ant-des's picture
Update README.md
7c9592d verified
---
dataset_info:
features:
- name: input_ids
sequence: int32
- name: semantic_embeddings
sequence:
sequence: float64
- name: semantic_positions
sequence: int64
- name: attention_mask
sequence: int8
- name: file_path
dtype: string
- name: chunk_info
dtype: string
- name: num_symbols
dtype: int64
splits:
- name: train
num_bytes: 2953926590
num_examples: 1540
download_size: 62991471
dataset_size: 2953926590
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: mit
---
# PyTorch Semantic Code Dataset
A semantically-enriched Python code dataset combining syntactic tokenization with deep semantic analysis from Language Server Protocol (LSP) tools.
## 🎯 Overview
This dataset enhances tokenized Python code with semantic embeddings derived from static analysis tools (Tree-sitter + Jedi), providing models with both syntactic and semantic understanding of code symbols. Each token in the code is aligned with rich semantic information including type hints, definitions, documentation, and cross-references.
**Key Features:**
- 🔤 **Tokenized Python Code**: Using Qwen3-0.6B tokenizer
- 🧠 **Semantic Embeddings**: 1024D vectors from Qwen3-Embedding-0.6B
- 🔍 **Symbol Analysis**: Type information, definitions, and cross-references via Jedi
- 📍 **Precise Alignment**: Token-level mapping between syntax and semantics
- 🏗️ **Production Code**: Real PyTorch codebase for authentic patterns
## 📊 Dataset Statistics
| Metric | Value |
|--------|-------|
| **Total Sequences** | 1,540 |
| **Training Samples** | 1,232 |
| **Evaluation Samples** | 308 |
| **Average Sequence Length** | ~200 tokens (256 max length)|
| **Semantic Coverage** | ~35% of tokens have semantic information |
| **Embedding Dimension** | 1024 |
| **Source Code** | PyTorch codebase |
## 🏗️ Dataset Structure
Each sample contains:
```python
{
"input_ids": [2, 847, 3288, ...], # Tokenized code (Qwen3-0.6B)
"semantic_embeddings": [[0.1, -0.2, ...], ...], # 1024D embeddings per token
"semantic_positions": [0, 0, 1, 1, 0, ...], # Binary mask (1=has semantic info)
"attention_mask": [1, 1, 1, 1, 1, ...], # Standard attention mask
"file_path": "torch/nn/modules/linear.py", # Source file
"chunk_info": "lines_45_120", # Code chunk information
"num_symbols": 23 # Number of semantic symbols
}
```
### Field Descriptions
- **`input_ids`**: Token IDs from Qwen3-0.6B tokenizer
- **`semantic_embeddings`**: One 1024D vector per token, containing semantic information for symbol tokens or zeros for non-symbols
- **`semantic_positions`**: Binary mask indicating which tokens have meaningful semantic embeddings
- **`attention_mask`**: Standard attention mask for the sequence
- **`file_path`**: Path to the original Python file
- **`chunk_info`**: Information about which part of the file this sequence represents
- **`num_symbols`**: Count of tokens that received semantic enrichment
## 🔬 Semantic Information
The semantic embeddings encode rich information extracted via Jedi analysis:
### What's Embedded
- **Type Information**: `Type[ABC]`, `(self, event) -> None`
- **Definitions**: Function signatures, class definitions
- **Documentation**: Docstrings and comments
- **Cross-References**: Where symbols are defined
- **Import Resolution**: Module and package information
- **Scope Analysis**: Variable and function scope
### Example Semantic Descriptions
```python
# For token "_StreamBase"
"name: _StreamBase. kind: class_def. type: Type[_StreamBase].
definition: class _StreamBase. description: Base stream class abstraction."
```
## 🚀 Quick Start
### Loading the Dataset
```python
from datasets import load_dataset
from transformers import AutoTokenizer
# Load dataset
dataset = load_dataset("ant-des/pytorch-semantic-dataset-fixed")
# Load corresponding tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-0.6B")
# Access splits
train_dataset = dataset["train"]
eval_dataset = dataset["test"]
print(f"Training samples: {len(train_dataset)}")
print(f"Evaluation samples: {len(eval_dataset)}")
```
### Inspecting Samples
```python
# Get a sample
sample = train_dataset[0]
# Reconstruct the code
code = tokenizer.decode(sample["input_ids"], skip_special_tokens=True)
print("Code:", code[:200] + "...")
# Check semantic coverage
semantic_tokens = sum(sample["semantic_positions"])
total_tokens = len(sample["semantic_positions"])
coverage = semantic_tokens / total_tokens * 100
print(f"Semantic coverage: {coverage:.1f}%")
# Find semantic tokens
for i, (token_id, has_semantic) in enumerate(zip(sample["input_ids"], sample["semantic_positions"])):
if has_semantic:
token_text = tokenizer.decode([token_id])
print(f"Semantic token at position {i}: '{token_text}'")
```
## 🎯 Use Cases
### 1. **Semantic Code Completion**
Train language models that understand code semantics for better completions:
```python
# Model sees both syntax and semantics
input_ids = [class_token, identifier_token]
semantic_info = [zero_embedding, class_definition_embedding]
# → Better understanding of class structure
```
### 2. **Code Understanding Tasks**
- **Variable Type Inference**: Using semantic type information
- **Function Signature Prediction**: Leveraging parameter and return type data
- **Import Resolution**: Understanding cross-module dependencies
- **Refactoring Assistance**: Knowing symbol definitions and usages
### 3. **Multi-Modal Code Models**
Combine syntactic and semantic representations:
```python
class SemanticCodeModel(nn.Module):
def forward(self, input_ids, semantic_embeddings, semantic_positions):
# Process both streams
syntactic_repr = self.language_model(input_ids)
semantic_repr = self.semantic_projection(semantic_embeddings)
# Cross-attention fusion
enhanced_repr = self.cross_attention(
syntactic_repr, semantic_repr, semantic_positions
)
return enhanced_repr
```
## 🔧 Creation Methodology
### 1. **Source Selection**
- PyTorch codebase for production-quality Python code
- Filtered files: 1KB - 200KB size range
### 2. **Symbol Extraction**
```python
# Tree-sitter for precise symbol locations
tree = parser.parse(source_code)
symbols = extract_identifiers(tree) # Functions, classes, variables
# Jedi for semantic analysis
script = jedi.Script(code=source_code, path=file_path)
definitions = script.goto(line, column, follow_imports=True)
type_info = script.complete(line, column)
```
### 3. **Semantic Description Generation**
```python
def create_semantic_description(symbol_info):
description = f"name: {symbol.name}. kind: {symbol.type}. type: {symbol.type_hint}."
if symbol.definition:
description += f" definition: {symbol.definition}."
if symbol.docstring:
description += f" description: {symbol.docstring[:100]}."
return description
```
### 4. **Embedding and Alignment**
```python
# Generate embeddings
semantic_embeddings = embedding_model.encode(descriptions)
# Align to tokens using Tree-sitter locations
token_embeddings = align_symbols_to_tokens(
symbols, semantic_embeddings, tokenizer_output
)
```
## 📋 Model Training Example
```python
from transformers import AutoTokenizer, AutoModel, Trainer, TrainingArguments
import torch.nn as nn
class SemanticCodeModel(nn.Module):
def __init__(self, base_model_name, semantic_dim=1024):
super().__init__()
self.base_model = AutoModel.from_pretrained(base_model_name)
self.semantic_projection = nn.Linear(semantic_dim, self.base_model.config.hidden_size)
self.cross_attention = nn.MultiheadAttention(
self.base_model.config.hidden_size, num_heads=8
)
def forward(self, input_ids, semantic_embeddings, semantic_positions, **kwargs):
# Base language model
outputs = self.base_model(input_ids, **kwargs)
hidden_states = outputs.last_hidden_state
# Project semantic embeddings
semantic_proj = self.semantic_projection(semantic_embeddings)
# Apply semantic mask
masked_semantic = semantic_proj * semantic_positions.unsqueeze(-1)
# Cross-attention fusion
enhanced_states, _ = self.cross_attention(
hidden_states, masked_semantic, masked_semantic
)
return enhanced_states
# Data collator
class SemanticDataCollator:
def __init__(self, tokenizer):
self.tokenizer = tokenizer
def __call__(self, batch):
# Pad sequences and create batch tensors
max_len = max(len(item["input_ids"]) for item in batch)
# Implement padding logic for all fields
# ... (see full implementation in repository)
# Training setup
model = SemanticCodeModel("Qwen/Qwen3-0.6B")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-0.6B")
data_collator = SemanticDataCollator(tokenizer)
training_args = TrainingArguments(
output_dir="./semantic-code-model",
learning_rate=5e-5,
per_device_train_batch_size=4,
num_train_epochs=3,
warmup_steps=100,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=data_collator,
)
trainer.train()
```
## 🛠️ Requirements
```bash
# Core dependencies
pip install datasets transformers torch
pip install tree-sitter tree-sitter-python
pip install jedi sentence-transformers
pip install numpy huggingface-hub
```
## 📖 Citation
If you use this dataset in your research, please cite:
```bibtex
@dataset{pytorch_semantic_dataset_2024,
title={PyTorch Semantic Code Dataset: Syntactic Tokenization with Semantic Enrichment},
author={Antoine Descamps},
year={2025},
url={https://huggingface.co/datasets/ant-des/pytorch-semantic-dataset-fixed},
note={A semantically-enriched Python code dataset combining Tree-sitter and Jedi analysis}
}
```
## 📄 License
This dataset is released under MIT.
**Note**: The source code is from the PyTorch project, which is licensed under BSD-3-Clause. This dataset contains processed representations of that code for research purposes.
## 📊 Dataset Card
### Dataset Summary
This dataset provides semantically-enriched Python code samples where each token is augmented with semantic information extracted through static analysis. It enables training of code models that can leverage both syntactic and semantic understanding.
### Supported Tasks
- Code completion with semantic awareness
- Type inference and prediction
- Symbol resolution and cross-referencing
- Code summarization and documentation
- Semantic code search and retrieval
### Languages
- Programming Language: Python
- Natural Language: English (for documentation and comments)
### Data Source
- PyTorch codebase (BSD-3-Clause licensed)
- Processed using Tree-sitter and Jedi static analysis tools
### Personal and Sensitive Information
This dataset contains only source code and does not include personal or sensitive information.
---