fev_datasets / README.md
shchuro's picture
Update README.md
631c709 verified
---
annotations_creators:
- no-annotation
license: other
source_datasets:
- original
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
dataset_info:
- config_name: ETTh
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ns]
- name: HUFL
sequence: float64
- name: HULL
sequence: float64
- name: MUFL
sequence: float64
- name: MULL
sequence: float64
- name: LUFL
sequence: float64
- name: LULL
sequence: float64
- name: OT
sequence: float64
splits:
- name: train
num_bytes: 2229842
num_examples: 2
download_size: 569100
dataset_size: 2229842
- config_name: ETTm
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: HUFL
sequence: float64
- name: HULL
sequence: float64
- name: MUFL
sequence: float64
- name: MULL
sequence: float64
- name: LUFL
sequence: float64
- name: LULL
sequence: float64
- name: OT
sequence: float64
splits:
- name: train
num_bytes: 8919122
num_examples: 2
download_size: 1986490
dataset_size: 8919122
- config_name: epf_electricity_be
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[us]
- name: target
sequence: float64
- name: Generation forecast
sequence: float64
- name: System load forecast
sequence: float64
splits:
- name: train
num_bytes: 1677334
num_examples: 1
download_size: 1001070
dataset_size: 1677334
- config_name: epf_electricity_de
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[us]
- name: target
sequence: float64
- name: Ampirion Load Forecast
sequence: float64
- name: PV+Wind Forecast
sequence: float64
splits:
- name: train
num_bytes: 1677334
num_examples: 1
download_size: 1285249
dataset_size: 1677334
- config_name: epf_electricity_fr
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[us]
- name: target
sequence: float64
- name: Generation forecast
sequence: float64
- name: System load forecast
sequence: float64
splits:
- name: train
num_bytes: 1677334
num_examples: 1
download_size: 1075381
dataset_size: 1677334
- config_name: epf_electricity_np
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[us]
- name: target
sequence: float64
- name: Grid load forecast
sequence: float64
- name: Wind power forecast
sequence: float64
splits:
- name: train
num_bytes: 1677334
num_examples: 1
download_size: 902996
dataset_size: 1677334
- config_name: epf_electricity_pjm
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[us]
- name: target
sequence: float64
- name: System load forecast
sequence: float64
- name: Zonal COMED load foecast
sequence: float64
splits:
- name: train
num_bytes: 1677335
num_examples: 1
download_size: 1396603
dataset_size: 1677335
- config_name: favorita_store_sales
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[us]
- name: sales
sequence: float64
- name: onpromotion
sequence: int64
- name: oil_price
sequence: float64
- name: holiday
sequence: string
- name: store_nbr
dtype: int64
- name: family
dtype: string
- name: city
dtype: string
- name: state
dtype: string
- name: type
dtype: string
- name: cluster
dtype: int64
splits:
- name: train
num_bytes: 113609820
num_examples: 1782
download_size: 8385672
dataset_size: 113609820
- config_name: favorita_transactions
features:
- name: id
dtype: int64
- name: timestamp
sequence: timestamp[us]
- name: transactions
sequence: int64
- name: oil_price
sequence: float64
- name: holiday
sequence: string
- name: store_nbr
dtype: int64
- name: city
dtype: string
- name: state
dtype: string
- name: type
dtype: string
- name: cluster
dtype: int64
splits:
- name: train
num_bytes: 2711975
num_examples: 54
download_size: 207866
dataset_size: 2711975
- config_name: m5_with_covariates
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[us]
- name: target
sequence: float64
- name: snap_CA
sequence: int64
- name: snap_TX
sequence: int64
- name: snap_WI
sequence: int64
- name: sell_price
sequence: float64
- name: event_Cultural
sequence: int64
- name: event_National
sequence: int64
- name: event_Religious
sequence: int64
- name: event_Sporting
sequence: int64
- name: item_id
dtype: string
- name: dept_id
dtype: string
- name: cat_id
dtype: string
- name: store_id
dtype: string
- name: state_id
dtype: string
splits:
- name: train
num_bytes: 3815531330
num_examples: 30490
download_size: 81672751
dataset_size: 3815531330
- config_name: proenfo_bull
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: target
sequence: float64
- name: airtemperature
sequence: float64
- name: dewtemperature
sequence: float64
- name: sealvlpressure
sequence: float64
splits:
- name: train
num_bytes: 28773967
num_examples: 41
download_size: 3893651
dataset_size: 28773967
- config_name: proenfo_cockatoo
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: target
sequence: float64
- name: airtemperature
sequence: float64
- name: dewtemperature
sequence: float64
- name: sealvlpressure
sequence: float64
- name: winddirection
sequence: float64
- name: windspeed
sequence: float64
splits:
- name: train
num_bytes: 982517
num_examples: 1
download_size: 408973
dataset_size: 982517
- config_name: proenfo_covid19
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: target
sequence: float64
- name: pressure_kpa
sequence: float64
- name: cloud_cover_perc
sequence: float64
- name: humidity_perc
sequence: float64
- name: airtemperature
sequence: float64
- name: wind_direction_deg
sequence: float64
- name: wind_speed_kmh
sequence: float64
splits:
- name: train
num_bytes: 2042408
num_examples: 1
download_size: 965912
dataset_size: 2042408
- config_name: proenfo_gfc12_load
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: target
sequence: float64
- name: airtemperature
sequence: float64
splits:
- name: train
num_bytes: 10405494
num_examples: 11
download_size: 3161406
dataset_size: 10405494
- config_name: proenfo_gfc14_load
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: target
sequence: float64
- name: airtemperature
sequence: float64
splits:
- name: train
num_bytes: 420500
num_examples: 1
download_size: 200463
dataset_size: 420500
- config_name: proenfo_gfc17_load
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: target
sequence: float64
- name: airtemperature
sequence: int64
splits:
- name: train
num_bytes: 3368608
num_examples: 8
download_size: 1562067
dataset_size: 3368608
- config_name: proenfo_hog
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: target
sequence: float64
- name: airtemperature
sequence: float64
- name: dewtemperature
sequence: float64
- name: sealvlpressure
sequence: float64
- name: winddirection
sequence: float64
- name: windspeed
sequence: float64
splits:
- name: train
num_bytes: 23580325
num_examples: 24
download_size: 3291179
dataset_size: 23580325
- config_name: proenfo_pdb
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: target
sequence: float64
- name: airtemperature
sequence: int64
splits:
- name: train
num_bytes: 420500
num_examples: 1
download_size: 226285
dataset_size: 420500
- config_name: proenfo_spain
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: target
sequence: float64
- name: generation_biomass
sequence: float64
- name: generation_fossil_brown_coal_lignite
sequence: float64
- name: generation_fossil_coal_derived_gas
sequence: float64
- name: generation_fossil_gas
sequence: float64
- name: generation_fossil_hard_coal
sequence: float64
- name: generation_fossil_oil
sequence: float64
- name: generation_fossil_oil_shale
sequence: float64
- name: generation_fossil_peat
sequence: float64
- name: generation_geothermal
sequence: float64
- name: generation_hydro_pumped_storage_consumption
sequence: float64
- name: generation_hydro_run_of_river_and_poundage
sequence: float64
- name: generation_hydro_water_reservoir
sequence: float64
- name: generation_marine
sequence: float64
- name: generation_nuclear
sequence: float64
- name: generation_other
sequence: float64
- name: generation_other_renewable
sequence: float64
- name: generation_solar
sequence: float64
- name: generation_waste
sequence: float64
- name: generation_wind_offshore
sequence: float64
- name: generation_wind_onshore
sequence: float64
splits:
- name: train
num_bytes: 6171357
num_examples: 1
download_size: 1275626
dataset_size: 6171357
configs:
- config_name: ETTh
data_files:
- split: train
path: ETTh/train-*
- config_name: ETTm
data_files:
- split: train
path: ETTm/train-*
- config_name: epf_electricity_be
data_files:
- split: train
path: epf/electricity_be/train-*
- config_name: epf_electricity_de
data_files:
- split: train
path: epf/electricity_de/train-*
- config_name: epf_electricity_fr
data_files:
- split: train
path: epf/electricity_fr/train-*
- config_name: epf_electricity_np
data_files:
- split: train
path: epf/electricity_np/train-*
- config_name: epf_electricity_pjm
data_files:
- split: train
path: epf/electricity_pjm/train-*
- config_name: favorita_store_sales
data_files:
- split: train
path: favorita/store_sales/train-*
- config_name: favorita_transactions
data_files:
- split: train
path: favorita/transactions/train-*
- config_name: m5_with_covariates
data_files:
- split: train
path: m5_with_covariates/train-*
- config_name: proenfo_bull
data_files:
- split: train
path: proenfo/bull/train-*
- config_name: proenfo_cockatoo
data_files:
- split: train
path: proenfo/cockatoo/train-*
- config_name: proenfo_covid19
data_files:
- split: train
path: proenfo/covid19/train-*
- config_name: proenfo_gfc12_load
data_files:
- split: train
path: proenfo/gfc12_load/train-*
- config_name: proenfo_gfc14_load
data_files:
- split: train
path: proenfo/gfc14_load/train-*
- config_name: proenfo_gfc17_load
data_files:
- split: train
path: proenfo/gfc17_load/train-*
- config_name: proenfo_hog
data_files:
- split: train
path: proenfo/hog/train-*
- config_name: proenfo_pdb
data_files:
- split: train
path: proenfo/pdb/train-*
- config_name: proenfo_spain
data_files:
- split: train
path: proenfo/spain/train-*
---
## Forecast evaluation datasets
This repository contains time series datasets that can be used for evaluation of univariate & multivariate forecasting models.
The main focus of this repository is on datasets that reflect real-world forecasting scenarios, such as those involving covariates, missing values, and other practical complexities.
The datasets follow a format that is compatible with the [`fev`](https://github.com/autogluon/fev) package.
## Data format and usage
Each dataset satisfies the following schema:
- each dataset entry (=row) represents a single univariate or multivariate time series
- each entry contains
- 1/ a field of type `Sequence(timestamp)` that contains the timestamps of observations
- 2/ at least one field of type `Sequence(float)` that can be used as the target time series or dynamic covariates
- 3/ a field of type `string` that contains the unique ID of each time series
- all fields of type `Sequence` have the same length
Datasets can be loaded using the [🤗 `datasets`](https://huggingface.co/docs/datasets/en/index) library.
```python
import datasets
ds = datasets.load_dataset("autogluon/fev_datasets", "epf_electricity_de", split="train")
ds.set_format("numpy") # sequences returned as numpy arrays
```
Example entry in the `epf_electricity_de` dataset
```python
>>> ds[0]
{'id': 'DE',
'timestamp': array(['2012-01-09T00:00:00.000000', '2012-01-09T01:00:00.000000',
'2012-01-09T02:00:00.000000', ..., '2017-12-31T21:00:00.000000',
'2017-12-31T22:00:00.000000', '2017-12-31T23:00:00.000000'],
dtype='datetime64[us]'),
'target': array([34.97, 33.43, 32.74, ..., 5.3 , 1.86, -0.92], dtype=float32),
'Ampirion Load Forecast': array([16382. , 15410.5, 15595. , ..., 15715. , 15876. , 15130. ],
dtype=float32),
'PV+Wind Forecast': array([ 3569.5276, 3315.275 , 3107.3076, ..., 29653.008 , 29520.33 ,
29466.408 ], dtype=float32)}
```
For more details about the dataset format and usage, check out the [`fev` documentation on GitHub](https://github.com/autogluon/fev?tab=readme-ov-file#tutorials).
## Dataset statistics
**Disclaimer:** These datasets have been converted into a unified format from external sources. Please refer to the original sources for licensing and citation terms. We do not claim any rights to the original data. Unless otherwise specified, the datasets are provided only for research purposes.
| config | freq | # items | # obs | # dynamic cols | # static cols | source | citation |
|:------------------------|:-------|----------:|----------:|-----------------:|----------------:|:------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| `ETTh` | h | 2 | 243880 | 7 | 0 | https://github.com/zhouhaoyi/ETDataset | [[1]](https://arxiv.org/abs/2012.07436) |
| `ETTm` | 15min | 2 | 975520 | 7 | 0 | https://github.com/zhouhaoyi/ETDataset | [[1]](https://arxiv.org/abs/2012.07436) |
| `epf_electricity_be` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983) |
| `epf_electricity_de` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983) |
| `epf_electricity_fr` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983) |
| `epf_electricity_np` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983) |
| `epf_electricity_pjm` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983) |
| `favorita_store_sales` | D | 1782 | 12032064 | 4 | 6 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[3]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
| `favorita_transactions` | D | 54 | 273456 | 3 | 5 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[3]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
| `m5_with_covariates` | D | 30490 | 428849460 | 9 | 5 | https://www.kaggle.com/competitions/m5-forecasting-accuracy | [[4]](https://doi.org/10.1016/j.ijforecast.2021.07.007) |
| `proenfo_bull` | h | 41 | 2877216 | 4 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_cockatoo` | h | 1 | 105264 | 6 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_covid19` | h | 1 | 223384 | 7 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_gfc12_load` | h | 11 | 867108 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_gfc14_load` | h | 1 | 35040 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_gfc17_load` | h | 8 | 280704 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_hog` | h | 24 | 2526336 | 6 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_pdb` | h | 1 | 35040 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
| `proenfo_spain` | h | 1 | 736344 | 21 | 0 | https://github.com/Leo-VK/EnFoAV | [[5]](https://doi.org/10.48550/arXiv.2307.07191) |
## Publications using these datasets
- ["ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables"](https://arxiv.org/abs/2503.12107)