.T)
loss_neg = torch.matmul(cross_entropy_loss_neg, (1 - labels).T)
loss = loss_pos + loss_neg
loss = loss / height_and_width
return loss
# Adapted from https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/matcher.py
class Mask2FormerHungarianMatcher(nn.Module):
"""This class computes an assignment between the labels and the predictions of the network.
For efficiency reasons, the labels don't include the no_object. Because of this, in general, there are more
predictions than labels. In this case, we do a 1-to-1 matching of the best predictions, while the others are
un-matched (and thus treated as non-objects).
"""
def __init__(
self, cost_class: float = 1.0, cost_mask: float = 1.0, cost_dice: float = 1.0, num_points: int = 12544
):
"""Creates the matcher
Params:
cost_class (`float`, *optional*, defaults to 1.0):
Relative weight of the classification error in the matching cost.
cost_mask (`float`, *optional*, defaults to 1.0):
This is the relative weight of the focal loss of the binary mask in the matching cost.
cost_dice (`float`, *optional*, defaults to 1.0):
This is the relative weight of the dice loss of the binary mask in the matching cost.
num_points (`int`, *optional*, defaults to 12544):
No. of points to sample on which the mask loss will be calculated. The same set of K points are
uniformly sampled for all prediction and ground truth masks to construct the cost matrix for bipartite
matching.
"""
super().__init__()
if cost_class == 0 and cost_mask == 0 and cost_dice == 0:
raise ValueError("All costs cant be 0")
self.num_points = num_points
self.cost_class = cost_class
self.cost_mask = cost_mask
self.cost_dice = cost_dice
@torch.no_grad()
def forward(
self,
masks_queries_logits: torch.Tensor,
class_queries_logits: torch.Tensor,
mask_labels: torch.Tensor,
class_labels: torch.Tensor,
) -> List[Tuple[Tensor]]:
"""
Params:
masks_queries_logits (`torch.Tensor`):
A tensor of dim `batch_size, num_queries, num_labels` with the classification logits.
class_queries_logits (`torch.Tensor`):
A tensor of dim `batch_size, num_queries, height, width` with the predicted masks.
class_labels (`torch.Tensor`):
A tensor of dim `num_target_boxes` (where num_target_boxes is the number of ground-truth objects in the
target) containing the class labels.
mask_labels (`torch.Tensor`):
A tensor of dim `num_target_boxes, height, width` containing the target masks.
Returns:
matched_indices (`List[Tuple[Tensor]]`): A list of size batch_size, containing tuples of (index_i, index_j)
where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected labels (in order)
For each batch element, it holds:
len(index_i) = len(index_j) = min(num_queries, num_target_boxes).
"""
indices: List[Tuple[np.array]] = []
# iterate through batch size
batch_size = masks_queries_logits.shape[0]
for i in range(batch_size):
pred_probs = class_queries_logits[i].softmax(-1)
pred_mask = masks_queries_logits[i]
# Compute the classification cost. Contrary to the loss, we don't use the NLL, but approximate it in 1 - proba[target class]. The 1 is a constant that doesn't change the matching, it can be ommitted.
cost_class = -pred_probs[:, class_labels[i]]
target_mask = mask_labels[i].to(pred_mask)
target_mask = target_mask[:, None]
pred_mask = pred_mask[:, None]
# Sample ground truth and predicted masks
point_coordinates = torch.rand(1, self.num_points, 2, device=pred_mask.device)
target_coordinates = point_coordinates.repeat(target_mask.shape[0], 1, 1)
target_mask = sample_point(target_mask, target_coordinates, align_corners=False).squeeze(1)
pred_coordinates = point_coordinates.repeat(pred_mask.shape[0], 1, 1)
pred_mask = sample_point(pred_mask, pred_coordinates, align_corners=False).squeeze(1)
# compute the cross entropy loss between each mask pairs -> shape (num_queries, num_labels)
cost_mask = pair_wise_sigmoid_cross_entropy_loss(pred_mask, target_mask)
# Compute the dice loss betwen each mask pairs -> shape (num_queries, num_labels)
cost_dice = pair_wise_dice_loss(pred_mask, target_mask)
# final cost matrix
cost_matrix = self.cost_mask * cost_mask + self.cost_class * cost_class + self.cost_dice * cost_dice
# eliminate infinite values in cost_matrix to avoid the error ``ValueError: cost matrix is infeasible``
cost_matrix = torch.minimum(cost_matrix, torch.tensor(1e10))
cost_matrix = torch.maximum(cost_matrix, torch.tensor(-1e10))
# do the assigmented using the hungarian algorithm in scipy
assigned_indices: Tuple[np.array] = linear_sum_assignment(cost_matrix.cpu())
indices.append(assigned_indices)
# It could be stacked in one tensor
matched_indices = [
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices
]
return matched_indices
# Adapted from https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/criterion.py
class Mask2FormerLoss(nn.Module):
def __init__(self, config: Mask2FormerConfig, weight_dict: Dict[str, float]):
"""
The Mask2Former Loss. The loss is computed very similar to DETR. The process happens in two steps: 1) we
compute hungarian assignment between ground truth masks and the outputs of the model 2) we supervise each pair
of matched ground-truth / prediction (supervise class and mask)
Args:
config (`Mask2FormerConfig`):
The configuration for Mask2Former model also containing loss calculation specific parameters.
weight_dict (`Dict[str, float]`):
A dictionary of weights to be applied to the different losses.
"""
super().__init__()
requires_backends(self, ["scipy"])
self.num_labels = config.num_labels
self.weight_dict = weight_dict
# Weight to apply to the null class
self.eos_coef = config.no_object_weight
empty_weight = torch.ones(self.num_labels + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer("empty_weight", empty_weight)
# pointwise mask loss parameters
self.num_points = config.train_num_points
self.oversample_ratio = config.oversample_ratio
self.importance_sample_ratio = config.importance_sample_ratio
self.matcher = Mask2FormerHungarianMatcher(
cost_class=1.0,
cost_dice=config.dice_weight,
cost_mask=config.mask_weight,
num_points=self.num_points,
)
def _max_by_axis(self, sizes: List[List[int]]) -> List[int]:
maxes = sizes[0]
for sublist in sizes[1:]:
for index, item in enumerate(sublist):
maxes[index] = max(maxes[index], item)
return maxes
# Adapted from nested_tensor_from_tensor_list() in original implementation
def _pad_images_to_max_in_batch(self, tensors: List[Tensor]) -> Tuple[Tensor, Tensor]:
# get the maximum size in the batch
max_size = self._max_by_axis([list(tensor.shape) for tensor in tensors])
# compute final size
batch_shape = [len(tensors)] + max_size
batch_size, _, height, width = batch_shape
dtype = tensors[0].dtype
device = tensors[0].device
padded_tensors = torch.zeros(batch_shape, dtype=dtype, device=device)
padding_masks = torch.ones((batch_size, height, width), dtype=torch.bool, device=device)
# pad the tensors to the size of the biggest one
for tensor, padded_tensor, padding_mask in zip(tensors, padded_tensors, padding_masks):
padded_tensor[: tensor.shape[0], : tensor.shape[1], : tensor.shape[2]].copy_(tensor)
padding_mask[: tensor.shape[1], : tensor.shape[2]] = False
return padded_tensors, padding_masks
def loss_labels(
self, class_queries_logits: Tensor, class_labels: List[Tensor], indices: Tuple[np.array]
) -> Dict[str, Tensor]:
"""Compute the losses related to the labels using cross entropy.
Args:
class_queries_logits (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, num_labels`
class_labels (`List[torch.Tensor]`):
List of class labels of shape `(labels)`.
indices (`Tuple[np.array])`:
The indices computed by the Hungarian matcher.
Returns:
`Dict[str, Tensor]`: A dict of `torch.Tensor` containing the following key:
- **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels.
"""
pred_logits = class_queries_logits
batch_size, num_queries, _ = pred_logits.shape
criterion = nn.CrossEntropyLoss(weight=self.empty_weight)
idx = self._get_predictions_permutation_indices(indices) # shape of (batch_size, num_queries)
target_classes_o = torch.cat(
[target[j] for target, (_, j) in zip(class_labels, indices)]
) # shape of (batch_size, num_queries)
target_classes = torch.full(
(batch_size, num_queries), fill_value=self.num_labels, dtype=torch.int64, device=pred_logits.device
)
target_classes[idx] = target_classes_o
# Permute target_classes (batch_size, num_queries, num_labels) -> (batch_size, num_labels, num_queries)
pred_logits_transposed = pred_logits.transpose(1, 2)
loss_ce = criterion(pred_logits_transposed, target_classes)
losses = {"loss_cross_entropy": loss_ce}
return losses
def loss_masks(
self,
masks_queries_logits: torch.Tensor,
mask_labels: List[torch.Tensor],
indices: Tuple[np.array],
num_masks: int,
) -> Dict[str, torch.Tensor]:
"""Compute the losses related to the masks using sigmoid_cross_entropy_loss and dice loss.
Args:
masks_queries_logits (`torch.Tensor`):
A tensor of shape `(batch_size, num_queries, height, width)`.
mask_labels (`torch.Tensor`):
List of mask labels of shape `(labels, height, width)`.
indices (`Tuple[np.array])`:
The indices computed by the Hungarian matcher.
num_masks (`int)`:
The number of masks, used for normalization.
Returns:
losses (`Dict[str, Tensor]`): A dict of `torch.Tensor` containing two keys:
- **loss_mask** -- The loss computed using sigmoid cross entropy loss on the predicted and ground truth.
masks.
- **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth,
masks.
"""
src_idx = self._get_predictions_permutation_indices(indices)
tgt_idx = self._get_targets_permutation_indices(indices)
# shape (batch_size * num_queries, height, width)
pred_masks = masks_queries_logits[src_idx]
# shape (batch_size, num_queries, height, width)
# pad all and stack the targets to the num_labels dimension
target_masks, _ = self._pad_images_to_max_in_batch(mask_labels)
target_masks = target_masks[tgt_idx]
# No need to upsample predictions as we are using normalized coordinates
pred_masks = pred_masks[:, None]
target_masks = target_masks[:, None]
# Sample point coordinates
with torch.no_grad():
point_coordinates = self.sample_points_using_uncertainty(
pred_masks,
lambda logits: self.calculate_uncertainty(logits),
self.num_points,
self.oversample_ratio,
self.importance_sample_ratio,
)
point_labels = sample_point(target_masks, point_coordinates, align_corners=False).squeeze(1)
point_logits = sample_point(pred_masks, point_coordinates, align_corners=False).squeeze(1)
losses = {
"loss_mask": sigmoid_cross_entropy_loss(point_logits, point_labels, num_masks),
"loss_dice": dice_loss(point_logits, point_labels, num_masks),
}
del pred_masks
del target_masks
return losses
def _get_predictions_permutation_indices(self, indices):
# Permute predictions following indices
batch_indices = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
predictions_indices = torch.cat([src for (src, _) in indices])
return batch_indices, predictions_indices
def _get_targets_permutation_indices(self, indices):
# Permute labels following indices
batch_indices = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
target_indices = torch.cat([tgt for (_, tgt) in indices])
return batch_indices, target_indices
def calculate_uncertainty(self, logits: torch.Tensor) -> torch.Tensor:
"""
In Mask2Former paper, uncertainty is estimated as L1 distance between 0.0 and the logit prediction in 'logits'
for the foreground class in `classes`.
Args:
logits (`torch.Tensor`):
A tensor of shape (R, 1, ...) for class-specific or class-agnostic, where R is the total number of predicted masks in all images and C is:
the number of foreground classes. The values are logits.
Returns:
scores (`torch.Tensor`): A tensor of shape (R, 1, ...) that contains uncertainty scores with the most
uncertain locations having the highest uncertainty score.
"""
uncertainty_scores = -(torch.abs(logits))
return uncertainty_scores
def sample_points_using_uncertainty(
self,
logits: torch.Tensor,
uncertainty_function,
num_points: int,
oversample_ratio: int,
importance_sample_ratio: float,
) -> torch.Tensor:
"""
This function is meant for sampling points in [0, 1] * [0, 1] coordinate space based on their uncertainty. The
uncertainty is calculated for each point using the passed `uncertainty function` that takes points logit
prediction as input.
Args:
logits (`float`):
Logit predictions for P points.
uncertainty_function:
A function that takes logit predictions for P points and returns their uncertainties.
num_points (`int`):
The number of points P to sample.
oversample_ratio (`int`):
Oversampling parameter.
importance_sample_ratio (`float`):
Ratio of points that are sampled via importance sampling.
Returns:
point_coordinates (`torch.Tensor`):
Coordinates for P sampled points.
"""
num_boxes = logits.shape[0]
num_points_sampled = int(num_points * oversample_ratio)
# Get random point coordinates
point_coordinates = torch.rand(num_boxes, num_points_sampled, 2, device=logits.device)
# Get sampled prediction value for the point coordinates
point_logits = sample_point(logits, point_coordinates, align_corners=False)
# Calculate the uncertainties based on the sampled prediction values of the points
point_uncertainties = uncertainty_function(point_logits)
num_uncertain_points = int(importance_sample_ratio * num_points)
num_random_points = num_points - num_uncertain_points
idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
shift = num_points_sampled * torch.arange(num_boxes, dtype=torch.long, device=logits.device)
idx += shift[:, None]
point_coordinates = point_coordinates.view(-1, 2)[idx.view(-1), :].view(num_boxes, num_uncertain_points, 2)
if num_random_points > 0:
point_coordinates = torch.cat(
[point_coordinates, torch.rand(num_boxes, num_random_points, 2, device=logits.device)],
dim=1,
)
return point_coordinates
def forward(
self,
masks_queries_logits: torch.Tensor,
class_queries_logits: torch.Tensor,
mask_labels: List[torch.Tensor],
class_labels: List[torch.Tensor],
auxiliary_predictions: Optional[Dict[str, torch.Tensor]] = None,
) -> Dict[str, torch.Tensor]:
"""
This performs the loss computation.
Args:
masks_queries_logits (`torch.Tensor`):
A tensor of shape `(batch_size, num_queries, height, width)`.
class_queries_logits (`torch.Tensor`):
A tensor of shape `(batch_size, num_queries, num_labels)`.
mask_labels (`torch.Tensor`):
List of mask labels of shape `(labels, height, width)`.
class_labels (`List[torch.Tensor]`):
List of class labels of shape `(labels)`.
auxiliary_predictions (`Dict[str, torch.Tensor]`, *optional*):
if `use_auxiliary_loss` was set to `true` in [`Mask2FormerConfig`], then it contains the logits from
the inner layers of the Mask2FormerMaskedAttentionDecoder.
Returns:
losses (`Dict[str, Tensor]`): A dict of `torch.Tensor` containing three keys:
- **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels.
- **loss_mask** -- The loss computed using sigmoid cross_entropy loss on the predicted and ground truth
masks.
- **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth
masks.
if `use_auxiliary_loss` was set to `true` in [`Mask2FormerConfig`], the dictionary contains additional
losses for each auxiliary predictions.
"""
# retrieve the matching between the outputs of the last layer and the labels
indices = self.matcher(masks_queries_logits, class_queries_logits, mask_labels, class_labels)
# compute the average number of target masks for normalization purposes
num_masks = self.get_num_masks(class_labels, device=class_labels[0].device)
# get all the losses
losses: Dict[str, Tensor] = {
**self.loss_masks(masks_queries_logits, mask_labels, indices, num_masks),
**self.loss_labels(class_queries_logits, class_labels, indices),
}
# in case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if auxiliary_predictions is not None:
for idx, aux_outputs in enumerate(auxiliary_predictions):
masks_queries_logits = aux_outputs["masks_queries_logits"]
class_queries_logits = aux_outputs["class_queries_logits"]
loss_dict = self.forward(masks_queries_logits, class_queries_logits, mask_labels, class_labels)
loss_dict = {f"{key}_{idx}": value for key, value in loss_dict.items()}
losses.update(loss_dict)
return losses
def get_num_masks(self, class_labels: torch.Tensor, device: torch.device) -> torch.Tensor:
"""
Computes the average number of target masks across the batch, for normalization purposes.
"""
num_masks = sum([len(classes) for classes in class_labels])
num_masks_pt = torch.as_tensor(num_masks, dtype=torch.float, device=device)
return num_masks_pt
# Copied from transformers.models.deformable_detr.modeling_deformable_detr.multi_scale_deformable_attention
def multi_scale_deformable_attention(
value: Tensor, value_spatial_shapes: Tensor, sampling_locations: Tensor, attention_weights: Tensor
) -> Tensor:
batch_size, _, num_heads, hidden_dim = value.shape
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
value_list = value.split([height.item() * width.item() for height, width in value_spatial_shapes], dim=1)
sampling_grids = 2 * sampling_locations - 1
sampling_value_list = []
for level_id, (height, width) in enumerate(value_spatial_shapes):
# batch_size, height*width, num_heads, hidden_dim
# -> batch_size, height*width, num_heads*hidden_dim
# -> batch_size, num_heads*hidden_dim, height*width
# -> batch_size*num_heads, hidden_dim, height, width
value_l_ = (
value_list[level_id].flatten(2).transpose(1, 2).reshape(batch_size * num_heads, hidden_dim, height, width)
)
# batch_size, num_queries, num_heads, num_points, 2
# -> batch_size, num_heads, num_queries, num_points, 2
# -> batch_size*num_heads, num_queries, num_points, 2
sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
# batch_size*num_heads, hidden_dim, num_queries, num_points
sampling_value_l_ = nn.functional.grid_sample(
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
)
sampling_value_list.append(sampling_value_l_)
# (batch_size, num_queries, num_heads, num_levels, num_points)
# -> (batch_size, num_heads, num_queries, num_levels, num_points)
# -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
attention_weights = attention_weights.transpose(1, 2).reshape(
batch_size * num_heads, 1, num_queries, num_levels * num_points
)
output = (
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
.sum(-1)
.view(batch_size, num_heads * hidden_dim, num_queries)
)
return output.transpose(1, 2).contiguous()
# Copied from transformers.models.maskformer.modeling_maskformer.MaskFormerSinePositionEmbedding with MaskFormer->Mask2Former
class Mask2FormerSinePositionEmbedding(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
need paper, generalized to work on images.
"""
def __init__(
self, num_pos_feats: int = 64, temperature: int = 10000, normalize: bool = False, scale: Optional[float] = None
):
super().__init__()
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
self.scale = 2 * math.pi if scale is None else scale
def forward(self, x: Tensor, mask: Optional[Tensor] = None) -> Tensor:
if mask is None:
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
not_mask = (~mask).to(x.dtype)
y_embed = not_mask.cumsum(1)
x_embed = not_mask.cumsum(2)
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=x.dtype, device=x.device)
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
# Modified from transformers.models.detr.modeling_deformable_detr.DeformableDetrMultiscaleDeformableAttention
class Mask2FormerPixelDecoderEncoderMultiscaleDeformableAttention(nn.Module):
"""
Multiscale deformable attention as proposed in Deformable DETR.
"""
def __init__(self, embed_dim: int, num_heads: int, n_levels: int, n_points: int):
super().__init__()
if embed_dim % num_heads != 0:
raise ValueError(
f"embed_dim (d_model) must be divisible by num_heads, but got {embed_dim} and {num_heads}"
)
dim_per_head = embed_dim // num_heads
# check if dim_per_head is power of 2
if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
warnings.warn(
"You'd better set embed_dim (d_model) in DeformableDetrMultiscaleDeformableAttention to make the"
" dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
" implementation."
)
self.im2col_step = 128
self.d_model = embed_dim
self.n_levels = n_levels
self.n_heads = num_heads
self.n_points = n_points
self.sampling_offsets = nn.Linear(embed_dim, num_heads * n_levels * n_points * 2)
self.attention_weights = nn.Linear(embed_dim, num_heads * n_levels * n_points)
self.value_proj = nn.Linear(embed_dim, embed_dim)
self.output_proj = nn.Linear(embed_dim, embed_dim)
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states=None,
encoder_attention_mask=None,
position_embeddings: Optional[torch.Tensor] = None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
output_attentions: bool = False,
):
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
batch_size, num_queries, _ = hidden_states.shape
batch_size, sequence_length, _ = encoder_hidden_states.shape
if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length:
raise ValueError(
"Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
)
value = self.value_proj(encoder_hidden_states)
if attention_mask is not None:
# we invert the attention_mask
value = value.masked_fill(attention_mask[..., None], float(0))
value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
sampling_offsets = self.sampling_offsets(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
)
attention_weights = self.attention_weights(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
)
attention_weights = nn.functional.softmax(attention_weights, -1).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
)
# batch_size, num_queries, n_heads, n_levels, n_points, 2
if reference_points.shape[-1] == 2:
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
sampling_locations = (
reference_points[:, :, None, :, None, :]
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
)
elif reference_points.shape[-1] == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2]
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
)
else:
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights)
output = self.output_proj(output)
return output, attention_weights
class Mask2FormerPixelDecoderEncoderLayer(nn.Module):
def __init__(self, config: Mask2FormerConfig):
super().__init__()
self.embed_dim = config.feature_size
self.self_attn = Mask2FormerPixelDecoderEncoderMultiscaleDeformableAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
n_levels=3,
n_points=4,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = nn.functional.relu
self.activation_dropout = config.dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_feedforward_dim)
self.fc2 = nn.Linear(config.encoder_feedforward_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: torch.Tensor = None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Input to the layer.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Attention mask.
position_embeddings (`torch.FloatTensor`, *optional*):
Position embeddings, to be added to `hidden_states`.
reference_points (`torch.FloatTensor`, *optional*):
Reference points.
spatial_shapes (`torch.LongTensor`, *optional*):
Spatial shapes of the backbone feature maps.
level_start_index (`torch.LongTensor`, *optional*):
Level start index.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Apply Multi-scale Deformable Attention Module on the multi-scale feature maps.
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
position_embeddings=position_embeddings,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if self.training:
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights.transpose(1, 0),)
return outputs
# Modified from from transformers.models.detr.modeling_deformable_detr.DeformableDetrEncoder with DeformableDetrEncoder->Mask2FormerPixelDecoderEncoderOnly
class Mask2FormerPixelDecoderEncoderOnly(nn.Module):
"""
Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a
[`Mask2FormerPixelDecoderEncoderLayer`]. The encoder updates the flattened multi-scale feature maps through
multiple deformable attention layers.
Args:
config: Mask2FormerConfig
"""
def __init__(self, config: Mask2FormerConfig):
super().__init__()
self.config = config
self.dropout = config.dropout
self.layers = nn.ModuleList(
[Mask2FormerPixelDecoderEncoderLayer(config) for _ in range(config.encoder_layers)]
)
@staticmethod
def get_reference_points(spatial_shapes, valid_ratios, device):
"""
Get reference points for each feature map. Used in decoder.
Args:
spatial_shapes (`torch.LongTensor`):
Spatial shapes of each feature map, has shape of `(num_feature_levels, 2)`.
valid_ratios (`torch.FloatTensor`):
Valid ratios of each feature map, has shape of `(batch_size, num_feature_levels, 2)`.
device (`torch.device`):
Device on which to create the tensors.
Returns:
`torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)`
"""
reference_points_list = []
for lvl, (height, width) in enumerate(spatial_shapes):
ref_y, ref_x = torch.meshgrid(
torch.linspace(0.5, height - 0.5, height, dtype=valid_ratios.dtype, device=device),
torch.linspace(0.5, width - 0.5, width, dtype=valid_ratios.dtype, device=device),
indexing="ij",
)
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * height)
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * width)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
def forward(
self,
inputs_embeds=None,
attention_mask=None,
position_embeddings=None,
spatial_shapes=None,
level_start_index=None,
valid_ratios=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
- 1 for pixel features that are real (i.e. **not masked**),
- 0 for pixel features that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Position embeddings that are added to the queries and keys in each self-attention layer.
spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
Spatial shapes of each feature map.
level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`):
Starting index of each feature map.
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
Ratio of valid area in each feature level.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = inputs_embeds
reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=inputs_embeds.device)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, encoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states.transpose(1, 0),)
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
position_embeddings=position_embeddings,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states.transpose(1, 0),)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
# Modified from from transformers.models.detr.modeling_deformable_detr.DeformableDetrModel with DeformableDetrModel->Mask2FormerPixelDecoder
class Mask2FormerPixelDecoder(nn.Module):
def __init__(self, config: Mask2FormerConfig, feature_channels):
super().__init__()
self.config = config
feature_dim = config.feature_size
mask_dim = config.mask_feature_size
num_pos_features = feature_dim // 2
self.position_embedding = Mask2FormerSinePositionEmbedding(num_pos_feats=num_pos_features, normalize=True)
self.num_feature_levels = 3
transformer_in_channels = feature_channels[-self.num_feature_levels :]
self.transformer_feature_strides = config.feature_strides[-self.num_feature_levels :]
self.feature_channels = feature_channels
self.level_embed = nn.Parameter(torch.Tensor(self.num_feature_levels, feature_dim))
# Create input projection layers
if self.num_feature_levels > 1:
input_projections_list = []
for in_channels in transformer_in_channels[::-1]:
input_projections_list.append(
nn.Sequential(
nn.Conv2d(in_channels, feature_dim, kernel_size=1),
nn.GroupNorm(32, feature_dim),
)
)
self.input_projections = nn.ModuleList(input_projections_list)
else:
self.input_projections = nn.ModuleList(
[
nn.Sequential(
nn.Conv2d(transformer_in_channels[-1], feature_dim, kernel_size=1),
nn.GroupNorm(32, feature_dim),
)
]
)
self.encoder = Mask2FormerPixelDecoderEncoderOnly(config)
self.mask_projection = nn.Conv2d(feature_dim, mask_dim, kernel_size=1, stride=1, padding=0)
# Extra FPN levels
stride = min(self.transformer_feature_strides)
self.common_stride = config.common_stride
self.num_fpn_levels = int(np.log2(stride) - np.log2(self.common_stride))
lateral_convs = []
output_convs = []
for idx, in_channels in enumerate(self.feature_channels[: self.num_fpn_levels]):
lateral_conv = nn.Sequential(
nn.Conv2d(in_channels, feature_dim, kernel_size=1, bias=False),
nn.GroupNorm(32, feature_dim),
)
output_conv = nn.Sequential(
nn.Conv2d(feature_dim, feature_dim, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(32, feature_dim),
nn.ReLU(),
)
self.add_module("adapter_{}".format(idx + 1), lateral_conv)
self.add_module("layer_{}".format(idx + 1), output_conv)
lateral_convs.append(lateral_conv)
output_convs.append(output_conv)
# Order convolutional layers from low to high resolution
self.lateral_convolutions = lateral_convs[::-1]
self.output_convolutions = output_convs[::-1]
def get_valid_ratio(self, mask, dtype=torch.float32):
"""Get the valid ratio of all feature maps."""
_, height, width = mask.shape
valid_height = torch.sum(~mask[:, :, 0], 1)
valid_width = torch.sum(~mask[:, 0, :], 1)
valid_ratio_heigth = valid_height.to(dtype) / height
valid_ratio_width = valid_width.to(dtype) / width
valid_ratio = torch.stack([valid_ratio_width, valid_ratio_heigth], -1)
return valid_ratio
def forward(
self,
features,
encoder_outputs=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# Apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
input_embeds = []
position_embeddings = []
for level, x in enumerate(features[::-1][: self.num_feature_levels]):
input_embeds.append(self.input_projections[level](x))
position_embeddings.append(self.position_embedding(x))
masks = [
torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in input_embeds
]
# Prepare encoder inputs (by flattening)
spatial_shapes = [(embed.shape[2], embed.shape[3]) for embed in input_embeds]
input_embeds_flat = torch.cat([embed.flatten(2).transpose(1, 2) for embed in input_embeds], 1)
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=input_embeds_flat.device)
masks_flat = torch.cat([mask.flatten(1) for mask in masks], 1)
position_embeddings = [embed.flatten(2).transpose(1, 2) for embed in position_embeddings]
level_pos_embed_flat = [x + self.level_embed[i].view(1, 1, -1) for i, x in enumerate(position_embeddings)]
level_pos_embed_flat = torch.cat(level_pos_embed_flat, 1)
level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack([self.get_valid_ratio(mask, dtype=input_embeds_flat.dtype) for mask in masks], 1)
# Send input_embeds_flat + masks_flat + level_pos_embed_flat (backbone + proj layer output) through encoder
if encoder_outputs is None:
encoder_outputs = self.encoder(
inputs_embeds=input_embeds_flat,
attention_mask=masks_flat,
position_embeddings=level_pos_embed_flat,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs.last_hidden_state
batch_size = last_hidden_state.shape[0]
split_sizes = [None] * self.num_feature_levels
for i in range(self.num_feature_levels):
if i < self.num_feature_levels - 1:
split_sizes[i] = level_start_index[i + 1] - level_start_index[i]
else:
split_sizes[i] = last_hidden_state.shape[1] - level_start_index[i]
encoder_output = torch.split(last_hidden_state, [size.item() for size in split_sizes], dim=1)
# Compute final features
outputs = [
x.transpose(1, 2).view(batch_size, -1, spatial_shapes[i][0], spatial_shapes[i][1])
for i, x in enumerate(encoder_output)
]
# Append extra FPN levels to outputs, ordered from low to high resolution
for idx, feature in enumerate(features[: self.num_fpn_levels][::-1]):
lateral_conv = self.lateral_convolutions[idx]
output_conv = self.output_convolutions[idx]
current_fpn = lateral_conv(feature)
# Following FPN implementation, we use nearest upsampling here
out = current_fpn + nn.functional.interpolate(
outputs[-1], size=current_fpn.shape[-2:], mode="bilinear", align_corners=False
)
out = output_conv(out)
outputs.append(out)
num_cur_levels = 0
multi_scale_features = []
for out in outputs:
if num_cur_levels < self.num_feature_levels:
multi_scale_features.append(out)
num_cur_levels += 1
return Mask2FormerPixelDecoderOutput(
mask_features=self.mask_projection(outputs[-1]),
multi_scale_features=tuple(multi_scale_features),
attentions=encoder_outputs.attentions,
)
class Mask2FormerPixelLevelModule(nn.Module):
def __init__(self, config: Mask2FormerConfig):
"""
Pixel Level Module proposed in [Masked-attention Mask Transformer for Universal Image
Segmentation](https://arxiv.org/abs/2112.01527). It runs the input image through a backbone and a pixel
decoder, generating multi-scale feature maps and pixel embeddings.
Args:
config ([`Mask2FormerConfig`]):
The configuration used to instantiate this model.
"""
super().__init__()
self.encoder = AutoBackbone.from_config(config.backbone_config)
self.decoder = Mask2FormerPixelDecoder(config, feature_channels=self.encoder.channels)
def forward(self, pixel_values: Tensor, output_hidden_states: bool = False) -> Mask2FormerPixelLevelModuleOutput:
backbone_features = self.encoder(pixel_values).feature_maps
decoder_output = self.decoder(backbone_features, output_hidden_states=output_hidden_states)
return Mask2FormerPixelLevelModuleOutput(
encoder_last_hidden_state=backbone_features[-1],
encoder_hidden_states=tuple(backbone_features) if output_hidden_states else None,
decoder_last_hidden_state=decoder_output.mask_features,
decoder_hidden_states=decoder_output.multi_scale_features,
)
# Modified from transformers.models.detr.modeling_detr.DetrAttention with Detr->Mask2Former
class Mask2FormerAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and
keys (as explained in the DETR paper).
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if self.head_dim * num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
key_value_states: Optional[torch.Tensor] = None,
key_value_position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
hidden_states = hidden_states.permute(1, 0, 2) if hidden_states is not None else None
position_embeddings = position_embeddings.permute(1, 0, 2) if position_embeddings is not None else None
key_value_states = key_value_states.permute(1, 0, 2) if key_value_states is not None else None
key_value_position_embeddings = (
key_value_position_embeddings.permute(1, 0, 2) if key_value_position_embeddings is not None else None
)
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size, target_len, embed_dim = hidden_states.size()
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
hidden_states_original = hidden_states
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
# add key-value position embeddings to the key value states
if key_value_position_embeddings is not None:
key_value_states_original = key_value_states
key_value_states = self.with_pos_embed(key_value_states, key_value_position_embeddings)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, batch_size)
value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
source_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention mask should be of size {(target_len, batch_size * self.num_heads, source_len)}, but is"
f" {attention_mask.size()}"
)
attn_weights += attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
attn_output = self.out_proj(attn_output).permute(1, 0, 2)
return attn_output, attn_weights_reshaped
class Mask2FormerMaskedAttentionDecoderLayer(nn.Module):
"""
The Mask2FormerMaskedAttentionDecoderLayer is made up of self-attention, cross (masked) attention as well as FFN
blocks. The cross attention block used as part of `Mask2FormerMaskedAttentionDecoderLayer` is actually a `masked
attention` block that restricts the attention to localized features centered around predicted segments which leads
to faster convergence and improved performance. The order of self and cross (i.e. masked) attention blocks have
also been swapped in Mask2FormerMaskedAttentionDecoder compared to a standard DetrDecoder as an optimization
improvement.
Args:
config (`Mask2FormerConfig`):
The configuration used to initialize the Mask2FormerMaskedAttentionDecoder.
"""
def __init__(self, config: Mask2FormerConfig):
super().__init__()
self.config = config
self.embed_dim = self.config.hidden_dim
self.pre_norm = self.config.pre_norm
self.self_attn = Mask2FormerAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
dropout=config.dropout,
is_decoder=True,
)
self.dropout = self.config.dropout
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout = self.config.dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.cross_attn = nn.MultiheadAttention(self.embed_dim, self.config.num_attention_heads, self.config.dropout)
self.cross_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, self.config.dim_feedforward)
self.fc2 = nn.Linear(self.config.dim_feedforward, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(
self,
hidden_states: torch.Tensor,
level_index: int = None,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
query_position_embeddings: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
):
# Masked(Cross)-Attention Block
cross_attn_weights = None
self_attn_weights = None
residual = hidden_states
hidden_states, cross_attn_weights = self.cross_attn(
query=self.with_pos_embed(hidden_states, query_position_embeddings),
key=self.with_pos_embed(encoder_hidden_states[level_index], position_embeddings[level_index]),
value=encoder_hidden_states[level_index],
attn_mask=encoder_attention_mask,
key_padding_mask=None,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.cross_attn_layer_norm(hidden_states)
# Self Attention Block
residual = hidden_states
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=query_position_embeddings,
attention_mask=None,
output_attentions=True,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
def forward_pre(
self,
hidden_states: torch.Tensor,
level_index: int = None,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
query_position_embeddings: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
):
# Masked(Cross)-Attention Block
cross_attn_weights = None
self_attn_weights = None
residual = hidden_states
hidden_states = self.cross_attn_layer_norm(hidden_states)
hidden_states, cross_attn_weights = self.cross_attn(
query=self.with_pos_embed(hidden_states, query_position_embeddings),
key=self.with_pos_embed(encoder_hidden_states[level_index], position_embeddings[level_index]),
value=encoder_hidden_states[level_index],
attn_mask=encoder_attention_mask,
key_padding_mask=None,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Self Attention Block
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=query_position_embeddings,
attention_mask=None,
output_attentions=True,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
def forward(
self,
hidden_states: torch.Tensor,
level_index: int = None,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
query_position_embeddings: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(seq_len, batch, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(1, seq_len, tgt_len, src_len)`.
position_embeddings (`torch.FloatTensor`, *optional*):
Position embeddings that are added to the keys in the masked-attention layer.
query_position_embeddings (`torch.FloatTensor`, *optional*):
Position embeddings that are added to the queries and keys in the self-attention layer.
encoder_hidden_states (`torch.FloatTensor`):
Cross attention input to the layer of shape `(seq_len, batch, embed_dim)`.
encoder_attention_mask (`torch.FloatTensor`):
Encoder attention mask of size`(1, seq_len, tgt_len, src_len)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
if self.pre_norm:
outputs = self.forward_pre(
hidden_states=hidden_states,
level_index=level_index,
position_embeddings=position_embeddings,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
else:
outputs = self.forward_post(
hidden_states=hidden_states,
level_index=level_index,
position_embeddings=position_embeddings,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
return outputs
class Mask2FormerMaskedAttentionDecoder(nn.Module):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a
[`Mask2FormerMaskedAttentionDecoderLayer`]. The decoder updates the query embeddings through multiple cross
(masked) and self-attention layers. The decoder uses a new **masked attention** mechanism instead of the standard
cross-attention, which extracts localized features by constraining cross-attention to within the foreground region
of the predicted mask for each query, instead of attending to the full feature map.
Args:
config (`Mask2FormerConfig`):
Configuration used to instantiate Mask2FormerMaskedAttentionDecoder.
"""
def __init__(self, config: Mask2FormerConfig):
super().__init__()
self.config = config
self.mask_feature_size = config.mask_feature_size
self.dropout = config.dropout
self.layerdrop = config.dropout
self.num_feature_levels = 3 # level embedding (3 scales)
self.decoder_layers = config.decoder_layers - 1
self.layers = nn.ModuleList(
[Mask2FormerMaskedAttentionDecoderLayer(self.config) for _ in range(self.decoder_layers)]
)
self.layernorm = nn.LayerNorm(config.hidden_dim)
self.mask_predictor = Mask2FormerMaskPredictor(
hidden_size=config.hidden_dim,
num_heads=config.num_attention_heads,
mask_feature_size=self.mask_feature_size,
)
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds: torch.Tensor = None,
multi_stage_positional_embeddings: torch.Tensor = None,
pixel_embeddings: torch.Tensor = None,
encoder_hidden_states: torch.Tensor = None,
query_position_embeddings: torch.Tensor = None,
feature_size_list: List = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
The query embeddings that are passed into the decoder.
multi_stage_positional_embeddings (`torch.FloatTensor` of shape `(height*width, batch_size, num_channels)`):
Position embeddings that are added to the keys in each cross(masked)-attention layer.
pixel_embeddings (`torch.FloatTensor`):
Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel
Decoder.
query_position_embeddings (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
, *optional*): Position embeddings that are added to the queries and keys in each self-attention layer.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross(masked)-attention of the decoder.
feature_size_list (`List[torch.Size]` ):
This is a list containing shapes (height & width) of multi-scale features from the Pixel Decoder.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is not None:
hidden_states = inputs_embeds
# intermediate hidden states with layernorm applied - required for predicting class logits
intermediate = ()
# decoder layers
all_hidden_states = () if output_hidden_states else None
attentions = () if output_attentions else None
# intermediate mask predictions from transformer decoder layers
intermediate_mask_predictions = ()
intermediate_hidden_states = self.layernorm(inputs_embeds)
intermediate += (intermediate_hidden_states,)
predicted_mask, attention_mask = self.mask_predictor(
intermediate_hidden_states, pixel_embeddings, feature_size_list[0]
)
intermediate_mask_predictions += (predicted_mask,)
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
None,
None,
output_attentions,
)
else:
level_index = idx % self.num_feature_levels
attention_mask[torch.where(attention_mask.sum(-1) == attention_mask.shape[-1])] = False
layer_outputs = decoder_layer(
hidden_states,
level_index=level_index,
position_embeddings=multi_stage_positional_embeddings,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
)
intermediate_hidden_states = self.layernorm(layer_outputs[0])
predicted_mask, attention_mask = self.mask_predictor(
intermediate_hidden_states,
pixel_embeddings,
feature_size_list[(idx + 1) % self.num_feature_levels],
)
intermediate_mask_predictions += (predicted_mask,)
# add intermediate hidden states with layer norm applied which will be used for predicting class logits
intermediate += (intermediate_hidden_states,)
hidden_states = layer_outputs[0]
if output_attentions:
attentions += (layer_outputs[1],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
hidden_states = hidden_states.transpose(1, 0)
if not return_dict:
outputs = [hidden_states, all_hidden_states, attentions, intermediate, intermediate_mask_predictions]
return tuple(v for v in outputs if v is not None)
return Mask2FormerMaskedAttentionDecoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=attentions,
intermediate_hidden_states=intermediate,
masks_queries_logits=intermediate_mask_predictions,
)
# Copied from transformers.models.maskformer.modeling_maskformer.PredictionBlock with MaskFormer->Mask2Former
class Mask2FormerPredictionBlock(nn.Module):
def __init__(self, in_dim: int, out_dim: int, activation: nn.Module) -> None:
super().__init__()
self.layers = [nn.Linear(in_dim, out_dim), activation]
# Maintain submodule indexing as if part of a Sequential block
for i, layer in enumerate(self.layers):
self.add_module(str(i), layer)
def forward(self, input: Tensor) -> Tensor:
hidden_state = input
for layer in self.layers:
hidden_state = layer(hidden_state)
return hidden_state
class Mask2FormerMLPPredictionHead(nn.Module):
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int = 3):
"""
A classic Multi Layer Perceptron (MLP).
Args:
input_dim (`int`):
The input dimensions.
hidden_dim (`int`):
The hidden dimensions.
output_dim (`int`):
The output dimensions.
num_layers (int, *optional*, defaults to 3):
The number of layers.
"""
super().__init__()
in_dims = [input_dim] + [hidden_dim] * (num_layers - 1)
out_dims = [hidden_dim] * (num_layers - 1) + [output_dim]
self.layers = []
for i, (in_dim, out_dim) in enumerate(zip(in_dims, out_dims)):
activation = nn.ReLU() if i < num_layers - 1 else nn.Identity()
layer = Mask2FormerPredictionBlock(in_dim, out_dim, activation=activation)
self.layers.append(layer)
# Provide backwards compatibility from when the class inherited from nn.Sequential
# In nn.Sequential subclasses, the name given to the layer is its index in the sequence.
# In nn.Module subclasses they derived from the instance attribute they are assigned to e.g.
# self.my_layer_name = Layer()
# We can't give instance attributes integer names i.e. self.0 is not permitted and so need to register
# explicitly
self.add_module(str(i), layer)
def forward(self, input: Tensor) -> Tensor:
hidden_state = input
for layer in self.layers:
hidden_state = layer(hidden_state)
return hidden_state
class Mask2FormerMaskPredictor(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mask_feature_size: torch.Tensor):
"""
This class is used to get the predicted mask for a given Mask2FormerMaskedAttentionDecoder layer. It also
generates the binarized attention mask associated with the given predicted mask. The attention mask obtained
using predicted mask of the (l-1)th decoder layer is fed to the cross(masked)-attention block of the next
decoder layer as input.
Args:
hidden_size (`int`):
The feature dimension of the Mask2FormerMaskedAttentionDecoder
num_heads (`int`):
The number of heads used in the Mask2FormerMaskedAttentionDecoder
mask_feature_size (`torch.Tensor`):
one of the output dimensions of the predicted masks for each query
"""
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.mask_embedder = Mask2FormerMLPPredictionHead(self.hidden_size, self.hidden_size, mask_feature_size)
def forward(self, outputs: torch.Tensor, pixel_embeddings: torch.Tensor, attention_mask_target_size: int = None):
mask_embeddings = self.mask_embedder(outputs.transpose(0, 1))
# Equivalent to einsum('bqc, bchw -> bqhw') but jit friendly
batch_size, num_queries, num_channels = mask_embeddings.shape
_, _, height, width = pixel_embeddings.shape
outputs_mask = torch.zeros((batch_size, num_queries, height, width), device=mask_embeddings.device)
for c in range(num_channels):
outputs_mask += mask_embeddings[..., c][..., None, None] * pixel_embeddings[:, None, c]
attention_mask = nn.functional.interpolate(
outputs_mask, size=attention_mask_target_size, mode="bilinear", align_corners=False
)
attention_mask = attention_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1)
attention_mask = (attention_mask.flatten(0, 1) < 0.5).bool()
attention_mask = attention_mask.detach()
return outputs_mask, attention_mask
class Mask2FormerTransformerModule(nn.Module):
"""
The Mask2Former's transformer module.
"""
def __init__(self, in_features: int, config: Mask2FormerConfig):
super().__init__()
hidden_dim = config.hidden_dim
self.num_feature_levels = 3
self.position_embedder = Mask2FormerSinePositionEmbedding(num_pos_feats=hidden_dim // 2, normalize=True)
self.queries_embedder = nn.Embedding(config.num_queries, hidden_dim)
self.queries_features = nn.Embedding(config.num_queries, hidden_dim)
self.input_projections = []
for _ in range(self.num_feature_levels):
if in_features != hidden_dim or config.enforce_input_projection:
self.input_projections.append(nn.Conv2d(in_features, hidden_dim, kernel_size=1))
else:
self.input_projections.append(nn.Sequential())
self.decoder = Mask2FormerMaskedAttentionDecoder(config=config)
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
def forward(
self,
multi_scale_features: List[Tensor],
mask_features: Tensor,
output_hidden_states: bool = False,
output_attentions: bool = False,
) -> Mask2FormerMaskedAttentionDecoderOutput:
multi_stage_features = []
multi_stage_positional_embeddings = []
size_list = []
for i in range(self.num_feature_levels):
size_list.append(multi_scale_features[i].shape[-2:])
multi_stage_positional_embeddings.append(self.position_embedder(multi_scale_features[i], None).flatten(2))
multi_stage_features.append(
self.input_projections[i](multi_scale_features[i]).flatten(2)
+ self.level_embed.weight[i][None, :, None]
)
# Flatten (batch_size, num_channels, height, width) -> (height*width, batch_size, num_channels)
multi_stage_positional_embeddings[-1] = multi_stage_positional_embeddings[-1].permute(2, 0, 1)
multi_stage_features[-1] = multi_stage_features[-1].permute(2, 0, 1)
_, batch_size, _ = multi_stage_features[0].shape
# [num_queries, batch_size, num_channels]
query_embeddings = self.queries_embedder.weight.unsqueeze(1).repeat(1, batch_size, 1)
query_features = self.queries_features.weight.unsqueeze(1).repeat(1, batch_size, 1)
decoder_output = self.decoder(
inputs_embeds=query_features,
multi_stage_positional_embeddings=multi_stage_positional_embeddings,
pixel_embeddings=mask_features,
encoder_hidden_states=multi_stage_features,
query_position_embeddings=query_embeddings,
feature_size_list=size_list,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=True,
)
return decoder_output
MASK2FORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`Mask2FormerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MASK2FORMER_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`AutoImageProcessor.preprocess`] for details.
pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of Detr's decoder attention layers.
return_dict (`bool`, *optional*):
Whether or not to return a [`~Mask2FormerModelOutput`] instead of a plain tuple.
"""
class Mask2FormerPreTrainedModel(PreTrainedModel):
config_class = Mask2FormerConfig
base_model_prefix = "model"
main_input_name = "pixel_values"
def _init_weights(self, module: nn.Module):
xavier_std = self.config.init_xavier_std
std = self.config.init_std
if isinstance(module, Mask2FormerTransformerModule):
if module.input_projections is not None:
for input_projection in module.input_projections:
if not isinstance(input_projection, nn.Sequential):
nn.init.xavier_uniform_(input_projection.weight, gain=xavier_std)
nn.init.constant_(input_projection.bias, 0)
elif isinstance(module, Mask2FormerPixelDecoderEncoderMultiscaleDeformableAttention):
nn.init.constant_(module.sampling_offsets.weight.data, 0.0)
thetas = torch.arange(module.n_heads, dtype=torch.float32) * (2.0 * math.pi / module.n_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = (
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
.view(module.n_heads, 1, 1, 2)
.repeat(1, module.n_levels, module.n_points, 1)
)
for i in range(module.n_points):
grid_init[:, :, i, :] *= i + 1
with torch.no_grad():
module.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
nn.init.constant_(module.attention_weights.weight.data, 0.0)
nn.init.constant_(module.attention_weights.bias.data, 0.0)
nn.init.xavier_uniform_(module.value_proj.weight.data)
nn.init.constant_(module.value_proj.bias.data, 0.0)
nn.init.xavier_uniform_(module.output_proj.weight.data)
nn.init.constant_(module.output_proj.bias.data, 0.0)
elif isinstance(module, Mask2FormerMaskedAttentionDecoderLayer):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p, gain=xavier_std)
elif isinstance(module, Mask2FormerPixelLevelModule):
for submodule in module.modules():
if isinstance(submodule, (nn.Conv2d, nn.Linear)):
submodule.weight.data.normal_(mean=0.0, std=std)
if submodule.bias is not None:
submodule.bias.data.zero_()
elif isinstance(module, Mask2FormerPixelDecoder):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
nn.init.normal_(module.level_embed, std=0)
elif isinstance(module, Mask2FormerPixelDecoderEncoderOnly):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if hasattr(module, "reference_points"):
nn.init.xavier_uniform_(module.reference_points.weight.data, gain=1.0)
nn.init.constant_(module.reference_points.bias.data, 0.0)
@add_start_docstrings(
"The bare Mask2Former Model outputting raw hidden-states without any specific head on top.",
MASK2FORMER_START_DOCSTRING,
)
class Mask2FormerModel(Mask2FormerPreTrainedModel):
main_input_name = "pixel_values"
def __init__(self, config: Mask2FormerConfig):
super().__init__(config)
self.pixel_level_module = Mask2FormerPixelLevelModule(config)
self.transformer_module = Mask2FormerTransformerModule(in_features=config.feature_size, config=config)
self.post_init()
@add_start_docstrings_to_model_forward(MASK2FORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Mask2FormerModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Tensor,
pixel_mask: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Mask2FormerModelOutput:
r"""
Returns:
`Mask2FormerModelOutput`
Examples:
```python
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoImageProcessor, Mask2FormerModel
>>> # load image
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # load image preprocessor and Mask2FormerModel trained on COCO instance segmentation dataset
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance")
>>> model = Mask2FormerModel.from_pretrained("facebook/mask2former-swin-small-coco-instance")
>>> inputs = image_processor(image, return_tensors="pt")
>>> # forward pass
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # model outputs last hidden states of shape (batch_size, num_queries, hidden_size)
>>> print(outputs.transformer_decoder_last_hidden_state.shape)
torch.Size([1, 100, 256])
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, _, height, width = pixel_values.shape
if pixel_mask is None:
pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device)
pixel_level_module_output = self.pixel_level_module(
pixel_values=pixel_values, output_hidden_states=output_hidden_states
)
transformer_module_output = self.transformer_module(
multi_scale_features=pixel_level_module_output.decoder_hidden_states,
mask_features=pixel_level_module_output.decoder_last_hidden_state,
output_hidden_states=True,
output_attentions=output_attentions,
)
encoder_hidden_states = None
pixel_decoder_hidden_states = None
transformer_decoder_hidden_states = None
transformer_decoder_intermediate_states = None
if output_hidden_states:
encoder_hidden_states = pixel_level_module_output.encoder_hidden_states
pixel_decoder_hidden_states = pixel_level_module_output.decoder_hidden_states
transformer_decoder_hidden_states = transformer_module_output.hidden_states
transformer_decoder_intermediate_states = transformer_module_output.intermediate_hidden_states
output = Mask2FormerModelOutput(
encoder_last_hidden_state=pixel_level_module_output.encoder_last_hidden_state,
pixel_decoder_last_hidden_state=pixel_level_module_output.decoder_last_hidden_state,
transformer_decoder_last_hidden_state=transformer_module_output.last_hidden_state,
encoder_hidden_states=encoder_hidden_states,
pixel_decoder_hidden_states=pixel_decoder_hidden_states,
transformer_decoder_hidden_states=transformer_decoder_hidden_states,
transformer_decoder_intermediate_states=transformer_decoder_intermediate_states,
attentions=transformer_module_output.attentions,
masks_queries_logits=transformer_module_output.masks_queries_logits,
)
if not return_dict:
output = tuple(v for v in output.values() if v is not None)
return output
@add_start_docstrings(
"The Mask2Former Model with heads on top for instance/semantic/panoptic segmentation.",
MASK2FORMER_START_DOCSTRING,
)
class Mask2FormerForUniversalSegmentation(Mask2FormerPreTrainedModel):
main_input_name = "pixel_values"
def __init__(self, config: Mask2FormerConfig):
super().__init__(config)
self.model = Mask2FormerModel(config)
self.weight_dict: Dict[str, float] = {
"loss_cross_entropy": config.class_weight,
"loss_mask": config.mask_weight,
"loss_dice": config.dice_weight,
}
self.class_predictor = nn.Linear(config.hidden_dim, config.num_labels + 1)
self.criterion = Mask2FormerLoss(config=config, weight_dict=self.weight_dict)
self.post_init()
def get_loss_dict(
self,
masks_queries_logits: Tensor,
class_queries_logits: Tensor,
mask_labels: Tensor,
class_labels: Tensor,
auxiliary_predictions: Dict[str, Tensor],
) -> Dict[str, Tensor]:
loss_dict: Dict[str, Tensor] = self.criterion(
masks_queries_logits=masks_queries_logits,
class_queries_logits=class_queries_logits,
mask_labels=mask_labels,
class_labels=class_labels,
auxiliary_predictions=auxiliary_predictions,
)
# weight each loss by `self.weight_dict[<LOSS_NAME>]` including auxiliary losses
for key, weight in self.weight_dict.items():
for loss_key, loss in loss_dict.items():
if key in loss_key:
loss *= weight
return loss_dict
def get_loss(self, loss_dict: Dict[str, Tensor]) -> Tensor:
return sum(loss_dict.values())
def get_auxiliary_logits(self, classes: torch.Tensor, output_masks: torch.Tensor):
auxiliary_logits: List[Dict(str, Tensor)] = []
for aux_binary_masks, aux_classes in zip(output_masks[:-1], classes[:-1]):
auxiliary_logits.append({"masks_queries_logits": aux_binary_masks, "class_queries_logits": aux_classes})
return auxiliary_logits
@add_start_docstrings_to_model_forward(MASK2FORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Mask2FormerForUniversalSegmentationOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Tensor,
mask_labels: Optional[List[Tensor]] = None,
class_labels: Optional[List[Tensor]] = None,
pixel_mask: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_auxiliary_logits: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Mask2FormerForUniversalSegmentationOutput:
r"""
mask_labels (`List[torch.Tensor]`, *optional*):
List of mask labels of shape `(num_labels, height, width)` to be fed to a model
class_labels (`List[torch.LongTensor]`, *optional*):
list of target class labels of shape `(num_labels, height, width)` to be fed to a model. They identify the
labels of `mask_labels`, e.g. the label of `mask_labels[i][j]` if `class_labels[i][j]`.
Returns:
`Mask2FormerUniversalSegmentationOutput`
Examples:
Instance segmentation example:
```python
>>> from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
>>> from PIL import Image
>>> import requests
>>> import torch
>>> # Load Mask2Former trained on COCO instance segmentation dataset
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance")
>>> model = Mask2FormerForUniversalSegmentation.from_pretrained(
... "facebook/mask2former-swin-small-coco-instance"
... )
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # Model predicts class_queries_logits of shape `(batch_size, num_queries)`
>>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
>>> class_queries_logits = outputs.class_queries_logits
>>> masks_queries_logits = outputs.masks_queries_logits
>>> # Perform post-processing to get instance segmentation map
>>> pred_instance_map = image_processor.post_process_semantic_segmentation(
... outputs, target_sizes=[image.size[::-1]]
... )[0]
>>> print(pred_instance_map.shape)
torch.Size([480, 640])
```
Semantic segmentation example:
```python
>>> from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
>>> from PIL import Image
>>> import requests
>>> import torch
>>> # Load Mask2Former trained on ADE20k semantic segmentation dataset
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-ade-semantic")
>>> model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-small-ade-semantic")
>>> url = (
... "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
... )
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # Model predicts class_queries_logits of shape `(batch_size, num_queries)`
>>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
>>> class_queries_logits = outputs.class_queries_logits
>>> masks_queries_logits = outputs.masks_queries_logits
>>> # Perform post-processing to get semantic segmentation map
>>> pred_semantic_map = image_processor.post_process_semantic_segmentation(
... outputs, target_sizes=[image.size[::-1]]
... )[0]
>>> print(pred_semantic_map.shape)
torch.Size([512, 683])
```
Panoptic segmentation example:
```python
>>> from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
>>> from PIL import Image
>>> import requests
>>> import torch
>>> # Load Mask2Former trained on CityScapes panoptic segmentation dataset
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-cityscapes-panoptic")
>>> model = Mask2FormerForUniversalSegmentation.from_pretrained(
... "facebook/mask2former-swin-small-cityscapes-panoptic"
... )
>>> url = "https://cdn-media.huggingface.co/Inference-API/Sample-results-on-the-Cityscapes-dataset-The-above-images-show-how-our-method-can-handle.png"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # Model predicts class_queries_logits of shape `(batch_size, num_queries)`
>>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
>>> class_queries_logits = outputs.class_queries_logits
>>> masks_queries_logits = outputs.masks_queries_logits
>>> # Perform post-processing to get panoptic segmentation map
>>> pred_panoptic_map = image_processor.post_process_panoptic_segmentation(
... outputs, target_sizes=[image.size[::-1]]
... )[0]["segmentation"]
>>> print(pred_panoptic_map.shape)
torch.Size([338, 676])
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
pixel_values=pixel_values,
pixel_mask=pixel_mask,
output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss,
output_attentions=output_attentions,
return_dict=True,
)
loss, loss_dict, auxiliary_logits = None, None, None
class_queries_logits = ()
for decoder_output in outputs.transformer_decoder_intermediate_states:
class_prediction = self.class_predictor(decoder_output.transpose(0, 1))
class_queries_logits += (class_prediction,)
masks_queries_logits = outputs.masks_queries_logits
auxiliary_logits = self.get_auxiliary_logits(class_queries_logits, masks_queries_logits)
if mask_labels is not None and class_labels is not None:
loss_dict = self.get_loss_dict(
masks_queries_logits=masks_queries_logits[-1],
class_queries_logits=class_queries_logits[-1],
mask_labels=mask_labels,
class_labels=class_labels,
auxiliary_predictions=auxiliary_logits,
)
loss = self.get_loss(loss_dict)
encoder_hidden_states = None
pixel_decoder_hidden_states = None
transformer_decoder_hidden_states = None
if output_hidden_states:
encoder_hidden_states = outputs.encoder_hidden_states
pixel_decoder_hidden_states = outputs.pixel_decoder_hidden_states
transformer_decoder_hidden_states = outputs.transformer_decoder_hidden_states
output_auxiliary_logits = (
self.config.output_auxiliary_logits if output_auxiliary_logits is None else output_auxiliary_logits
)
if not output_auxiliary_logits:
auxiliary_logits = None
output = Mask2FormerForUniversalSegmentationOutput(
loss=loss,
class_queries_logits=class_queries_logits[-1],
masks_queries_logits=masks_queries_logits[-1],
auxiliary_logits=auxiliary_logits,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
pixel_decoder_last_hidden_state=outputs.pixel_decoder_last_hidden_state,
transformer_decoder_last_hidden_state=outputs.transformer_decoder_last_hidden_state,
encoder_hidden_states=encoder_hidden_states,
pixel_decoder_hidden_states=pixel_decoder_hidden_states,
transformer_decoder_hidden_states=transformer_decoder_hidden_states,
attentions=outputs.attentions,
)
if not return_dict:
output = tuple(v for v in output.values() if v is not None)
if loss is not None:
output = (loss) + output
return output
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/mask2former/__init__.py
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_import_structure = {
"configuration_mask2former": [
"MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Mask2FormerConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["image_processing_mask2former"] = ["Mask2FormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_mask2former"] = [
"MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"Mask2FormerForUniversalSegmentation",
"Mask2FormerModel",
"Mask2FormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mask2former import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, Mask2FormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_mask2former import Mask2FormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mask2former import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
Mask2FormerForUniversalSegmentation,
Mask2FormerModel,
Mask2FormerPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/mask2former/image_processing_mask2former.py
|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Mask2Former."""
import math
import warnings
from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
PaddingMode,
get_resize_output_image_size,
pad,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_batched,
is_scaled_image,
to_numpy_array,
valid_images,
)
from ...utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
TensorType,
is_torch_available,
is_torch_tensor,
logging,
)
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
# Copied from transformers.models.detr.image_processing_detr.max_across_indices
def max_across_indices(values: Iterable[Any]) -> List[Any]:
"""
Return the maximum value across all indices of an iterable of values.
"""
return [max(values_i) for values_i in zip(*values)]
# Copied from transformers.models.detr.image_processing_detr.get_max_height_width
def get_max_height_width(
images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> List[int]:
"""
Get the maximum height and width across all images in a batch.
"""
if input_data_format is None:
input_data_format = infer_channel_dimension_format(images[0])
if input_data_format == ChannelDimension.FIRST:
_, max_height, max_width = max_across_indices([img.shape for img in images])
elif input_data_format == ChannelDimension.LAST:
max_height, max_width, _ = max_across_indices([img.shape for img in images])
else:
raise ValueError(f"Invalid channel dimension format: {input_data_format}")
return (max_height, max_width)
# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask
def make_pixel_mask(
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> np.ndarray:
"""
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
Args:
image (`np.ndarray`):
Image to make the pixel mask for.
output_size (`Tuple[int, int]`):
Output size of the mask.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
mask = np.zeros(output_size, dtype=np.int64)
mask[:input_height, :input_width] = 1
return mask
# Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle
def binary_mask_to_rle(mask):
"""
Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format.
Args:
mask (`torch.Tensor` or `numpy.array`):
A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target
segment_id or class_id.
Returns:
`List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE
format.
"""
if is_torch_tensor(mask):
mask = mask.numpy()
pixels = mask.flatten()
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return list(runs)
# Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle
def convert_segmentation_to_rle(segmentation):
"""
Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format.
Args:
segmentation (`torch.Tensor` or `numpy.array`):
A segmentation map of shape `(height, width)` where each value denotes a segment or class id.
Returns:
`List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id.
"""
segment_ids = torch.unique(segmentation)
run_length_encodings = []
for idx in segment_ids:
mask = torch.where(segmentation == idx, 1, 0)
rle = binary_mask_to_rle(mask)
run_length_encodings.append(rle)
return run_length_encodings
# Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects
def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels):
"""
Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and
`labels`.
Args:
masks (`torch.Tensor`):
A tensor of shape `(num_queries, height, width)`.
scores (`torch.Tensor`):
A tensor of shape `(num_queries)`.
labels (`torch.Tensor`):
A tensor of shape `(num_queries)`.
object_mask_threshold (`float`):
A number between 0 and 1 used to binarize the masks.
Raises:
`ValueError`: Raised when the first dimension doesn't match in all input tensors.
Returns:
`Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region
< `object_mask_threshold`.
"""
if not (masks.shape[0] == scores.shape[0] == labels.shape[0]):
raise ValueError("mask, scores and labels must have the same shape!")
to_keep = labels.ne(num_labels) & (scores > object_mask_threshold)
return masks[to_keep], scores[to_keep], labels[to_keep]
# Copied from transformers.models.detr.image_processing_detr.check_segment_validity
def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8):
# Get the mask associated with the k class
mask_k = mask_labels == k
mask_k_area = mask_k.sum()
# Compute the area of all the stuff in query k
original_area = (mask_probs[k] >= mask_threshold).sum()
mask_exists = mask_k_area > 0 and original_area > 0
# Eliminate disconnected tiny segments
if mask_exists:
area_ratio = mask_k_area / original_area
if not area_ratio.item() > overlap_mask_area_threshold:
mask_exists = False
return mask_exists, mask_k
# Copied from transformers.models.detr.image_processing_detr.compute_segments
def compute_segments(
mask_probs,
pred_scores,
pred_labels,
mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8,
label_ids_to_fuse: Optional[Set[int]] = None,
target_size: Tuple[int, int] = None,
):
height = mask_probs.shape[1] if target_size is None else target_size[0]
width = mask_probs.shape[2] if target_size is None else target_size[1]
segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device)
segments: List[Dict] = []
if target_size is not None:
mask_probs = nn.functional.interpolate(
mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False
)[0]
current_segment_id = 0
# Weigh each mask by its prediction score
mask_probs *= pred_scores.view(-1, 1, 1)
mask_labels = mask_probs.argmax(0) # [height, width]
# Keep track of instances of each class
stuff_memory_list: Dict[str, int] = {}
for k in range(pred_labels.shape[0]):
pred_class = pred_labels[k].item()
should_fuse = pred_class in label_ids_to_fuse
# Check if mask exists and large enough to be a segment
mask_exists, mask_k = check_segment_validity(
mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold
)
if mask_exists:
if pred_class in stuff_memory_list:
current_segment_id = stuff_memory_list[pred_class]
else:
current_segment_id += 1
# Add current object segment to final segmentation map
segmentation[mask_k] = current_segment_id
segment_score = round(pred_scores[k].item(), 6)
segments.append(
{
"id": current_segment_id,
"label_id": pred_class,
"was_fused": should_fuse,
"score": segment_score,
}
)
if should_fuse:
stuff_memory_list[pred_class] = current_segment_id
return segmentation, segments
# TODO: (Amy) Move to image_transforms
# Copied from transformers.models.maskformer.image_processing_maskformer.convert_segmentation_map_to_binary_masks
def convert_segmentation_map_to_binary_masks(
segmentation_map: "np.ndarray",
instance_id_to_semantic_id: Optional[Dict[int, int]] = None,
ignore_index: Optional[int] = None,
reduce_labels: bool = False,
):
if reduce_labels and ignore_index is None:
raise ValueError("If `reduce_labels` is True, `ignore_index` must be provided.")
if reduce_labels:
segmentation_map = np.where(segmentation_map == 0, ignore_index, segmentation_map - 1)
# Get unique ids (class or instance ids based on input)
all_labels = np.unique(segmentation_map)
# Drop background label if applicable
if ignore_index is not None:
all_labels = all_labels[all_labels != ignore_index]
# Generate a binary mask for each object instance
binary_masks = [(segmentation_map == i) for i in all_labels]
binary_masks = np.stack(binary_masks, axis=0) # (num_labels, height, width)
# Convert instance ids to class ids
if instance_id_to_semantic_id is not None:
labels = np.zeros(all_labels.shape[0])
for label in all_labels:
class_id = instance_id_to_semantic_id[label + 1 if reduce_labels else label]
labels[all_labels == label] = class_id - 1 if reduce_labels else class_id
else:
labels = all_labels
return binary_masks.astype(np.float32), labels.astype(np.int64)
# Copied from transformers.models.maskformer.image_processing_maskformer.get_maskformer_resize_output_image_size with maskformer->mask2former
def get_mask2former_resize_output_image_size(
image: np.ndarray,
size: Union[int, Tuple[int, int], List[int], Tuple[int]],
max_size: Optional[int] = None,
size_divisor: int = 0,
default_to_square: bool = True,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
"""
Computes the output size given the desired size.
Args:
image (`np.ndarray`):
The input image.
size (`int` or `Tuple[int, int]` or `List[int]` or `Tuple[int]`):
The size of the output image.
max_size (`int`, *optional*):
The maximum size of the output image.
size_divisor (`int`, *optional*, defaults to 0):
If `size_divisor` is given, the output image size will be divisible by the number.
default_to_square (`bool`, *optional*, defaults to `True`):
Whether to default to square if no size is provided.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If unset, will use the inferred format from the input.
Returns:
`Tuple[int, int]`: The output size.
"""
output_size = get_resize_output_image_size(
input_image=image,
size=size,
default_to_square=default_to_square,
max_size=max_size,
input_data_format=input_data_format,
)
if size_divisor > 0:
height, width = output_size
height = int(math.ceil(height / size_divisor) * size_divisor)
width = int(math.ceil(width / size_divisor) * size_divisor)
output_size = (height, width)
return output_size
class Mask2FormerImageProcessor(BaseImageProcessor):
r"""
Constructs a Mask2Former image processor. The image processor can be used to prepare image(s) and optional targets
for the model.
This image processor inherits from [`BaseImageProcessor`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the input to a certain `size`.
size (`int`, *optional*, defaults to 800):
Resize the input to the given size. Only has an effect if `do_resize` is set to `True`. If size is a
sequence like `(width, height)`, output size will be matched to this. If size is an int, smaller edge of
the image will be matched to this number. i.e, if `height > width`, then image will be rescaled to `(size *
height / width, size)`.
size_divisor (`int`, *optional*, defaults to 32):
Some backbones need images divisible by a certain number. If not passed, it defaults to the value used in
Swin Transformer.
resample (`int`, *optional*, defaults to `Resampling.BILINEAR`):
An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`,
`PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`,
`PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set
to `True`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the input to a certain `scale`.
rescale_factor (`float`, *optional*, defaults to `1/ 255`):
Rescale the input by the given factor. Only has an effect if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input with mean and standard deviation.
image_mean (`int`, *optional*, defaults to `[0.485, 0.456, 0.406]`):
The sequence of means for each channel, to be used when normalizing images. Defaults to the ImageNet mean.
image_std (`int`, *optional*, defaults to `[0.229, 0.224, 0.225]`):
The sequence of standard deviations for each channel, to be used when normalizing images. Defaults to the
ImageNet std.
ignore_index (`int`, *optional*):
Label to be assigned to background pixels in segmentation maps. If provided, segmentation map pixels
denoted with 0 (background) will be replaced with `ignore_index`.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to decrement all label values of segmentation maps by 1. Usually used for datasets where 0
is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k).
The background label will be replaced by `ignore_index`.
"""
model_input_names = ["pixel_values", "pixel_mask"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
size_divisor: int = 32,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: float = 1 / 255,
do_normalize: bool = True,
image_mean: Union[float, List[float]] = None,
image_std: Union[float, List[float]] = None,
ignore_index: Optional[int] = None,
reduce_labels: bool = False,
**kwargs,
):
if "size_divisibility" in kwargs:
warnings.warn(
"The `size_divisibility` argument is deprecated and will be removed in v4.27. Please use "
"`size_divisor` instead.",
FutureWarning,
)
size_divisor = kwargs.pop("size_divisibility")
if "max_size" in kwargs:
warnings.warn(
"The `max_size` argument is deprecated and will be removed in v4.27. Please use size['longest_edge']"
" instead.",
FutureWarning,
)
# We make max_size a private attribute so we can pass it as a default value in the preprocess method whilst
# `size` can still be pass in as an int
self._max_size = kwargs.pop("max_size")
else:
self._max_size = 1333
size = size if size is not None else {"shortest_edge": 800, "longest_edge": self._max_size}
size = get_size_dict(size, max_size=self._max_size, default_to_square=False)
super().__init__(**kwargs)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.size_divisor = size_divisor
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.ignore_index = ignore_index
self.reduce_labels = reduce_labels
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
created using from_dict and kwargs e.g. `Mask2FormerImageProcessor.from_pretrained(checkpoint, max_size=800)`
"""
image_processor_dict = image_processor_dict.copy()
if "max_size" in kwargs:
image_processor_dict["max_size"] = kwargs.pop("max_size")
if "size_divisibility" in kwargs:
image_processor_dict["size_divisibility"] = kwargs.pop("size_divisibility")
return super().from_dict(image_processor_dict, **kwargs)
# Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.resize with get_maskformer_resize_output_image_size->get_mask2former_resize_output_image_size
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
size_divisor: int = 0,
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format=None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image to the given size. Size can be min_size (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
The size of the output image.
size_divisor (`int`, *optional*, defaults to 0):
If `size_divisor` is given, the output image size will be divisible by the number.
resample (`PILImageResampling` resampling filter, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use when resizing the image.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
if "max_size" in kwargs:
warnings.warn(
"The `max_size` parameter is deprecated and will be removed in v4.27. "
"Please specify in `size['longest_edge'] instead`.",
FutureWarning,
)
max_size = kwargs.pop("max_size")
else:
max_size = None
size = get_size_dict(size, max_size=max_size, default_to_square=False)
if "shortest_edge" in size and "longest_edge" in size:
size, max_size = size["shortest_edge"], size["longest_edge"]
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
max_size = None
else:
raise ValueError(
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
f" {size.keys()}."
)
size = get_mask2former_resize_output_image_size(
image=image,
size=size,
max_size=max_size,
size_divisor=size_divisor,
default_to_square=False,
input_data_format=input_data_format,
)
image = resize(
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
)
return image
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
def rescale(
self,
image: np.ndarray,
rescale_factor: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Rescale the image by the given factor. image = image * rescale_factor.
Args:
image (`np.ndarray`):
Image to rescale.
rescale_factor (`float`):
The value to use for rescaling.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
# Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.convert_segmentation_map_to_binary_masks
def convert_segmentation_map_to_binary_masks(
self,
segmentation_map: "np.ndarray",
instance_id_to_semantic_id: Optional[Dict[int, int]] = None,
ignore_index: Optional[int] = None,
reduce_labels: bool = False,
):
reduce_labels = reduce_labels if reduce_labels is not None else self.reduce_labels
ignore_index = ignore_index if ignore_index is not None else self.ignore_index
return convert_segmentation_map_to_binary_masks(
segmentation_map=segmentation_map,
instance_id_to_semantic_id=instance_id_to_semantic_id,
ignore_index=ignore_index,
reduce_labels=reduce_labels,
)
def __call__(self, images, segmentation_maps=None, **kwargs) -> BatchFeature:
return self.preprocess(images, segmentation_maps=segmentation_maps, **kwargs)
def _preprocess(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
size_divisor: int = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
if do_resize:
image = self.resize(
image, size=size, size_divisor=size_divisor, resample=resample, input_data_format=input_data_format
)
if do_rescale:
image = self.rescale(image, rescale_factor=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image, mean=image_mean, std=image_std, input_data_format=input_data_format)
return image
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
size_divisor: int = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if is_scaled_image(image) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
image = self._preprocess(
image=image,
do_resize=do_resize,
size=size,
size_divisor=size_divisor,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
input_data_format=input_data_format,
)
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def _preprocess_mask(
self,
segmentation_map: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
size_divisor: int = 0,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single mask."""
segmentation_map = to_numpy_array(segmentation_map)
# Add channel dimension if missing - needed for certain transformations
if segmentation_map.ndim == 2:
added_channel_dim = True
segmentation_map = segmentation_map[None, ...]
input_data_format = ChannelDimension.FIRST
else:
added_channel_dim = False
if input_data_format is None:
input_data_format = infer_channel_dimension_format(segmentation_map)
# TODO: (Amy)
# Remork segmentation map processing to include reducing labels and resizing which doesn't
# drop segment IDs > 255.
segmentation_map = self._preprocess(
image=segmentation_map,
do_resize=do_resize,
resample=PILImageResampling.NEAREST,
size=size,
size_divisor=size_divisor,
do_rescale=False,
do_normalize=False,
input_data_format=input_data_format,
)
# Remove extra channel dimension if added for processing
if added_channel_dim:
segmentation_map = segmentation_map.squeeze(0)
return segmentation_map
def preprocess(
self,
images: ImageInput,
segmentation_maps: Optional[ImageInput] = None,
instance_id_to_semantic_id: Optional[Dict[int, int]] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
size_divisor: Optional[int] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
ignore_index: Optional[int] = None,
reduce_labels: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
if "pad_and_return_pixel_mask" in kwargs:
warnings.warn(
"The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version",
FutureWarning,
)
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False, max_size=self._max_size)
size_divisor = size_divisor if size_divisor is not None else self.size_divisor
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
ignore_index = ignore_index if ignore_index is not None else self.ignore_index
reduce_labels = reduce_labels if reduce_labels is not None else self.reduce_labels
if do_resize is not None and size is None or size_divisor is None:
raise ValueError("If `do_resize` is True, `size` and `size_divisor` must be provided.")
if do_rescale is not None and rescale_factor is None:
raise ValueError("If `do_rescale` is True, `rescale_factor` must be provided.")
if do_normalize is not None and (image_mean is None or image_std is None):
raise ValueError("If `do_normalize` is True, `image_mean` and `image_std` must be provided.")
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if segmentation_maps is not None and not valid_images(segmentation_maps):
raise ValueError(
"Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if not is_batched(images):
images = [images]
segmentation_maps = [segmentation_maps] if segmentation_maps is not None else None
if segmentation_maps is not None and len(images) != len(segmentation_maps):
raise ValueError("Images and segmentation maps must have the same length.")
images = [
self._preprocess_image(
image,
do_resize=do_resize,
size=size,
size_divisor=size_divisor,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
input_data_format=input_data_format,
)
for image in images
]
if segmentation_maps is not None:
segmentation_maps = [
self._preprocess_mask(
segmentation_map, do_resize, size, size_divisor, input_data_format=input_data_format
)
for segmentation_map in segmentation_maps
]
encoded_inputs = self.encode_inputs(
images,
segmentation_maps,
instance_id_to_semantic_id,
ignore_index,
reduce_labels,
return_tensors,
input_data_format=input_data_format,
)
return encoded_inputs
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image
def _pad_image(
self,
image: np.ndarray,
output_size: Tuple[int, int],
constant_values: Union[float, Iterable[float]] = 0,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pad an image with zeros to the given size.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = output_size
pad_bottom = output_height - input_height
pad_right = output_width - input_width
padding = ((0, pad_bottom), (0, pad_right))
padded_image = pad(
image,
padding,
mode=PaddingMode.CONSTANT,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
return padded_image
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad
def pad(
self,
images: List[np.ndarray],
constant_values: Union[float, Iterable[float]] = 0,
return_pixel_mask: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> BatchFeature:
"""
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
in the batch and optionally returns their corresponding pixel mask.
Args:
image (`np.ndarray`):
Image to pad.
constant_values (`float` or `Iterable[float]`, *optional*):
The value to use for the padding if `mode` is `"constant"`.
return_pixel_mask (`bool`, *optional*, defaults to `True`):
Whether to return a pixel mask.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
pad_size = get_max_height_width(images, input_data_format=input_data_format)
padded_images = [
self._pad_image(
image,
pad_size,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
for image in images
]
data = {"pixel_values": padded_images}
if return_pixel_mask:
masks = [
make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
for image in images
]
data["pixel_mask"] = masks
return BatchFeature(data=data, tensor_type=return_tensors)
def encode_inputs(
self,
pixel_values_list: List[ImageInput],
segmentation_maps: ImageInput = None,
instance_id_to_semantic_id: Optional[Union[List[Dict[int, int]], Dict[int, int]]] = None,
ignore_index: Optional[int] = None,
reduce_labels: bool = False,
return_tensors: Optional[Union[str, TensorType]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Pad images up to the largest image in a batch and create a corresponding `pixel_mask`.
Mask2Former addresses semantic segmentation with a mask classification paradigm, thus input segmentation maps
will be converted to lists of binary masks and their respective labels. Let's see an example, assuming
`segmentation_maps = [[2,6,7,9]]`, the output will contain `mask_labels =
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]` (four binary masks) and `class_labels = [2,6,7,9]`, the labels for
each mask.
Args:
pixel_values_list (`List[ImageInput]`):
List of images (pixel values) to be padded. Each image should be a tensor of shape `(channels, height,
width)`.
segmentation_maps (`ImageInput`, *optional*):
The corresponding semantic segmentation maps with the pixel-wise annotations.
(`bool`, *optional*, defaults to `True`):
Whether or not to pad images up to the largest image in a batch and create a pixel mask.
If left to the default, will return a pixel mask that is:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
instance_id_to_semantic_id (`List[Dict[int, int]]` or `Dict[int, int]`, *optional*):
A mapping between object instance ids and class ids. If passed, `segmentation_maps` is treated as an
instance segmentation map where each pixel represents an instance id. Can be provided as a single
dictionary with a global/dataset-level mapping or as a list of dictionaries (one per image), to map
instance ids in each image separately.
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
If set, will return tensors instead of NumPy arrays. If set to `'pt'`, return PyTorch `torch.Tensor`
objects.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **pixel_values** -- Pixel values to be fed to a model.
- **pixel_mask** -- Pixel mask to be fed to a model (when `=True` or if `pixel_mask` is in
`self.model_input_names`).
- **mask_labels** -- Optional list of mask labels of shape `(labels, height, width)` to be fed to a model
(when `annotations` are provided).
- **class_labels** -- Optional list of class labels of shape `(labels)` to be fed to a model (when
`annotations` are provided). They identify the labels of `mask_labels`, e.g. the label of
`mask_labels[i][j]` if `class_labels[i][j]`.
"""
ignore_index = self.ignore_index if ignore_index is None else ignore_index
reduce_labels = self.reduce_labels if reduce_labels is None else reduce_labels
pixel_values_list = [to_numpy_array(pixel_values) for pixel_values in pixel_values_list]
if input_data_format is None:
input_data_format = infer_channel_dimension_format(pixel_values_list[0])
encoded_inputs = self.pad(
pixel_values_list, return_tensors=return_tensors, input_data_format=input_data_format
)
if segmentation_maps is not None:
mask_labels = []
class_labels = []
pad_size = get_max_height_width(pixel_values_list)
# Convert to list of binary masks and labels
for idx, segmentation_map in enumerate(segmentation_maps):
segmentation_map = to_numpy_array(segmentation_map)
if isinstance(instance_id_to_semantic_id, list):
instance_id = instance_id_to_semantic_id[idx]
else:
instance_id = instance_id_to_semantic_id
# Use instance2class_id mapping per image
masks, classes = self.convert_segmentation_map_to_binary_masks(
segmentation_map, instance_id, ignore_index=ignore_index, reduce_labels=reduce_labels
)
# We add an axis to make them compatible with the transformations library
# this will be removed in the future
masks = [mask[None, ...] for mask in masks]
masks = [
self._pad_image(image=mask, output_size=pad_size, constant_values=ignore_index) for mask in masks
]
masks = np.concatenate(masks, axis=0)
mask_labels.append(torch.from_numpy(masks))
class_labels.append(torch.from_numpy(classes))
# we cannot batch them since they don't share a common class size
encoded_inputs["mask_labels"] = mask_labels
encoded_inputs["class_labels"] = class_labels
return encoded_inputs
def post_process_semantic_segmentation(
self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None
) -> "torch.Tensor":
"""
Converts the output of [`Mask2FormerForUniversalSegmentation`] into semantic segmentation maps. Only supports
PyTorch.
Args:
outputs ([`Mask2FormerForUniversalSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple[int, int]]`, *optional*):
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
final size (height, width) of each prediction. If left to None, predictions will not be resized.
Returns:
`List[torch.Tensor]`:
A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width)
corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each
`torch.Tensor` correspond to a semantic class id.
"""
class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1]
masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width]
# Scale back to preprocessed image size - (384, 384) for all models
masks_queries_logits = torch.nn.functional.interpolate(
masks_queries_logits, size=(384, 384), mode="bilinear", align_corners=False
)
# Remove the null class `[..., :-1]`
masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1]
masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
# Semantic segmentation logits of shape (batch_size, num_classes, height, width)
segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs)
batch_size = class_queries_logits.shape[0]
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if batch_size != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
semantic_segmentation = []
for idx in range(batch_size):
resized_logits = torch.nn.functional.interpolate(
segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = segmentation.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
def post_process_instance_segmentation(
self,
outputs,
threshold: float = 0.5,
mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8,
target_sizes: Optional[List[Tuple[int, int]]] = None,
return_coco_annotation: Optional[bool] = False,
return_binary_maps: Optional[bool] = False,
) -> List[Dict]:
"""
Converts the output of [`Mask2FormerForUniversalSegmentationOutput`] into instance segmentation predictions.
Only supports PyTorch.
Args:
outputs ([`Mask2FormerForUniversalSegmentation`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.5):
The probability score threshold to keep predicted instance masks.
mask_threshold (`float`, *optional*, defaults to 0.5):
Threshold to use when turning the predicted masks into binary values.
overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
The overlap mask area threshold to merge or discard small disconnected parts within each binary
instance mask.
target_sizes (`List[Tuple]`, *optional*):
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
final size (height, width) of each prediction. If left to None, predictions will not be resized.
return_coco_annotation (`bool`, *optional*, defaults to `False`):
If set to `True`, segmentation maps are returned in COCO run-length encoding (RLE) format.
return_binary_maps (`bool`, *optional*, defaults to `False`):
If set to `True`, segmentation maps are returned as a concatenated tensor of binary segmentation maps
(one per detected instance).
Returns:
`List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
- **segmentation** -- A tensor of shape `(height, width)` where each pixel represents a `segment_id` or
`List[List]` run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to
`True`. Set to `None` if no mask if found above `threshold`.
- **segments_info** -- A dictionary that contains additional information on each segment.
- **id** -- An integer representing the `segment_id`.
- **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
- **score** -- Prediction score of segment with `segment_id`.
"""
if return_coco_annotation and return_binary_maps:
raise ValueError("return_coco_annotation and return_binary_maps can not be both set to True.")
# [batch_size, num_queries, num_classes+1]
class_queries_logits = outputs.class_queries_logits
# [batch_size, num_queries, height, width]
masks_queries_logits = outputs.masks_queries_logits
# Scale back to preprocessed image size - (384, 384) for all models
masks_queries_logits = torch.nn.functional.interpolate(
masks_queries_logits, size=(384, 384), mode="bilinear", align_corners=False
)
device = masks_queries_logits.device
num_classes = class_queries_logits.shape[-1] - 1
num_queries = class_queries_logits.shape[-2]
# Loop over items in batch size
results: List[Dict[str, TensorType]] = []
for i in range(class_queries_logits.shape[0]):
mask_pred = masks_queries_logits[i]
mask_cls = class_queries_logits[i]
scores = torch.nn.functional.softmax(mask_cls, dim=-1)[:, :-1]
labels = torch.arange(num_classes, device=device).unsqueeze(0).repeat(num_queries, 1).flatten(0, 1)
scores_per_image, topk_indices = scores.flatten(0, 1).topk(num_queries, sorted=False)
labels_per_image = labels[topk_indices]
topk_indices = torch.div(topk_indices, num_classes, rounding_mode="floor")
mask_pred = mask_pred[topk_indices]
pred_masks = (mask_pred > 0).float()
# Calculate average mask prob
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * pred_masks.flatten(1)).sum(1) / (
pred_masks.flatten(1).sum(1) + 1e-6
)
pred_scores = scores_per_image * mask_scores_per_image
pred_classes = labels_per_image
segmentation = torch.zeros((384, 384)) - 1
if target_sizes is not None:
segmentation = torch.zeros(target_sizes[i]) - 1
pred_masks = torch.nn.functional.interpolate(
pred_masks.unsqueeze(0), size=target_sizes[i], mode="nearest"
)[0]
instance_maps, segments = [], []
current_segment_id = 0
for j in range(num_queries):
score = pred_scores[j].item()
if not torch.all(pred_masks[j] == 0) and score >= threshold:
segmentation[pred_masks[j] == 1] = current_segment_id
segments.append(
{
"id": current_segment_id,
"label_id": pred_classes[j].item(),
"was_fused": False,
"score": round(score, 6),
}
)
current_segment_id += 1
instance_maps.append(pred_masks[j])
# Return segmentation map in run-length encoding (RLE) format
if return_coco_annotation:
segmentation = convert_segmentation_to_rle(segmentation)
# Return a concatenated tensor of binary instance maps
if return_binary_maps and len(instance_maps) != 0:
segmentation = torch.stack(instance_maps, dim=0)
results.append({"segmentation": segmentation, "segments_info": segments})
return results
def post_process_panoptic_segmentation(
self,
outputs,
threshold: float = 0.5,
mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8,
label_ids_to_fuse: Optional[Set[int]] = None,
target_sizes: Optional[List[Tuple[int, int]]] = None,
) -> List[Dict]:
"""
Converts the output of [`Mask2FormerForUniversalSegmentationOutput`] into image panoptic segmentation
predictions. Only supports PyTorch.
Args:
outputs ([`Mask2FormerForUniversalSegmentationOutput`]):
The outputs from [`Mask2FormerForUniversalSegmentation`].
threshold (`float`, *optional*, defaults to 0.5):
The probability score threshold to keep predicted instance masks.
mask_threshold (`float`, *optional*, defaults to 0.5):
Threshold to use when turning the predicted masks into binary values.
overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
The overlap mask area threshold to merge or discard small disconnected parts within each binary
instance mask.
label_ids_to_fuse (`Set[int]`, *optional*):
The labels in this state will have all their instances be fused together. For instance we could say
there can only be one sky in an image, but several persons, so the label ID for sky would be in that
set, but not the one for person.
target_sizes (`List[Tuple]`, *optional*):
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
final size (height, width) of each prediction in batch. If left to None, predictions will not be
resized.
Returns:
`List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
- **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id`, set
to `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized
to the corresponding `target_sizes` entry.
- **segments_info** -- A dictionary that contains additional information on each segment.
- **id** -- an integer representing the `segment_id`.
- **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
- **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise.
Multiple instances of the same class / label were fused and assigned a single `segment_id`.
- **score** -- Prediction score of segment with `segment_id`.
"""
if label_ids_to_fuse is None:
logger.warning("`label_ids_to_fuse` unset. No instance will be fused.")
label_ids_to_fuse = set()
class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1]
masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width]
# Scale back to preprocessed image size - (384, 384) for all models
masks_queries_logits = torch.nn.functional.interpolate(
masks_queries_logits, size=(384, 384), mode="bilinear", align_corners=False
)
batch_size = class_queries_logits.shape[0]
num_labels = class_queries_logits.shape[-1] - 1
mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
# Predicted label and score of each query (batch_size, num_queries)
pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1)
# Loop over items in batch size
results: List[Dict[str, TensorType]] = []
for i in range(batch_size):
mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(
mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels
)
# No mask found
if mask_probs_item.shape[0] <= 0:
height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:]
segmentation = torch.zeros((height, width)) - 1
results.append({"segmentation": segmentation, "segments_info": []})
continue
# Get segmentation map and segment information of batch item
target_size = target_sizes[i] if target_sizes is not None else None
segmentation, segments = compute_segments(
mask_probs=mask_probs_item,
pred_scores=pred_scores_item,
pred_labels=pred_labels_item,
mask_threshold=mask_threshold,
overlap_mask_area_threshold=overlap_mask_area_threshold,
label_ids_to_fuse=label_ids_to_fuse,
target_size=target_size,
)
results.append({"segmentation": segmentation, "segments_info": segments})
return results
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/mask2former/convert_mask2former_original_pytorch_checkpoint_to_pytorch.py
|
# coding=utf-8
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import sys
from argparse import ArgumentParser
from dataclasses import dataclass
from pathlib import Path
from pprint import pformat
from typing import Any, Dict, Iterator, List, Set, Tuple
import requests
import torch
import torchvision.transforms as T
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from huggingface_hub import hf_hub_download
from PIL import Image
from torch import Tensor, nn
from transformers import (
Mask2FormerConfig,
Mask2FormerForUniversalSegmentation,
Mask2FormerImageProcessor,
Mask2FormerModel,
SwinConfig,
)
from transformers.models.mask2former.modeling_mask2former import (
Mask2FormerForUniversalSegmentationOutput,
Mask2FormerModelOutput,
)
from transformers.utils import logging
StateDict = Dict[str, Tensor]
logging.set_verbosity_info()
logger = logging.get_logger()
torch.manual_seed(0)
class TrackedStateDict:
def __init__(self, to_track: Dict):
"""This class "tracks" a python dictionary by keeping track of which item is accessed.
Args:
to_track (Dict): The dictionary we wish to track
"""
self.to_track = to_track
self._seen: Set[str] = set()
def __getitem__(self, key: str) -> Any:
return self.to_track[key]
def __setitem__(self, key: str, item: Any):
self._seen.add(key)
self.to_track[key] = item
def diff(self) -> List[str]:
"""This method returns a set difference between the keys in the tracked state dict and the one we have access so far.
This is an effective method to check if we have update all the keys
Returns:
List[str]: List of keys not yet updated
"""
return set(self.to_track.keys()) - self._seen
def copy(self) -> Dict:
# proxy the call to the internal dictionary
return self.to_track.copy()
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
img_data = requests.get(url, stream=True).raw
im = Image.open(img_data)
return im
@dataclass
class Args:
"""Fake command line arguments needed by mask2former/detectron implementation"""
config_file: str
def setup_cfg(args: Args):
# load config from file and command-line arguments
cfg = get_cfg()
add_deeplab_config(cfg)
add_maskformer2_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.freeze()
return cfg
class OriginalMask2FormerConfigToOursConverter:
def __call__(self, original_config: object) -> Mask2FormerConfig:
model = original_config.MODEL
repo_id = "huggingface/label-files"
if model.SEM_SEG_HEAD.NUM_CLASSES == 847:
filename = "mask2former-ade20k-full-id2label.json"
elif model.SEM_SEG_HEAD.NUM_CLASSES == 150:
filename = "ade20k-id2label.json"
elif model.SEM_SEG_HEAD.NUM_CLASSES == 80:
filename = "coco-detection-mmdet-id2label.json"
elif model.SEM_SEG_HEAD.NUM_CLASSES == 171:
filename = "mask2former-coco-stuff-id2label.json"
elif model.SEM_SEG_HEAD.NUM_CLASSES == 133:
filename = "coco-panoptic-id2label.json"
elif model.SEM_SEG_HEAD.NUM_CLASSES == 19:
filename = "cityscapes-id2label.json"
elif model.SEM_SEG_HEAD.NUM_CLASSES == 8:
filename = "cityscapes-instance-id2label.json"
elif model.SEM_SEG_HEAD.NUM_CLASSES == 65:
filename = "mapillary-vistas-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
label2id = {label: idx for idx, label in id2label.items()}
if model.SWIN.EMBED_DIM == 96:
backbone_config = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"]
)
elif model.SWIN.EMBED_DIM == 128:
backbone_config = SwinConfig(
embed_dim=128,
window_size=12,
depths=(2, 2, 18, 2),
num_heads=(4, 8, 16, 32),
out_features=["stage1", "stage2", "stage3", "stage4"],
)
elif model.SWIN.EMBED_DIM == 192:
backbone_config = SwinConfig.from_pretrained(
"microsoft/swin-large-patch4-window12-384", out_features=["stage1", "stage2", "stage3", "stage4"]
)
else:
raise ValueError(f"embed dim {model.SWIN.EMBED_DIM} not supported for Swin!")
backbone_config.drop_path_rate = model.SWIN.DROP_PATH_RATE
backbone_config.attention_probs_dropout_prob = model.SWIN.ATTN_DROP_RATE
backbone_config.depths = model.SWIN.DEPTHS
config: Mask2FormerConfig = Mask2FormerConfig(
ignore_value=model.SEM_SEG_HEAD.IGNORE_VALUE,
num_labels=model.SEM_SEG_HEAD.NUM_CLASSES,
num_queries=model.MASK_FORMER.NUM_OBJECT_QUERIES,
no_object_weight=model.MASK_FORMER.NO_OBJECT_WEIGHT,
class_weight=model.MASK_FORMER.CLASS_WEIGHT,
mask_weight=model.MASK_FORMER.MASK_WEIGHT,
dice_weight=model.MASK_FORMER.DICE_WEIGHT,
train_num_points=model.MASK_FORMER.TRAIN_NUM_POINTS,
oversample_ratio=model.MASK_FORMER.OVERSAMPLE_RATIO,
importance_sample_ratio=model.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
init_std=0.02,
init_xavier_std=1.0,
use_auxiliary_loss=model.MASK_FORMER.DEEP_SUPERVISION,
feature_strides=[4, 8, 16, 32],
backbone_config=backbone_config,
id2label=id2label,
label2id=label2id,
feature_size=model.SEM_SEG_HEAD.CONVS_DIM,
mask_feature_size=model.SEM_SEG_HEAD.MASK_DIM,
hidden_dim=model.MASK_FORMER.HIDDEN_DIM,
encoder_layers=model.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS,
encoder_feedforward_dim=1024,
decoder_layers=model.MASK_FORMER.DEC_LAYERS,
num_attention_heads=model.MASK_FORMER.NHEADS,
dropout=model.MASK_FORMER.DROPOUT,
dim_feedforward=model.MASK_FORMER.DIM_FEEDFORWARD,
pre_norm=model.MASK_FORMER.PRE_NORM,
enforce_input_proj=model.MASK_FORMER.ENFORCE_INPUT_PROJ,
common_stride=model.SEM_SEG_HEAD.COMMON_STRIDE,
)
return config
class OriginalMask2FormerConfigToImageProcessorConverter:
def __call__(self, original_config: object) -> Mask2FormerImageProcessor:
model = original_config.MODEL
model_input = original_config.INPUT
return Mask2FormerImageProcessor(
image_mean=(torch.tensor(model.PIXEL_MEAN) / 255).tolist(),
image_std=(torch.tensor(model.PIXEL_STD) / 255).tolist(),
size=model_input.MIN_SIZE_TEST,
max_size=model_input.MAX_SIZE_TEST,
num_labels=model.SEM_SEG_HEAD.NUM_CLASSES,
ignore_index=model.SEM_SEG_HEAD.IGNORE_VALUE,
size_divisibility=32,
)
class OriginalMask2FormerCheckpointToOursConverter:
def __init__(self, original_model: nn.Module, config: Mask2FormerConfig):
self.original_model = original_model
self.config = config
def pop_all(self, renamed_keys: List[Tuple[str, str]], dst_state_dict: StateDict, src_state_dict: StateDict):
for src_key, dst_key in renamed_keys:
dst_state_dict[dst_key] = src_state_dict.pop(src_key)
def replace_maskformer_swin_backbone(
self, dst_state_dict: StateDict, src_state_dict: StateDict, config: Mask2FormerConfig
):
dst_prefix: str = "pixel_level_module.encoder"
src_prefix: str = "backbone"
renamed_keys = [
(
f"{src_prefix}.patch_embed.proj.weight",
f"{dst_prefix}.model.embeddings.patch_embeddings.projection.weight",
),
(f"{src_prefix}.patch_embed.proj.bias", f"{dst_prefix}.model.embeddings.patch_embeddings.projection.bias"),
(f"{src_prefix}.patch_embed.norm.weight", f"{dst_prefix}.model.embeddings.norm.weight"),
(f"{src_prefix}.patch_embed.norm.bias", f"{dst_prefix}.model.embeddings.norm.bias"),
]
num_layers = len(config.backbone_config.depths)
for layer_idx in range(num_layers):
for block_idx in range(config.backbone_config.depths[layer_idx]):
renamed_keys.extend(
[ # src, dst
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.weight",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.bias",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.bias",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_bias_table",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_bias_table",
),
]
)
# now we need to handle the attentions
# read in weights + bias of input projection layer of cross-attention
src_att_weight = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"]
src_att_bias = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"]
size = src_att_weight.shape[0]
offset = size // 3
dst_state_dict[
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.weight"
] = src_att_weight[:offset, :]
dst_state_dict[
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.bias"
] = src_att_bias[:offset]
dst_state_dict[
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.weight"
] = src_att_weight[offset : offset * 2, :]
dst_state_dict[
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.bias"
] = src_att_bias[offset : offset * 2]
dst_state_dict[
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.weight"
] = src_att_weight[-offset:, :]
dst_state_dict[
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.bias"
] = src_att_bias[-offset:]
# let's pop them
src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight")
src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias")
# proj
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.weight",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.bias",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.bias",
),
]
)
# second norm
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.weight",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.bias",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.bias",
),
]
)
# mlp
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.weight",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.bias",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.bias",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.weight",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.bias",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.bias",
),
]
)
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_index",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_index",
)
]
)
if layer_idx < num_layers - 1:
# patch merging
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.downsample.reduction.weight",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.reduction.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.downsample.norm.weight",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.norm.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.downsample.norm.bias",
f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.norm.bias",
),
]
)
# hidden states norms
renamed_keys.extend(
[
(
f"{src_prefix}.norm{layer_idx}.weight",
f"{dst_prefix}.hidden_states_norms.{layer_idx}.weight",
),
(
f"{src_prefix}.norm{layer_idx}.bias",
f"{dst_prefix}.hidden_states_norms.{layer_idx}.bias",
),
]
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
def replace_swin_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: Mask2FormerConfig):
dst_prefix: str = "pixel_level_module.encoder"
src_prefix: str = "backbone"
renamed_keys = [
(
f"{src_prefix}.patch_embed.proj.weight",
f"{dst_prefix}.embeddings.patch_embeddings.projection.weight",
),
(f"{src_prefix}.patch_embed.proj.bias", f"{dst_prefix}.embeddings.patch_embeddings.projection.bias"),
(f"{src_prefix}.patch_embed.norm.weight", f"{dst_prefix}.embeddings.norm.weight"),
(f"{src_prefix}.patch_embed.norm.bias", f"{dst_prefix}.embeddings.norm.bias"),
]
for layer_idx in range(len(config.backbone_config.depths)):
for block_idx in range(config.backbone_config.depths[layer_idx]):
renamed_keys.extend(
[ # src, dst
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.bias",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_bias_table",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_bias_table",
),
]
)
# now we need to handle the attentions
# read in weights + bias of input projection layer of cross-attention
src_att_weight = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"]
src_att_bias = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"]
size = src_att_weight.shape[0]
offset = size // 3
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.weight"
] = src_att_weight[:offset, :]
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.bias"
] = src_att_bias[:offset]
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.weight"
] = src_att_weight[offset : offset * 2, :]
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.bias"
] = src_att_bias[offset : offset * 2]
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.weight"
] = src_att_weight[-offset:, :]
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.bias"
] = src_att_bias[-offset:]
# let's pop them
src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight")
src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias")
# proj
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.bias",
),
]
)
# second norm
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.bias",
),
]
)
# mlp
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.bias",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.bias",
),
]
)
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_index",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_index",
)
]
)
if layer_idx < 3:
# patch merging
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.downsample.reduction.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.reduction.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.downsample.norm.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.downsample.norm.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.bias",
),
]
)
# hidden states norms
renamed_keys.extend(
[
(
f"{src_prefix}.norm{layer_idx}.weight",
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight",
),
(
f"{src_prefix}.norm{layer_idx}.bias",
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias",
),
]
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
# Backbone + Pixel Decoder
def replace_pixel_module(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "pixel_level_module.decoder"
src_prefix: str = "sem_seg_head.pixel_decoder"
self.replace_swin_backbone(dst_state_dict, src_state_dict, self.config)
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
return [
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
]
def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str):
self_attn_keys = []
self_attn_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.attention_weights", f"{dst_prefix}.attention_weights")
)
self_attn_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.output_proj", f"{dst_prefix}.output_proj")
)
self_attn_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.sampling_offsets", f"{dst_prefix}.sampling_offsets")
)
self_attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.value_proj", f"{dst_prefix}.value_proj"))
return self_attn_keys
def rename_keys_for_encoder_layer(src_prefix: str, dst_prefix: str):
encoder_keys = []
encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.fc1"))
encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.fc2"))
encoder_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.self_attn_layer_norm")
)
encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.final_layer_norm"))
encoder_keys.extend(rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn"))
return encoder_keys
# convolution layer for final features
renamed_keys = [
(f"{src_prefix}.adapter_1.weight", f"{dst_prefix}.adapter_1.0.weight"),
(f"{src_prefix}.adapter_1.norm.weight", f"{dst_prefix}.adapter_1.1.weight"),
(f"{src_prefix}.adapter_1.norm.bias", f"{dst_prefix}.adapter_1.1.bias"),
]
renamed_keys.extend(
[
(f"{src_prefix}.layer_1.weight", f"{dst_prefix}.layer_1.0.weight"),
(f"{src_prefix}.layer_1.norm.weight", f"{dst_prefix}.layer_1.1.weight"),
(f"{src_prefix}.layer_1.norm.bias", f"{dst_prefix}.layer_1.1.bias"),
]
)
# proj layers
for i in range(3):
for j in range(2):
renamed_keys.extend(
[
(f"{src_prefix}.input_proj.{i}.{j}.weight", f"{dst_prefix}.input_projections.{i}.{j}.weight"),
(f"{src_prefix}.input_proj.{i}.{j}.bias", f"{dst_prefix}.input_projections.{i}.{j}.bias"),
]
)
renamed_keys.extend([(f"{src_prefix}.transformer.level_embed", f"{dst_prefix}.level_embed")])
# layers
for layer_idx in range(self.config.encoder_layers):
renamed_keys.extend(
rename_keys_for_encoder_layer(
f"{src_prefix}.transformer.encoder.layers.{layer_idx}", f"{dst_prefix}.encoder.layers.{layer_idx}"
)
)
# proj
renamed_keys.extend(
[
(f"{src_prefix}.mask_features.weight", f"{dst_prefix}.mask_projection.weight"),
(f"{src_prefix}.mask_features.bias", f"{dst_prefix}.mask_projection.bias"),
]
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
# Transformer Decoder
def rename_keys_in_masked_attention_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "transformer_module.decoder"
src_prefix: str = "sem_seg_head.predictor"
rename_keys = []
for i in range(self.config.decoder_layers - 1):
rename_keys.append(
(
f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.out_proj.weight",
f"{dst_prefix}.layers.{i}.self_attn.out_proj.weight",
)
)
rename_keys.append(
(
f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.out_proj.bias",
f"{dst_prefix}.layers.{i}.self_attn.out_proj.bias",
)
)
rename_keys.append(
(
f"{src_prefix}.transformer_self_attention_layers.{i}.norm.weight",
f"{dst_prefix}.layers.{i}.self_attn_layer_norm.weight",
)
)
rename_keys.append(
(
f"{src_prefix}.transformer_self_attention_layers.{i}.norm.bias",
f"{dst_prefix}.layers.{i}.self_attn_layer_norm.bias",
)
)
rename_keys.append(
(
f"{src_prefix}.transformer_cross_attention_layers.{i}.multihead_attn.in_proj_weight",
f"{dst_prefix}.layers.{i}.cross_attn.in_proj_weight",
)
)
rename_keys.append(
(
f"{src_prefix}.transformer_cross_attention_layers.{i}.multihead_attn.in_proj_bias",
f"{dst_prefix}.layers.{i}.cross_attn.in_proj_bias",
)
)
rename_keys.append(
(
f"{src_prefix}.transformer_cross_attention_layers.{i}.multihead_attn.out_proj.weight",
f"{dst_prefix}.layers.{i}.cross_attn.out_proj.weight",
)
)
rename_keys.append(
(
f"{src_prefix}.transformer_cross_attention_layers.{i}.multihead_attn.out_proj.bias",
f"{dst_prefix}.layers.{i}.cross_attn.out_proj.bias",
)
)
rename_keys.append(
(
f"{src_prefix}.transformer_cross_attention_layers.{i}.norm.weight",
f"{dst_prefix}.layers.{i}.cross_attn_layer_norm.weight",
)
)
rename_keys.append(
(
f"{src_prefix}.transformer_cross_attention_layers.{i}.norm.bias",
f"{dst_prefix}.layers.{i}.cross_attn_layer_norm.bias",
)
)
rename_keys.append(
(f"{src_prefix}.transformer_ffn_layers.{i}.linear1.weight", f"{dst_prefix}.layers.{i}.fc1.weight")
)
rename_keys.append(
(f"{src_prefix}.transformer_ffn_layers.{i}.linear1.bias", f"{dst_prefix}.layers.{i}.fc1.bias")
)
rename_keys.append(
(f"{src_prefix}.transformer_ffn_layers.{i}.linear2.weight", f"{dst_prefix}.layers.{i}.fc2.weight")
)
rename_keys.append(
(f"{src_prefix}.transformer_ffn_layers.{i}.linear2.bias", f"{dst_prefix}.layers.{i}.fc2.bias")
)
rename_keys.append(
(
f"{src_prefix}.transformer_ffn_layers.{i}.norm.weight",
f"{dst_prefix}.layers.{i}.final_layer_norm.weight",
)
)
rename_keys.append(
(
f"{src_prefix}.transformer_ffn_layers.{i}.norm.bias",
f"{dst_prefix}.layers.{i}.final_layer_norm.bias",
)
)
return rename_keys
def replace_masked_attention_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "transformer_module.decoder"
src_prefix: str = "sem_seg_head.predictor"
renamed_keys = self.rename_keys_in_masked_attention_decoder(dst_state_dict, src_state_dict)
# add more
renamed_keys.extend(
[
(f"{src_prefix}.decoder_norm.weight", f"{dst_prefix}.layernorm.weight"),
(f"{src_prefix}.decoder_norm.bias", f"{dst_prefix}.layernorm.bias"),
]
)
mlp_len = 3
for i in range(mlp_len):
renamed_keys.extend(
[
(
f"{src_prefix}.mask_embed.layers.{i}.weight",
f"{dst_prefix}.mask_predictor.mask_embedder.{i}.0.weight",
),
(
f"{src_prefix}.mask_embed.layers.{i}.bias",
f"{dst_prefix}.mask_predictor.mask_embedder.{i}.0.bias",
),
]
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
def replace_keys_qkv_transformer_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "transformer_module.decoder.layers"
src_prefix: str = "sem_seg_head.predictor"
for i in range(self.config.decoder_layers - 1):
# read in weights + bias of input projection layer of self-attention
in_proj_weight = src_state_dict.pop(
f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_weight"
)
in_proj_bias = src_state_dict.pop(
f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_bias"
)
# next, add query, keys and values (in that order) to the state dict
dst_state_dict[f"{dst_prefix}.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
dst_state_dict[f"{dst_prefix}.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
dst_state_dict[f"{dst_prefix}.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
dst_state_dict[f"{dst_prefix}.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
dst_state_dict[f"{dst_prefix}.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
dst_state_dict[f"{dst_prefix}.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
def replace_transformer_module(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "transformer_module"
src_prefix: str = "sem_seg_head.predictor"
self.replace_masked_attention_decoder(dst_state_dict, src_state_dict)
renamed_keys = [
(f"{src_prefix}.query_embed.weight", f"{dst_prefix}.queries_embedder.weight"),
(f"{src_prefix}.query_feat.weight", f"{dst_prefix}.queries_features.weight"),
(f"{src_prefix}.level_embed.weight", f"{dst_prefix}.level_embed.weight"),
]
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
self.replace_keys_qkv_transformer_decoder(dst_state_dict, src_state_dict)
def replace_universal_segmentation_module(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = ""
src_prefix: str = "sem_seg_head.predictor"
renamed_keys = [
(f"{src_prefix}.class_embed.weight", f"{dst_prefix}class_predictor.weight"),
(f"{src_prefix}.class_embed.bias", f"{dst_prefix}class_predictor.bias"),
]
logger.info(f"Replacing keys {pformat(renamed_keys)}")
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
def convert(self, mask2former: Mask2FormerModel) -> Mask2FormerModel:
dst_state_dict = TrackedStateDict(mask2former.state_dict())
src_state_dict = self.original_model.state_dict()
self.replace_pixel_module(dst_state_dict, src_state_dict)
self.replace_transformer_module(dst_state_dict, src_state_dict)
logger.info(f"Missed keys are {pformat(dst_state_dict.diff())}")
logger.info(f"Not copied keys are {pformat(src_state_dict.keys())}")
logger.info("🙌 Done")
state_dict = {key: dst_state_dict[key] for key in dst_state_dict.to_track.keys()}
mask2former.load_state_dict(state_dict)
return mask2former
def convert_universal_segmentation(
self, mask2former: Mask2FormerForUniversalSegmentation
) -> Mask2FormerForUniversalSegmentation:
dst_state_dict = TrackedStateDict(mask2former.state_dict())
src_state_dict = self.original_model.state_dict()
self.replace_universal_segmentation_module(dst_state_dict, src_state_dict)
state_dict = {key: dst_state_dict[key] for key in dst_state_dict.to_track.keys()}
mask2former.load_state_dict(state_dict)
return mask2former
@staticmethod
def using_dirs(checkpoints_dir: Path, config_dir: Path) -> Iterator[Tuple[object, Path, Path]]:
checkpoints: List[Path] = checkpoints_dir.glob("**/*.pkl")
for checkpoint in checkpoints:
logger.info(f"💪 Converting {checkpoint.stem}")
# find associated config file
# dataset_name e.g 'coco'
dataset_name = checkpoint.parents[2].stem
if dataset_name == "ade":
dataset_name = dataset_name.replace("ade", "ade20k")
# task type e.g 'instance-segmentation'
segmentation_task = checkpoint.parents[1].stem
# config file corresponding to checkpoint
config_file_name = f"{checkpoint.parents[0].stem}.yaml"
config: Path = config_dir / dataset_name / segmentation_task / "swin" / config_file_name
yield config, checkpoint
def test(
original_model,
our_model: Mask2FormerForUniversalSegmentation,
image_processor: Mask2FormerImageProcessor,
tolerance: float,
):
with torch.no_grad():
original_model = original_model.eval()
our_model = our_model.eval()
im = prepare_img()
x = image_processor(images=im, return_tensors="pt")["pixel_values"]
original_model_backbone_features = original_model.backbone(x.clone())
our_model_output: Mask2FormerModelOutput = our_model.model(x.clone(), output_hidden_states=True)
# Test backbone
for original_model_feature, our_model_feature in zip(
original_model_backbone_features.values(), our_model_output.encoder_hidden_states
):
assert torch.allclose(
original_model_feature, our_model_feature, atol=tolerance
), "The backbone features are not the same."
# Test pixel decoder
mask_features, _, multi_scale_features = original_model.sem_seg_head.pixel_decoder.forward_features(
original_model_backbone_features
)
for original_model_feature, our_model_feature in zip(
multi_scale_features, our_model_output.pixel_decoder_hidden_states
):
assert torch.allclose(
original_model_feature, our_model_feature, atol=tolerance
), "The pixel decoder feature are not the same"
# Let's test the full model
tr_complete = T.Compose(
[T.Resize((384, 384)), T.ToTensor()],
)
y = (tr_complete(im) * 255.0).to(torch.int).float()
# modify original Mask2Former code to return mask and class logits
original_class_logits, original_mask_logits = original_model([{"image": y.clone().squeeze(0)}])
our_model_out: Mask2FormerForUniversalSegmentationOutput = our_model(x.clone())
our_mask_logits = our_model_out.masks_queries_logits
our_class_logits = our_model_out.class_queries_logits
assert original_mask_logits.shape == our_mask_logits.shape, "Output masks shapes are not matching."
assert original_class_logits.shape == our_class_logits.shape, "Output class logits shapes are not matching."
assert torch.allclose(
original_class_logits, our_class_logits, atol=tolerance
), "The class logits are not the same."
assert torch.allclose(
original_mask_logits, our_mask_logits, atol=tolerance
), "The predicted masks are not the same."
logger.info("✅ Test passed!")
def get_model_name(checkpoint_file: Path):
# model_name_raw is something like maskformer2_swin_small_bs16_50ep
model_name_raw: str = checkpoint_file.parents[0].stem
# `segmentation_task_type` must be one of the following: `instance-segmentation`, `panoptic-segmentation`, `semantic-segmentation`
segmentation_task_name: str = checkpoint_file.parents[1].stem
if segmentation_task_name not in ["instance-segmentation", "panoptic-segmentation", "semantic-segmentation"]:
raise ValueError(
f"{segmentation_task_name} must be wrong since acceptable values are: instance-segmentation,"
" panoptic-segmentation, semantic-segmentation."
)
# dataset name must be one of the following: `coco`, `ade`, `cityscapes`, `mapillary-vistas`
dataset_name: str = checkpoint_file.parents[2].stem
if dataset_name not in ["coco", "ade", "cityscapes", "mapillary-vistas"]:
raise ValueError(
f"{dataset_name} must be wrong since we didn't find 'coco' or 'ade' or 'cityscapes' or 'mapillary-vistas'"
" in it "
)
backbone = "swin"
backbone_types = ["tiny", "small", "base_IN21k", "base", "large"]
backbone_type = list(filter(lambda x: x in model_name_raw, backbone_types))[0].replace("_", "-")
model_name = f"mask2former-{backbone}-{backbone_type}-{dataset_name}-{segmentation_task_name.split('-')[0]}"
return model_name
if __name__ == "__main__":
parser = ArgumentParser(
description="Command line to convert the original mask2formers (with swin backbone) to our implementations."
)
parser.add_argument(
"--checkpoints_dir",
type=Path,
help=(
"A directory containing the model's checkpoints. The directory has to have the following structure:"
" <DIR_NAME>/<DATASET_NAME>/<SEGMENTATION_TASK_NAME>/<CONFIG_NAME>.pkl"
),
)
parser.add_argument(
"--configs_dir",
type=Path,
help=(
"A directory containing the model's configs, see detectron2 doc. The directory has to have the following"
" structure: <DIR_NAME>/<DATASET_NAME>/<SEGMENTATION_TASK_NAME>/<CONFIG_NAME>.yaml"
),
)
parser.add_argument(
"--mask2former_dir",
required=True,
type=Path,
help=(
"A path to Mask2Former's original implementation directory. You can download from here:"
" https://github.com/facebookresearch/Mask2Former"
),
)
args = parser.parse_args()
checkpoints_dir: Path = args.checkpoints_dir
config_dir: Path = args.configs_dir
mask2former_dir: Path = args.mask2former_dir
# append the path to the parents to mask2former dir
sys.path.append(str(mask2former_dir.parent))
# import original Mask2Former config and model from original source code repo
from Mask2Former.mask2former.config import add_maskformer2_config
from Mask2Former.mask2former.maskformer_model import MaskFormer as OriginalMask2Former
for config_file, checkpoint_file in OriginalMask2FormerCheckpointToOursConverter.using_dirs(
checkpoints_dir, config_dir
):
model_name = get_model_name(checkpoint_file)
image_processor = OriginalMask2FormerConfigToImageProcessorConverter()(
setup_cfg(Args(config_file=config_file))
)
image_processor.size = {"height": 384, "width": 384}
original_config = setup_cfg(Args(config_file=config_file))
mask2former_kwargs = OriginalMask2Former.from_config(original_config)
original_model = OriginalMask2Former(**mask2former_kwargs).eval()
DetectionCheckpointer(original_model).load(str(checkpoint_file))
config: Mask2FormerConfig = OriginalMask2FormerConfigToOursConverter()(original_config)
mask2former = Mask2FormerModel(config=config).eval()
converter = OriginalMask2FormerCheckpointToOursConverter(original_model, config)
mask2former = converter.convert(mask2former)
mask2former_for_segmentation = Mask2FormerForUniversalSegmentation(config=config).eval()
mask2former_for_segmentation.model = mask2former
mask2former_for_segmentation = converter.convert_universal_segmentation(mask2former_for_segmentation)
tolerance = 3e-1
high_tolerance_models = [
"mask2former-swin-base-IN21k-coco-instance",
"mask2former-swin-base-coco-instance",
"mask2former-swin-small-cityscapes-semantic",
]
if model_name in high_tolerance_models:
tolerance = 3e-1
logger.info(f"🪄 Testing {model_name}...")
test(original_model, mask2former_for_segmentation, image_processor, tolerance)
logger.info(f"🪄 Pushing {model_name} to hub...")
image_processor.push_to_hub(model_name)
mask2former_for_segmentation.push_to_hub(model_name)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
|
# coding=utf-8
# Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 Funnel model."""
from __future__ import annotations
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFMaskedLMOutput,
TFMultipleChoiceModelOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_funnel import FunnelConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "FunnelConfig"
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = [
"funnel-transformer/small", # B4-4-4H768
"funnel-transformer/small-base", # B4-4-4H768, no decoder
"funnel-transformer/medium", # B6-3x2-3x2H768
"funnel-transformer/medium-base", # B6-3x2-3x2H768, no decoder
"funnel-transformer/intermediate", # B6-6-6H768
"funnel-transformer/intermediate-base", # B6-6-6H768, no decoder
"funnel-transformer/large", # B8-8-8H1024
"funnel-transformer/large-base", # B8-8-8H1024, no decoder
"funnel-transformer/xlarge-base", # B10-10-10H1024
"funnel-transformer/xlarge", # B10-10-10H1024, no decoder
]
INF = 1e6
class TFFunnelEmbeddings(tf.keras.layers.Layer):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.initializer_std = 1.0 if config.initializer_std is None else config.initializer_std
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout)
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.hidden_size],
initializer=get_initializer(initializer_range=self.initializer_std),
)
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.d_model])
def call(self, input_ids=None, inputs_embeds=None, training=False):
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
assert not (input_ids is None and inputs_embeds is None)
assert not (input_ids is not None and inputs_embeds is not None)
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(self.weight, input_ids)
final_embeddings = self.LayerNorm(inputs=inputs_embeds)
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
return final_embeddings
class TFFunnelAttentionStructure:
"""
Contains helpers for `TFFunnelRelMultiheadAttention `.
"""
cls_token_type_id: int = 2
def __init__(self, config):
self.d_model = config.d_model
self.attention_type = config.attention_type
self.num_blocks = config.num_blocks
self.separate_cls = config.separate_cls
self.truncate_seq = config.truncate_seq
self.pool_q_only = config.pool_q_only
self.pooling_type = config.pooling_type
self.sin_dropout = tf.keras.layers.Dropout(config.hidden_dropout)
self.cos_dropout = tf.keras.layers.Dropout(config.hidden_dropout)
# Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was
# divided.
self.pooling_mult = None
def init_attention_inputs(self, inputs_embeds, attention_mask=None, token_type_ids=None, training=False):
"""Returns the attention inputs associated to the inputs of the model."""
# inputs_embeds has shape batch_size x seq_len x d_model
# attention_mask and token_type_ids have shape batch_size x seq_len
self.pooling_mult = 1
self.seq_len = seq_len = shape_list(inputs_embeds)[1]
position_embeds = self.get_position_embeds(seq_len, training=training)
token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None
cls_mask = (
tf.pad(tf.ones([seq_len - 1, seq_len - 1], dtype=inputs_embeds.dtype), [[1, 0], [1, 0]])
if self.separate_cls
else None
)
return (position_embeds, token_type_mat, attention_mask, cls_mask)
def token_type_ids_to_mat(self, token_type_ids):
"""Convert `token_type_ids` to `token_type_mat`."""
token_type_mat = tf.equal(tf.expand_dims(token_type_ids, -1), tf.expand_dims(token_type_ids, -2))
# Treat <cls> as in the same segment as both A & B
cls_ids = tf.equal(token_type_ids, tf.constant([self.cls_token_type_id], dtype=token_type_ids.dtype))
cls_mat = tf.logical_or(tf.expand_dims(cls_ids, -1), tf.expand_dims(cls_ids, -2))
return tf.logical_or(cls_mat, token_type_mat)
def get_position_embeds(self, seq_len, training=False):
"""
Create and cache inputs related to relative position encoding. Those are very different depending on whether we
are using the factorized or the relative shift attention:
For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2,
final formula.
For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final
formula.
Paper link: https://arxiv.org/abs/2006.03236
"""
if self.attention_type == "factorized":
# Notations from the paper, appending A.2.2, final formula.
# We need to create and return the matrices phi, psi, pi and omega.
pos_seq = tf.range(0, seq_len, 1.0)
freq_seq = tf.range(0, self.d_model // 2, 1.0)
inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2)))
sinusoid = tf.einsum("i,d->id", pos_seq, inv_freq)
sin_embed = tf.sin(sinusoid)
sin_embed_d = self.sin_dropout(sin_embed, training=training)
cos_embed = tf.cos(sinusoid)
cos_embed_d = self.cos_dropout(cos_embed, training=training)
# This is different from the formula on the paper...
phi = tf.concat([sin_embed_d, sin_embed_d], axis=-1)
psi = tf.concat([cos_embed, sin_embed], axis=-1)
pi = tf.concat([cos_embed_d, cos_embed_d], axis=-1)
omega = tf.concat([-sin_embed, cos_embed], axis=-1)
return (phi, pi, psi, omega)
else:
# Notations from the paper, appending A.2.1, final formula.
# We need to create and return all the possible vectors R for all blocks and shifts.
freq_seq = tf.range(0, self.d_model // 2, 1.0)
inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2)))
# Maximum relative positions for the first input
rel_pos_id = tf.range(-seq_len * 2, seq_len * 2, 1.0)
zero_offset = seq_len * tf.constant(2)
sinusoid = tf.einsum("i,d->id", rel_pos_id, inv_freq)
sin_embed = self.sin_dropout(tf.sin(sinusoid), training=training)
cos_embed = self.cos_dropout(tf.cos(sinusoid), training=training)
pos_embed = tf.concat([sin_embed, cos_embed], axis=-1)
pos = tf.range(0, seq_len)
pooled_pos = pos
position_embeds_list = []
for block_index in range(0, self.num_blocks):
# For each block with block_index > 0, we need two types position embeddings:
# - Attention(pooled-q, unpooled-kv)
# - Attention(pooled-q, pooled-kv)
# For block_index = 0 we only need the second one and leave the first one as None.
# First type
position_embeds_pooling = tf.fill([1], value=-1.0)
if block_index != 0:
pooled_pos = self.stride_pool_pos(pos, block_index)
# construct rel_pos_id
stride = 2 ** (block_index - 1)
rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2)
# rel_pos = tf.expand_dims(rel_pos,1) + zero_offset
# rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model))
rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype)
rel_pos = rel_pos + zero_offset
position_embeds_pooling = tf.gather(pos_embed, rel_pos, axis=0)
# Second type
pos = pooled_pos
stride = 2**block_index
rel_pos = self.relative_pos(pos, stride)
# rel_pos = tf.expand_dims(rel_pos,1) + zero_offset
# rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model))
rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype)
rel_pos = rel_pos + zero_offset
tf.debugging.assert_less(rel_pos, tf.shape(pos_embed)[0])
position_embeds_no_pooling = tf.gather(pos_embed, rel_pos, axis=0)
position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling])
return position_embeds_list
def stride_pool_pos(self, pos_id, block_index):
"""
Pool `pos_id` while keeping the cls token separate (if `self.separate_cls=True`).
"""
if self.separate_cls:
# Under separate <cls>, we treat the <cls> as the first token in
# the previous block of the 1st real block. Since the 1st real
# block always has position 1, the position of the previous block
# will be at `1 - 2 ** block_index`.
cls_pos = tf.constant([-(2**block_index) + 1], dtype=pos_id.dtype)
pooled_pos_id = pos_id[1:-1] if self.truncate_seq else pos_id[1:]
return tf.concat([cls_pos, pooled_pos_id[::2]], 0)
else:
return pos_id[::2]
def relative_pos(self, pos, stride, pooled_pos=None, shift=1):
"""
Build the relative positional vector between `pos` and `pooled_pos`.
"""
if pooled_pos is None:
pooled_pos = pos
ref_point = pooled_pos[0] - pos[0]
num_remove = shift * shape_list(pooled_pos)[0]
max_dist = ref_point + num_remove * stride
min_dist = pooled_pos[0] - pos[-1]
return tf.range(max_dist, min_dist - 1, -stride)
def stride_pool(self, tensor, axis):
"""
Perform pooling by stride slicing the tensor along the given axis.
"""
if tensor is None:
return None
# Do the stride pool recursively if axis is a list or a tuple of ints.
if isinstance(axis, (list, tuple)):
for ax in axis:
tensor = self.stride_pool(tensor, ax)
return tensor
# Do the stride pool recursively if tensor is a list or tuple of tensors.
if isinstance(tensor, (tuple, list)):
return type(tensor)(self.stride_pool(x, axis) for x in tensor)
# Deal with negative axis
axis %= len(shape_list(tensor))
axis_slice = slice(None, -1, 2) if self.separate_cls and self.truncate_seq else slice(None, None, 2)
enc_slice = [slice(None)] * axis + [axis_slice]
if self.separate_cls:
cls_slice = [slice(None)] * axis + [slice(None, 1)]
tensor = tf.concat([tensor[cls_slice], tensor], axis)
return tensor[enc_slice]
def pool_tensor(self, tensor, mode="mean", stride=2):
"""Apply 1D pooling to a tensor of size [B x T (x H)]."""
if tensor is None:
return None
# Do the pool recursively if tensor is a list or tuple of tensors.
if isinstance(tensor, (tuple, list)):
return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor)
if self.separate_cls:
suffix = tensor[:, :-1] if self.truncate_seq else tensor
tensor = tf.concat([tensor[:, :1], suffix], axis=1)
ndim = len(shape_list(tensor))
if ndim == 2:
tensor = tensor[:, :, None]
if mode == "mean":
tensor = tf.nn.avg_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME")
elif mode == "max":
tensor = tf.nn.max_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME")
elif mode == "min":
tensor = -tf.nn.max_pool1d(-tensor, stride, strides=stride, data_format="NWC", padding="SAME")
else:
raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.")
return tf.squeeze(tensor, 2) if ndim == 2 else tensor
def pre_attention_pooling(self, output, attention_inputs):
"""Pool `output` and the proper parts of `attention_inputs` before the attention layer."""
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
if self.pool_q_only:
if self.attention_type == "factorized":
position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:]
token_type_mat = self.stride_pool(token_type_mat, 1)
cls_mask = self.stride_pool(cls_mask, 0)
output = self.pool_tensor(output, mode=self.pooling_type)
else:
self.pooling_mult *= 2
if self.attention_type == "factorized":
position_embeds = self.stride_pool(position_embeds, 0)
token_type_mat = self.stride_pool(token_type_mat, [1, 2])
cls_mask = self.stride_pool(cls_mask, [1, 2])
attention_mask = self.pool_tensor(attention_mask, mode="min")
output = self.pool_tensor(output, mode=self.pooling_type)
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
return output, attention_inputs
def post_attention_pooling(self, attention_inputs):
"""Pool the proper parts of `attention_inputs` after the attention layer."""
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
if self.pool_q_only:
self.pooling_mult *= 2
if self.attention_type == "factorized":
position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0)
token_type_mat = self.stride_pool(token_type_mat, 2)
cls_mask = self.stride_pool(cls_mask, 1)
attention_mask = self.pool_tensor(attention_mask, mode="min")
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
return attention_inputs
def _relative_shift_gather(positional_attn, context_len, shift):
batch_size, n_head, seq_len, max_rel_len = shape_list(positional_attn)
# max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j
# What's next is the same as doing the following gather in PyTorch, which might be clearer code but less efficient.
# idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1)
# # matrix of context_len + i-j
# return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len]))
positional_attn = tf.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len])
positional_attn = positional_attn[:, :, shift:, :]
positional_attn = tf.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift])
positional_attn = positional_attn[..., :context_len]
return positional_attn
class TFFunnelRelMultiheadAttention(tf.keras.layers.Layer):
def __init__(self, config, block_index, **kwargs):
super().__init__(**kwargs)
self.attention_type = config.attention_type
self.n_head = n_head = config.n_head
self.d_head = d_head = config.d_head
self.d_model = d_model = config.d_model
self.initializer_range = config.initializer_range
self.block_index = block_index
self.hidden_dropout = tf.keras.layers.Dropout(config.hidden_dropout)
self.attention_dropout = tf.keras.layers.Dropout(config.attention_dropout)
initializer = get_initializer(config.initializer_range)
self.q_head = tf.keras.layers.Dense(
n_head * d_head, use_bias=False, kernel_initializer=initializer, name="q_head"
)
self.k_head = tf.keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="k_head")
self.v_head = tf.keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="v_head")
self.post_proj = tf.keras.layers.Dense(d_model, kernel_initializer=initializer, name="post_proj")
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.scale = 1.0 / (d_head**0.5)
def build(self, input_shape=None):
n_head, d_head, d_model = self.n_head, self.d_head, self.d_model
initializer = get_initializer(self.initializer_range)
self.r_w_bias = self.add_weight(
shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_w_bias"
)
self.r_r_bias = self.add_weight(
shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_r_bias"
)
self.r_kernel = self.add_weight(
shape=(d_model, n_head, d_head), initializer=initializer, trainable=True, name="r_kernel"
)
self.r_s_bias = self.add_weight(
shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_s_bias"
)
self.seg_embed = self.add_weight(
shape=(2, n_head, d_head), initializer=initializer, trainable=True, name="seg_embed"
)
if self.built:
return
self.built = True
if getattr(self, "q_head", None) is not None:
with tf.name_scope(self.q_head.name):
self.q_head.build([None, None, d_model])
if getattr(self, "k_head", None) is not None:
with tf.name_scope(self.k_head.name):
self.k_head.build([None, None, d_model])
if getattr(self, "v_head", None) is not None:
with tf.name_scope(self.v_head.name):
self.v_head.build([None, None, d_model])
if getattr(self, "post_proj", None) is not None:
with tf.name_scope(self.post_proj.name):
self.post_proj.build([None, None, n_head * d_head])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, d_model])
def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None):
"""Relative attention score for the positional encodings"""
# q_head has shape batch_size x sea_len x n_head x d_head
if self.attention_type == "factorized":
# Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236)
# phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model
phi, pi, psi, omega = position_embeds
# Shape n_head x d_head
u = self.r_r_bias * self.scale
# Shape d_model x n_head x d_head
w_r = self.r_kernel
# Shape batch_size x sea_len x n_head x d_model
q_r_attention = tf.einsum("binh,dnh->bind", q_head + u, w_r)
q_r_attention_1 = q_r_attention * phi[:, None]
q_r_attention_2 = q_r_attention * pi[:, None]
# Shape batch_size x n_head x seq_len x context_len
positional_attn = tf.einsum("bind,jd->bnij", q_r_attention_1, psi) + tf.einsum(
"bind,jd->bnij", q_r_attention_2, omega
)
else:
# Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236)
# Grab the proper positional encoding, shape max_rel_len x d_model
if shape_list(q_head)[1] != context_len:
shift = 2
r = position_embeds[self.block_index][1]
else:
shift = 1
r = position_embeds[self.block_index][0]
# Shape n_head x d_head
v = self.r_r_bias * self.scale
# Shape d_model x n_head x d_head
w_r = self.r_kernel
# Shape max_rel_len x n_head x d_model
r_head = tf.einsum("td,dnh->tnh", r, w_r)
# Shape batch_size x n_head x seq_len x max_rel_len
positional_attn = tf.einsum("binh,tnh->bnit", q_head + v, r_head)
# Shape batch_size x n_head x seq_len x context_len
positional_attn = _relative_shift_gather(positional_attn, context_len, shift)
if cls_mask is not None:
positional_attn *= cls_mask
return positional_attn
def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None):
"""Relative attention score for the token_type_ids"""
if token_type_mat is None:
return 0
batch_size, seq_len, context_len = shape_list(token_type_mat)
# q_head has shape batch_size x seq_len x n_head x d_head
# Shape n_head x d_head
r_s_bias = self.r_s_bias * self.scale
# Shape batch_size x n_head x seq_len x 2
token_type_bias = tf.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed)
# Shape batch_size x n_head x seq_len x context_len
token_type_mat = tf.tile(token_type_mat[:, None], [1, shape_list(q_head)[2], 1, 1])
# token_type_mat = tf.broadcast_to(token_type_mat[:, None], new_shape)
# Shapes batch_size x n_head x seq_len
diff_token_type, same_token_type = tf.split(token_type_bias, 2, axis=-1)
# Shape batch_size x n_head x seq_len x context_len
token_type_attn = tf.where(
token_type_mat,
tf.tile(same_token_type, [1, 1, 1, context_len]),
tf.tile(diff_token_type, [1, 1, 1, context_len]),
)
if cls_mask is not None:
token_type_attn *= cls_mask
return token_type_attn
def call(self, query, key, value, attention_inputs, output_attentions=False, training=False):
# query has shape batch_size x seq_len x d_model
# key and value have shapes batch_size x context_len x d_model
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
batch_size, seq_len, _ = shape_list(query)
context_len = shape_list(key)[1]
n_head, d_head = self.n_head, self.d_head
# Shape batch_size x seq_len x n_head x d_head
q_head = tf.reshape(self.q_head(query), [batch_size, seq_len, n_head, d_head])
# Shapes batch_size x context_len x n_head x d_head
k_head = tf.reshape(self.k_head(key), [batch_size, context_len, n_head, d_head])
v_head = tf.reshape(self.v_head(value), [batch_size, context_len, n_head, d_head])
q_head = q_head * self.scale
# Shape n_head x d_head
r_w_bias = self.r_w_bias * self.scale
# Shapes batch_size x n_head x seq_len x context_len
content_score = tf.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head)
positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask)
token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask)
# merge attention scores
attn_score = content_score + positional_attn + token_type_attn
# perform masking
if attention_mask is not None:
attention_mask = tf.cast(attention_mask, dtype=attn_score.dtype)
attn_score = attn_score - (INF * (1 - attention_mask[:, None, None]))
# attention probability
attn_prob = stable_softmax(attn_score, axis=-1)
attn_prob = self.attention_dropout(attn_prob, training=training)
# attention output, shape batch_size x seq_len x n_head x d_head
attn_vec = tf.einsum("bnij,bjnd->bind", attn_prob, v_head)
# Shape shape batch_size x seq_len x d_model
attn_out = self.post_proj(tf.reshape(attn_vec, [batch_size, seq_len, n_head * d_head]))
attn_out = self.hidden_dropout(attn_out, training=training)
output = self.layer_norm(query + attn_out)
return (output, attn_prob) if output_attentions else (output,)
class TFFunnelPositionwiseFFN(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
initializer = get_initializer(config.initializer_range)
self.linear_1 = tf.keras.layers.Dense(config.d_inner, kernel_initializer=initializer, name="linear_1")
self.activation_function = get_tf_activation(config.hidden_act)
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
self.linear_2 = tf.keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_2")
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout)
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.config = config
def call(self, hidden, training=False):
h = self.linear_1(hidden)
h = self.activation_function(h)
h = self.activation_dropout(h, training=training)
h = self.linear_2(h)
h = self.dropout(h, training=training)
return self.layer_norm(hidden + h)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "linear_1", None) is not None:
with tf.name_scope(self.linear_1.name):
self.linear_1.build([None, None, self.config.d_model])
if getattr(self, "linear_2", None) is not None:
with tf.name_scope(self.linear_2.name):
self.linear_2.build([None, None, self.config.d_inner])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.d_model])
class TFFunnelLayer(tf.keras.layers.Layer):
def __init__(self, config, block_index, **kwargs):
super().__init__(**kwargs)
self.attention = TFFunnelRelMultiheadAttention(config, block_index, name="attention")
self.ffn = TFFunnelPositionwiseFFN(config, name="ffn")
def call(self, query, key, value, attention_inputs, output_attentions=False, training=False):
attn = self.attention(
query, key, value, attention_inputs, output_attentions=output_attentions, training=training
)
output = self.ffn(attn[0], training=training)
return (output, attn[1]) if output_attentions else (output,)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "ffn", None) is not None:
with tf.name_scope(self.ffn.name):
self.ffn.build(None)
class TFFunnelEncoder(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.separate_cls = config.separate_cls
self.pool_q_only = config.pool_q_only
self.block_repeats = config.block_repeats
self.attention_structure = TFFunnelAttentionStructure(config)
self.blocks = [
[TFFunnelLayer(config, block_index, name=f"blocks_._{block_index}_._{i}") for i in range(block_size)]
for block_index, block_size in enumerate(config.block_sizes)
]
def call(
self,
inputs_embeds,
attention_mask=None,
token_type_ids=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
training=False,
):
# The pooling is not implemented on long tensors, so we convert this mask.
# attention_mask = tf.cast(attention_mask, inputs_embeds.dtype)
attention_inputs = self.attention_structure.init_attention_inputs(
inputs_embeds,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
training=training,
)
hidden = inputs_embeds
all_hidden_states = (inputs_embeds,) if output_hidden_states else None
all_attentions = () if output_attentions else None
for block_index, block in enumerate(self.blocks):
pooling_flag = shape_list(hidden)[1] > (2 if self.separate_cls else 1)
pooling_flag = pooling_flag and block_index > 0
pooled_hidden = tf.zeros(shape_list(hidden))
if pooling_flag:
pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling(
hidden, attention_inputs
)
for layer_index, layer in enumerate(block):
for repeat_index in range(self.block_repeats[block_index]):
do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag
if do_pooling:
query = pooled_hidden
key = value = hidden if self.pool_q_only else pooled_hidden
else:
query = key = value = hidden
layer_output = layer(
query, key, value, attention_inputs, output_attentions=output_attentions, training=training
)
hidden = layer_output[0]
if do_pooling:
attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs)
if output_attentions:
all_attentions = all_attentions + layer_output[1:]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden,)
if not return_dict:
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
for block in self.blocks:
for layer in block:
with tf.name_scope(layer.name):
layer.build(None)
def upsample(x, stride, target_len, separate_cls=True, truncate_seq=False):
"""
Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension.
"""
if stride == 1:
return x
if separate_cls:
cls = x[:, :1]
x = x[:, 1:]
output = tf.repeat(x, repeats=stride, axis=1)
if separate_cls:
if truncate_seq:
output = tf.pad(output, [[0, 0], [0, stride - 1], [0, 0]])
output = output[:, : target_len - 1]
output = tf.concat([cls, output], axis=1)
else:
output = output[:, :target_len]
return output
class TFFunnelDecoder(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.separate_cls = config.separate_cls
self.truncate_seq = config.truncate_seq
self.stride = 2 ** (len(config.block_sizes) - 1)
self.attention_structure = TFFunnelAttentionStructure(config)
self.layers = [TFFunnelLayer(config, 0, name=f"layers_._{i}") for i in range(config.num_decoder_layers)]
def call(
self,
final_hidden,
first_block_hidden,
attention_mask=None,
token_type_ids=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
training=False,
):
upsampled_hidden = upsample(
final_hidden,
stride=self.stride,
target_len=shape_list(first_block_hidden)[1],
separate_cls=self.separate_cls,
truncate_seq=self.truncate_seq,
)
hidden = upsampled_hidden + first_block_hidden
all_hidden_states = (hidden,) if output_hidden_states else None
all_attentions = () if output_attentions else None
attention_inputs = self.attention_structure.init_attention_inputs(
hidden,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
training=training,
)
for layer in self.layers:
layer_output = layer(
hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions, training=training
)
hidden = layer_output[0]
if output_attentions:
all_attentions = all_attentions + layer_output[1:]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden,)
if not return_dict:
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFFunnelBaseLayer(tf.keras.layers.Layer):
"""Base model without decoder"""
config_class = FunnelConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.embeddings = TFFunnelEmbeddings(config, name="embeddings")
self.encoder = TFFunnelEncoder(config, name="encoder")
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.fill(input_shape, 1)
if token_type_ids is None:
token_type_ids = tf.fill(input_shape, 0)
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids, training=training)
encoder_outputs = self.encoder(
inputs_embeds,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return encoder_outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
@keras_serializable
class TFFunnelMainLayer(tf.keras.layers.Layer):
"""Base model with decoder"""
config_class = FunnelConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.block_sizes = config.block_sizes
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.embeddings = TFFunnelEmbeddings(config, name="embeddings")
self.encoder = TFFunnelEncoder(config, name="encoder")
self.decoder = TFFunnelDecoder(config, name="decoder")
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.fill(input_shape, 1)
if token_type_ids is None:
token_type_ids = tf.fill(input_shape, 0)
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids, training=training)
encoder_outputs = self.encoder(
inputs_embeds,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=return_dict,
training=training,
)
decoder_outputs = self.decoder(
final_hidden=encoder_outputs[0],
first_block_hidden=encoder_outputs[1][self.block_sizes[0]],
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
idx = 0
outputs = (decoder_outputs[0],)
if output_hidden_states:
idx += 1
outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],)
if output_attentions:
idx += 1
outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],)
return outputs
return TFBaseModelOutput(
last_hidden_state=decoder_outputs[0],
hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states)
if output_hidden_states
else None,
attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
class TFFunnelDiscriminatorPredictions(tf.keras.layers.Layer):
"""Prediction module for the discriminator, made up of two dense layers."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
initializer = get_initializer(config.initializer_range)
self.dense = tf.keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="dense")
self.activation_function = get_tf_activation(config.hidden_act)
self.dense_prediction = tf.keras.layers.Dense(1, kernel_initializer=initializer, name="dense_prediction")
self.config = config
def call(self, discriminator_hidden_states):
hidden_states = self.dense(discriminator_hidden_states)
hidden_states = self.activation_function(hidden_states)
logits = tf.squeeze(self.dense_prediction(hidden_states))
return logits
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.d_model])
if getattr(self, "dense_prediction", None) is not None:
with tf.name_scope(self.dense_prediction.name):
self.dense_prediction.build([None, None, self.config.d_model])
class TFFunnelMaskedLMHead(tf.keras.layers.Layer):
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.input_embeddings = input_embeddings
def build(self, input_shape):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
super().build(input_shape)
def get_output_embeddings(self):
return self.input_embeddings
def set_output_embeddings(self, value):
self.input_embeddings.weight = value
self.input_embeddings.vocab_size = shape_list(value)[0]
def get_bias(self):
return {"bias": self.bias}
def set_bias(self, value):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states, training=False):
seq_length = shape_list(tensor=hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
class TFFunnelClassificationHead(tf.keras.layers.Layer):
def __init__(self, config, n_labels, **kwargs):
super().__init__(**kwargs)
initializer = get_initializer(config.initializer_range)
self.linear_hidden = tf.keras.layers.Dense(
config.d_model, kernel_initializer=initializer, name="linear_hidden"
)
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout)
self.linear_out = tf.keras.layers.Dense(n_labels, kernel_initializer=initializer, name="linear_out")
self.config = config
def call(self, hidden, training=False):
hidden = self.linear_hidden(hidden)
hidden = tf.keras.activations.tanh(hidden)
hidden = self.dropout(hidden, training=training)
return self.linear_out(hidden)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "linear_hidden", None) is not None:
with tf.name_scope(self.linear_hidden.name):
self.linear_hidden.build([None, None, self.config.d_model])
if getattr(self, "linear_out", None) is not None:
with tf.name_scope(self.linear_out.name):
self.linear_out.build([None, None, self.config.d_model])
class TFFunnelPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FunnelConfig
base_model_prefix = "funnel"
@property
def dummy_inputs(self):
# Funnel misbehaves with very small inputs, so we override and make them a bit bigger
return {"input_ids": tf.ones((1, 3), dtype=tf.int32)}
@dataclass
class TFFunnelForPreTrainingOutput(ModelOutput):
"""
Output type of [`FunnelForPreTraining`].
Args:
logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Prediction scores of the head (scores for each token before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
FUNNEL_START_DOCSTRING = r"""
The Funnel Transformer model was proposed in [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient
Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`XxxConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FUNNEL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"""
The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called
decoder) or any task-specific head on top.
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelBaseModel(TFFunnelPreTrainedModel):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.funnel = TFFunnelBaseLayer(config, name="funnel")
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small-base",
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]:
return self.funnel(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
def serving_output(self, output):
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFBaseModelOutput(
last_hidden_state=output.last_hidden_state,
hidden_states=output.hidden_states,
attentions=output.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
@add_start_docstrings(
"The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.",
FUNNEL_START_DOCSTRING,
)
class TFFunnelModel(TFFunnelPreTrainedModel):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.funnel = TFFunnelMainLayer(config, name="funnel")
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small",
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]:
return self.funnel(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
def serving_output(self, output):
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFBaseModelOutput(
last_hidden_state=output.last_hidden_state,
hidden_states=output.hidden_states,
attentions=output.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
@add_start_docstrings(
"""
Funnel model with a binary classification head on top as used during pretraining for identifying generated tokens.
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelForPreTraining(TFFunnelPreTrainedModel):
def __init__(self, config: FunnelConfig, **kwargs) -> None:
super().__init__(config, **kwargs)
self.funnel = TFFunnelMainLayer(config, name="funnel")
self.discriminator_predictions = TFFunnelDiscriminatorPredictions(config, name="discriminator_predictions")
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFFunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFFunnelForPreTrainingOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, TFFunnelForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = TFFunnelForPreTraining.from_pretrained("funnel-transformer/small")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(inputs).logits
```"""
discriminator_hidden_states = self.funnel(
input_ids,
attention_mask,
token_type_ids,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
discriminator_sequence_output = discriminator_hidden_states[0]
logits = self.discriminator_predictions(discriminator_sequence_output)
if not return_dict:
return (logits,) + discriminator_hidden_states[1:]
return TFFunnelForPreTrainingOutput(
logits=logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
def serving_output(self, output):
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFFunnelForPreTrainingOutput(
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "discriminator_predictions", None) is not None:
with tf.name_scope(self.discriminator_predictions.name):
self.discriminator_predictions.build(None)
@add_start_docstrings("""Funnel Model with a `language modeling` head on top.""", FUNNEL_START_DOCSTRING)
class TFFunnelForMaskedLM(TFFunnelPreTrainedModel, TFMaskedLanguageModelingLoss):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.funnel = TFFunnelMainLayer(config, name="funnel")
self.lm_head = TFFunnelMaskedLMHead(config, self.funnel.embeddings, name="lm_head")
def get_lm_head(self) -> TFFunnelMaskedLMHead:
return self.lm_head
def get_prefix_bias_name(self) -> str:
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.lm_head.name
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small",
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFMaskedLMOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
outputs = self.funnel(
input_ids,
attention_mask,
token_type_ids,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput:
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFMaskedLMOutput(logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build(None)
@add_start_docstrings(
"""
Funnel Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelForSequenceClassification(TFFunnelPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.funnel = TFFunnelBaseLayer(config, name="funnel")
self.classifier = TFFunnelClassificationHead(config, config.num_labels, name="classifier")
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small-base",
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFSequenceClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.funnel(
input_ids,
attention_mask,
token_type_ids,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
last_hidden_state = outputs[0]
pooled_output = last_hidden_state[:, 0]
logits = self.classifier(pooled_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput:
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFSequenceClassifierOutput(
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build(None)
@add_start_docstrings(
"""
Funnel Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelForMultipleChoice(TFFunnelPreTrainedModel, TFMultipleChoiceLoss):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.funnel = TFFunnelBaseLayer(config, name="funnel")
self.classifier = TFFunnelClassificationHead(config, 1, name="classifier")
@property
def dummy_inputs(self):
return {"input_ids": tf.ones((3, 3, 4), dtype=tf.int32)}
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small-base",
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFMultipleChoiceModelOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_inputs_embeds = (
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
outputs = self.funnel(
flat_input_ids,
attention_mask=flat_attention_mask,
token_type_ids=flat_token_type_ids,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
last_hidden_state = outputs[0]
pooled_output = last_hidden_state[:, 0]
logits = self.classifier(pooled_output, training=training)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput:
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFMultipleChoiceModelOutput(
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build(None)
@add_start_docstrings(
"""
Funnel Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelForTokenClassification(TFFunnelPreTrainedModel, TFTokenClassificationLoss):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.funnel = TFFunnelMainLayer(config, name="funnel")
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout)
self.classifier = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small",
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFTokenClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
outputs = self.funnel(
input_ids,
attention_mask,
token_type_ids,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput:
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFTokenClassifierOutput(
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Funnel Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelForQuestionAnswering(TFFunnelPreTrainedModel, TFQuestionAnsweringLoss):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.funnel = TFFunnelMainLayer(config, name="funnel")
self.qa_outputs = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small",
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFQuestionAnsweringModelOutput]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs = self.funnel(
input_ids,
attention_mask,
token_type_ids,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions, "end_position": end_positions}
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput:
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFQuestionAnsweringModelOutput(
start_logits=output.start_logits,
end_logits=output.end_logits,
hidden_states=output.hidden_states,
attentions=output.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/funnel/tokenization_funnel.py
|
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization class for Funnel Transformer."""
import collections
import os
import unicodedata
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
_model_names = [
"small",
"small-base",
"medium",
"medium-base",
"intermediate",
"intermediate-base",
"large",
"large-base",
"xlarge",
"xlarge-base",
]
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt"
),
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {f"funnel-transformer/{name}": 512 for name in _model_names}
PRETRAINED_INIT_CONFIGURATION = {f"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names}
# Copied from transformers.models.bert.tokenization_bert.load_vocab
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class FunnelTokenizer(PreTrainedTokenizer):
r"""
Construct a Funnel Transformer tokenizer. Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"<sep>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"<cls>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sentence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sentence token.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
cls_token_type_id: int = 2
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="<unk>",
sep_token="<sep>",
pad_token="<pad>",
cls_token="<cls>",
mask_token="<mask>",
bos_token="<s>",
eos_token="</s>",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = FunnelTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
bos_token=bos_token,
eos_token=eos_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
@property
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.do_lower_case
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.vocab_size
def vocab_size(self):
return len(self.vocab)
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize
def _tokenize(self, text, split_special_tokens=False):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(
text, never_split=self.all_special_tokens if not split_special_tokens else None
):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel
Transformer sequence pair mask has the following format:
```
2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0]
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer(object):
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer(object):
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/funnel/configuration_funnel.py
|
# coding=utf-8
# Copyright 2020, Hugging Face
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Funnel Transformer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json",
"funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json",
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json",
"funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json",
}
class FunnelConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FunnelModel`] or a [`TFBertModel`]. It is used to
instantiate a Funnel Transformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Funnel
Transformer [funnel-transformer/small](https://huggingface.co/funnel-transformer/small) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the Funnel transformer. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`FunnelModel`] or [`TFFunnelModel`].
block_sizes (`List[int]`, *optional*, defaults to `[4, 4, 4]`):
The sizes of the blocks used in the model.
block_repeats (`List[int]`, *optional*):
If passed along, each layer of each block is repeated the number of times indicated.
num_decoder_layers (`int`, *optional*, defaults to 2):
The number of layers in the decoder (when not using the base model).
d_model (`int`, *optional*, defaults to 768):
Dimensionality of the model's hidden states.
n_head (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
d_head (`int`, *optional*, defaults to 64):
Dimensionality of the model's heads.
d_inner (`int`, *optional*, defaults to 3072):
Inner dimension in the feed-forward blocks.
hidden_act (`str` or `callable`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability used between the two layers of the feed-forward blocks.
initializer_range (`float`, *optional*, defaults to 0.1):
The upper bound of the *uniform initializer* for initializing all weight matrices in attention layers.
initializer_std (`float`, *optional*):
The standard deviation of the *normal initializer* for initializing the embedding matrix and the weight of
linear layers. Will default to 1 for the embedding matrix and the value given by Xavier initialization for
linear layers.
layer_norm_eps (`float`, *optional*, defaults to 1e-09):
The epsilon used by the layer normalization layers.
pooling_type (`str`, *optional*, defaults to `"mean"`):
Possible values are `"mean"` or `"max"`. The way pooling is performed at the beginning of each block.
attention_type (`str`, *optional*, defaults to `"relative_shift"`):
Possible values are `"relative_shift"` or `"factorized"`. The former is faster on CPU/GPU while the latter
is faster on TPU.
separate_cls (`bool`, *optional*, defaults to `True`):
Whether or not to separate the cls token when applying pooling.
truncate_seq (`bool`, *optional*, defaults to `True`):
When using `separate_cls`, whether or not to truncate the last token when pooling, to avoid getting a
sequence length that is not a multiple of 2.
pool_q_only (`bool`, *optional*, defaults to `True`):
Whether or not to apply the pooling only to the query or to query, key and values for the attention layers.
"""
model_type = "funnel"
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "n_head",
}
def __init__(
self,
vocab_size=30522,
block_sizes=[4, 4, 4],
block_repeats=None,
num_decoder_layers=2,
d_model=768,
n_head=12,
d_head=64,
d_inner=3072,
hidden_act="gelu_new",
hidden_dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
initializer_range=0.1,
initializer_std=None,
layer_norm_eps=1e-9,
pooling_type="mean",
attention_type="relative_shift",
separate_cls=True,
truncate_seq=True,
pool_q_only=True,
**kwargs,
):
self.vocab_size = vocab_size
self.block_sizes = block_sizes
self.block_repeats = [1] * len(block_sizes) if block_repeats is None else block_repeats
assert len(block_sizes) == len(
self.block_repeats
), "`block_sizes` and `block_repeats` should have the same length."
self.num_decoder_layers = num_decoder_layers
self.d_model = d_model
self.n_head = n_head
self.d_head = d_head
self.d_inner = d_inner
self.hidden_act = hidden_act
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.initializer_range = initializer_range
self.initializer_std = initializer_std
self.layer_norm_eps = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported."
self.pooling_type = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported."
self.attention_type = attention_type
self.separate_cls = separate_cls
self.truncate_seq = truncate_seq
self.pool_q_only = pool_q_only
super().__init__(**kwargs)
@property
def num_hidden_layers(self):
return sum(self.block_sizes)
@num_hidden_layers.setter
def num_hidden_layers(self, value):
raise NotImplementedError(
"This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`."
)
@property
def num_blocks(self):
return len(self.block_sizes)
@num_blocks.setter
def num_blocks(self, value):
raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`.")
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/funnel/modeling_funnel.py
|
# coding=utf-8
# Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Funnel Transformer model."""
import os
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_funnel import FunnelConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "FunnelConfig"
_CHECKPOINT_FOR_DOC = "funnel-transformer/small"
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = [
"funnel-transformer/small", # B4-4-4H768
"funnel-transformer/small-base", # B4-4-4H768, no decoder
"funnel-transformer/medium", # B6-3x2-3x2H768
"funnel-transformer/medium-base", # B6-3x2-3x2H768, no decoder
"funnel-transformer/intermediate", # B6-6-6H768
"funnel-transformer/intermediate-base", # B6-6-6H768, no decoder
"funnel-transformer/large", # B8-8-8H1024
"funnel-transformer/large-base", # B8-8-8H1024, no decoder
"funnel-transformer/xlarge-base", # B10-10-10H1024
"funnel-transformer/xlarge", # B10-10-10H1024, no decoder
]
INF = 1e6
def load_tf_weights_in_funnel(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
_layer_map = {
"k": "k_head",
"q": "q_head",
"v": "v_head",
"o": "post_proj",
"layer_1": "linear_1",
"layer_2": "linear_2",
"rel_attn": "attention",
"ff": "ffn",
"kernel": "weight",
"gamma": "weight",
"beta": "bias",
"lookup_table": "weight",
"word_embedding": "word_embeddings",
"input": "embeddings",
}
for name, array in zip(names, arrays):
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
if name[0] == "generator":
continue
pointer = model
skipped = False
for m_name in name[1:]:
if not isinstance(pointer, FunnelPositionwiseFFN) and re.fullmatch(r"layer_\d+", m_name):
layer_index = int(re.search(r"layer_(\d+)", m_name).groups()[0])
if layer_index < config.num_hidden_layers:
block_idx = 0
while layer_index >= config.block_sizes[block_idx]:
layer_index -= config.block_sizes[block_idx]
block_idx += 1
pointer = pointer.blocks[block_idx][layer_index]
else:
layer_index -= config.num_hidden_layers
pointer = pointer.layers[layer_index]
elif m_name == "r" and isinstance(pointer, FunnelRelMultiheadAttention):
pointer = pointer.r_kernel
break
elif m_name in _layer_map:
pointer = getattr(pointer, _layer_map[m_name])
else:
try:
pointer = getattr(pointer, m_name)
except AttributeError:
print(f"Skipping {'/'.join(name)}", array.shape)
skipped = True
break
if not skipped:
if len(pointer.shape) != len(array.shape):
array = array.reshape(pointer.shape)
if m_name == "kernel":
array = np.transpose(array)
pointer.data = torch.from_numpy(array)
return model
class FunnelEmbeddings(nn.Module):
def __init__(self, config: FunnelConfig) -> None:
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
def forward(
self, input_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None
) -> torch.Tensor:
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
embeddings = self.layer_norm(inputs_embeds)
embeddings = self.dropout(embeddings)
return embeddings
class FunnelAttentionStructure(nn.Module):
"""
Contains helpers for `FunnelRelMultiheadAttention `.
"""
cls_token_type_id: int = 2
def __init__(self, config: FunnelConfig) -> None:
super().__init__()
self.config = config
self.sin_dropout = nn.Dropout(config.hidden_dropout)
self.cos_dropout = nn.Dropout(config.hidden_dropout)
# Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was
# divided.
self.pooling_mult = None
def init_attention_inputs(
self,
inputs_embeds: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor]:
"""Returns the attention inputs associated to the inputs of the model."""
# inputs_embeds has shape batch_size x seq_len x d_model
# attention_mask and token_type_ids have shape batch_size x seq_len
self.pooling_mult = 1
self.seq_len = seq_len = inputs_embeds.size(1)
position_embeds = self.get_position_embeds(seq_len, inputs_embeds.dtype, inputs_embeds.device)
token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None
cls_mask = (
nn.functional.pad(inputs_embeds.new_ones([seq_len - 1, seq_len - 1]), (1, 0, 1, 0))
if self.config.separate_cls
else None
)
return (position_embeds, token_type_mat, attention_mask, cls_mask)
def token_type_ids_to_mat(self, token_type_ids: torch.Tensor) -> torch.Tensor:
"""Convert `token_type_ids` to `token_type_mat`."""
token_type_mat = token_type_ids[:, :, None] == token_type_ids[:, None]
# Treat <cls> as in the same segment as both A & B
cls_ids = token_type_ids == self.cls_token_type_id
cls_mat = cls_ids[:, :, None] | cls_ids[:, None]
return cls_mat | token_type_mat
def get_position_embeds(
self, seq_len: int, dtype: torch.dtype, device: torch.device
) -> Union[Tuple[torch.Tensor], List[List[torch.Tensor]]]:
"""
Create and cache inputs related to relative position encoding. Those are very different depending on whether we
are using the factorized or the relative shift attention:
For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2,
final formula.
For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final
formula.
Paper link: https://arxiv.org/abs/2006.03236
"""
d_model = self.config.d_model
if self.config.attention_type == "factorized":
# Notations from the paper, appending A.2.2, final formula.
# We need to create and return the matrices phi, psi, pi and omega.
pos_seq = torch.arange(0, seq_len, 1.0, dtype=dtype, device=device)
freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=dtype, device=device)
inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2)))
sinusoid = pos_seq[:, None] * inv_freq[None]
sin_embed = torch.sin(sinusoid)
sin_embed_d = self.sin_dropout(sin_embed)
cos_embed = torch.cos(sinusoid)
cos_embed_d = self.cos_dropout(cos_embed)
# This is different from the formula on the paper...
phi = torch.cat([sin_embed_d, sin_embed_d], dim=-1)
psi = torch.cat([cos_embed, sin_embed], dim=-1)
pi = torch.cat([cos_embed_d, cos_embed_d], dim=-1)
omega = torch.cat([-sin_embed, cos_embed], dim=-1)
return (phi, pi, psi, omega)
else:
# Notations from the paper, appending A.2.1, final formula.
# We need to create and return all the possible vectors R for all blocks and shifts.
freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=dtype, device=device)
inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2)))
# Maximum relative positions for the first input
rel_pos_id = torch.arange(-seq_len * 2, seq_len * 2, 1.0, dtype=dtype, device=device)
zero_offset = seq_len * 2
sinusoid = rel_pos_id[:, None] * inv_freq[None]
sin_embed = self.sin_dropout(torch.sin(sinusoid))
cos_embed = self.cos_dropout(torch.cos(sinusoid))
pos_embed = torch.cat([sin_embed, cos_embed], dim=-1)
pos = torch.arange(0, seq_len, dtype=dtype, device=device)
pooled_pos = pos
position_embeds_list = []
for block_index in range(0, self.config.num_blocks):
# For each block with block_index > 0, we need two types position embeddings:
# - Attention(pooled-q, unpooled-kv)
# - Attention(pooled-q, pooled-kv)
# For block_index = 0 we only need the second one and leave the first one as None.
# First type
if block_index == 0:
position_embeds_pooling = None
else:
pooled_pos = self.stride_pool_pos(pos, block_index)
# construct rel_pos_id
stride = 2 ** (block_index - 1)
rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2)
rel_pos = rel_pos[:, None] + zero_offset
rel_pos = rel_pos.expand(rel_pos.size(0), d_model)
position_embeds_pooling = torch.gather(pos_embed, 0, rel_pos)
# Second type
pos = pooled_pos
stride = 2**block_index
rel_pos = self.relative_pos(pos, stride)
rel_pos = rel_pos[:, None] + zero_offset
rel_pos = rel_pos.expand(rel_pos.size(0), d_model)
position_embeds_no_pooling = torch.gather(pos_embed, 0, rel_pos)
position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling])
return position_embeds_list
def stride_pool_pos(self, pos_id: torch.Tensor, block_index: int):
"""
Pool `pos_id` while keeping the cls token separate (if `config.separate_cls=True`).
"""
if self.config.separate_cls:
# Under separate <cls>, we treat the <cls> as the first token in
# the previous block of the 1st real block. Since the 1st real
# block always has position 1, the position of the previous block
# will be at `1 - 2 ** block_index`.
cls_pos = pos_id.new_tensor([-(2**block_index) + 1])
pooled_pos_id = pos_id[1:-1] if self.config.truncate_seq else pos_id[1:]
return torch.cat([cls_pos, pooled_pos_id[::2]], 0)
else:
return pos_id[::2]
def relative_pos(self, pos: torch.Tensor, stride: int, pooled_pos=None, shift: int = 1) -> torch.Tensor:
"""
Build the relative positional vector between `pos` and `pooled_pos`.
"""
if pooled_pos is None:
pooled_pos = pos
ref_point = pooled_pos[0] - pos[0]
num_remove = shift * len(pooled_pos)
max_dist = ref_point + num_remove * stride
min_dist = pooled_pos[0] - pos[-1]
return torch.arange(max_dist, min_dist - 1, -stride, dtype=torch.long, device=pos.device)
def stride_pool(
self,
tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]],
axis: Union[int, Tuple[int], List[int]],
) -> torch.Tensor:
"""
Perform pooling by stride slicing the tensor along the given axis.
"""
if tensor is None:
return None
# Do the stride pool recursively if axis is a list or a tuple of ints.
if isinstance(axis, (list, tuple)):
for ax in axis:
tensor = self.stride_pool(tensor, ax)
return tensor
# Do the stride pool recursively if tensor is a list or tuple of tensors.
if isinstance(tensor, (tuple, list)):
return type(tensor)(self.stride_pool(x, axis) for x in tensor)
# Deal with negative axis
axis %= tensor.ndim
axis_slice = (
slice(None, -1, 2) if self.config.separate_cls and self.config.truncate_seq else slice(None, None, 2)
)
enc_slice = [slice(None)] * axis + [axis_slice]
if self.config.separate_cls:
cls_slice = [slice(None)] * axis + [slice(None, 1)]
tensor = torch.cat([tensor[cls_slice], tensor], axis=axis)
return tensor[enc_slice]
def pool_tensor(
self, tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]], mode: str = "mean", stride: int = 2
) -> torch.Tensor:
"""Apply 1D pooling to a tensor of size [B x T (x H)]."""
if tensor is None:
return None
# Do the pool recursively if tensor is a list or tuple of tensors.
if isinstance(tensor, (tuple, list)):
return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor)
if self.config.separate_cls:
suffix = tensor[:, :-1] if self.config.truncate_seq else tensor
tensor = torch.cat([tensor[:, :1], suffix], dim=1)
ndim = tensor.ndim
if ndim == 2:
tensor = tensor[:, None, :, None]
elif ndim == 3:
tensor = tensor[:, None, :, :]
# Stride is applied on the second-to-last dimension.
stride = (stride, 1)
if mode == "mean":
tensor = nn.functional.avg_pool2d(tensor, stride, stride=stride, ceil_mode=True)
elif mode == "max":
tensor = nn.functional.max_pool2d(tensor, stride, stride=stride, ceil_mode=True)
elif mode == "min":
tensor = -nn.functional.max_pool2d(-tensor, stride, stride=stride, ceil_mode=True)
else:
raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.")
if ndim == 2:
return tensor[:, 0, :, 0]
elif ndim == 3:
return tensor[:, 0]
return tensor
def pre_attention_pooling(
self, output, attention_inputs: Tuple[torch.Tensor]
) -> Tuple[torch.Tensor, Tuple[torch.Tensor]]:
"""Pool `output` and the proper parts of `attention_inputs` before the attention layer."""
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
if self.config.pool_q_only:
if self.config.attention_type == "factorized":
position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:]
token_type_mat = self.stride_pool(token_type_mat, 1)
cls_mask = self.stride_pool(cls_mask, 0)
output = self.pool_tensor(output, mode=self.config.pooling_type)
else:
self.pooling_mult *= 2
if self.config.attention_type == "factorized":
position_embeds = self.stride_pool(position_embeds, 0)
token_type_mat = self.stride_pool(token_type_mat, [1, 2])
cls_mask = self.stride_pool(cls_mask, [1, 2])
attention_mask = self.pool_tensor(attention_mask, mode="min")
output = self.pool_tensor(output, mode=self.config.pooling_type)
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
return output, attention_inputs
def post_attention_pooling(self, attention_inputs: Tuple[torch.Tensor]) -> Tuple[torch.Tensor]:
"""Pool the proper parts of `attention_inputs` after the attention layer."""
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
if self.config.pool_q_only:
self.pooling_mult *= 2
if self.config.attention_type == "factorized":
position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0)
token_type_mat = self.stride_pool(token_type_mat, 2)
cls_mask = self.stride_pool(cls_mask, 1)
attention_mask = self.pool_tensor(attention_mask, mode="min")
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
return attention_inputs
def _relative_shift_gather(positional_attn: torch.Tensor, context_len: int, shift: int) -> torch.Tensor:
batch_size, n_head, seq_len, max_rel_len = positional_attn.shape
# max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j
# What's next is the same as doing the following gather, which might be clearer code but less efficient.
# idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1)
# # matrix of context_len + i-j
# return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len]))
positional_attn = torch.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len])
positional_attn = positional_attn[:, :, shift:, :]
positional_attn = torch.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift])
positional_attn = positional_attn[..., :context_len]
return positional_attn
class FunnelRelMultiheadAttention(nn.Module):
def __init__(self, config: FunnelConfig, block_index: int) -> None:
super().__init__()
self.config = config
self.block_index = block_index
d_model, n_head, d_head = config.d_model, config.n_head, config.d_head
self.hidden_dropout = nn.Dropout(config.hidden_dropout)
self.attention_dropout = nn.Dropout(config.attention_dropout)
self.q_head = nn.Linear(d_model, n_head * d_head, bias=False)
self.k_head = nn.Linear(d_model, n_head * d_head)
self.v_head = nn.Linear(d_model, n_head * d_head)
self.r_w_bias = nn.Parameter(torch.zeros([n_head, d_head]))
self.r_r_bias = nn.Parameter(torch.zeros([n_head, d_head]))
self.r_kernel = nn.Parameter(torch.zeros([d_model, n_head, d_head]))
self.r_s_bias = nn.Parameter(torch.zeros([n_head, d_head]))
self.seg_embed = nn.Parameter(torch.zeros([2, n_head, d_head]))
self.post_proj = nn.Linear(n_head * d_head, d_model)
self.layer_norm = nn.LayerNorm(d_model, eps=config.layer_norm_eps)
self.scale = 1.0 / (d_head**0.5)
def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None):
"""Relative attention score for the positional encodings"""
# q_head has shape batch_size x sea_len x n_head x d_head
if self.config.attention_type == "factorized":
# Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236)
# phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model
phi, pi, psi, omega = position_embeds
# Shape n_head x d_head
u = self.r_r_bias * self.scale
# Shape d_model x n_head x d_head
w_r = self.r_kernel
# Shape batch_size x sea_len x n_head x d_model
q_r_attention = torch.einsum("binh,dnh->bind", q_head + u, w_r)
q_r_attention_1 = q_r_attention * phi[:, None]
q_r_attention_2 = q_r_attention * pi[:, None]
# Shape batch_size x n_head x seq_len x context_len
positional_attn = torch.einsum("bind,jd->bnij", q_r_attention_1, psi) + torch.einsum(
"bind,jd->bnij", q_r_attention_2, omega
)
else:
shift = 2 if q_head.shape[1] != context_len else 1
# Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236)
# Grab the proper positional encoding, shape max_rel_len x d_model
r = position_embeds[self.block_index][shift - 1]
# Shape n_head x d_head
v = self.r_r_bias * self.scale
# Shape d_model x n_head x d_head
w_r = self.r_kernel
# Shape max_rel_len x n_head x d_model
r_head = torch.einsum("td,dnh->tnh", r, w_r)
# Shape batch_size x n_head x seq_len x max_rel_len
positional_attn = torch.einsum("binh,tnh->bnit", q_head + v, r_head)
# Shape batch_size x n_head x seq_len x context_len
positional_attn = _relative_shift_gather(positional_attn, context_len, shift)
if cls_mask is not None:
positional_attn *= cls_mask
return positional_attn
def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None):
"""Relative attention score for the token_type_ids"""
if token_type_mat is None:
return 0
batch_size, seq_len, context_len = token_type_mat.shape
# q_head has shape batch_size x seq_len x n_head x d_head
# Shape n_head x d_head
r_s_bias = self.r_s_bias * self.scale
# Shape batch_size x n_head x seq_len x 2
token_type_bias = torch.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed)
# Shape batch_size x n_head x seq_len x context_len
token_type_mat = token_type_mat[:, None].expand([batch_size, q_head.shape[2], seq_len, context_len])
# Shapes batch_size x n_head x seq_len
diff_token_type, same_token_type = torch.split(token_type_bias, 1, dim=-1)
# Shape batch_size x n_head x seq_len x context_len
token_type_attn = torch.where(
token_type_mat, same_token_type.expand(token_type_mat.shape), diff_token_type.expand(token_type_mat.shape)
)
if cls_mask is not None:
token_type_attn *= cls_mask
return token_type_attn
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_inputs: Tuple[torch.Tensor],
output_attentions: bool = False,
) -> Tuple[torch.Tensor, ...]:
# query has shape batch_size x seq_len x d_model
# key and value have shapes batch_size x context_len x d_model
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
batch_size, seq_len, _ = query.shape
context_len = key.shape[1]
n_head, d_head = self.config.n_head, self.config.d_head
# Shape batch_size x seq_len x n_head x d_head
q_head = self.q_head(query).view(batch_size, seq_len, n_head, d_head)
# Shapes batch_size x context_len x n_head x d_head
k_head = self.k_head(key).view(batch_size, context_len, n_head, d_head)
v_head = self.v_head(value).view(batch_size, context_len, n_head, d_head)
q_head = q_head * self.scale
# Shape n_head x d_head
r_w_bias = self.r_w_bias * self.scale
# Shapes batch_size x n_head x seq_len x context_len
content_score = torch.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head)
positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask)
token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask)
# merge attention scores
attn_score = content_score + positional_attn + token_type_attn
# precision safe in case of mixed precision training
dtype = attn_score.dtype
attn_score = attn_score.float()
# perform masking
if attention_mask is not None:
attn_score = attn_score - INF * (1 - attention_mask[:, None, None].float())
# attention probability
attn_prob = torch.softmax(attn_score, dim=-1, dtype=dtype)
attn_prob = self.attention_dropout(attn_prob)
# attention output, shape batch_size x seq_len x n_head x d_head
attn_vec = torch.einsum("bnij,bjnd->bind", attn_prob, v_head)
# Shape shape batch_size x seq_len x d_model
attn_out = self.post_proj(attn_vec.reshape(batch_size, seq_len, n_head * d_head))
attn_out = self.hidden_dropout(attn_out)
output = self.layer_norm(query + attn_out)
return (output, attn_prob) if output_attentions else (output,)
class FunnelPositionwiseFFN(nn.Module):
def __init__(self, config: FunnelConfig) -> None:
super().__init__()
self.linear_1 = nn.Linear(config.d_model, config.d_inner)
self.activation_function = ACT2FN[config.hidden_act]
self.activation_dropout = nn.Dropout(config.activation_dropout)
self.linear_2 = nn.Linear(config.d_inner, config.d_model)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.d_model, config.layer_norm_eps)
def forward(self, hidden: torch.Tensor) -> torch.Tensor:
h = self.linear_1(hidden)
h = self.activation_function(h)
h = self.activation_dropout(h)
h = self.linear_2(h)
h = self.dropout(h)
return self.layer_norm(hidden + h)
class FunnelLayer(nn.Module):
def __init__(self, config: FunnelConfig, block_index: int) -> None:
super().__init__()
self.attention = FunnelRelMultiheadAttention(config, block_index)
self.ffn = FunnelPositionwiseFFN(config)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_inputs,
output_attentions: bool = False,
) -> Tuple:
attn = self.attention(query, key, value, attention_inputs, output_attentions=output_attentions)
output = self.ffn(attn[0])
return (output, attn[1]) if output_attentions else (output,)
class FunnelEncoder(nn.Module):
def __init__(self, config: FunnelConfig) -> None:
super().__init__()
self.config = config
self.attention_structure = FunnelAttentionStructure(config)
self.blocks = nn.ModuleList(
[
nn.ModuleList([FunnelLayer(config, block_index) for _ in range(block_size)])
for block_index, block_size in enumerate(config.block_sizes)
]
)
def forward(
self,
inputs_embeds: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[Tuple, BaseModelOutput]:
# The pooling is not implemented on long tensors, so we convert this mask.
attention_mask = attention_mask.type_as(inputs_embeds)
attention_inputs = self.attention_structure.init_attention_inputs(
inputs_embeds,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
)
hidden = inputs_embeds
all_hidden_states = (inputs_embeds,) if output_hidden_states else None
all_attentions = () if output_attentions else None
for block_index, block in enumerate(self.blocks):
pooling_flag = hidden.size(1) > (2 if self.config.separate_cls else 1)
pooling_flag = pooling_flag and block_index > 0
if pooling_flag:
pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling(
hidden, attention_inputs
)
for layer_index, layer in enumerate(block):
for repeat_index in range(self.config.block_repeats[block_index]):
do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag
if do_pooling:
query = pooled_hidden
key = value = hidden if self.config.pool_q_only else pooled_hidden
else:
query = key = value = hidden
layer_output = layer(query, key, value, attention_inputs, output_attentions=output_attentions)
hidden = layer_output[0]
if do_pooling:
attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs)
if output_attentions:
all_attentions = all_attentions + layer_output[1:]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden,)
if not return_dict:
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
def upsample(
x: torch.Tensor, stride: int, target_len: int, separate_cls: bool = True, truncate_seq: bool = False
) -> torch.Tensor:
"""
Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension.
"""
if stride == 1:
return x
if separate_cls:
cls = x[:, :1]
x = x[:, 1:]
output = torch.repeat_interleave(x, repeats=stride, dim=1)
if separate_cls:
if truncate_seq:
output = nn.functional.pad(output, (0, 0, 0, stride - 1, 0, 0))
output = output[:, : target_len - 1]
output = torch.cat([cls, output], dim=1)
else:
output = output[:, :target_len]
return output
class FunnelDecoder(nn.Module):
def __init__(self, config: FunnelConfig) -> None:
super().__init__()
self.config = config
self.attention_structure = FunnelAttentionStructure(config)
self.layers = nn.ModuleList([FunnelLayer(config, 0) for _ in range(config.num_decoder_layers)])
def forward(
self,
final_hidden: torch.Tensor,
first_block_hidden: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[Tuple, BaseModelOutput]:
upsampled_hidden = upsample(
final_hidden,
stride=2 ** (len(self.config.block_sizes) - 1),
target_len=first_block_hidden.shape[1],
separate_cls=self.config.separate_cls,
truncate_seq=self.config.truncate_seq,
)
hidden = upsampled_hidden + first_block_hidden
all_hidden_states = (hidden,) if output_hidden_states else None
all_attentions = () if output_attentions else None
attention_inputs = self.attention_structure.init_attention_inputs(
hidden,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
)
for layer in self.layers:
layer_output = layer(hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions)
hidden = layer_output[0]
if output_attentions:
all_attentions = all_attentions + layer_output[1:]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden,)
if not return_dict:
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
class FunnelDiscriminatorPredictions(nn.Module):
"""Prediction module for the discriminator, made up of two dense layers."""
def __init__(self, config: FunnelConfig) -> None:
super().__init__()
self.config = config
self.dense = nn.Linear(config.d_model, config.d_model)
self.dense_prediction = nn.Linear(config.d_model, 1)
def forward(self, discriminator_hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(discriminator_hidden_states)
hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
logits = self.dense_prediction(hidden_states).squeeze()
return logits
class FunnelPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FunnelConfig
load_tf_weights = load_tf_weights_in_funnel
base_model_prefix = "funnel"
def _init_weights(self, module):
classname = module.__class__.__name__
if classname.find("Linear") != -1:
if getattr(module, "weight", None) is not None:
if self.config.initializer_std is None:
fan_out, fan_in = module.weight.shape
std = np.sqrt(1.0 / float(fan_in + fan_out))
else:
std = self.config.initializer_std
nn.init.normal_(module.weight, std=std)
if getattr(module, "bias", None) is not None:
nn.init.constant_(module.bias, 0.0)
elif classname == "FunnelRelMultiheadAttention":
nn.init.uniform_(module.r_w_bias, b=self.config.initializer_range)
nn.init.uniform_(module.r_r_bias, b=self.config.initializer_range)
nn.init.uniform_(module.r_kernel, b=self.config.initializer_range)
nn.init.uniform_(module.r_s_bias, b=self.config.initializer_range)
nn.init.uniform_(module.seg_embed, b=self.config.initializer_range)
elif classname == "FunnelEmbeddings":
std = 1.0 if self.config.initializer_std is None else self.config.initializer_std
nn.init.normal_(module.word_embeddings.weight, std=std)
if module.word_embeddings.padding_idx is not None:
module.word_embeddings.weight.data[module.padding_idx].zero_()
class FunnelClassificationHead(nn.Module):
def __init__(self, config: FunnelConfig, n_labels: int) -> None:
super().__init__()
self.linear_hidden = nn.Linear(config.d_model, config.d_model)
self.dropout = nn.Dropout(config.hidden_dropout)
self.linear_out = nn.Linear(config.d_model, n_labels)
def forward(self, hidden: torch.Tensor) -> torch.Tensor:
hidden = self.linear_hidden(hidden)
hidden = torch.tanh(hidden)
hidden = self.dropout(hidden)
return self.linear_out(hidden)
@dataclass
class FunnelForPreTrainingOutput(ModelOutput):
"""
Output type of [`FunnelForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss of the ELECTRA-style objective.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Prediction scores of the head (scores for each token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
FUNNEL_START_DOCSTRING = r"""
The Funnel Transformer model was proposed in [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient
Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FunnelConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FUNNEL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""
The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called
decoder) or any task-specific head on top.
""",
FUNNEL_START_DOCSTRING,
)
class FunnelBaseModel(FunnelPreTrainedModel):
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.embeddings = FunnelEmbeddings(config)
self.encoder = FunnelEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.embeddings.word_embeddings
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
self.embeddings.word_embeddings = new_embeddings
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small-base",
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# TODO: deal with head_mask
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
encoder_outputs = self.encoder(
inputs_embeds,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return encoder_outputs
@add_start_docstrings(
"The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.",
FUNNEL_START_DOCSTRING,
)
class FunnelModel(FunnelPreTrainedModel):
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.config = config
self.embeddings = FunnelEmbeddings(config)
self.encoder = FunnelEncoder(config)
self.decoder = FunnelDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.embeddings.word_embeddings
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
self.embeddings.word_embeddings = new_embeddings
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# TODO: deal with head_mask
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
encoder_outputs = self.encoder(
inputs_embeds,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=return_dict,
)
decoder_outputs = self.decoder(
final_hidden=encoder_outputs[0],
first_block_hidden=encoder_outputs[1][self.config.block_sizes[0]],
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
idx = 0
outputs = (decoder_outputs[0],)
if output_hidden_states:
idx += 1
outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],)
if output_attentions:
idx += 1
outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],)
return outputs
return BaseModelOutput(
last_hidden_state=decoder_outputs[0],
hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states)
if output_hidden_states
else None,
attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None,
)
add_start_docstrings(
"""
Funnel Transformer model with a binary classification head on top as used during pretraining for identifying
generated tokens.
""",
FUNNEL_START_DOCSTRING,
)
class FunnelForPreTraining(FunnelPreTrainedModel):
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.funnel = FunnelModel(config)
self.discriminator_predictions = FunnelDiscriminatorPredictions(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=FunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FunnelForPreTrainingOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the ELECTRA-style loss. Input should be a sequence of tokens (see `input_ids`
docstring) Indices should be in `[0, 1]`:
- 0 indicates the token is an original token,
- 1 indicates the token was replaced.
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, FunnelForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = FunnelForPreTraining.from_pretrained("funnel-transformer/small")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> logits = model(**inputs).logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
discriminator_hidden_states = self.funnel(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
discriminator_sequence_output = discriminator_hidden_states[0]
logits = self.discriminator_predictions(discriminator_sequence_output)
loss = None
if labels is not None:
loss_fct = nn.BCEWithLogitsLoss()
if attention_mask is not None:
active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1
active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss]
active_labels = labels[active_loss]
loss = loss_fct(active_logits, active_labels.float())
else:
loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float())
if not return_dict:
output = (logits,) + discriminator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return FunnelForPreTrainingOutput(
loss=loss,
logits=logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
@add_start_docstrings("""Funnel Transformer Model with a `language modeling` head on top.""", FUNNEL_START_DOCSTRING)
class FunnelForMaskedLM(FunnelPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.funnel = FunnelModel(config)
self.lm_head = nn.Linear(config.d_model, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self) -> nn.Linear:
return self.lm_head
def set_output_embeddings(self, new_embeddings: nn.Embedding) -> None:
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.funnel(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
prediction_logits = self.lm_head(last_hidden_state)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Funnel Transformer Model with a sequence classification/regression head on top (two linear layer on top of the
first timestep of the last hidden state) e.g. for GLUE tasks.
""",
FUNNEL_START_DOCSTRING,
)
class FunnelForSequenceClassification(FunnelPreTrainedModel):
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.funnel = FunnelBaseModel(config)
self.classifier = FunnelClassificationHead(config, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small-base",
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.funnel(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
pooled_output = last_hidden_state[:, 0]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Funnel Transformer Model with a multiple choice classification head on top (two linear layer on top of the first
timestep of the last hidden state, and a softmax) e.g. for RocStories/SWAG tasks.
""",
FUNNEL_START_DOCSTRING,
)
class FunnelForMultipleChoice(FunnelPreTrainedModel):
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.funnel = FunnelBaseModel(config)
self.classifier = FunnelClassificationHead(config, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small-base",
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.funnel(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
pooled_output = last_hidden_state[:, 0]
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Funnel Transformer Model with a token classification head on top (a linear layer on top of the hidden-states
output) e.g. for Named-Entity-Recognition (NER) tasks.
""",
FUNNEL_START_DOCSTRING,
)
class FunnelForTokenClassification(FunnelPreTrainedModel):
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.funnel = FunnelModel(config)
self.dropout = nn.Dropout(config.hidden_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.funnel(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
last_hidden_state = self.dropout(last_hidden_state)
logits = self.classifier(last_hidden_state)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Funnel Transformer Model with a span classification head on top for extractive question-answering tasks like SQuAD
(a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FUNNEL_START_DOCSTRING,
)
class FunnelForQuestionAnswering(FunnelPreTrainedModel):
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.funnel = FunnelModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.funnel(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
logits = self.qa_outputs(last_hidden_state)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/funnel/__init__.py
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"],
"convert_funnel_original_tf_checkpoint_to_pytorch": [],
"tokenization_funnel": ["FunnelTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_funnel_fast"] = ["FunnelTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_funnel"] = [
"FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"FunnelBaseModel",
"FunnelForMaskedLM",
"FunnelForMultipleChoice",
"FunnelForPreTraining",
"FunnelForQuestionAnswering",
"FunnelForSequenceClassification",
"FunnelForTokenClassification",
"FunnelModel",
"FunnelPreTrainedModel",
"load_tf_weights_in_funnel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_funnel"] = [
"TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFFunnelBaseModel",
"TFFunnelForMaskedLM",
"TFFunnelForMultipleChoice",
"TFFunnelForPreTraining",
"TFFunnelForQuestionAnswering",
"TFFunnelForSequenceClassification",
"TFFunnelForTokenClassification",
"TFFunnelModel",
"TFFunnelPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
TFFunnelPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/funnel/convert_funnel_original_tf_checkpoint_to_pytorch.py
|
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Funnel checkpoint."""
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, base_model):
# Initialise PyTorch model
config = FunnelConfig.from_json_file(config_file)
print(f"Building PyTorch model from configuration: {config}")
model = FunnelBaseModel(config) if base_model else FunnelModel(config)
# Load weights from tf checkpoint
load_tf_weights_in_funnel(model, config, tf_checkpoint_path)
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}")
torch.save(model.state_dict(), pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not."
)
args = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 0 |
hf_public_repos/transformers/src/transformers/models
|
hf_public_repos/transformers/src/transformers/models/funnel/tokenization_funnel_fast.py
|
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization class for Funnel Transformer."""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_model_names = [
"small",
"small-base",
"medium",
"medium-base",
"intermediate",
"intermediate-base",
"large",
"large-base",
"xlarge",
"xlarge-base",
]
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json",
"funnel-transformer/small-base": (
"https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json"
),
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json",
"funnel-transformer/large-base": (
"https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json"
),
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json"
),
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {f"funnel-transformer/{name}": 512 for name in _model_names}
PRETRAINED_INIT_CONFIGURATION = {f"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names}
class FunnelTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" Funnel Transformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"<sep>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"<cls>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
clean_text (`bool`, *optional*, defaults to `True`):
Whether or not to clean the text before tokenization by removing any control characters and replacing all
whitespaces by the classic one.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
bos_token (`str`, `optional`, defaults to `"<s>"`):
The beginning of sentence token.
eos_token (`str`, `optional`, defaults to `"</s>"`):
The end of sentence token.
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
The prefix for subwords.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
slow_tokenizer_class = FunnelTokenizer
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
cls_token_type_id: int = 2
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
unk_token="<unk>",
sep_token="<sep>",
pad_token="<pad>",
cls_token="<cls>",
mask_token="<mask>",
bos_token="<s>",
eos_token="</s>",
clean_text=True,
tokenize_chinese_chars=True,
strip_accents=None,
wordpieces_prefix="##",
**kwargs,
):
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
bos_token=bos_token,
eos_token=eos_token,
clean_text=clean_text,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
wordpieces_prefix=wordpieces_prefix,
**kwargs,
)
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
):
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
normalizer_state["lowercase"] = do_lower_case
normalizer_state["strip_accents"] = strip_accents
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
self.do_lower_case = do_lower_case
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens with BERT->Funnel
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A Funnel sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
if token_ids_1 is not None:
output += token_ids_1 + [self.sep_token_id]
return output
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel
Transformer sequence pair mask has the following format:
```
2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0]
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
| 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.