Dataset Viewer (First 5GB)
Auto-converted to Parquet
identifier
stringlengths
7
18
space
stringclasses
4 values
uid
stringlengths
1
6
arch_str
stringlengths
1
32
input
stringlengths
8.51k
461k
target_metric
stringclasses
1 value
val_accuracy
float64
0
95.1
flops
float64
31.1M
14.7B
params
float64
227k
50M
metadata
stringlengths
0
1.46k
metainformation
stringclasses
1 value
FBNet_4924
FBNet
4924
4924
graph main_graph ( %input.1[FLOAT, 1x3x32x32] %fc.weight[FLOAT, 100x1504] %fc.bias[FLOAT, 100] %onnx::Conv_703[FLOAT, 16x3x3x3] %onnx::Conv_704[FLOAT, 16] %onnx::Conv_706[FLOAT, 16x8x1x1] %onnx::Conv_709[FLOAT, 16x1x5x5] %onnx::Conv_712[FLOAT, 16x8x1x1] %onnx::Conv_715[FLOAT, 96x16x1x1] %onnx::Conv_716[FLOAT, 96] %onnx::Conv_718[FLOAT, 96x1x3x3] %onnx::Conv_721[FLOAT, 24x96x1x1] %onnx::Conv_722[FLOAT, 24] %onnx::Conv_724[FLOAT, 24x12x1x1] %onnx::Conv_727[FLOAT, 24x1x5x5] %onnx::Conv_730[FLOAT, 24x12x1x1] %onnx::Conv_733[FLOAT, 24x24x1x1] %onnx::Conv_736[FLOAT, 24x1x3x3] %onnx::Conv_739[FLOAT, 24x24x1x1] %onnx::Conv_742[FLOAT, 24x12x1x1] %onnx::Conv_745[FLOAT, 24x1x3x3] %onnx::Conv_748[FLOAT, 24x12x1x1] %onnx::Conv_751[FLOAT, 24x12x1x1] %onnx::Conv_754[FLOAT, 24x1x3x3] %onnx::Conv_757[FLOAT, 32x12x1x1] %onnx::Conv_758[FLOAT, 32] %onnx::Conv_760[FLOAT, 96x32x1x1] %onnx::Conv_763[FLOAT, 96x1x5x5] %onnx::Conv_766[FLOAT, 32x96x1x1] %onnx::Conv_769[FLOAT, 192x32x1x1] %onnx::Conv_770[FLOAT, 192] %onnx::Conv_772[FLOAT, 192x1x5x5] %onnx::Conv_775[FLOAT, 32x192x1x1] %onnx::Conv_778[FLOAT, 192x32x1x1] %onnx::Conv_781[FLOAT, 192x1x5x5] %onnx::Conv_784[FLOAT, 32x192x1x1] %onnx::Conv_787[FLOAT, 32x32x1x1] %onnx::Conv_790[FLOAT, 32x1x5x5] %onnx::Conv_793[FLOAT, 64x32x1x1] %onnx::Conv_794[FLOAT, 64] %onnx::Conv_796[FLOAT, 64x32x1x1] %onnx::Conv_799[FLOAT, 64x1x3x3] %onnx::Conv_802[FLOAT, 64x32x1x1] %onnx::Conv_805[FLOAT, 384x64x1x1] %onnx::Conv_806[FLOAT, 384] %onnx::Conv_808[FLOAT, 384x1x3x3] %onnx::Conv_811[FLOAT, 64x384x1x1] %onnx::Conv_814[FLOAT, 192x64x1x1] %onnx::Conv_817[FLOAT, 192x1x3x3] %onnx::Conv_820[FLOAT, 64x192x1x1] %onnx::Conv_823[FLOAT, 64x32x1x1] %onnx::Conv_826[FLOAT, 64x1x3x3] %onnx::Conv_829[FLOAT, 112x32x1x1] %onnx::Conv_830[FLOAT, 112] %onnx::Conv_832[FLOAT, 672x112x1x1] %onnx::Conv_833[FLOAT, 672] %onnx::Conv_835[FLOAT, 672x1x5x5] %onnx::Conv_838[FLOAT, 112x672x1x1] %onnx::Conv_841[FLOAT, 336x112x1x1] %onnx::Conv_842[FLOAT, 336] %onnx::Conv_844[FLOAT, 336x1x5x5] %onnx::Conv_847[FLOAT, 112x336x1x1] %onnx::Conv_850[FLOAT, 672x112x1x1] %onnx::Conv_853[FLOAT, 672x1x3x3] %onnx::Conv_856[FLOAT, 184x672x1x1] %onnx::Conv_857[FLOAT, 184] %onnx::Conv_859[FLOAT, 184x184x1x1] %onnx::Conv_862[FLOAT, 184x1x3x3] %onnx::Conv_865[FLOAT, 184x184x1x1] %onnx::Conv_868[FLOAT, 1104x184x1x1] %onnx::Conv_869[FLOAT, 1104] %onnx::Conv_871[FLOAT, 1104x1x5x5] %onnx::Conv_874[FLOAT, 184x1104x1x1] %onnx::Conv_877[FLOAT, 552x184x1x1] %onnx::Conv_878[FLOAT, 552] %onnx::Conv_880[FLOAT, 552x1x5x5] %onnx::Conv_883[FLOAT, 184x552x1x1] %onnx::Conv_886[FLOAT, 184x184x1x1] %onnx::Conv_889[FLOAT, 184x1x5x5] %onnx::Conv_892[FLOAT, 352x184x1x1] %onnx::Conv_893[FLOAT, 352] %onnx::Conv_895[FLOAT, 1504x352x1x1] %onnx::Conv_896[FLOAT, 1504] ) { %onnx::Conv_890 = Identity(%onnx::Conv_857) %onnx::Conv_887 = Identity(%onnx::Conv_857) %onnx::Conv_884 = Identity(%onnx::Conv_857) %onnx::Conv_881 = Identity(%onnx::Conv_878) %onnx::Conv_875 = Identity(%onnx::Conv_857) %onnx::Conv_872 = Identity(%onnx::Conv_869) %onnx::Conv_866 = Identity(%onnx::Conv_857) %onnx::Conv_863 = Identity(%onnx::Conv_857) %onnx::Conv_860 = Identity(%onnx::Conv_857) %onnx::Conv_854 = Identity(%onnx::Conv_833) %onnx::Conv_851 = Identity(%onnx::Conv_833) %onnx::Conv_848 = Identity(%onnx::Conv_830) %onnx::Conv_845 = Identity(%onnx::Conv_842) %onnx::Conv_839 = Identity(%onnx::Conv_830) %onnx::Conv_836 = Identity(%onnx::Conv_833) %onnx::Conv_827 = Identity(%onnx::Conv_794) %onnx::Conv_824 = Identity(%onnx::Conv_794) %onnx::Conv_821 = Identity(%onnx::Conv_794) %onnx::Conv_818 = Identity(%onnx::Conv_770) %onnx::Conv_815 = Identity(%onnx::Conv_770) %onnx::Conv_812 = Identity(%onnx::Conv_794) %onnx::Conv_809 = Identity(%onnx::Conv_806) %onnx::Conv_803 = Identity(%onnx::Conv_794) %onnx::Conv_800 = Identity(%onnx::Conv_794) %onnx::Conv_797 = Identity(%onnx::Conv_794) %onnx::Conv_791 = Identity(%onnx::Conv_758) %onnx::Conv_788 = Identity(%onnx::Conv_758) %onnx::Conv_785 = Identity(%onnx::Conv_758) %onnx::Conv_782 = Identity(%onnx::Conv_770) %onnx::Conv_779 = Identity(%onnx::Conv_770) %onnx::Conv_776 = Identity(%onnx::Conv_758) %onnx::Conv_773 = Identity(%onnx::Conv_770) %onnx::Conv_767 = Identity(%onnx::Conv_758) %onnx::Conv_764 = Identity(%onnx::Conv_716) %onnx::Conv_761 = Identity(%onnx::Conv_716) %onnx::Conv_755 = Identity(%onnx::Conv_722) %onnx::Conv_752 = Identity(%onnx::Conv_722) %onnx::Conv_749 = Identity(%onnx::Conv_722) %onnx::Conv_746 = Identity(%onnx::Conv_722) %onnx::Conv_743 = Identity(%onnx::Conv_722) %onnx::Conv_740 = Identity(%onnx::Conv_722) %onnx::Conv_737 = Identity(%onnx::Conv_722) %onnx::Conv_734 = Identity(%onnx::Conv_722) %onnx::Conv_731 = Identity(%onnx::Conv_722) %onnx::Conv_728 = Identity(%onnx::Conv_722) %onnx::Conv_725 = Identity(%onnx::Conv_722) %onnx::Conv_719 = Identity(%onnx::Conv_716) %onnx::Conv_713 = Identity(%onnx::Conv_704) %onnx::Conv_710 = Identity(%onnx::Conv_704) %onnx::Conv_707 = Identity(%onnx::Conv_704) %/stem/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_703, %onnx::Conv_704) %/stem/relu/Relu_output_0 = Relu(%/stem/conv/Conv_output_0) %/cells.0/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/stem/relu/Relu_output_0, %onnx::Conv_706, %onnx::Conv_707) %/cells.0/nl/Relu_output_0 = Relu(%/cells.0/conv1/Conv_output_0) %/cells.0/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.0/shuffle/Reshape_output_0 = Reshape(%/cells.0/nl/Relu_output_0, %/cells.0/shuffle/Constant_output_0) %/cells.0/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.0/shuffle/Reshape_output_0) %/cells.0/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.0/shuffle/Reshape_1_output_0 = Reshape(%/cells.0/shuffle/Transpose_output_0, %/cells.0/shuffle/Constant_1_output_0) %/cells.0/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 16, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.0/shuffle/Reshape_1_output_0, %onnx::Conv_709, %onnx::Conv_710) %/cells.0/nl_1/Relu_output_0 = Relu(%/cells.0/conv2/Conv_output_0) %/cells.0/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/nl_1/Relu_output_0, %onnx::Conv_712, %onnx::Conv_713) %/cells.0/Add_output_0 = Add(%/cells.0/conv3/Conv_output_0, %/stem/relu/Relu_output_0) %/cells.1/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/Add_output_0, %onnx::Conv_715, %onnx::Conv_716) %/cells.1/nl/Relu_output_0 = Relu(%/cells.1/conv1/Conv_output_0) %/cells.1/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.1/nl/Relu_output_0, %onnx::Conv_718, %onnx::Conv_719) %/cells.1/nl_1/Relu_output_0 = Relu(%/cells.1/conv2/Conv_output_0) %/cells.1/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/nl_1/Relu_output_0, %onnx::Conv_721, %onnx::Conv_722) %/cells.2/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/conv3/Conv_output_0, %onnx::Conv_724, %onnx::Conv_725) %/cells.2/nl/Relu_output_0 = Relu(%/cells.2/conv1/Conv_output_0) %/cells.2/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.2/shuffle/Reshape_output_0 = Reshape(%/cells.2/nl/Relu_output_0, %/cells.2/shuffle/Constant_output_0) %/cells.2/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.2/shuffle/Reshape_output_0) %/cells.2/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.2/shuffle/Reshape_1_output_0 = Reshape(%/cells.2/shuffle/Transpose_output_0, %/cells.2/shuffle/Constant_1_output_0) %/cells.2/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.2/shuffle/Reshape_1_output_0, %onnx::Conv_727, %onnx::Conv_728) %/cells.2/nl_1/Relu_output_0 = Relu(%/cells.2/conv2/Conv_output_0) %/cells.2/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/nl_1/Relu_output_0, %onnx::Conv_730, %onnx::Conv_731) %/cells.2/Add_output_0 = Add(%/cells.2/conv3/Conv_output_0, %/cells.1/conv3/Conv_output_0) %/cells.3/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/Add_output_0, %onnx::Conv_733, %onnx::Conv_734) %/cells.3/nl/Relu_output_0 = Relu(%/cells.3/conv1/Conv_output_0) %/cells.3/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.3/nl/Relu_output_0, %onnx::Conv_736, %onnx::Conv_737) %/cells.3/nl_1/Relu_output_0 = Relu(%/cells.3/conv2/Conv_output_0) %/cells.3/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/nl_1/Relu_output_0, %onnx::Conv_739, %onnx::Conv_740) %/cells.3/Add_output_0 = Add(%/cells.3/conv3/Conv_output_0, %/cells.2/Add_output_0) %/cells.4/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/Add_output_0, %onnx::Conv_742, %onnx::Conv_743) %/cells.4/nl/Relu_output_0 = Relu(%/cells.4/conv1/Conv_output_0) %/cells.4/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.4/shuffle/Reshape_output_0 = Reshape(%/cells.4/nl/Relu_output_0, %/cells.4/shuffle/Constant_output_0) %/cells.4/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.4/shuffle/Reshape_output_0) %/cells.4/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.4/shuffle/Reshape_1_output_0 = Reshape(%/cells.4/shuffle/Transpose_output_0, %/cells.4/shuffle/Constant_1_output_0) %/cells.4/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.4/shuffle/Reshape_1_output_0, %onnx::Conv_745, %onnx::Conv_746) %/cells.4/nl_1/Relu_output_0 = Relu(%/cells.4/conv2/Conv_output_0) %/cells.4/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/nl_1/Relu_output_0, %onnx::Conv_748, %onnx::Conv_749) %/cells.4/Add_output_0 = Add(%/cells.4/conv3/Conv_output_0, %/cells.3/Add_output_0) %/cells.5/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/Add_output_0, %onnx::Conv_751, %onnx::Conv_752) %/cells.5/nl/Relu_output_0 = Relu(%/cells.5/conv1/Conv_output_0) %/cells.5/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.5/shuffle/Reshape_output_0 = Reshape(%/cells.5/nl/Relu_output_0, %/cells.5/shuffle/Constant_output_0) %/cells.5/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.5/shuffle/Reshape_output_0) %/cells.5/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.5/shuffle/Reshape_1_output_0 = Reshape(%/cells.5/shuffle/Transpose_output_0, %/cells.5/shuffle/Constant_1_output_0) %/cells.5/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.5/shuffle/Reshape_1_output_0, %onnx::Conv_754, %onnx::Conv_755) %/cells.5/nl_1/Relu_output_0 = Relu(%/cells.5/conv2/Conv_output_0) %/cells.5/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/nl_1/Relu_output_0, %onnx::Conv_757, %onnx::Conv_758) %/cells.6/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/conv3/Conv_output_0, %onnx::Conv_760, %onnx::Conv_761) %/cells.6/nl/Relu_output_0 = Relu(%/cells.6/conv1/Conv_output_0) %/cells.6/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.6/nl/Relu_output_0, %onnx::Conv_763, %onnx::Conv_764) %/cells.6/nl_1/Relu_output_0 = Relu(%/cells.6/conv2/Conv_output_0) %/cells.6/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/nl_1/Relu_output_0, %onnx::Conv_766, %onnx::Conv_767) %/cells.6/Add_output_0 = Add(%/cells.6/conv3/Conv_output_0, %/cells.5/conv3/Conv_output_0) %/cells.7/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/Add_output_0, %onnx::Conv_769, %onnx::Conv_770) %/cells.7/nl/Relu_output_0 = Relu(%/cells.7/conv1/Conv_output_0) %/cells.7/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.7/nl/Relu_output_0, %onnx::Conv_772, %onnx::Conv_773) %/cells.7/nl_1/Relu_output_0 = Relu(%/cells.7/conv2/Conv_output_0) %/cells.7/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/nl_1/Relu_output_0, %onnx::Conv_775, %onnx::Conv_776) %/cells.7/Add_output_0 = Add(%/cells.7/conv3/Conv_output_0, %/cells.6/Add_output_0) %/cells.8/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/Add_output_0, %onnx::Conv_778, %onnx::Conv_779) %/cells.8/nl/Relu_output_0 = Relu(%/cells.8/conv1/Conv_output_0) %/cells.8/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.8/nl/Relu_output_0, %onnx::Conv_781, %onnx::Conv_782) %/cells.8/nl_1/Relu_output_0 = Relu(%/cells.8/conv2/Conv_output_0) %/cells.8/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/nl_1/Relu_output_0, %onnx::Conv_784, %onnx::Conv_785) %/cells.8/Add_output_0 = Add(%/cells.8/conv3/Conv_output_0, %/cells.7/Add_output_0) %/cells.9/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/Add_output_0, %onnx::Conv_787, %onnx::Conv_788) %/cells.9/nl/Relu_output_0 = Relu(%/cells.9/conv1/Conv_output_0) %/cells.9/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.9/nl/Relu_output_0, %onnx::Conv_790, %onnx::Conv_791) %/cells.9/nl_1/Relu_output_0 = Relu(%/cells.9/conv2/Conv_output_0) %/cells.9/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/nl_1/Relu_output_0, %onnx::Conv_793, %onnx::Conv_794) %/cells.10/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/conv3/Conv_output_0, %onnx::Conv_796, %onnx::Conv_797) %/cells.10/nl/Relu_output_0 = Relu(%/cells.10/conv1/Conv_output_0) %/cells.10/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.10/shuffle/Reshape_output_0 = Reshape(%/cells.10/nl/Relu_output_0, %/cells.10/shuffle/Constant_output_0) %/cells.10/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.10/shuffle/Reshape_output_0) %/cells.10/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.10/shuffle/Reshape_1_output_0 = Reshape(%/cells.10/shuffle/Transpose_output_0, %/cells.10/shuffle/Constant_1_output_0) %/cells.10/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.10/shuffle/Reshape_1_output_0, %onnx::Conv_799, %onnx::Conv_800) %/cells.10/nl_1/Relu_output_0 = Relu(%/cells.10/conv2/Conv_output_0) %/cells.10/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/nl_1/Relu_output_0, %onnx::Conv_802, %onnx::Conv_803) %/cells.10/Add_output_0 = Add(%/cells.10/conv3/Conv_output_0, %/cells.9/conv3/Conv_output_0) %/cells.11/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/Add_output_0, %onnx::Conv_805, %onnx::Conv_806) %/cells.11/nl/Relu_output_0 = Relu(%/cells.11/conv1/Conv_output_0) %/cells.11/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 384, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.11/nl/Relu_output_0, %onnx::Conv_808, %onnx::Conv_809) %/cells.11/nl_1/Relu_output_0 = Relu(%/cells.11/conv2/Conv_output_0) %/cells.11/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/nl_1/Relu_output_0, %onnx::Conv_811, %onnx::Conv_812) %/cells.11/Add_output_0 = Add(%/cells.11/conv3/Conv_output_0, %/cells.10/Add_output_0) %/cells.12/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/Add_output_0, %onnx::Conv_814, %onnx::Conv_815) %/cells.12/nl/Relu_output_0 = Relu(%/cells.12/conv1/Conv_output_0) %/cells.12/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.12/nl/Relu_output_0, %onnx::Conv_817, %onnx::Conv_818) %/cells.12/nl_1/Relu_output_0 = Relu(%/cells.12/conv2/Conv_output_0) %/cells.12/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/nl_1/Relu_output_0, %onnx::Conv_820, %onnx::Conv_821) %/cells.12/Add_output_0 = Add(%/cells.12/conv3/Conv_output_0, %/cells.11/Add_output_0) %/cells.13/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/Add_output_0, %onnx::Conv_823, %onnx::Conv_824) %/cells.13/nl/Relu_output_0 = Relu(%/cells.13/conv1/Conv_output_0) %/cells.13/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.13/shuffle/Reshape_output_0 = Reshape(%/cells.13/nl/Relu_output_0, %/cells.13/shuffle/Constant_output_0) %/cells.13/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.13/shuffle/Reshape_output_0) %/cells.13/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.13/shuffle/Reshape_1_output_0 = Reshape(%/cells.13/shuffle/Transpose_output_0, %/cells.13/shuffle/Constant_1_output_0) %/cells.13/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.13/shuffle/Reshape_1_output_0, %onnx::Conv_826, %onnx::Conv_827) %/cells.13/nl_1/Relu_output_0 = Relu(%/cells.13/conv2/Conv_output_0) %/cells.13/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/nl_1/Relu_output_0, %onnx::Conv_829, %onnx::Conv_830) %/cells.14/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/conv3/Conv_output_0, %onnx::Conv_832, %onnx::Conv_833) %/cells.14/nl/Relu_output_0 = Relu(%/cells.14/conv1/Conv_output_0) %/cells.14/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.14/nl/Relu_output_0, %onnx::Conv_835, %onnx::Conv_836) %/cells.14/nl_1/Relu_output_0 = Relu(%/cells.14/conv2/Conv_output_0) %/cells.14/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/nl_1/Relu_output_0, %onnx::Conv_838, %onnx::Conv_839) %/cells.14/Add_output_0 = Add(%/cells.14/conv3/Conv_output_0, %/cells.13/conv3/Conv_output_0) %/cells.15/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/Add_output_0, %onnx::Conv_841, %onnx::Conv_842) %/cells.15/nl/Relu_output_0 = Relu(%/cells.15/conv1/Conv_output_0) %/cells.15/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 336, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.15/nl/Relu_output_0, %onnx::Conv_844, %onnx::Conv_845) %/cells.15/nl_1/Relu_output_0 = Relu(%/cells.15/conv2/Conv_output_0) %/cells.15/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/nl_1/Relu_output_0, %onnx::Conv_847, %onnx::Conv_848) %/cells.15/Add_output_0 = Add(%/cells.15/conv3/Conv_output_0, %/cells.14/Add_output_0) %/cells.17/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/Add_output_0, %onnx::Conv_850, %onnx::Conv_851) %/cells.17/nl/Relu_output_0 = Relu(%/cells.17/conv1/Conv_output_0) %/cells.17/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.17/nl/Relu_output_0, %onnx::Conv_853, %onnx::Conv_854) %/cells.17/nl_1/Relu_output_0 = Relu(%/cells.17/conv2/Conv_output_0) %/cells.17/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/nl_1/Relu_output_0, %onnx::Conv_856, %onnx::Conv_857) %/cells.18/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/conv3/Conv_output_0, %onnx::Conv_859, %onnx::Conv_860) %/cells.18/nl/Relu_output_0 = Relu(%/cells.18/conv1/Conv_output_0) %/cells.18/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.18/nl/Relu_output_0, %onnx::Conv_862, %onnx::Conv_863) %/cells.18/nl_1/Relu_output_0 = Relu(%/cells.18/conv2/Conv_output_0) %/cells.18/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/nl_1/Relu_output_0, %onnx::Conv_865, %onnx::Conv_866) %/cells.18/Add_output_0 = Add(%/cells.18/conv3/Conv_output_0, %/cells.17/conv3/Conv_output_0) %/cells.19/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/Add_output_0, %onnx::Conv_868, %onnx::Conv_869) %/cells.19/nl/Relu_output_0 = Relu(%/cells.19/conv1/Conv_output_0) %/cells.19/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.19/nl/Relu_output_0, %onnx::Conv_871, %onnx::Conv_872) %/cells.19/nl_1/Relu_output_0 = Relu(%/cells.19/conv2/Conv_output_0) %/cells.19/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/nl_1/Relu_output_0, %onnx::Conv_874, %onnx::Conv_875) %/cells.19/Add_output_0 = Add(%/cells.19/conv3/Conv_output_0, %/cells.18/Add_output_0) %/cells.20/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/Add_output_0, %onnx::Conv_877, %onnx::Conv_878) %/cells.20/nl/Relu_output_0 = Relu(%/cells.20/conv1/Conv_output_0) %/cells.20/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 552, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.20/nl/Relu_output_0, %onnx::Conv_880, %onnx::Conv_881) %/cells.20/nl_1/Relu_output_0 = Relu(%/cells.20/conv2/Conv_output_0) %/cells.20/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/nl_1/Relu_output_0, %onnx::Conv_883, %onnx::Conv_884) %/cells.20/Add_output_0 = Add(%/cells.20/conv3/Conv_output_0, %/cells.19/Add_output_0) %/cells.21/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/Add_output_0, %onnx::Conv_886, %onnx::Conv_887) %/cells.21/nl/Relu_output_0 = Relu(%/cells.21/conv1/Conv_output_0) %/cells.21/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.21/nl/Relu_output_0, %onnx::Conv_889, %onnx::Conv_890) %/cells.21/nl_1/Relu_output_0 = Relu(%/cells.21/conv2/Conv_output_0) %/cells.21/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/nl_1/Relu_output_0, %onnx::Conv_892, %onnx::Conv_893) %/header/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/conv3/Conv_output_0, %onnx::Conv_895, %onnx::Conv_896) %/header/relu/Relu_output_0 = Relu(%/header/conv/Conv_output_0) %/avgpool/GlobalAveragePool_output_0 = GlobalAveragePool(%/header/relu/Relu_output_0) %/Constant_output_0 = Constant[value = <Tensor>]() %/Reshape_output_0 = Reshape(%/avgpool/GlobalAveragePool_output_0, %/Constant_output_0) %701 = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias) return %701 }
val_accuracy
0
74,699,392
2,133,052
{'zcp_synflow': 77.89907159291953, 'zcp_zen': 70.61277770996094, 'zcp_epe_nas': 8.43931636281636, 'zcp_fisher': 0.1565728336572647, 'zcp_flops': 74699392.0, 'zcp_grad_norm': 25.163902282714844, 'zcp_grasp': -0.21435546875, 'zcp_jacov': -16.04736825096067, 'zcp_l2_norm': 663.7222290039062, 'zcp_nwot': 212.2607544191578, 'zcp_params': 2133052.0, 'zcp_plain': -0.004208901897072792, 'zcp_snip': 45.40211486816406, 'lat_1080ti_1': 0.7946235022758369, 'lat_1080ti_32': 0.574152896689911, 'lat_1080ti_64': 0.4586707154750304, 'lat_2080ti_1': 0.779352654819707, 'lat_2080ti_32': 0.6066092407108884, 'lat_2080ti_64': 0.47338807063787386, 'lat_essential_ph_1': 0.2830188679245283, 'lat_eyeriss': 0.5321548420222619, 'lat_fpga': 0.5397935859250536, 'lat_gold_6226': 0.48782888593706814, 'lat_gold_6240': 0.6990712125582299, 'lat_pixel2': 0.391304347826087, 'lat_pixel3': 0.5376971604779908, 'lat_raspi4': 0.5192462042277328, 'lat_samsung_a50': 0.24210526315789474, 'lat_samsung_s7': 0.2125984251968504, 'lat_silver_4114': 0.7296926792064687, 'lat_silver_4210r': 0.7917065008530597, 'lat_titan_rtx_1': 0.7186858811299227, 'lat_titan_rtx_32': 0.6096516822219448, 'lat_titan_rtx_64': 0.5086947516498742, 'lat_titanx_1': 0.3812906585203696, 'lat_titanx_32': 0.532479425782754, 'lat_titanx_64': 0.4939796470085282, 'lat_titanxp_1': 0.6759204755468297, 'lat_titanxp_32': 0.5659464902309068, 'lat_titanxp_64': 0.4655703641864076}
FBNet_4640
FBNet
4640
4640
graph main_graph ( %input.1[FLOAT, 1x3x32x32] %fc.weight[FLOAT, 100x1504] %fc.bias[FLOAT, 100] %onnx::Conv_696[FLOAT, 16x3x3x3] %onnx::Conv_697[FLOAT, 16] %onnx::Conv_699[FLOAT, 16x8x1x1] %onnx::Conv_702[FLOAT, 16x1x5x5] %onnx::Conv_705[FLOAT, 16x8x1x1] %onnx::Conv_708[FLOAT, 48x16x1x1] %onnx::Conv_709[FLOAT, 48] %onnx::Conv_711[FLOAT, 48x1x3x3] %onnx::Conv_714[FLOAT, 24x48x1x1] %onnx::Conv_715[FLOAT, 24] %onnx::Conv_717[FLOAT, 144x24x1x1] %onnx::Conv_718[FLOAT, 144] %onnx::Conv_720[FLOAT, 144x1x5x5] %onnx::Conv_723[FLOAT, 24x144x1x1] %onnx::Conv_726[FLOAT, 24x24x1x1] %onnx::Conv_729[FLOAT, 24x1x5x5] %onnx::Conv_732[FLOAT, 24x24x1x1] %onnx::Conv_735[FLOAT, 72x24x1x1] %onnx::Conv_736[FLOAT, 72] %onnx::Conv_738[FLOAT, 72x1x5x5] %onnx::Conv_741[FLOAT, 24x72x1x1] %onnx::Conv_744[FLOAT, 24x24x1x1] %onnx::Conv_747[FLOAT, 24x1x5x5] %onnx::Conv_750[FLOAT, 32x24x1x1] %onnx::Conv_751[FLOAT, 32] %onnx::Conv_753[FLOAT, 192x32x1x1] %onnx::Conv_754[FLOAT, 192] %onnx::Conv_756[FLOAT, 192x1x5x5] %onnx::Conv_759[FLOAT, 32x192x1x1] %onnx::Conv_762[FLOAT, 192x32x1x1] %onnx::Conv_765[FLOAT, 192x1x3x3] %onnx::Conv_768[FLOAT, 32x192x1x1] %onnx::Conv_771[FLOAT, 96x32x1x1] %onnx::Conv_772[FLOAT, 96] %onnx::Conv_774[FLOAT, 96x1x3x3] %onnx::Conv_777[FLOAT, 32x96x1x1] %onnx::Conv_780[FLOAT, 192x32x1x1] %onnx::Conv_783[FLOAT, 192x1x5x5] %onnx::Conv_786[FLOAT, 64x192x1x1] %onnx::Conv_787[FLOAT, 64] %onnx::Conv_789[FLOAT, 192x64x1x1] %onnx::Conv_792[FLOAT, 192x1x3x3] %onnx::Conv_795[FLOAT, 64x192x1x1] %onnx::Conv_798[FLOAT, 64x64x1x1] %onnx::Conv_801[FLOAT, 64x1x5x5] %onnx::Conv_804[FLOAT, 64x64x1x1] %onnx::Conv_807[FLOAT, 64x32x1x1] %onnx::Conv_810[FLOAT, 64x1x5x5] %onnx::Conv_813[FLOAT, 64x32x1x1] %onnx::Conv_816[FLOAT, 192x64x1x1] %onnx::Conv_819[FLOAT, 192x1x3x3] %onnx::Conv_822[FLOAT, 112x192x1x1] %onnx::Conv_823[FLOAT, 112] %onnx::Conv_825[FLOAT, 112x112x1x1] %onnx::Conv_828[FLOAT, 112x1x3x3] %onnx::Conv_831[FLOAT, 112x112x1x1] %onnx::Conv_834[FLOAT, 112x56x1x1] %onnx::Conv_837[FLOAT, 112x1x5x5] %onnx::Conv_840[FLOAT, 112x56x1x1] %onnx::Conv_843[FLOAT, 112x56x1x1] %onnx::Conv_846[FLOAT, 112x1x5x5] %onnx::Conv_849[FLOAT, 112x56x1x1] %onnx::Conv_852[FLOAT, 336x112x1x1] %onnx::Conv_853[FLOAT, 336] %onnx::Conv_855[FLOAT, 336x1x3x3] %onnx::Conv_858[FLOAT, 184x336x1x1] %onnx::Conv_859[FLOAT, 184] %onnx::Conv_861[FLOAT, 184x92x1x1] %onnx::Conv_864[FLOAT, 184x1x3x3] %onnx::Conv_867[FLOAT, 184x92x1x1] %onnx::Conv_870[FLOAT, 1104x184x1x1] %onnx::Conv_871[FLOAT, 1104] %onnx::Conv_873[FLOAT, 1104x1x3x3] %onnx::Conv_876[FLOAT, 184x1104x1x1] %onnx::Conv_879[FLOAT, 1104x184x1x1] %onnx::Conv_882[FLOAT, 1104x1x5x5] %onnx::Conv_885[FLOAT, 184x1104x1x1] %onnx::Conv_888[FLOAT, 352x184x1x1] %onnx::Conv_889[FLOAT, 352] %onnx::Conv_891[FLOAT, 1504x352x1x1] %onnx::Conv_892[FLOAT, 1504] ) { %onnx::Conv_886 = Identity(%onnx::Conv_859) %onnx::Conv_883 = Identity(%onnx::Conv_871) %onnx::Conv_880 = Identity(%onnx::Conv_871) %onnx::Conv_877 = Identity(%onnx::Conv_859) %onnx::Conv_874 = Identity(%onnx::Conv_871) %onnx::Conv_868 = Identity(%onnx::Conv_859) %onnx::Conv_865 = Identity(%onnx::Conv_859) %onnx::Conv_862 = Identity(%onnx::Conv_859) %onnx::Conv_856 = Identity(%onnx::Conv_853) %onnx::Conv_850 = Identity(%onnx::Conv_823) %onnx::Conv_847 = Identity(%onnx::Conv_823) %onnx::Conv_844 = Identity(%onnx::Conv_823) %onnx::Conv_841 = Identity(%onnx::Conv_823) %onnx::Conv_838 = Identity(%onnx::Conv_823) %onnx::Conv_835 = Identity(%onnx::Conv_823) %onnx::Conv_832 = Identity(%onnx::Conv_823) %onnx::Conv_829 = Identity(%onnx::Conv_823) %onnx::Conv_826 = Identity(%onnx::Conv_823) %onnx::Conv_820 = Identity(%onnx::Conv_754) %onnx::Conv_817 = Identity(%onnx::Conv_754) %onnx::Conv_814 = Identity(%onnx::Conv_787) %onnx::Conv_811 = Identity(%onnx::Conv_787) %onnx::Conv_808 = Identity(%onnx::Conv_787) %onnx::Conv_805 = Identity(%onnx::Conv_787) %onnx::Conv_802 = Identity(%onnx::Conv_787) %onnx::Conv_799 = Identity(%onnx::Conv_787) %onnx::Conv_796 = Identity(%onnx::Conv_787) %onnx::Conv_793 = Identity(%onnx::Conv_754) %onnx::Conv_790 = Identity(%onnx::Conv_754) %onnx::Conv_784 = Identity(%onnx::Conv_754) %onnx::Conv_781 = Identity(%onnx::Conv_754) %onnx::Conv_778 = Identity(%onnx::Conv_751) %onnx::Conv_775 = Identity(%onnx::Conv_772) %onnx::Conv_769 = Identity(%onnx::Conv_751) %onnx::Conv_766 = Identity(%onnx::Conv_754) %onnx::Conv_763 = Identity(%onnx::Conv_754) %onnx::Conv_760 = Identity(%onnx::Conv_751) %onnx::Conv_757 = Identity(%onnx::Conv_754) %onnx::Conv_748 = Identity(%onnx::Conv_715) %onnx::Conv_745 = Identity(%onnx::Conv_715) %onnx::Conv_742 = Identity(%onnx::Conv_715) %onnx::Conv_739 = Identity(%onnx::Conv_736) %onnx::Conv_733 = Identity(%onnx::Conv_715) %onnx::Conv_730 = Identity(%onnx::Conv_715) %onnx::Conv_727 = Identity(%onnx::Conv_715) %onnx::Conv_724 = Identity(%onnx::Conv_715) %onnx::Conv_721 = Identity(%onnx::Conv_718) %onnx::Conv_712 = Identity(%onnx::Conv_709) %onnx::Conv_706 = Identity(%onnx::Conv_697) %onnx::Conv_703 = Identity(%onnx::Conv_697) %onnx::Conv_700 = Identity(%onnx::Conv_697) %/stem/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_696, %onnx::Conv_697) %/stem/relu/Relu_output_0 = Relu(%/stem/conv/Conv_output_0) %/cells.0/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/stem/relu/Relu_output_0, %onnx::Conv_699, %onnx::Conv_700) %/cells.0/nl/Relu_output_0 = Relu(%/cells.0/conv1/Conv_output_0) %/cells.0/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.0/shuffle/Reshape_output_0 = Reshape(%/cells.0/nl/Relu_output_0, %/cells.0/shuffle/Constant_output_0) %/cells.0/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.0/shuffle/Reshape_output_0) %/cells.0/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.0/shuffle/Reshape_1_output_0 = Reshape(%/cells.0/shuffle/Transpose_output_0, %/cells.0/shuffle/Constant_1_output_0) %/cells.0/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 16, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.0/shuffle/Reshape_1_output_0, %onnx::Conv_702, %onnx::Conv_703) %/cells.0/nl_1/Relu_output_0 = Relu(%/cells.0/conv2/Conv_output_0) %/cells.0/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/nl_1/Relu_output_0, %onnx::Conv_705, %onnx::Conv_706) %/cells.0/Add_output_0 = Add(%/cells.0/conv3/Conv_output_0, %/stem/relu/Relu_output_0) %/cells.1/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/Add_output_0, %onnx::Conv_708, %onnx::Conv_709) %/cells.1/nl/Relu_output_0 = Relu(%/cells.1/conv1/Conv_output_0) %/cells.1/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 48, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.1/nl/Relu_output_0, %onnx::Conv_711, %onnx::Conv_712) %/cells.1/nl_1/Relu_output_0 = Relu(%/cells.1/conv2/Conv_output_0) %/cells.1/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/nl_1/Relu_output_0, %onnx::Conv_714, %onnx::Conv_715) %/cells.2/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/conv3/Conv_output_0, %onnx::Conv_717, %onnx::Conv_718) %/cells.2/nl/Relu_output_0 = Relu(%/cells.2/conv1/Conv_output_0) %/cells.2/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 144, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.2/nl/Relu_output_0, %onnx::Conv_720, %onnx::Conv_721) %/cells.2/nl_1/Relu_output_0 = Relu(%/cells.2/conv2/Conv_output_0) %/cells.2/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/nl_1/Relu_output_0, %onnx::Conv_723, %onnx::Conv_724) %/cells.2/Add_output_0 = Add(%/cells.2/conv3/Conv_output_0, %/cells.1/conv3/Conv_output_0) %/cells.3/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/Add_output_0, %onnx::Conv_726, %onnx::Conv_727) %/cells.3/nl/Relu_output_0 = Relu(%/cells.3/conv1/Conv_output_0) %/cells.3/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.3/nl/Relu_output_0, %onnx::Conv_729, %onnx::Conv_730) %/cells.3/nl_1/Relu_output_0 = Relu(%/cells.3/conv2/Conv_output_0) %/cells.3/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/nl_1/Relu_output_0, %onnx::Conv_732, %onnx::Conv_733) %/cells.3/Add_output_0 = Add(%/cells.3/conv3/Conv_output_0, %/cells.2/Add_output_0) %/cells.4/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/Add_output_0, %onnx::Conv_735, %onnx::Conv_736) %/cells.4/nl/Relu_output_0 = Relu(%/cells.4/conv1/Conv_output_0) %/cells.4/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 72, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.4/nl/Relu_output_0, %onnx::Conv_738, %onnx::Conv_739) %/cells.4/nl_1/Relu_output_0 = Relu(%/cells.4/conv2/Conv_output_0) %/cells.4/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/nl_1/Relu_output_0, %onnx::Conv_741, %onnx::Conv_742) %/cells.4/Add_output_0 = Add(%/cells.4/conv3/Conv_output_0, %/cells.3/Add_output_0) %/cells.5/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/Add_output_0, %onnx::Conv_744, %onnx::Conv_745) %/cells.5/nl/Relu_output_0 = Relu(%/cells.5/conv1/Conv_output_0) %/cells.5/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.5/nl/Relu_output_0, %onnx::Conv_747, %onnx::Conv_748) %/cells.5/nl_1/Relu_output_0 = Relu(%/cells.5/conv2/Conv_output_0) %/cells.5/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/nl_1/Relu_output_0, %onnx::Conv_750, %onnx::Conv_751) %/cells.6/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/conv3/Conv_output_0, %onnx::Conv_753, %onnx::Conv_754) %/cells.6/nl/Relu_output_0 = Relu(%/cells.6/conv1/Conv_output_0) %/cells.6/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.6/nl/Relu_output_0, %onnx::Conv_756, %onnx::Conv_757) %/cells.6/nl_1/Relu_output_0 = Relu(%/cells.6/conv2/Conv_output_0) %/cells.6/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/nl_1/Relu_output_0, %onnx::Conv_759, %onnx::Conv_760) %/cells.6/Add_output_0 = Add(%/cells.6/conv3/Conv_output_0, %/cells.5/conv3/Conv_output_0) %/cells.7/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/Add_output_0, %onnx::Conv_762, %onnx::Conv_763) %/cells.7/nl/Relu_output_0 = Relu(%/cells.7/conv1/Conv_output_0) %/cells.7/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.7/nl/Relu_output_0, %onnx::Conv_765, %onnx::Conv_766) %/cells.7/nl_1/Relu_output_0 = Relu(%/cells.7/conv2/Conv_output_0) %/cells.7/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/nl_1/Relu_output_0, %onnx::Conv_768, %onnx::Conv_769) %/cells.7/Add_output_0 = Add(%/cells.7/conv3/Conv_output_0, %/cells.6/Add_output_0) %/cells.8/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/Add_output_0, %onnx::Conv_771, %onnx::Conv_772) %/cells.8/nl/Relu_output_0 = Relu(%/cells.8/conv1/Conv_output_0) %/cells.8/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.8/nl/Relu_output_0, %onnx::Conv_774, %onnx::Conv_775) %/cells.8/nl_1/Relu_output_0 = Relu(%/cells.8/conv2/Conv_output_0) %/cells.8/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/nl_1/Relu_output_0, %onnx::Conv_777, %onnx::Conv_778) %/cells.8/Add_output_0 = Add(%/cells.8/conv3/Conv_output_0, %/cells.7/Add_output_0) %/cells.9/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/Add_output_0, %onnx::Conv_780, %onnx::Conv_781) %/cells.9/nl/Relu_output_0 = Relu(%/cells.9/conv1/Conv_output_0) %/cells.9/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.9/nl/Relu_output_0, %onnx::Conv_783, %onnx::Conv_784) %/cells.9/nl_1/Relu_output_0 = Relu(%/cells.9/conv2/Conv_output_0) %/cells.9/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/nl_1/Relu_output_0, %onnx::Conv_786, %onnx::Conv_787) %/cells.10/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/conv3/Conv_output_0, %onnx::Conv_789, %onnx::Conv_790) %/cells.10/nl/Relu_output_0 = Relu(%/cells.10/conv1/Conv_output_0) %/cells.10/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.10/nl/Relu_output_0, %onnx::Conv_792, %onnx::Conv_793) %/cells.10/nl_1/Relu_output_0 = Relu(%/cells.10/conv2/Conv_output_0) %/cells.10/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/nl_1/Relu_output_0, %onnx::Conv_795, %onnx::Conv_796) %/cells.10/Add_output_0 = Add(%/cells.10/conv3/Conv_output_0, %/cells.9/conv3/Conv_output_0) %/cells.11/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/Add_output_0, %onnx::Conv_798, %onnx::Conv_799) %/cells.11/nl/Relu_output_0 = Relu(%/cells.11/conv1/Conv_output_0) %/cells.11/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.11/nl/Relu_output_0, %onnx::Conv_801, %onnx::Conv_802) %/cells.11/nl_1/Relu_output_0 = Relu(%/cells.11/conv2/Conv_output_0) %/cells.11/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/nl_1/Relu_output_0, %onnx::Conv_804, %onnx::Conv_805) %/cells.11/Add_output_0 = Add(%/cells.11/conv3/Conv_output_0, %/cells.10/Add_output_0) %/cells.12/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/Add_output_0, %onnx::Conv_807, %onnx::Conv_808) %/cells.12/nl/Relu_output_0 = Relu(%/cells.12/conv1/Conv_output_0) %/cells.12/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.12/shuffle/Reshape_output_0 = Reshape(%/cells.12/nl/Relu_output_0, %/cells.12/shuffle/Constant_output_0) %/cells.12/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.12/shuffle/Reshape_output_0) %/cells.12/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.12/shuffle/Reshape_1_output_0 = Reshape(%/cells.12/shuffle/Transpose_output_0, %/cells.12/shuffle/Constant_1_output_0) %/cells.12/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.12/shuffle/Reshape_1_output_0, %onnx::Conv_810, %onnx::Conv_811) %/cells.12/nl_1/Relu_output_0 = Relu(%/cells.12/conv2/Conv_output_0) %/cells.12/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/nl_1/Relu_output_0, %onnx::Conv_813, %onnx::Conv_814) %/cells.12/Add_output_0 = Add(%/cells.12/conv3/Conv_output_0, %/cells.11/Add_output_0) %/cells.13/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/Add_output_0, %onnx::Conv_816, %onnx::Conv_817) %/cells.13/nl/Relu_output_0 = Relu(%/cells.13/conv1/Conv_output_0) %/cells.13/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.13/nl/Relu_output_0, %onnx::Conv_819, %onnx::Conv_820) %/cells.13/nl_1/Relu_output_0 = Relu(%/cells.13/conv2/Conv_output_0) %/cells.13/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/nl_1/Relu_output_0, %onnx::Conv_822, %onnx::Conv_823) %/cells.14/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/conv3/Conv_output_0, %onnx::Conv_825, %onnx::Conv_826) %/cells.14/nl/Relu_output_0 = Relu(%/cells.14/conv1/Conv_output_0) %/cells.14/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.14/nl/Relu_output_0, %onnx::Conv_828, %onnx::Conv_829) %/cells.14/nl_1/Relu_output_0 = Relu(%/cells.14/conv2/Conv_output_0) %/cells.14/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/nl_1/Relu_output_0, %onnx::Conv_831, %onnx::Conv_832) %/cells.14/Add_output_0 = Add(%/cells.14/conv3/Conv_output_0, %/cells.13/conv3/Conv_output_0) %/cells.15/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/Add_output_0, %onnx::Conv_834, %onnx::Conv_835) %/cells.15/nl/Relu_output_0 = Relu(%/cells.15/conv1/Conv_output_0) %/cells.15/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.15/shuffle/Reshape_output_0 = Reshape(%/cells.15/nl/Relu_output_0, %/cells.15/shuffle/Constant_output_0) %/cells.15/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.15/shuffle/Reshape_output_0) %/cells.15/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.15/shuffle/Reshape_1_output_0 = Reshape(%/cells.15/shuffle/Transpose_output_0, %/cells.15/shuffle/Constant_1_output_0) %/cells.15/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.15/shuffle/Reshape_1_output_0, %onnx::Conv_837, %onnx::Conv_838) %/cells.15/nl_1/Relu_output_0 = Relu(%/cells.15/conv2/Conv_output_0) %/cells.15/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/nl_1/Relu_output_0, %onnx::Conv_840, %onnx::Conv_841) %/cells.15/Add_output_0 = Add(%/cells.15/conv3/Conv_output_0, %/cells.14/Add_output_0) %/cells.16/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/Add_output_0, %onnx::Conv_843, %onnx::Conv_844) %/cells.16/nl/Relu_output_0 = Relu(%/cells.16/conv1/Conv_output_0) %/cells.16/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.16/shuffle/Reshape_output_0 = Reshape(%/cells.16/nl/Relu_output_0, %/cells.16/shuffle/Constant_output_0) %/cells.16/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.16/shuffle/Reshape_output_0) %/cells.16/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.16/shuffle/Reshape_1_output_0 = Reshape(%/cells.16/shuffle/Transpose_output_0, %/cells.16/shuffle/Constant_1_output_0) %/cells.16/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.16/shuffle/Reshape_1_output_0, %onnx::Conv_846, %onnx::Conv_847) %/cells.16/nl_1/Relu_output_0 = Relu(%/cells.16/conv2/Conv_output_0) %/cells.16/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/nl_1/Relu_output_0, %onnx::Conv_849, %onnx::Conv_850) %/cells.16/Add_output_0 = Add(%/cells.16/conv3/Conv_output_0, %/cells.15/Add_output_0) %/cells.17/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/Add_output_0, %onnx::Conv_852, %onnx::Conv_853) %/cells.17/nl/Relu_output_0 = Relu(%/cells.17/conv1/Conv_output_0) %/cells.17/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 336, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.17/nl/Relu_output_0, %onnx::Conv_855, %onnx::Conv_856) %/cells.17/nl_1/Relu_output_0 = Relu(%/cells.17/conv2/Conv_output_0) %/cells.17/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/nl_1/Relu_output_0, %onnx::Conv_858, %onnx::Conv_859) %/cells.18/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/conv3/Conv_output_0, %onnx::Conv_861, %onnx::Conv_862) %/cells.18/nl/Relu_output_0 = Relu(%/cells.18/conv1/Conv_output_0) %/cells.18/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.18/shuffle/Reshape_output_0 = Reshape(%/cells.18/nl/Relu_output_0, %/cells.18/shuffle/Constant_output_0) %/cells.18/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.18/shuffle/Reshape_output_0) %/cells.18/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.18/shuffle/Reshape_1_output_0 = Reshape(%/cells.18/shuffle/Transpose_output_0, %/cells.18/shuffle/Constant_1_output_0) %/cells.18/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.18/shuffle/Reshape_1_output_0, %onnx::Conv_864, %onnx::Conv_865) %/cells.18/nl_1/Relu_output_0 = Relu(%/cells.18/conv2/Conv_output_0) %/cells.18/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/nl_1/Relu_output_0, %onnx::Conv_867, %onnx::Conv_868) %/cells.18/Add_output_0 = Add(%/cells.18/conv3/Conv_output_0, %/cells.17/conv3/Conv_output_0) %/cells.19/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/Add_output_0, %onnx::Conv_870, %onnx::Conv_871) %/cells.19/nl/Relu_output_0 = Relu(%/cells.19/conv1/Conv_output_0) %/cells.19/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.19/nl/Relu_output_0, %onnx::Conv_873, %onnx::Conv_874) %/cells.19/nl_1/Relu_output_0 = Relu(%/cells.19/conv2/Conv_output_0) %/cells.19/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/nl_1/Relu_output_0, %onnx::Conv_876, %onnx::Conv_877) %/cells.19/Add_output_0 = Add(%/cells.19/conv3/Conv_output_0, %/cells.18/Add_output_0) %/cells.20/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/Add_output_0, %onnx::Conv_879, %onnx::Conv_880) %/cells.20/nl/Relu_output_0 = Relu(%/cells.20/conv1/Conv_output_0) %/cells.20/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.20/nl/Relu_output_0, %onnx::Conv_882, %onnx::Conv_883) %/cells.20/nl_1/Relu_output_0 = Relu(%/cells.20/conv2/Conv_output_0) %/cells.20/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/nl_1/Relu_output_0, %onnx::Conv_885, %onnx::Conv_886) %/cells.20/Add_output_0 = Add(%/cells.20/conv3/Conv_output_0, %/cells.19/Add_output_0) %/cells.21/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/Add_output_0, %onnx::Conv_888, %onnx::Conv_889) %/cells.21/relu/Relu_output_0 = Relu(%/cells.21/conv/Conv_output_0) %/header/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/relu/Relu_output_0, %onnx::Conv_891, %onnx::Conv_892) %/header/relu/Relu_output_0 = Relu(%/header/conv/Conv_output_0) %/avgpool/GlobalAveragePool_output_0 = GlobalAveragePool(%/header/relu/Relu_output_0) %/Constant_output_0 = Constant[value = <Tensor>]() %/Reshape_output_0 = Reshape(%/avgpool/GlobalAveragePool_output_0, %/Constant_output_0) %694 = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias) return %694 }
val_accuracy
0
74,147,456
1,976,500
{'zcp_synflow': 82.59762280741629, 'zcp_zen': 72.37373352050781, 'zcp_epe_nas': 0.00015999920000638146, 'zcp_fisher': 0.11599140614271164, 'zcp_flops': 74147456.0, 'zcp_grad_norm': 24.32544708251953, 'zcp_grasp': -0.08461380004882812, 'zcp_jacov': -16.04951288826483, 'zcp_l2_norm': 650.794921875, 'zcp_nwot': 214.76886286948437, 'zcp_params': 1976500.0, 'zcp_plain': -0.001490537659265101, 'zcp_snip': 47.130584716796875, 'lat_1080ti_1': 0.7197781611956146, 'lat_1080ti_32': 0.7480503063374878, 'lat_1080ti_64': 0.6316644611504854, 'lat_2080ti_1': 0.780764410934731, 'lat_2080ti_32': 0.745531791128425, 'lat_2080ti_64': 0.6411566451915212, 'lat_essential_ph_1': 0.2641509433962264, 'lat_eyeriss': 0.5737626758109768, 'lat_fpga': 0.49072324087909036, 'lat_gold_6226': 0.40205645528429423, 'lat_gold_6240': 0.5983768624378739, 'lat_pixel2': 0.3695652173913043, 'lat_pixel3': 0.5674410375133463, 'lat_raspi4': 0.5779333224345372, 'lat_samsung_a50': 0.23157894736842105, 'lat_samsung_s7': 0.14960629921259844, 'lat_silver_4114': 0.6548423230971923, 'lat_silver_4210r': 0.7349723521402465, 'lat_titan_rtx_1': 0.7309087171264346, 'lat_titan_rtx_32': 0.7363421158819502, 'lat_titan_rtx_64': 0.6656129822248834, 'lat_titanx_1': 0.38801358319458057, 'lat_titanx_32': 0.6921988186917651, 'lat_titanx_64': 0.665626935149572, 'lat_titanxp_1': 0.6785635395320547, 'lat_titanxp_32': 0.7195684729452241, 'lat_titanxp_64': 0.641702988507132}
FBNet_4889
FBNet
4889
4889
graph main_graph ( %input.1[FLOAT, 1x3x32x32] %fc.weight[FLOAT, 100x1504] %fc.bias[FLOAT, 100] %onnx::Conv_630[FLOAT, 16x3x3x3] %onnx::Conv_631[FLOAT, 16] %onnx::Conv_633[FLOAT, 48x16x1x1] %onnx::Conv_634[FLOAT, 48] %onnx::Conv_636[FLOAT, 48x1x3x3] %onnx::Conv_639[FLOAT, 24x48x1x1] %onnx::Conv_640[FLOAT, 24] %onnx::Conv_642[FLOAT, 72x24x1x1] %onnx::Conv_643[FLOAT, 72] %onnx::Conv_645[FLOAT, 72x1x3x3] %onnx::Conv_648[FLOAT, 24x72x1x1] %onnx::Conv_651[FLOAT, 24x24x1x1] %onnx::Conv_654[FLOAT, 24x1x5x5] %onnx::Conv_657[FLOAT, 24x24x1x1] %onnx::Conv_660[FLOAT, 144x24x1x1] %onnx::Conv_661[FLOAT, 144] %onnx::Conv_663[FLOAT, 144x1x3x3] %onnx::Conv_666[FLOAT, 24x144x1x1] %onnx::Conv_669[FLOAT, 24x24x1x1] %onnx::Conv_672[FLOAT, 24x1x3x3] %onnx::Conv_675[FLOAT, 32x24x1x1] %onnx::Conv_676[FLOAT, 32] %onnx::Conv_678[FLOAT, 32x32x1x1] %onnx::Conv_681[FLOAT, 32x1x3x3] %onnx::Conv_684[FLOAT, 32x32x1x1] %onnx::Conv_687[FLOAT, 32x16x1x1] %onnx::Conv_690[FLOAT, 32x1x5x5] %onnx::Conv_693[FLOAT, 32x16x1x1] %onnx::Conv_696[FLOAT, 32x32x1x1] %onnx::Conv_699[FLOAT, 32x1x5x5] %onnx::Conv_702[FLOAT, 32x32x1x1] %onnx::Conv_705[FLOAT, 192x32x1x1] %onnx::Conv_706[FLOAT, 192] %onnx::Conv_708[FLOAT, 192x1x3x3] %onnx::Conv_711[FLOAT, 64x192x1x1] %onnx::Conv_712[FLOAT, 64] %onnx::Conv_714[FLOAT, 192x64x1x1] %onnx::Conv_717[FLOAT, 192x1x5x5] %onnx::Conv_720[FLOAT, 64x192x1x1] %onnx::Conv_723[FLOAT, 192x64x1x1] %onnx::Conv_726[FLOAT, 192x1x3x3] %onnx::Conv_729[FLOAT, 64x192x1x1] %onnx::Conv_732[FLOAT, 192x64x1x1] %onnx::Conv_735[FLOAT, 192x1x3x3] %onnx::Conv_738[FLOAT, 64x192x1x1] %onnx::Conv_741[FLOAT, 64x32x1x1] %onnx::Conv_744[FLOAT, 64x1x3x3] %onnx::Conv_747[FLOAT, 112x32x1x1] %onnx::Conv_748[FLOAT, 112] %onnx::Conv_750[FLOAT, 112x112x1x1] %onnx::Conv_753[FLOAT, 112x1x3x3] %onnx::Conv_756[FLOAT, 112x112x1x1] %onnx::Conv_759[FLOAT, 672x112x1x1] %onnx::Conv_760[FLOAT, 672] %onnx::Conv_762[FLOAT, 672x1x5x5] %onnx::Conv_765[FLOAT, 112x672x1x1] %onnx::Conv_768[FLOAT, 336x112x1x1] %onnx::Conv_769[FLOAT, 336] %onnx::Conv_771[FLOAT, 336x1x5x5] %onnx::Conv_774[FLOAT, 112x336x1x1] %onnx::Conv_777[FLOAT, 112x112x1x1] %onnx::Conv_780[FLOAT, 112x1x3x3] %onnx::Conv_783[FLOAT, 184x112x1x1] %onnx::Conv_784[FLOAT, 184] %onnx::Conv_786[FLOAT, 184x184x1x1] %onnx::Conv_789[FLOAT, 184x1x3x3] %onnx::Conv_792[FLOAT, 184x184x1x1] %onnx::Conv_795[FLOAT, 1104x184x1x1] %onnx::Conv_796[FLOAT, 1104] %onnx::Conv_798[FLOAT, 1104x1x5x5] %onnx::Conv_801[FLOAT, 184x1104x1x1] %onnx::Conv_804[FLOAT, 184x184x1x1] %onnx::Conv_807[FLOAT, 184x1x3x3] %onnx::Conv_810[FLOAT, 184x184x1x1] %onnx::Conv_813[FLOAT, 1104x184x1x1] %onnx::Conv_816[FLOAT, 1104x1x3x3] %onnx::Conv_819[FLOAT, 352x1104x1x1] %onnx::Conv_820[FLOAT, 352] %onnx::Conv_822[FLOAT, 1504x352x1x1] %onnx::Conv_823[FLOAT, 1504] ) { %onnx::Conv_817 = Identity(%onnx::Conv_796) %onnx::Conv_814 = Identity(%onnx::Conv_796) %onnx::Conv_811 = Identity(%onnx::Conv_784) %onnx::Conv_808 = Identity(%onnx::Conv_784) %onnx::Conv_805 = Identity(%onnx::Conv_784) %onnx::Conv_802 = Identity(%onnx::Conv_784) %onnx::Conv_799 = Identity(%onnx::Conv_796) %onnx::Conv_793 = Identity(%onnx::Conv_784) %onnx::Conv_790 = Identity(%onnx::Conv_784) %onnx::Conv_787 = Identity(%onnx::Conv_784) %onnx::Conv_781 = Identity(%onnx::Conv_748) %onnx::Conv_778 = Identity(%onnx::Conv_748) %onnx::Conv_775 = Identity(%onnx::Conv_748) %onnx::Conv_772 = Identity(%onnx::Conv_769) %onnx::Conv_766 = Identity(%onnx::Conv_748) %onnx::Conv_763 = Identity(%onnx::Conv_760) %onnx::Conv_757 = Identity(%onnx::Conv_748) %onnx::Conv_754 = Identity(%onnx::Conv_748) %onnx::Conv_751 = Identity(%onnx::Conv_748) %onnx::Conv_745 = Identity(%onnx::Conv_712) %onnx::Conv_742 = Identity(%onnx::Conv_712) %onnx::Conv_739 = Identity(%onnx::Conv_712) %onnx::Conv_736 = Identity(%onnx::Conv_706) %onnx::Conv_733 = Identity(%onnx::Conv_706) %onnx::Conv_730 = Identity(%onnx::Conv_712) %onnx::Conv_727 = Identity(%onnx::Conv_706) %onnx::Conv_724 = Identity(%onnx::Conv_706) %onnx::Conv_721 = Identity(%onnx::Conv_712) %onnx::Conv_718 = Identity(%onnx::Conv_706) %onnx::Conv_715 = Identity(%onnx::Conv_706) %onnx::Conv_709 = Identity(%onnx::Conv_706) %onnx::Conv_703 = Identity(%onnx::Conv_676) %onnx::Conv_700 = Identity(%onnx::Conv_676) %onnx::Conv_697 = Identity(%onnx::Conv_676) %onnx::Conv_694 = Identity(%onnx::Conv_676) %onnx::Conv_691 = Identity(%onnx::Conv_676) %onnx::Conv_688 = Identity(%onnx::Conv_676) %onnx::Conv_685 = Identity(%onnx::Conv_676) %onnx::Conv_682 = Identity(%onnx::Conv_676) %onnx::Conv_679 = Identity(%onnx::Conv_676) %onnx::Conv_673 = Identity(%onnx::Conv_640) %onnx::Conv_670 = Identity(%onnx::Conv_640) %onnx::Conv_667 = Identity(%onnx::Conv_640) %onnx::Conv_664 = Identity(%onnx::Conv_661) %onnx::Conv_658 = Identity(%onnx::Conv_640) %onnx::Conv_655 = Identity(%onnx::Conv_640) %onnx::Conv_652 = Identity(%onnx::Conv_640) %onnx::Conv_649 = Identity(%onnx::Conv_640) %onnx::Conv_646 = Identity(%onnx::Conv_643) %onnx::Conv_637 = Identity(%onnx::Conv_634) %/stem/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_630, %onnx::Conv_631) %/stem/relu/Relu_output_0 = Relu(%/stem/conv/Conv_output_0) %/cells.1/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/stem/relu/Relu_output_0, %onnx::Conv_633, %onnx::Conv_634) %/cells.1/nl/Relu_output_0 = Relu(%/cells.1/conv1/Conv_output_0) %/cells.1/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 48, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.1/nl/Relu_output_0, %onnx::Conv_636, %onnx::Conv_637) %/cells.1/nl_1/Relu_output_0 = Relu(%/cells.1/conv2/Conv_output_0) %/cells.1/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/nl_1/Relu_output_0, %onnx::Conv_639, %onnx::Conv_640) %/cells.2/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/conv3/Conv_output_0, %onnx::Conv_642, %onnx::Conv_643) %/cells.2/nl/Relu_output_0 = Relu(%/cells.2/conv1/Conv_output_0) %/cells.2/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 72, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.2/nl/Relu_output_0, %onnx::Conv_645, %onnx::Conv_646) %/cells.2/nl_1/Relu_output_0 = Relu(%/cells.2/conv2/Conv_output_0) %/cells.2/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/nl_1/Relu_output_0, %onnx::Conv_648, %onnx::Conv_649) %/cells.2/Add_output_0 = Add(%/cells.2/conv3/Conv_output_0, %/cells.1/conv3/Conv_output_0) %/cells.3/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/Add_output_0, %onnx::Conv_651, %onnx::Conv_652) %/cells.3/nl/Relu_output_0 = Relu(%/cells.3/conv1/Conv_output_0) %/cells.3/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.3/nl/Relu_output_0, %onnx::Conv_654, %onnx::Conv_655) %/cells.3/nl_1/Relu_output_0 = Relu(%/cells.3/conv2/Conv_output_0) %/cells.3/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/nl_1/Relu_output_0, %onnx::Conv_657, %onnx::Conv_658) %/cells.3/Add_output_0 = Add(%/cells.3/conv3/Conv_output_0, %/cells.2/Add_output_0) %/cells.4/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/Add_output_0, %onnx::Conv_660, %onnx::Conv_661) %/cells.4/nl/Relu_output_0 = Relu(%/cells.4/conv1/Conv_output_0) %/cells.4/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 144, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.4/nl/Relu_output_0, %onnx::Conv_663, %onnx::Conv_664) %/cells.4/nl_1/Relu_output_0 = Relu(%/cells.4/conv2/Conv_output_0) %/cells.4/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/nl_1/Relu_output_0, %onnx::Conv_666, %onnx::Conv_667) %/cells.4/Add_output_0 = Add(%/cells.4/conv3/Conv_output_0, %/cells.3/Add_output_0) %/cells.5/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/Add_output_0, %onnx::Conv_669, %onnx::Conv_670) %/cells.5/nl/Relu_output_0 = Relu(%/cells.5/conv1/Conv_output_0) %/cells.5/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.5/nl/Relu_output_0, %onnx::Conv_672, %onnx::Conv_673) %/cells.5/nl_1/Relu_output_0 = Relu(%/cells.5/conv2/Conv_output_0) %/cells.5/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/nl_1/Relu_output_0, %onnx::Conv_675, %onnx::Conv_676) %/cells.6/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/conv3/Conv_output_0, %onnx::Conv_678, %onnx::Conv_679) %/cells.6/nl/Relu_output_0 = Relu(%/cells.6/conv1/Conv_output_0) %/cells.6/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.6/nl/Relu_output_0, %onnx::Conv_681, %onnx::Conv_682) %/cells.6/nl_1/Relu_output_0 = Relu(%/cells.6/conv2/Conv_output_0) %/cells.6/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/nl_1/Relu_output_0, %onnx::Conv_684, %onnx::Conv_685) %/cells.6/Add_output_0 = Add(%/cells.6/conv3/Conv_output_0, %/cells.5/conv3/Conv_output_0) %/cells.7/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/Add_output_0, %onnx::Conv_687, %onnx::Conv_688) %/cells.7/nl/Relu_output_0 = Relu(%/cells.7/conv1/Conv_output_0) %/cells.7/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.7/shuffle/Reshape_output_0 = Reshape(%/cells.7/nl/Relu_output_0, %/cells.7/shuffle/Constant_output_0) %/cells.7/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.7/shuffle/Reshape_output_0) %/cells.7/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.7/shuffle/Reshape_1_output_0 = Reshape(%/cells.7/shuffle/Transpose_output_0, %/cells.7/shuffle/Constant_1_output_0) %/cells.7/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.7/shuffle/Reshape_1_output_0, %onnx::Conv_690, %onnx::Conv_691) %/cells.7/nl_1/Relu_output_0 = Relu(%/cells.7/conv2/Conv_output_0) %/cells.7/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/nl_1/Relu_output_0, %onnx::Conv_693, %onnx::Conv_694) %/cells.7/Add_output_0 = Add(%/cells.7/conv3/Conv_output_0, %/cells.6/Add_output_0) %/cells.8/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/Add_output_0, %onnx::Conv_696, %onnx::Conv_697) %/cells.8/nl/Relu_output_0 = Relu(%/cells.8/conv1/Conv_output_0) %/cells.8/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.8/nl/Relu_output_0, %onnx::Conv_699, %onnx::Conv_700) %/cells.8/nl_1/Relu_output_0 = Relu(%/cells.8/conv2/Conv_output_0) %/cells.8/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/nl_1/Relu_output_0, %onnx::Conv_702, %onnx::Conv_703) %/cells.8/Add_output_0 = Add(%/cells.8/conv3/Conv_output_0, %/cells.7/Add_output_0) %/cells.9/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/Add_output_0, %onnx::Conv_705, %onnx::Conv_706) %/cells.9/nl/Relu_output_0 = Relu(%/cells.9/conv1/Conv_output_0) %/cells.9/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.9/nl/Relu_output_0, %onnx::Conv_708, %onnx::Conv_709) %/cells.9/nl_1/Relu_output_0 = Relu(%/cells.9/conv2/Conv_output_0) %/cells.9/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/nl_1/Relu_output_0, %onnx::Conv_711, %onnx::Conv_712) %/cells.10/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/conv3/Conv_output_0, %onnx::Conv_714, %onnx::Conv_715) %/cells.10/nl/Relu_output_0 = Relu(%/cells.10/conv1/Conv_output_0) %/cells.10/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.10/nl/Relu_output_0, %onnx::Conv_717, %onnx::Conv_718) %/cells.10/nl_1/Relu_output_0 = Relu(%/cells.10/conv2/Conv_output_0) %/cells.10/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/nl_1/Relu_output_0, %onnx::Conv_720, %onnx::Conv_721) %/cells.10/Add_output_0 = Add(%/cells.10/conv3/Conv_output_0, %/cells.9/conv3/Conv_output_0) %/cells.11/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/Add_output_0, %onnx::Conv_723, %onnx::Conv_724) %/cells.11/nl/Relu_output_0 = Relu(%/cells.11/conv1/Conv_output_0) %/cells.11/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.11/nl/Relu_output_0, %onnx::Conv_726, %onnx::Conv_727) %/cells.11/nl_1/Relu_output_0 = Relu(%/cells.11/conv2/Conv_output_0) %/cells.11/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/nl_1/Relu_output_0, %onnx::Conv_729, %onnx::Conv_730) %/cells.11/Add_output_0 = Add(%/cells.11/conv3/Conv_output_0, %/cells.10/Add_output_0) %/cells.12/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/Add_output_0, %onnx::Conv_732, %onnx::Conv_733) %/cells.12/nl/Relu_output_0 = Relu(%/cells.12/conv1/Conv_output_0) %/cells.12/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.12/nl/Relu_output_0, %onnx::Conv_735, %onnx::Conv_736) %/cells.12/nl_1/Relu_output_0 = Relu(%/cells.12/conv2/Conv_output_0) %/cells.12/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/nl_1/Relu_output_0, %onnx::Conv_738, %onnx::Conv_739) %/cells.12/Add_output_0 = Add(%/cells.12/conv3/Conv_output_0, %/cells.11/Add_output_0) %/cells.13/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/Add_output_0, %onnx::Conv_741, %onnx::Conv_742) %/cells.13/nl/Relu_output_0 = Relu(%/cells.13/conv1/Conv_output_0) %/cells.13/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.13/shuffle/Reshape_output_0 = Reshape(%/cells.13/nl/Relu_output_0, %/cells.13/shuffle/Constant_output_0) %/cells.13/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.13/shuffle/Reshape_output_0) %/cells.13/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.13/shuffle/Reshape_1_output_0 = Reshape(%/cells.13/shuffle/Transpose_output_0, %/cells.13/shuffle/Constant_1_output_0) %/cells.13/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.13/shuffle/Reshape_1_output_0, %onnx::Conv_744, %onnx::Conv_745) %/cells.13/nl_1/Relu_output_0 = Relu(%/cells.13/conv2/Conv_output_0) %/cells.13/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/nl_1/Relu_output_0, %onnx::Conv_747, %onnx::Conv_748) %/cells.14/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/conv3/Conv_output_0, %onnx::Conv_750, %onnx::Conv_751) %/cells.14/nl/Relu_output_0 = Relu(%/cells.14/conv1/Conv_output_0) %/cells.14/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.14/nl/Relu_output_0, %onnx::Conv_753, %onnx::Conv_754) %/cells.14/nl_1/Relu_output_0 = Relu(%/cells.14/conv2/Conv_output_0) %/cells.14/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/nl_1/Relu_output_0, %onnx::Conv_756, %onnx::Conv_757) %/cells.14/Add_output_0 = Add(%/cells.14/conv3/Conv_output_0, %/cells.13/conv3/Conv_output_0) %/cells.15/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/Add_output_0, %onnx::Conv_759, %onnx::Conv_760) %/cells.15/nl/Relu_output_0 = Relu(%/cells.15/conv1/Conv_output_0) %/cells.15/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.15/nl/Relu_output_0, %onnx::Conv_762, %onnx::Conv_763) %/cells.15/nl_1/Relu_output_0 = Relu(%/cells.15/conv2/Conv_output_0) %/cells.15/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/nl_1/Relu_output_0, %onnx::Conv_765, %onnx::Conv_766) %/cells.15/Add_output_0 = Add(%/cells.15/conv3/Conv_output_0, %/cells.14/Add_output_0) %/cells.16/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/Add_output_0, %onnx::Conv_768, %onnx::Conv_769) %/cells.16/nl/Relu_output_0 = Relu(%/cells.16/conv1/Conv_output_0) %/cells.16/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 336, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.16/nl/Relu_output_0, %onnx::Conv_771, %onnx::Conv_772) %/cells.16/nl_1/Relu_output_0 = Relu(%/cells.16/conv2/Conv_output_0) %/cells.16/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/nl_1/Relu_output_0, %onnx::Conv_774, %onnx::Conv_775) %/cells.16/Add_output_0 = Add(%/cells.16/conv3/Conv_output_0, %/cells.15/Add_output_0) %/cells.17/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/Add_output_0, %onnx::Conv_777, %onnx::Conv_778) %/cells.17/nl/Relu_output_0 = Relu(%/cells.17/conv1/Conv_output_0) %/cells.17/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.17/nl/Relu_output_0, %onnx::Conv_780, %onnx::Conv_781) %/cells.17/nl_1/Relu_output_0 = Relu(%/cells.17/conv2/Conv_output_0) %/cells.17/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/nl_1/Relu_output_0, %onnx::Conv_783, %onnx::Conv_784) %/cells.18/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/conv3/Conv_output_0, %onnx::Conv_786, %onnx::Conv_787) %/cells.18/nl/Relu_output_0 = Relu(%/cells.18/conv1/Conv_output_0) %/cells.18/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.18/nl/Relu_output_0, %onnx::Conv_789, %onnx::Conv_790) %/cells.18/nl_1/Relu_output_0 = Relu(%/cells.18/conv2/Conv_output_0) %/cells.18/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/nl_1/Relu_output_0, %onnx::Conv_792, %onnx::Conv_793) %/cells.18/Add_output_0 = Add(%/cells.18/conv3/Conv_output_0, %/cells.17/conv3/Conv_output_0) %/cells.19/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/Add_output_0, %onnx::Conv_795, %onnx::Conv_796) %/cells.19/nl/Relu_output_0 = Relu(%/cells.19/conv1/Conv_output_0) %/cells.19/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.19/nl/Relu_output_0, %onnx::Conv_798, %onnx::Conv_799) %/cells.19/nl_1/Relu_output_0 = Relu(%/cells.19/conv2/Conv_output_0) %/cells.19/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/nl_1/Relu_output_0, %onnx::Conv_801, %onnx::Conv_802) %/cells.19/Add_output_0 = Add(%/cells.19/conv3/Conv_output_0, %/cells.18/Add_output_0) %/cells.20/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/Add_output_0, %onnx::Conv_804, %onnx::Conv_805) %/cells.20/nl/Relu_output_0 = Relu(%/cells.20/conv1/Conv_output_0) %/cells.20/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.20/nl/Relu_output_0, %onnx::Conv_807, %onnx::Conv_808) %/cells.20/nl_1/Relu_output_0 = Relu(%/cells.20/conv2/Conv_output_0) %/cells.20/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/nl_1/Relu_output_0, %onnx::Conv_810, %onnx::Conv_811) %/cells.20/Add_output_0 = Add(%/cells.20/conv3/Conv_output_0, %/cells.19/Add_output_0) %/cells.21/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/Add_output_0, %onnx::Conv_813, %onnx::Conv_814) %/cells.21/nl/Relu_output_0 = Relu(%/cells.21/conv1/Conv_output_0) %/cells.21/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.21/nl/Relu_output_0, %onnx::Conv_816, %onnx::Conv_817) %/cells.21/nl_1/Relu_output_0 = Relu(%/cells.21/conv2/Conv_output_0) %/cells.21/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/nl_1/Relu_output_0, %onnx::Conv_819, %onnx::Conv_820) %/header/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/conv3/Conv_output_0, %onnx::Conv_822, %onnx::Conv_823) %/header/relu/Relu_output_0 = Relu(%/header/conv/Conv_output_0) %/avgpool/GlobalAveragePool_output_0 = GlobalAveragePool(%/header/relu/Relu_output_0) %/Constant_output_0 = Constant[value = <Tensor>]() %/Reshape_output_0 = Reshape(%/avgpool/GlobalAveragePool_output_0, %/Constant_output_0) %628 = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias) return %628 }
val_accuracy
0
77,415,808
2,326,476
{'zcp_synflow': 82.5309040969133, 'zcp_zen': 72.55218505859375, 'zcp_epe_nas': 6.570449287434718, 'zcp_fisher': 0.11501649767160416, 'zcp_flops': 77415808.0, 'zcp_grad_norm': 21.668869018554688, 'zcp_grasp': -0.013709068298339844, 'zcp_jacov': -16.06820386174849, 'zcp_l2_norm': 686.1187133789062, 'zcp_nwot': 212.9461177339475, 'zcp_params': 2326476.0, 'zcp_plain': 0.009781252592802048, 'zcp_snip': 43.24672317504883, 'lat_1080ti_1': 0.6087284230779342, 'lat_1080ti_32': 0.5913488454198659, 'lat_1080ti_64': 0.4550693152131566, 'lat_2080ti_1': 0.6694848726715908, 'lat_2080ti_32': 0.6108998020070059, 'lat_2080ti_64': 0.515208054665073, 'lat_essential_ph_1': 0.24528301886792453, 'lat_eyeriss': 0.5111950562045003, 'lat_fpga': 0.6269604884275521, 'lat_gold_6226': 0.4414121016306257, 'lat_gold_6240': 0.5721433418702853, 'lat_pixel2': 0.5217391304347826, 'lat_pixel3': 0.47760805494618513, 'lat_raspi4': 0.5526392867815173, 'lat_samsung_a50': 0.23157894736842105, 'lat_samsung_s7': 0.2047244094488189, 'lat_silver_4114': 0.6038793078574286, 'lat_silver_4210r': 0.6457988830065116, 'lat_titan_rtx_1': 0.6277712768495664, 'lat_titan_rtx_32': 0.5808068419536232, 'lat_titan_rtx_64': 0.5185219328887671, 'lat_titanx_1': 0.35067955936365103, 'lat_titanx_32': 0.5229746243371428, 'lat_titanx_64': 0.4658335726600207, 'lat_titanxp_1': 0.6065597320533347, 'lat_titanxp_32': 0.5665480511292275, 'lat_titanxp_64': 0.4879097440899573}
FBNet_1744
FBNet
1744
1744
graph main_graph ( %input.1[FLOAT, 1x3x32x32] %fc.weight[FLOAT, 100x1504] %fc.bias[FLOAT, 100] %onnx::Conv_632[FLOAT, 16x3x3x3] %onnx::Conv_633[FLOAT, 16] %onnx::Conv_635[FLOAT, 48x16x1x1] %onnx::Conv_636[FLOAT, 48] %onnx::Conv_638[FLOAT, 48x1x3x3] %onnx::Conv_641[FLOAT, 16x48x1x1] %onnx::Conv_644[FLOAT, 48x16x1x1] %onnx::Conv_647[FLOAT, 48x1x3x3] %onnx::Conv_650[FLOAT, 24x48x1x1] %onnx::Conv_651[FLOAT, 24] %onnx::Conv_653[FLOAT, 72x24x1x1] %onnx::Conv_654[FLOAT, 72] %onnx::Conv_656[FLOAT, 72x1x5x5] %onnx::Conv_659[FLOAT, 24x72x1x1] %onnx::Conv_662[FLOAT, 24x24x1x1] %onnx::Conv_665[FLOAT, 24x1x3x3] %onnx::Conv_668[FLOAT, 24x24x1x1] %onnx::Conv_671[FLOAT, 24x12x1x1] %onnx::Conv_674[FLOAT, 24x1x3x3] %onnx::Conv_677[FLOAT, 24x12x1x1] %onnx::Conv_680[FLOAT, 144x24x1x1] %onnx::Conv_681[FLOAT, 144] %onnx::Conv_683[FLOAT, 144x1x5x5] %onnx::Conv_686[FLOAT, 32x144x1x1] %onnx::Conv_687[FLOAT, 32] %onnx::Conv_689[FLOAT, 192x32x1x1] %onnx::Conv_690[FLOAT, 192] %onnx::Conv_692[FLOAT, 192x1x5x5] %onnx::Conv_695[FLOAT, 32x192x1x1] %onnx::Conv_698[FLOAT, 192x32x1x1] %onnx::Conv_701[FLOAT, 192x1x5x5] %onnx::Conv_704[FLOAT, 32x192x1x1] %onnx::Conv_707[FLOAT, 32x32x1x1] %onnx::Conv_710[FLOAT, 32x1x5x5] %onnx::Conv_713[FLOAT, 32x32x1x1] %onnx::Conv_716[FLOAT, 64x32x1x1] %onnx::Conv_717[FLOAT, 64] %onnx::Conv_719[FLOAT, 192x64x1x1] %onnx::Conv_722[FLOAT, 192x1x5x5] %onnx::Conv_725[FLOAT, 64x192x1x1] %onnx::Conv_728[FLOAT, 192x64x1x1] %onnx::Conv_731[FLOAT, 192x1x5x5] %onnx::Conv_734[FLOAT, 64x192x1x1] %onnx::Conv_737[FLOAT, 192x64x1x1] %onnx::Conv_740[FLOAT, 192x1x5x5] %onnx::Conv_743[FLOAT, 64x192x1x1] %onnx::Conv_746[FLOAT, 384x64x1x1] %onnx::Conv_747[FLOAT, 384] %onnx::Conv_749[FLOAT, 384x1x3x3] %onnx::Conv_752[FLOAT, 112x384x1x1] %onnx::Conv_753[FLOAT, 112] %onnx::Conv_755[FLOAT, 112x56x1x1] %onnx::Conv_758[FLOAT, 112x1x3x3] %onnx::Conv_761[FLOAT, 112x56x1x1] %onnx::Conv_764[FLOAT, 336x112x1x1] %onnx::Conv_765[FLOAT, 336] %onnx::Conv_767[FLOAT, 336x1x5x5] %onnx::Conv_770[FLOAT, 112x336x1x1] %onnx::Conv_773[FLOAT, 112x112x1x1] %onnx::Conv_776[FLOAT, 112x1x5x5] %onnx::Conv_779[FLOAT, 184x112x1x1] %onnx::Conv_780[FLOAT, 184] %onnx::Conv_782[FLOAT, 184x184x1x1] %onnx::Conv_785[FLOAT, 184x1x3x3] %onnx::Conv_788[FLOAT, 184x184x1x1] %onnx::Conv_791[FLOAT, 552x184x1x1] %onnx::Conv_792[FLOAT, 552] %onnx::Conv_794[FLOAT, 552x1x5x5] %onnx::Conv_797[FLOAT, 184x552x1x1] %onnx::Conv_800[FLOAT, 1104x184x1x1] %onnx::Conv_801[FLOAT, 1104] %onnx::Conv_803[FLOAT, 1104x1x5x5] %onnx::Conv_806[FLOAT, 184x1104x1x1] %onnx::Conv_809[FLOAT, 184x92x1x1] %onnx::Conv_812[FLOAT, 184x1x5x5] %onnx::Conv_815[FLOAT, 352x92x1x1] %onnx::Conv_816[FLOAT, 352] %onnx::Conv_818[FLOAT, 1504x352x1x1] %onnx::Conv_819[FLOAT, 1504] ) { %onnx::Conv_813 = Identity(%onnx::Conv_780) %onnx::Conv_810 = Identity(%onnx::Conv_780) %onnx::Conv_807 = Identity(%onnx::Conv_780) %onnx::Conv_804 = Identity(%onnx::Conv_801) %onnx::Conv_798 = Identity(%onnx::Conv_780) %onnx::Conv_795 = Identity(%onnx::Conv_792) %onnx::Conv_789 = Identity(%onnx::Conv_780) %onnx::Conv_786 = Identity(%onnx::Conv_780) %onnx::Conv_783 = Identity(%onnx::Conv_780) %onnx::Conv_777 = Identity(%onnx::Conv_753) %onnx::Conv_774 = Identity(%onnx::Conv_753) %onnx::Conv_771 = Identity(%onnx::Conv_753) %onnx::Conv_768 = Identity(%onnx::Conv_765) %onnx::Conv_762 = Identity(%onnx::Conv_753) %onnx::Conv_759 = Identity(%onnx::Conv_753) %onnx::Conv_756 = Identity(%onnx::Conv_753) %onnx::Conv_750 = Identity(%onnx::Conv_747) %onnx::Conv_744 = Identity(%onnx::Conv_717) %onnx::Conv_741 = Identity(%onnx::Conv_690) %onnx::Conv_738 = Identity(%onnx::Conv_690) %onnx::Conv_735 = Identity(%onnx::Conv_717) %onnx::Conv_732 = Identity(%onnx::Conv_690) %onnx::Conv_729 = Identity(%onnx::Conv_690) %onnx::Conv_726 = Identity(%onnx::Conv_717) %onnx::Conv_723 = Identity(%onnx::Conv_690) %onnx::Conv_720 = Identity(%onnx::Conv_690) %onnx::Conv_714 = Identity(%onnx::Conv_687) %onnx::Conv_711 = Identity(%onnx::Conv_687) %onnx::Conv_708 = Identity(%onnx::Conv_687) %onnx::Conv_705 = Identity(%onnx::Conv_687) %onnx::Conv_702 = Identity(%onnx::Conv_690) %onnx::Conv_699 = Identity(%onnx::Conv_690) %onnx::Conv_696 = Identity(%onnx::Conv_687) %onnx::Conv_693 = Identity(%onnx::Conv_690) %onnx::Conv_684 = Identity(%onnx::Conv_681) %onnx::Conv_678 = Identity(%onnx::Conv_651) %onnx::Conv_675 = Identity(%onnx::Conv_651) %onnx::Conv_672 = Identity(%onnx::Conv_651) %onnx::Conv_669 = Identity(%onnx::Conv_651) %onnx::Conv_666 = Identity(%onnx::Conv_651) %onnx::Conv_663 = Identity(%onnx::Conv_651) %onnx::Conv_660 = Identity(%onnx::Conv_651) %onnx::Conv_657 = Identity(%onnx::Conv_654) %onnx::Conv_648 = Identity(%onnx::Conv_636) %onnx::Conv_645 = Identity(%onnx::Conv_636) %onnx::Conv_642 = Identity(%onnx::Conv_633) %onnx::Conv_639 = Identity(%onnx::Conv_636) %/stem/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_632, %onnx::Conv_633) %/stem/relu/Relu_output_0 = Relu(%/stem/conv/Conv_output_0) %/cells.0/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/stem/relu/Relu_output_0, %onnx::Conv_635, %onnx::Conv_636) %/cells.0/nl/Relu_output_0 = Relu(%/cells.0/conv1/Conv_output_0) %/cells.0/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 48, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.0/nl/Relu_output_0, %onnx::Conv_638, %onnx::Conv_639) %/cells.0/nl_1/Relu_output_0 = Relu(%/cells.0/conv2/Conv_output_0) %/cells.0/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/nl_1/Relu_output_0, %onnx::Conv_641, %onnx::Conv_642) %/cells.0/Add_output_0 = Add(%/cells.0/conv3/Conv_output_0, %/stem/relu/Relu_output_0) %/cells.1/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/Add_output_0, %onnx::Conv_644, %onnx::Conv_645) %/cells.1/nl/Relu_output_0 = Relu(%/cells.1/conv1/Conv_output_0) %/cells.1/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 48, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.1/nl/Relu_output_0, %onnx::Conv_647, %onnx::Conv_648) %/cells.1/nl_1/Relu_output_0 = Relu(%/cells.1/conv2/Conv_output_0) %/cells.1/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/nl_1/Relu_output_0, %onnx::Conv_650, %onnx::Conv_651) %/cells.2/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/conv3/Conv_output_0, %onnx::Conv_653, %onnx::Conv_654) %/cells.2/nl/Relu_output_0 = Relu(%/cells.2/conv1/Conv_output_0) %/cells.2/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 72, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.2/nl/Relu_output_0, %onnx::Conv_656, %onnx::Conv_657) %/cells.2/nl_1/Relu_output_0 = Relu(%/cells.2/conv2/Conv_output_0) %/cells.2/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/nl_1/Relu_output_0, %onnx::Conv_659, %onnx::Conv_660) %/cells.2/Add_output_0 = Add(%/cells.2/conv3/Conv_output_0, %/cells.1/conv3/Conv_output_0) %/cells.3/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/Add_output_0, %onnx::Conv_662, %onnx::Conv_663) %/cells.3/nl/Relu_output_0 = Relu(%/cells.3/conv1/Conv_output_0) %/cells.3/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.3/nl/Relu_output_0, %onnx::Conv_665, %onnx::Conv_666) %/cells.3/nl_1/Relu_output_0 = Relu(%/cells.3/conv2/Conv_output_0) %/cells.3/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/nl_1/Relu_output_0, %onnx::Conv_668, %onnx::Conv_669) %/cells.3/Add_output_0 = Add(%/cells.3/conv3/Conv_output_0, %/cells.2/Add_output_0) %/cells.4/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/Add_output_0, %onnx::Conv_671, %onnx::Conv_672) %/cells.4/nl/Relu_output_0 = Relu(%/cells.4/conv1/Conv_output_0) %/cells.4/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.4/shuffle/Reshape_output_0 = Reshape(%/cells.4/nl/Relu_output_0, %/cells.4/shuffle/Constant_output_0) %/cells.4/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.4/shuffle/Reshape_output_0) %/cells.4/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.4/shuffle/Reshape_1_output_0 = Reshape(%/cells.4/shuffle/Transpose_output_0, %/cells.4/shuffle/Constant_1_output_0) %/cells.4/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.4/shuffle/Reshape_1_output_0, %onnx::Conv_674, %onnx::Conv_675) %/cells.4/nl_1/Relu_output_0 = Relu(%/cells.4/conv2/Conv_output_0) %/cells.4/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/nl_1/Relu_output_0, %onnx::Conv_677, %onnx::Conv_678) %/cells.4/Add_output_0 = Add(%/cells.4/conv3/Conv_output_0, %/cells.3/Add_output_0) %/cells.5/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/Add_output_0, %onnx::Conv_680, %onnx::Conv_681) %/cells.5/nl/Relu_output_0 = Relu(%/cells.5/conv1/Conv_output_0) %/cells.5/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 144, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.5/nl/Relu_output_0, %onnx::Conv_683, %onnx::Conv_684) %/cells.5/nl_1/Relu_output_0 = Relu(%/cells.5/conv2/Conv_output_0) %/cells.5/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/nl_1/Relu_output_0, %onnx::Conv_686, %onnx::Conv_687) %/cells.6/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/conv3/Conv_output_0, %onnx::Conv_689, %onnx::Conv_690) %/cells.6/nl/Relu_output_0 = Relu(%/cells.6/conv1/Conv_output_0) %/cells.6/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.6/nl/Relu_output_0, %onnx::Conv_692, %onnx::Conv_693) %/cells.6/nl_1/Relu_output_0 = Relu(%/cells.6/conv2/Conv_output_0) %/cells.6/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/nl_1/Relu_output_0, %onnx::Conv_695, %onnx::Conv_696) %/cells.6/Add_output_0 = Add(%/cells.6/conv3/Conv_output_0, %/cells.5/conv3/Conv_output_0) %/cells.7/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/Add_output_0, %onnx::Conv_698, %onnx::Conv_699) %/cells.7/nl/Relu_output_0 = Relu(%/cells.7/conv1/Conv_output_0) %/cells.7/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.7/nl/Relu_output_0, %onnx::Conv_701, %onnx::Conv_702) %/cells.7/nl_1/Relu_output_0 = Relu(%/cells.7/conv2/Conv_output_0) %/cells.7/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/nl_1/Relu_output_0, %onnx::Conv_704, %onnx::Conv_705) %/cells.7/Add_output_0 = Add(%/cells.7/conv3/Conv_output_0, %/cells.6/Add_output_0) %/cells.8/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/Add_output_0, %onnx::Conv_707, %onnx::Conv_708) %/cells.8/nl/Relu_output_0 = Relu(%/cells.8/conv1/Conv_output_0) %/cells.8/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.8/nl/Relu_output_0, %onnx::Conv_710, %onnx::Conv_711) %/cells.8/nl_1/Relu_output_0 = Relu(%/cells.8/conv2/Conv_output_0) %/cells.8/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/nl_1/Relu_output_0, %onnx::Conv_713, %onnx::Conv_714) %/cells.8/Add_output_0 = Add(%/cells.8/conv3/Conv_output_0, %/cells.7/Add_output_0) %/cells.9/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [2, 2]](%/cells.8/Add_output_0, %onnx::Conv_716, %onnx::Conv_717) %/cells.9/relu/Relu_output_0 = Relu(%/cells.9/conv/Conv_output_0) %/cells.10/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/relu/Relu_output_0, %onnx::Conv_719, %onnx::Conv_720) %/cells.10/nl/Relu_output_0 = Relu(%/cells.10/conv1/Conv_output_0) %/cells.10/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.10/nl/Relu_output_0, %onnx::Conv_722, %onnx::Conv_723) %/cells.10/nl_1/Relu_output_0 = Relu(%/cells.10/conv2/Conv_output_0) %/cells.10/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/nl_1/Relu_output_0, %onnx::Conv_725, %onnx::Conv_726) %/cells.10/Add_output_0 = Add(%/cells.10/conv3/Conv_output_0, %/cells.9/relu/Relu_output_0) %/cells.11/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/Add_output_0, %onnx::Conv_728, %onnx::Conv_729) %/cells.11/nl/Relu_output_0 = Relu(%/cells.11/conv1/Conv_output_0) %/cells.11/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.11/nl/Relu_output_0, %onnx::Conv_731, %onnx::Conv_732) %/cells.11/nl_1/Relu_output_0 = Relu(%/cells.11/conv2/Conv_output_0) %/cells.11/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/nl_1/Relu_output_0, %onnx::Conv_734, %onnx::Conv_735) %/cells.11/Add_output_0 = Add(%/cells.11/conv3/Conv_output_0, %/cells.10/Add_output_0) %/cells.12/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/Add_output_0, %onnx::Conv_737, %onnx::Conv_738) %/cells.12/nl/Relu_output_0 = Relu(%/cells.12/conv1/Conv_output_0) %/cells.12/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.12/nl/Relu_output_0, %onnx::Conv_740, %onnx::Conv_741) %/cells.12/nl_1/Relu_output_0 = Relu(%/cells.12/conv2/Conv_output_0) %/cells.12/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/nl_1/Relu_output_0, %onnx::Conv_743, %onnx::Conv_744) %/cells.12/Add_output_0 = Add(%/cells.12/conv3/Conv_output_0, %/cells.11/Add_output_0) %/cells.13/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/Add_output_0, %onnx::Conv_746, %onnx::Conv_747) %/cells.13/nl/Relu_output_0 = Relu(%/cells.13/conv1/Conv_output_0) %/cells.13/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 384, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.13/nl/Relu_output_0, %onnx::Conv_749, %onnx::Conv_750) %/cells.13/nl_1/Relu_output_0 = Relu(%/cells.13/conv2/Conv_output_0) %/cells.13/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/nl_1/Relu_output_0, %onnx::Conv_752, %onnx::Conv_753) %/cells.14/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/conv3/Conv_output_0, %onnx::Conv_755, %onnx::Conv_756) %/cells.14/nl/Relu_output_0 = Relu(%/cells.14/conv1/Conv_output_0) %/cells.14/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.14/shuffle/Reshape_output_0 = Reshape(%/cells.14/nl/Relu_output_0, %/cells.14/shuffle/Constant_output_0) %/cells.14/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.14/shuffle/Reshape_output_0) %/cells.14/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.14/shuffle/Reshape_1_output_0 = Reshape(%/cells.14/shuffle/Transpose_output_0, %/cells.14/shuffle/Constant_1_output_0) %/cells.14/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.14/shuffle/Reshape_1_output_0, %onnx::Conv_758, %onnx::Conv_759) %/cells.14/nl_1/Relu_output_0 = Relu(%/cells.14/conv2/Conv_output_0) %/cells.14/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/nl_1/Relu_output_0, %onnx::Conv_761, %onnx::Conv_762) %/cells.14/Add_output_0 = Add(%/cells.14/conv3/Conv_output_0, %/cells.13/conv3/Conv_output_0) %/cells.16/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/Add_output_0, %onnx::Conv_764, %onnx::Conv_765) %/cells.16/nl/Relu_output_0 = Relu(%/cells.16/conv1/Conv_output_0) %/cells.16/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 336, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.16/nl/Relu_output_0, %onnx::Conv_767, %onnx::Conv_768) %/cells.16/nl_1/Relu_output_0 = Relu(%/cells.16/conv2/Conv_output_0) %/cells.16/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/nl_1/Relu_output_0, %onnx::Conv_770, %onnx::Conv_771) %/cells.16/Add_output_0 = Add(%/cells.16/conv3/Conv_output_0, %/cells.14/Add_output_0) %/cells.17/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/Add_output_0, %onnx::Conv_773, %onnx::Conv_774) %/cells.17/nl/Relu_output_0 = Relu(%/cells.17/conv1/Conv_output_0) %/cells.17/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.17/nl/Relu_output_0, %onnx::Conv_776, %onnx::Conv_777) %/cells.17/nl_1/Relu_output_0 = Relu(%/cells.17/conv2/Conv_output_0) %/cells.17/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/nl_1/Relu_output_0, %onnx::Conv_779, %onnx::Conv_780) %/cells.18/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/conv3/Conv_output_0, %onnx::Conv_782, %onnx::Conv_783) %/cells.18/nl/Relu_output_0 = Relu(%/cells.18/conv1/Conv_output_0) %/cells.18/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.18/nl/Relu_output_0, %onnx::Conv_785, %onnx::Conv_786) %/cells.18/nl_1/Relu_output_0 = Relu(%/cells.18/conv2/Conv_output_0) %/cells.18/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/nl_1/Relu_output_0, %onnx::Conv_788, %onnx::Conv_789) %/cells.18/Add_output_0 = Add(%/cells.18/conv3/Conv_output_0, %/cells.17/conv3/Conv_output_0) %/cells.19/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/Add_output_0, %onnx::Conv_791, %onnx::Conv_792) %/cells.19/nl/Relu_output_0 = Relu(%/cells.19/conv1/Conv_output_0) %/cells.19/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 552, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.19/nl/Relu_output_0, %onnx::Conv_794, %onnx::Conv_795) %/cells.19/nl_1/Relu_output_0 = Relu(%/cells.19/conv2/Conv_output_0) %/cells.19/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/nl_1/Relu_output_0, %onnx::Conv_797, %onnx::Conv_798) %/cells.19/Add_output_0 = Add(%/cells.19/conv3/Conv_output_0, %/cells.18/Add_output_0) %/cells.20/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/Add_output_0, %onnx::Conv_800, %onnx::Conv_801) %/cells.20/nl/Relu_output_0 = Relu(%/cells.20/conv1/Conv_output_0) %/cells.20/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.20/nl/Relu_output_0, %onnx::Conv_803, %onnx::Conv_804) %/cells.20/nl_1/Relu_output_0 = Relu(%/cells.20/conv2/Conv_output_0) %/cells.20/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/nl_1/Relu_output_0, %onnx::Conv_806, %onnx::Conv_807) %/cells.20/Add_output_0 = Add(%/cells.20/conv3/Conv_output_0, %/cells.19/Add_output_0) %/cells.21/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/Add_output_0, %onnx::Conv_809, %onnx::Conv_810) %/cells.21/nl/Relu_output_0 = Relu(%/cells.21/conv1/Conv_output_0) %/cells.21/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.21/shuffle/Reshape_output_0 = Reshape(%/cells.21/nl/Relu_output_0, %/cells.21/shuffle/Constant_output_0) %/cells.21/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.21/shuffle/Reshape_output_0) %/cells.21/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.21/shuffle/Reshape_1_output_0 = Reshape(%/cells.21/shuffle/Transpose_output_0, %/cells.21/shuffle/Constant_1_output_0) %/cells.21/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.21/shuffle/Reshape_1_output_0, %onnx::Conv_812, %onnx::Conv_813) %/cells.21/nl_1/Relu_output_0 = Relu(%/cells.21/conv2/Conv_output_0) %/cells.21/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/nl_1/Relu_output_0, %onnx::Conv_815, %onnx::Conv_816) %/header/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/conv3/Conv_output_0, %onnx::Conv_818, %onnx::Conv_819) %/header/relu/Relu_output_0 = Relu(%/header/conv/Conv_output_0) %/avgpool/GlobalAveragePool_output_0 = GlobalAveragePool(%/header/relu/Relu_output_0) %/Constant_output_0 = Constant[value = <Tensor>]() %/Reshape_output_0 = Reshape(%/avgpool/GlobalAveragePool_output_0, %/Constant_output_0) %630 = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias) return %630 }
val_accuracy
0
69,532,800
1,833,396
{'zcp_synflow': 81.00151682552332, 'zcp_zen': 70.72832489013672, 'zcp_epe_nas': 0.00015999920000638146, 'zcp_fisher': 0.16060179471969604, 'zcp_flops': 69532800.0, 'zcp_grad_norm': 25.518957138061523, 'zcp_grasp': -0.7189178466796875, 'zcp_jacov': -16.054173817441924, 'zcp_l2_norm': 641.1897583007812, 'zcp_nwot': 213.6309817729959, 'zcp_params': 1833396.0, 'zcp_plain': 0.004338196944445372, 'zcp_snip': 48.080177307128906, 'lat_1080ti_1': 0.6896371377224065, 'lat_1080ti_32': 0.5158820399888641, 'lat_1080ti_64': 0.4699123657305433, 'lat_2080ti_1': 0.5993238351792396, 'lat_2080ti_32': 0.49608520749113666, 'lat_2080ti_64': 0.4860155876105916, 'lat_essential_ph_1': 0.4528301886792453, 'lat_eyeriss': 0.49997249371939956, 'lat_fpga': 0.45031120434597594, 'lat_gold_6226': 0.3789777949662443, 'lat_gold_6240': 0.5154425784017876, 'lat_pixel2': 0.32608695652173914, 'lat_pixel3': 0.4877994176860392, 'lat_raspi4': 0.4749247401413308, 'lat_samsung_a50': 0.2, 'lat_samsung_s7': 0.2283464566929134, 'lat_silver_4114': 0.5547105095996716, 'lat_silver_4210r': 0.5289520778792325, 'lat_titan_rtx_1': 0.5869892192857065, 'lat_titan_rtx_32': 0.4894397492913472, 'lat_titan_rtx_64': 0.4945278507261771, 'lat_titanx_1': 0.3037606608774482, 'lat_titanx_32': 0.47081678672697347, 'lat_titanx_64': 0.47308709168583607, 'lat_titanxp_1': 0.5375890266443537, 'lat_titanxp_32': 0.5007478207672101, 'lat_titanxp_64': 0.49433553605051983}
FBNet_2118
FBNet
2118
2118
graph main_graph ( %input.1[FLOAT, 1x3x32x32] %fc.weight[FLOAT, 100x1504] %fc.bias[FLOAT, 100] %onnx::Conv_622[FLOAT, 16x3x3x3] %onnx::Conv_623[FLOAT, 16] %onnx::Conv_625[FLOAT, 96x16x1x1] %onnx::Conv_626[FLOAT, 96] %onnx::Conv_628[FLOAT, 96x1x3x3] %onnx::Conv_631[FLOAT, 16x96x1x1] %onnx::Conv_634[FLOAT, 16x8x1x1] %onnx::Conv_637[FLOAT, 16x1x3x3] %onnx::Conv_640[FLOAT, 24x8x1x1] %onnx::Conv_641[FLOAT, 24] %onnx::Conv_643[FLOAT, 24x24x1x1] %onnx::Conv_646[FLOAT, 24x1x3x3] %onnx::Conv_649[FLOAT, 24x24x1x1] %onnx::Conv_652[FLOAT, 72x24x1x1] %onnx::Conv_653[FLOAT, 72] %onnx::Conv_655[FLOAT, 72x1x3x3] %onnx::Conv_658[FLOAT, 24x72x1x1] %onnx::Conv_661[FLOAT, 144x24x1x1] %onnx::Conv_662[FLOAT, 144] %onnx::Conv_664[FLOAT, 144x1x3x3] %onnx::Conv_667[FLOAT, 24x144x1x1] %onnx::Conv_670[FLOAT, 72x24x1x1] %onnx::Conv_673[FLOAT, 72x1x5x5] %onnx::Conv_676[FLOAT, 32x72x1x1] %onnx::Conv_677[FLOAT, 32] %onnx::Conv_679[FLOAT, 32x32x1x1] %onnx::Conv_682[FLOAT, 32x1x5x5] %onnx::Conv_685[FLOAT, 32x32x1x1] %onnx::Conv_688[FLOAT, 32x32x1x1] %onnx::Conv_691[FLOAT, 32x1x3x3] %onnx::Conv_694[FLOAT, 32x32x1x1] %onnx::Conv_697[FLOAT, 96x32x1x1] %onnx::Conv_700[FLOAT, 96x1x5x5] %onnx::Conv_703[FLOAT, 64x96x1x1] %onnx::Conv_704[FLOAT, 64] %onnx::Conv_706[FLOAT, 64x32x1x1] %onnx::Conv_709[FLOAT, 64x1x3x3] %onnx::Conv_712[FLOAT, 64x32x1x1] %onnx::Conv_715[FLOAT, 64x64x1x1] %onnx::Conv_718[FLOAT, 64x1x5x5] %onnx::Conv_721[FLOAT, 64x64x1x1] %onnx::Conv_724[FLOAT, 64x64x1x1] %onnx::Conv_727[FLOAT, 64x1x5x5] %onnx::Conv_730[FLOAT, 64x64x1x1] %onnx::Conv_733[FLOAT, 192x64x1x1] %onnx::Conv_734[FLOAT, 192] %onnx::Conv_736[FLOAT, 192x1x5x5] %onnx::Conv_739[FLOAT, 112x192x1x1] %onnx::Conv_740[FLOAT, 112] %onnx::Conv_742[FLOAT, 112x112x1x1] %onnx::Conv_745[FLOAT, 112x1x5x5] %onnx::Conv_748[FLOAT, 112x112x1x1] %onnx::Conv_751[FLOAT, 672x112x1x1] %onnx::Conv_752[FLOAT, 672] %onnx::Conv_754[FLOAT, 672x1x5x5] %onnx::Conv_757[FLOAT, 112x672x1x1] %onnx::Conv_760[FLOAT, 112x56x1x1] %onnx::Conv_763[FLOAT, 112x1x5x5] %onnx::Conv_766[FLOAT, 184x56x1x1] %onnx::Conv_767[FLOAT, 184] %onnx::Conv_769[FLOAT, 184x184x1x1] %onnx::Conv_772[FLOAT, 184x1x5x5] %onnx::Conv_775[FLOAT, 184x184x1x1] %onnx::Conv_778[FLOAT, 552x184x1x1] %onnx::Conv_779[FLOAT, 552] %onnx::Conv_781[FLOAT, 552x1x3x3] %onnx::Conv_784[FLOAT, 184x552x1x1] %onnx::Conv_787[FLOAT, 184x184x1x1] %onnx::Conv_790[FLOAT, 184x1x5x5] %onnx::Conv_793[FLOAT, 184x184x1x1] %onnx::Conv_796[FLOAT, 552x184x1x1] %onnx::Conv_799[FLOAT, 552x1x5x5] %onnx::Conv_802[FLOAT, 352x552x1x1] %onnx::Conv_803[FLOAT, 352] %onnx::Conv_805[FLOAT, 1504x352x1x1] %onnx::Conv_806[FLOAT, 1504] ) { %onnx::Conv_800 = Identity(%onnx::Conv_779) %onnx::Conv_797 = Identity(%onnx::Conv_779) %onnx::Conv_794 = Identity(%onnx::Conv_767) %onnx::Conv_791 = Identity(%onnx::Conv_767) %onnx::Conv_788 = Identity(%onnx::Conv_767) %onnx::Conv_785 = Identity(%onnx::Conv_767) %onnx::Conv_782 = Identity(%onnx::Conv_779) %onnx::Conv_776 = Identity(%onnx::Conv_767) %onnx::Conv_773 = Identity(%onnx::Conv_767) %onnx::Conv_770 = Identity(%onnx::Conv_767) %onnx::Conv_764 = Identity(%onnx::Conv_740) %onnx::Conv_761 = Identity(%onnx::Conv_740) %onnx::Conv_758 = Identity(%onnx::Conv_740) %onnx::Conv_755 = Identity(%onnx::Conv_752) %onnx::Conv_749 = Identity(%onnx::Conv_740) %onnx::Conv_746 = Identity(%onnx::Conv_740) %onnx::Conv_743 = Identity(%onnx::Conv_740) %onnx::Conv_737 = Identity(%onnx::Conv_734) %onnx::Conv_731 = Identity(%onnx::Conv_704) %onnx::Conv_728 = Identity(%onnx::Conv_704) %onnx::Conv_725 = Identity(%onnx::Conv_704) %onnx::Conv_722 = Identity(%onnx::Conv_704) %onnx::Conv_719 = Identity(%onnx::Conv_704) %onnx::Conv_716 = Identity(%onnx::Conv_704) %onnx::Conv_713 = Identity(%onnx::Conv_704) %onnx::Conv_710 = Identity(%onnx::Conv_704) %onnx::Conv_707 = Identity(%onnx::Conv_704) %onnx::Conv_701 = Identity(%onnx::Conv_626) %onnx::Conv_698 = Identity(%onnx::Conv_626) %onnx::Conv_695 = Identity(%onnx::Conv_677) %onnx::Conv_692 = Identity(%onnx::Conv_677) %onnx::Conv_689 = Identity(%onnx::Conv_677) %onnx::Conv_686 = Identity(%onnx::Conv_677) %onnx::Conv_683 = Identity(%onnx::Conv_677) %onnx::Conv_680 = Identity(%onnx::Conv_677) %onnx::Conv_674 = Identity(%onnx::Conv_653) %onnx::Conv_671 = Identity(%onnx::Conv_653) %onnx::Conv_668 = Identity(%onnx::Conv_641) %onnx::Conv_665 = Identity(%onnx::Conv_662) %onnx::Conv_659 = Identity(%onnx::Conv_641) %onnx::Conv_656 = Identity(%onnx::Conv_653) %onnx::Conv_650 = Identity(%onnx::Conv_641) %onnx::Conv_647 = Identity(%onnx::Conv_641) %onnx::Conv_644 = Identity(%onnx::Conv_641) %onnx::Conv_638 = Identity(%onnx::Conv_623) %onnx::Conv_635 = Identity(%onnx::Conv_623) %onnx::Conv_632 = Identity(%onnx::Conv_623) %onnx::Conv_629 = Identity(%onnx::Conv_626) %/stem/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_622, %onnx::Conv_623) %/stem/relu/Relu_output_0 = Relu(%/stem/conv/Conv_output_0) %/cells.0/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/stem/relu/Relu_output_0, %onnx::Conv_625, %onnx::Conv_626) %/cells.0/nl/Relu_output_0 = Relu(%/cells.0/conv1/Conv_output_0) %/cells.0/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.0/nl/Relu_output_0, %onnx::Conv_628, %onnx::Conv_629) %/cells.0/nl_1/Relu_output_0 = Relu(%/cells.0/conv2/Conv_output_0) %/cells.0/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/nl_1/Relu_output_0, %onnx::Conv_631, %onnx::Conv_632) %/cells.0/Add_output_0 = Add(%/cells.0/conv3/Conv_output_0, %/stem/relu/Relu_output_0) %/cells.1/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/Add_output_0, %onnx::Conv_634, %onnx::Conv_635) %/cells.1/nl/Relu_output_0 = Relu(%/cells.1/conv1/Conv_output_0) %/cells.1/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.1/shuffle/Reshape_output_0 = Reshape(%/cells.1/nl/Relu_output_0, %/cells.1/shuffle/Constant_output_0) %/cells.1/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.1/shuffle/Reshape_output_0) %/cells.1/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.1/shuffle/Reshape_1_output_0 = Reshape(%/cells.1/shuffle/Transpose_output_0, %/cells.1/shuffle/Constant_1_output_0) %/cells.1/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 16, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.1/shuffle/Reshape_1_output_0, %onnx::Conv_637, %onnx::Conv_638) %/cells.1/nl_1/Relu_output_0 = Relu(%/cells.1/conv2/Conv_output_0) %/cells.1/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/nl_1/Relu_output_0, %onnx::Conv_640, %onnx::Conv_641) %/cells.2/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/conv3/Conv_output_0, %onnx::Conv_643, %onnx::Conv_644) %/cells.2/nl/Relu_output_0 = Relu(%/cells.2/conv1/Conv_output_0) %/cells.2/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.2/nl/Relu_output_0, %onnx::Conv_646, %onnx::Conv_647) %/cells.2/nl_1/Relu_output_0 = Relu(%/cells.2/conv2/Conv_output_0) %/cells.2/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/nl_1/Relu_output_0, %onnx::Conv_649, %onnx::Conv_650) %/cells.2/Add_output_0 = Add(%/cells.2/conv3/Conv_output_0, %/cells.1/conv3/Conv_output_0) %/cells.3/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/Add_output_0, %onnx::Conv_652, %onnx::Conv_653) %/cells.3/nl/Relu_output_0 = Relu(%/cells.3/conv1/Conv_output_0) %/cells.3/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 72, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.3/nl/Relu_output_0, %onnx::Conv_655, %onnx::Conv_656) %/cells.3/nl_1/Relu_output_0 = Relu(%/cells.3/conv2/Conv_output_0) %/cells.3/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/nl_1/Relu_output_0, %onnx::Conv_658, %onnx::Conv_659) %/cells.3/Add_output_0 = Add(%/cells.3/conv3/Conv_output_0, %/cells.2/Add_output_0) %/cells.4/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/Add_output_0, %onnx::Conv_661, %onnx::Conv_662) %/cells.4/nl/Relu_output_0 = Relu(%/cells.4/conv1/Conv_output_0) %/cells.4/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 144, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.4/nl/Relu_output_0, %onnx::Conv_664, %onnx::Conv_665) %/cells.4/nl_1/Relu_output_0 = Relu(%/cells.4/conv2/Conv_output_0) %/cells.4/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/nl_1/Relu_output_0, %onnx::Conv_667, %onnx::Conv_668) %/cells.4/Add_output_0 = Add(%/cells.4/conv3/Conv_output_0, %/cells.3/Add_output_0) %/cells.5/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/Add_output_0, %onnx::Conv_670, %onnx::Conv_671) %/cells.5/nl/Relu_output_0 = Relu(%/cells.5/conv1/Conv_output_0) %/cells.5/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 72, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.5/nl/Relu_output_0, %onnx::Conv_673, %onnx::Conv_674) %/cells.5/nl_1/Relu_output_0 = Relu(%/cells.5/conv2/Conv_output_0) %/cells.5/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/nl_1/Relu_output_0, %onnx::Conv_676, %onnx::Conv_677) %/cells.6/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/conv3/Conv_output_0, %onnx::Conv_679, %onnx::Conv_680) %/cells.6/nl/Relu_output_0 = Relu(%/cells.6/conv1/Conv_output_0) %/cells.6/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.6/nl/Relu_output_0, %onnx::Conv_682, %onnx::Conv_683) %/cells.6/nl_1/Relu_output_0 = Relu(%/cells.6/conv2/Conv_output_0) %/cells.6/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/nl_1/Relu_output_0, %onnx::Conv_685, %onnx::Conv_686) %/cells.6/Add_output_0 = Add(%/cells.6/conv3/Conv_output_0, %/cells.5/conv3/Conv_output_0) %/cells.7/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/Add_output_0, %onnx::Conv_688, %onnx::Conv_689) %/cells.7/nl/Relu_output_0 = Relu(%/cells.7/conv1/Conv_output_0) %/cells.7/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.7/nl/Relu_output_0, %onnx::Conv_691, %onnx::Conv_692) %/cells.7/nl_1/Relu_output_0 = Relu(%/cells.7/conv2/Conv_output_0) %/cells.7/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/nl_1/Relu_output_0, %onnx::Conv_694, %onnx::Conv_695) %/cells.7/Add_output_0 = Add(%/cells.7/conv3/Conv_output_0, %/cells.6/Add_output_0) %/cells.9/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/Add_output_0, %onnx::Conv_697, %onnx::Conv_698) %/cells.9/nl/Relu_output_0 = Relu(%/cells.9/conv1/Conv_output_0) %/cells.9/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.9/nl/Relu_output_0, %onnx::Conv_700, %onnx::Conv_701) %/cells.9/nl_1/Relu_output_0 = Relu(%/cells.9/conv2/Conv_output_0) %/cells.9/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/nl_1/Relu_output_0, %onnx::Conv_703, %onnx::Conv_704) %/cells.10/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/conv3/Conv_output_0, %onnx::Conv_706, %onnx::Conv_707) %/cells.10/nl/Relu_output_0 = Relu(%/cells.10/conv1/Conv_output_0) %/cells.10/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.10/shuffle/Reshape_output_0 = Reshape(%/cells.10/nl/Relu_output_0, %/cells.10/shuffle/Constant_output_0) %/cells.10/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.10/shuffle/Reshape_output_0) %/cells.10/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.10/shuffle/Reshape_1_output_0 = Reshape(%/cells.10/shuffle/Transpose_output_0, %/cells.10/shuffle/Constant_1_output_0) %/cells.10/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.10/shuffle/Reshape_1_output_0, %onnx::Conv_709, %onnx::Conv_710) %/cells.10/nl_1/Relu_output_0 = Relu(%/cells.10/conv2/Conv_output_0) %/cells.10/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/nl_1/Relu_output_0, %onnx::Conv_712, %onnx::Conv_713) %/cells.10/Add_output_0 = Add(%/cells.10/conv3/Conv_output_0, %/cells.9/conv3/Conv_output_0) %/cells.11/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/Add_output_0, %onnx::Conv_715, %onnx::Conv_716) %/cells.11/nl/Relu_output_0 = Relu(%/cells.11/conv1/Conv_output_0) %/cells.11/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.11/nl/Relu_output_0, %onnx::Conv_718, %onnx::Conv_719) %/cells.11/nl_1/Relu_output_0 = Relu(%/cells.11/conv2/Conv_output_0) %/cells.11/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/nl_1/Relu_output_0, %onnx::Conv_721, %onnx::Conv_722) %/cells.11/Add_output_0 = Add(%/cells.11/conv3/Conv_output_0, %/cells.10/Add_output_0) %/cells.12/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/Add_output_0, %onnx::Conv_724, %onnx::Conv_725) %/cells.12/nl/Relu_output_0 = Relu(%/cells.12/conv1/Conv_output_0) %/cells.12/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.12/nl/Relu_output_0, %onnx::Conv_727, %onnx::Conv_728) %/cells.12/nl_1/Relu_output_0 = Relu(%/cells.12/conv2/Conv_output_0) %/cells.12/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/nl_1/Relu_output_0, %onnx::Conv_730, %onnx::Conv_731) %/cells.12/Add_output_0 = Add(%/cells.12/conv3/Conv_output_0, %/cells.11/Add_output_0) %/cells.13/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/Add_output_0, %onnx::Conv_733, %onnx::Conv_734) %/cells.13/nl/Relu_output_0 = Relu(%/cells.13/conv1/Conv_output_0) %/cells.13/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.13/nl/Relu_output_0, %onnx::Conv_736, %onnx::Conv_737) %/cells.13/nl_1/Relu_output_0 = Relu(%/cells.13/conv2/Conv_output_0) %/cells.13/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/nl_1/Relu_output_0, %onnx::Conv_739, %onnx::Conv_740) %/cells.14/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/conv3/Conv_output_0, %onnx::Conv_742, %onnx::Conv_743) %/cells.14/nl/Relu_output_0 = Relu(%/cells.14/conv1/Conv_output_0) %/cells.14/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.14/nl/Relu_output_0, %onnx::Conv_745, %onnx::Conv_746) %/cells.14/nl_1/Relu_output_0 = Relu(%/cells.14/conv2/Conv_output_0) %/cells.14/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/nl_1/Relu_output_0, %onnx::Conv_748, %onnx::Conv_749) %/cells.14/Add_output_0 = Add(%/cells.14/conv3/Conv_output_0, %/cells.13/conv3/Conv_output_0) %/cells.15/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/Add_output_0, %onnx::Conv_751, %onnx::Conv_752) %/cells.15/nl/Relu_output_0 = Relu(%/cells.15/conv1/Conv_output_0) %/cells.15/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.15/nl/Relu_output_0, %onnx::Conv_754, %onnx::Conv_755) %/cells.15/nl_1/Relu_output_0 = Relu(%/cells.15/conv2/Conv_output_0) %/cells.15/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/nl_1/Relu_output_0, %onnx::Conv_757, %onnx::Conv_758) %/cells.15/Add_output_0 = Add(%/cells.15/conv3/Conv_output_0, %/cells.14/Add_output_0) %/cells.17/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/Add_output_0, %onnx::Conv_760, %onnx::Conv_761) %/cells.17/nl/Relu_output_0 = Relu(%/cells.17/conv1/Conv_output_0) %/cells.17/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.17/shuffle/Reshape_output_0 = Reshape(%/cells.17/nl/Relu_output_0, %/cells.17/shuffle/Constant_output_0) %/cells.17/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.17/shuffle/Reshape_output_0) %/cells.17/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.17/shuffle/Reshape_1_output_0 = Reshape(%/cells.17/shuffle/Transpose_output_0, %/cells.17/shuffle/Constant_1_output_0) %/cells.17/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.17/shuffle/Reshape_1_output_0, %onnx::Conv_763, %onnx::Conv_764) %/cells.17/nl_1/Relu_output_0 = Relu(%/cells.17/conv2/Conv_output_0) %/cells.17/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/nl_1/Relu_output_0, %onnx::Conv_766, %onnx::Conv_767) %/cells.18/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/conv3/Conv_output_0, %onnx::Conv_769, %onnx::Conv_770) %/cells.18/nl/Relu_output_0 = Relu(%/cells.18/conv1/Conv_output_0) %/cells.18/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.18/nl/Relu_output_0, %onnx::Conv_772, %onnx::Conv_773) %/cells.18/nl_1/Relu_output_0 = Relu(%/cells.18/conv2/Conv_output_0) %/cells.18/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/nl_1/Relu_output_0, %onnx::Conv_775, %onnx::Conv_776) %/cells.18/Add_output_0 = Add(%/cells.18/conv3/Conv_output_0, %/cells.17/conv3/Conv_output_0) %/cells.19/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/Add_output_0, %onnx::Conv_778, %onnx::Conv_779) %/cells.19/nl/Relu_output_0 = Relu(%/cells.19/conv1/Conv_output_0) %/cells.19/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 552, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.19/nl/Relu_output_0, %onnx::Conv_781, %onnx::Conv_782) %/cells.19/nl_1/Relu_output_0 = Relu(%/cells.19/conv2/Conv_output_0) %/cells.19/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/nl_1/Relu_output_0, %onnx::Conv_784, %onnx::Conv_785) %/cells.19/Add_output_0 = Add(%/cells.19/conv3/Conv_output_0, %/cells.18/Add_output_0) %/cells.20/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/Add_output_0, %onnx::Conv_787, %onnx::Conv_788) %/cells.20/nl/Relu_output_0 = Relu(%/cells.20/conv1/Conv_output_0) %/cells.20/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.20/nl/Relu_output_0, %onnx::Conv_790, %onnx::Conv_791) %/cells.20/nl_1/Relu_output_0 = Relu(%/cells.20/conv2/Conv_output_0) %/cells.20/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/nl_1/Relu_output_0, %onnx::Conv_793, %onnx::Conv_794) %/cells.20/Add_output_0 = Add(%/cells.20/conv3/Conv_output_0, %/cells.19/Add_output_0) %/cells.21/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/Add_output_0, %onnx::Conv_796, %onnx::Conv_797) %/cells.21/nl/Relu_output_0 = Relu(%/cells.21/conv1/Conv_output_0) %/cells.21/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 552, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.21/nl/Relu_output_0, %onnx::Conv_799, %onnx::Conv_800) %/cells.21/nl_1/Relu_output_0 = Relu(%/cells.21/conv2/Conv_output_0) %/cells.21/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/nl_1/Relu_output_0, %onnx::Conv_802, %onnx::Conv_803) %/header/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/conv3/Conv_output_0, %onnx::Conv_805, %onnx::Conv_806) %/header/relu/Relu_output_0 = Relu(%/header/conv/Conv_output_0) %/avgpool/GlobalAveragePool_output_0 = GlobalAveragePool(%/header/relu/Relu_output_0) %/Constant_output_0 = Constant[value = <Tensor>]() %/Reshape_output_0 = Reshape(%/avgpool/GlobalAveragePool_output_0, %/Constant_output_0) %620 = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias) return %620 }
val_accuracy
0
63,983,488
1,681,052
{'zcp_synflow': 78.4055229454222, 'zcp_zen': 66.96976470947266, 'zcp_epe_nas': 12.399530951803351, 'zcp_fisher': 0.14892186224460602, 'zcp_flops': 63983488.0, 'zcp_grad_norm': 22.675832748413086, 'zcp_grasp': -0.4149608612060547, 'zcp_jacov': -16.07879879224658, 'zcp_l2_norm': 591.436279296875, 'zcp_nwot': 213.24578005421318, 'zcp_params': 1681052.0, 'zcp_plain': 0.004269117955118418, 'zcp_snip': 40.18830490112305, 'lat_1080ti_1': 0.5425106121551576, 'lat_1080ti_32': 0.5641282489078705, 'lat_1080ti_64': 0.48063495225197206, 'lat_2080ti_1': 0.6429827022139064, 'lat_2080ti_32': 0.5538373305544197, 'lat_2080ti_64': 0.5111604739332586, 'lat_essential_ph_1': 0.2641509433962264, 'lat_eyeriss': 0.38138374928942087, 'lat_fpga': 0.4261767878170177, 'lat_gold_6226': 0.23985798199173278, 'lat_gold_6240': 0.36763476741001083, 'lat_pixel2': 0.2391304347826087, 'lat_pixel3': 0.3655350145328767, 'lat_raspi4': 0.4351767242952357, 'lat_samsung_a50': 0.15789473684210525, 'lat_samsung_s7': 0.13385826771653545, 'lat_silver_4114': 0.36841742246032433, 'lat_silver_4210r': 0.37541725798633657, 'lat_titan_rtx_1': 0.5598743300729182, 'lat_titan_rtx_32': 0.5231880303223926, 'lat_titan_rtx_64': 0.5203332997138033, 'lat_titanx_1': 0.2947744190200042, 'lat_titanx_32': 0.5204159847293879, 'lat_titanx_64': 0.46782239863699643, 'lat_titanxp_1': 0.534296094801705, 'lat_titanxp_32': 0.5187910842182968, 'lat_titanxp_64': 0.49476667684052783}
FBNet_3060
FBNet
3060
3060
graph main_graph ( %input.1[FLOAT, 1x3x32x32] %fc.weight[FLOAT, 100x1504] %fc.bias[FLOAT, 100] %onnx::Conv_614[FLOAT, 16x3x3x3] %onnx::Conv_615[FLOAT, 16] %onnx::Conv_617[FLOAT, 96x16x1x1] %onnx::Conv_618[FLOAT, 96] %onnx::Conv_620[FLOAT, 96x1x5x5] %onnx::Conv_623[FLOAT, 16x96x1x1] %onnx::Conv_626[FLOAT, 16x16x1x1] %onnx::Conv_629[FLOAT, 16x1x5x5] %onnx::Conv_632[FLOAT, 24x16x1x1] %onnx::Conv_633[FLOAT, 24] %onnx::Conv_635[FLOAT, 72x24x1x1] %onnx::Conv_636[FLOAT, 72] %onnx::Conv_638[FLOAT, 72x1x5x5] %onnx::Conv_641[FLOAT, 24x72x1x1] %onnx::Conv_644[FLOAT, 144x24x1x1] %onnx::Conv_645[FLOAT, 144] %onnx::Conv_647[FLOAT, 144x1x3x3] %onnx::Conv_650[FLOAT, 24x144x1x1] %onnx::Conv_653[FLOAT, 24x24x1x1] %onnx::Conv_656[FLOAT, 24x1x5x5] %onnx::Conv_659[FLOAT, 24x24x1x1] %onnx::Conv_662[FLOAT, 32x24x1x1] %onnx::Conv_663[FLOAT, 32] %onnx::Conv_665[FLOAT, 32x32x1x1] %onnx::Conv_668[FLOAT, 32x1x3x3] %onnx::Conv_671[FLOAT, 32x32x1x1] %onnx::Conv_674[FLOAT, 32x32x1x1] %onnx::Conv_677[FLOAT, 32x1x3x3] %onnx::Conv_680[FLOAT, 32x32x1x1] %onnx::Conv_683[FLOAT, 32x16x1x1] %onnx::Conv_686[FLOAT, 32x1x5x5] %onnx::Conv_689[FLOAT, 32x16x1x1] %onnx::Conv_692[FLOAT, 32x16x1x1] %onnx::Conv_695[FLOAT, 32x1x3x3] %onnx::Conv_698[FLOAT, 64x16x1x1] %onnx::Conv_699[FLOAT, 64] %onnx::Conv_701[FLOAT, 384x64x1x1] %onnx::Conv_702[FLOAT, 384] %onnx::Conv_704[FLOAT, 384x1x5x5] %onnx::Conv_707[FLOAT, 64x384x1x1] %onnx::Conv_710[FLOAT, 64x64x1x1] %onnx::Conv_713[FLOAT, 64x1x5x5] %onnx::Conv_716[FLOAT, 64x64x1x1] %onnx::Conv_719[FLOAT, 384x64x1x1] %onnx::Conv_722[FLOAT, 384x1x5x5] %onnx::Conv_725[FLOAT, 112x384x1x1] %onnx::Conv_726[FLOAT, 112] %onnx::Conv_728[FLOAT, 336x112x1x1] %onnx::Conv_729[FLOAT, 336] %onnx::Conv_731[FLOAT, 336x1x5x5] %onnx::Conv_734[FLOAT, 112x336x1x1] %onnx::Conv_737[FLOAT, 672x112x1x1] %onnx::Conv_738[FLOAT, 672] %onnx::Conv_740[FLOAT, 672x1x5x5] %onnx::Conv_743[FLOAT, 112x672x1x1] %onnx::Conv_746[FLOAT, 672x112x1x1] %onnx::Conv_749[FLOAT, 672x1x5x5] %onnx::Conv_752[FLOAT, 112x672x1x1] %onnx::Conv_755[FLOAT, 112x56x1x1] %onnx::Conv_758[FLOAT, 112x1x3x3] %onnx::Conv_761[FLOAT, 184x56x1x1] %onnx::Conv_762[FLOAT, 184] %onnx::Conv_764[FLOAT, 1104x184x1x1] %onnx::Conv_765[FLOAT, 1104] %onnx::Conv_767[FLOAT, 1104x1x3x3] %onnx::Conv_770[FLOAT, 184x1104x1x1] %onnx::Conv_773[FLOAT, 1104x184x1x1] %onnx::Conv_776[FLOAT, 1104x1x5x5] %onnx::Conv_779[FLOAT, 184x1104x1x1] %onnx::Conv_782[FLOAT, 184x184x1x1] %onnx::Conv_785[FLOAT, 184x1x3x3] %onnx::Conv_788[FLOAT, 184x184x1x1] %onnx::Conv_791[FLOAT, 352x184x1x1] %onnx::Conv_792[FLOAT, 352] %onnx::Conv_794[FLOAT, 1504x352x1x1] %onnx::Conv_795[FLOAT, 1504] ) { %onnx::Conv_789 = Identity(%onnx::Conv_762) %onnx::Conv_786 = Identity(%onnx::Conv_762) %onnx::Conv_783 = Identity(%onnx::Conv_762) %onnx::Conv_780 = Identity(%onnx::Conv_762) %onnx::Conv_777 = Identity(%onnx::Conv_765) %onnx::Conv_774 = Identity(%onnx::Conv_765) %onnx::Conv_771 = Identity(%onnx::Conv_762) %onnx::Conv_768 = Identity(%onnx::Conv_765) %onnx::Conv_759 = Identity(%onnx::Conv_726) %onnx::Conv_756 = Identity(%onnx::Conv_726) %onnx::Conv_753 = Identity(%onnx::Conv_726) %onnx::Conv_750 = Identity(%onnx::Conv_738) %onnx::Conv_747 = Identity(%onnx::Conv_738) %onnx::Conv_744 = Identity(%onnx::Conv_726) %onnx::Conv_741 = Identity(%onnx::Conv_738) %onnx::Conv_735 = Identity(%onnx::Conv_726) %onnx::Conv_732 = Identity(%onnx::Conv_729) %onnx::Conv_723 = Identity(%onnx::Conv_702) %onnx::Conv_720 = Identity(%onnx::Conv_702) %onnx::Conv_717 = Identity(%onnx::Conv_699) %onnx::Conv_714 = Identity(%onnx::Conv_699) %onnx::Conv_711 = Identity(%onnx::Conv_699) %onnx::Conv_708 = Identity(%onnx::Conv_699) %onnx::Conv_705 = Identity(%onnx::Conv_702) %onnx::Conv_696 = Identity(%onnx::Conv_663) %onnx::Conv_693 = Identity(%onnx::Conv_663) %onnx::Conv_690 = Identity(%onnx::Conv_663) %onnx::Conv_687 = Identity(%onnx::Conv_663) %onnx::Conv_684 = Identity(%onnx::Conv_663) %onnx::Conv_681 = Identity(%onnx::Conv_663) %onnx::Conv_678 = Identity(%onnx::Conv_663) %onnx::Conv_675 = Identity(%onnx::Conv_663) %onnx::Conv_672 = Identity(%onnx::Conv_663) %onnx::Conv_669 = Identity(%onnx::Conv_663) %onnx::Conv_666 = Identity(%onnx::Conv_663) %onnx::Conv_660 = Identity(%onnx::Conv_633) %onnx::Conv_657 = Identity(%onnx::Conv_633) %onnx::Conv_654 = Identity(%onnx::Conv_633) %onnx::Conv_651 = Identity(%onnx::Conv_633) %onnx::Conv_648 = Identity(%onnx::Conv_645) %onnx::Conv_642 = Identity(%onnx::Conv_633) %onnx::Conv_639 = Identity(%onnx::Conv_636) %onnx::Conv_630 = Identity(%onnx::Conv_615) %onnx::Conv_627 = Identity(%onnx::Conv_615) %onnx::Conv_624 = Identity(%onnx::Conv_615) %onnx::Conv_621 = Identity(%onnx::Conv_618) %/stem/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_614, %onnx::Conv_615) %/stem/relu/Relu_output_0 = Relu(%/stem/conv/Conv_output_0) %/cells.0/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/stem/relu/Relu_output_0, %onnx::Conv_617, %onnx::Conv_618) %/cells.0/nl/Relu_output_0 = Relu(%/cells.0/conv1/Conv_output_0) %/cells.0/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.0/nl/Relu_output_0, %onnx::Conv_620, %onnx::Conv_621) %/cells.0/nl_1/Relu_output_0 = Relu(%/cells.0/conv2/Conv_output_0) %/cells.0/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/nl_1/Relu_output_0, %onnx::Conv_623, %onnx::Conv_624) %/cells.0/Add_output_0 = Add(%/cells.0/conv3/Conv_output_0, %/stem/relu/Relu_output_0) %/cells.1/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/Add_output_0, %onnx::Conv_626, %onnx::Conv_627) %/cells.1/nl/Relu_output_0 = Relu(%/cells.1/conv1/Conv_output_0) %/cells.1/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 16, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.1/nl/Relu_output_0, %onnx::Conv_629, %onnx::Conv_630) %/cells.1/nl_1/Relu_output_0 = Relu(%/cells.1/conv2/Conv_output_0) %/cells.1/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/nl_1/Relu_output_0, %onnx::Conv_632, %onnx::Conv_633) %/cells.2/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/conv3/Conv_output_0, %onnx::Conv_635, %onnx::Conv_636) %/cells.2/nl/Relu_output_0 = Relu(%/cells.2/conv1/Conv_output_0) %/cells.2/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 72, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.2/nl/Relu_output_0, %onnx::Conv_638, %onnx::Conv_639) %/cells.2/nl_1/Relu_output_0 = Relu(%/cells.2/conv2/Conv_output_0) %/cells.2/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/nl_1/Relu_output_0, %onnx::Conv_641, %onnx::Conv_642) %/cells.2/Add_output_0 = Add(%/cells.2/conv3/Conv_output_0, %/cells.1/conv3/Conv_output_0) %/cells.3/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/Add_output_0, %onnx::Conv_644, %onnx::Conv_645) %/cells.3/nl/Relu_output_0 = Relu(%/cells.3/conv1/Conv_output_0) %/cells.3/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 144, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.3/nl/Relu_output_0, %onnx::Conv_647, %onnx::Conv_648) %/cells.3/nl_1/Relu_output_0 = Relu(%/cells.3/conv2/Conv_output_0) %/cells.3/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/nl_1/Relu_output_0, %onnx::Conv_650, %onnx::Conv_651) %/cells.3/Add_output_0 = Add(%/cells.3/conv3/Conv_output_0, %/cells.2/Add_output_0) %/cells.4/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/Add_output_0, %onnx::Conv_653, %onnx::Conv_654) %/cells.4/nl/Relu_output_0 = Relu(%/cells.4/conv1/Conv_output_0) %/cells.4/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.4/nl/Relu_output_0, %onnx::Conv_656, %onnx::Conv_657) %/cells.4/nl_1/Relu_output_0 = Relu(%/cells.4/conv2/Conv_output_0) %/cells.4/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/nl_1/Relu_output_0, %onnx::Conv_659, %onnx::Conv_660) %/cells.4/Add_output_0 = Add(%/cells.4/conv3/Conv_output_0, %/cells.3/Add_output_0) %/cells.5/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [2, 2]](%/cells.4/Add_output_0, %onnx::Conv_662, %onnx::Conv_663) %/cells.5/relu/Relu_output_0 = Relu(%/cells.5/conv/Conv_output_0) %/cells.6/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/relu/Relu_output_0, %onnx::Conv_665, %onnx::Conv_666) %/cells.6/nl/Relu_output_0 = Relu(%/cells.6/conv1/Conv_output_0) %/cells.6/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.6/nl/Relu_output_0, %onnx::Conv_668, %onnx::Conv_669) %/cells.6/nl_1/Relu_output_0 = Relu(%/cells.6/conv2/Conv_output_0) %/cells.6/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/nl_1/Relu_output_0, %onnx::Conv_671, %onnx::Conv_672) %/cells.6/Add_output_0 = Add(%/cells.6/conv3/Conv_output_0, %/cells.5/relu/Relu_output_0) %/cells.7/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/Add_output_0, %onnx::Conv_674, %onnx::Conv_675) %/cells.7/nl/Relu_output_0 = Relu(%/cells.7/conv1/Conv_output_0) %/cells.7/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.7/nl/Relu_output_0, %onnx::Conv_677, %onnx::Conv_678) %/cells.7/nl_1/Relu_output_0 = Relu(%/cells.7/conv2/Conv_output_0) %/cells.7/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/nl_1/Relu_output_0, %onnx::Conv_680, %onnx::Conv_681) %/cells.7/Add_output_0 = Add(%/cells.7/conv3/Conv_output_0, %/cells.6/Add_output_0) %/cells.8/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/Add_output_0, %onnx::Conv_683, %onnx::Conv_684) %/cells.8/nl/Relu_output_0 = Relu(%/cells.8/conv1/Conv_output_0) %/cells.8/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.8/shuffle/Reshape_output_0 = Reshape(%/cells.8/nl/Relu_output_0, %/cells.8/shuffle/Constant_output_0) %/cells.8/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.8/shuffle/Reshape_output_0) %/cells.8/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.8/shuffle/Reshape_1_output_0 = Reshape(%/cells.8/shuffle/Transpose_output_0, %/cells.8/shuffle/Constant_1_output_0) %/cells.8/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.8/shuffle/Reshape_1_output_0, %onnx::Conv_686, %onnx::Conv_687) %/cells.8/nl_1/Relu_output_0 = Relu(%/cells.8/conv2/Conv_output_0) %/cells.8/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/nl_1/Relu_output_0, %onnx::Conv_689, %onnx::Conv_690) %/cells.8/Add_output_0 = Add(%/cells.8/conv3/Conv_output_0, %/cells.7/Add_output_0) %/cells.9/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/Add_output_0, %onnx::Conv_692, %onnx::Conv_693) %/cells.9/nl/Relu_output_0 = Relu(%/cells.9/conv1/Conv_output_0) %/cells.9/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.9/shuffle/Reshape_output_0 = Reshape(%/cells.9/nl/Relu_output_0, %/cells.9/shuffle/Constant_output_0) %/cells.9/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.9/shuffle/Reshape_output_0) %/cells.9/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.9/shuffle/Reshape_1_output_0 = Reshape(%/cells.9/shuffle/Transpose_output_0, %/cells.9/shuffle/Constant_1_output_0) %/cells.9/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.9/shuffle/Reshape_1_output_0, %onnx::Conv_695, %onnx::Conv_696) %/cells.9/nl_1/Relu_output_0 = Relu(%/cells.9/conv2/Conv_output_0) %/cells.9/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/nl_1/Relu_output_0, %onnx::Conv_698, %onnx::Conv_699) %/cells.10/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/conv3/Conv_output_0, %onnx::Conv_701, %onnx::Conv_702) %/cells.10/nl/Relu_output_0 = Relu(%/cells.10/conv1/Conv_output_0) %/cells.10/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 384, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.10/nl/Relu_output_0, %onnx::Conv_704, %onnx::Conv_705) %/cells.10/nl_1/Relu_output_0 = Relu(%/cells.10/conv2/Conv_output_0) %/cells.10/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/nl_1/Relu_output_0, %onnx::Conv_707, %onnx::Conv_708) %/cells.10/Add_output_0 = Add(%/cells.10/conv3/Conv_output_0, %/cells.9/conv3/Conv_output_0) %/cells.11/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/Add_output_0, %onnx::Conv_710, %onnx::Conv_711) %/cells.11/nl/Relu_output_0 = Relu(%/cells.11/conv1/Conv_output_0) %/cells.11/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.11/nl/Relu_output_0, %onnx::Conv_713, %onnx::Conv_714) %/cells.11/nl_1/Relu_output_0 = Relu(%/cells.11/conv2/Conv_output_0) %/cells.11/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/nl_1/Relu_output_0, %onnx::Conv_716, %onnx::Conv_717) %/cells.11/Add_output_0 = Add(%/cells.11/conv3/Conv_output_0, %/cells.10/Add_output_0) %/cells.13/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/Add_output_0, %onnx::Conv_719, %onnx::Conv_720) %/cells.13/nl/Relu_output_0 = Relu(%/cells.13/conv1/Conv_output_0) %/cells.13/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 384, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.13/nl/Relu_output_0, %onnx::Conv_722, %onnx::Conv_723) %/cells.13/nl_1/Relu_output_0 = Relu(%/cells.13/conv2/Conv_output_0) %/cells.13/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/nl_1/Relu_output_0, %onnx::Conv_725, %onnx::Conv_726) %/cells.14/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/conv3/Conv_output_0, %onnx::Conv_728, %onnx::Conv_729) %/cells.14/nl/Relu_output_0 = Relu(%/cells.14/conv1/Conv_output_0) %/cells.14/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 336, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.14/nl/Relu_output_0, %onnx::Conv_731, %onnx::Conv_732) %/cells.14/nl_1/Relu_output_0 = Relu(%/cells.14/conv2/Conv_output_0) %/cells.14/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/nl_1/Relu_output_0, %onnx::Conv_734, %onnx::Conv_735) %/cells.14/Add_output_0 = Add(%/cells.14/conv3/Conv_output_0, %/cells.13/conv3/Conv_output_0) %/cells.15/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/Add_output_0, %onnx::Conv_737, %onnx::Conv_738) %/cells.15/nl/Relu_output_0 = Relu(%/cells.15/conv1/Conv_output_0) %/cells.15/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.15/nl/Relu_output_0, %onnx::Conv_740, %onnx::Conv_741) %/cells.15/nl_1/Relu_output_0 = Relu(%/cells.15/conv2/Conv_output_0) %/cells.15/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/nl_1/Relu_output_0, %onnx::Conv_743, %onnx::Conv_744) %/cells.15/Add_output_0 = Add(%/cells.15/conv3/Conv_output_0, %/cells.14/Add_output_0) %/cells.16/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/Add_output_0, %onnx::Conv_746, %onnx::Conv_747) %/cells.16/nl/Relu_output_0 = Relu(%/cells.16/conv1/Conv_output_0) %/cells.16/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.16/nl/Relu_output_0, %onnx::Conv_749, %onnx::Conv_750) %/cells.16/nl_1/Relu_output_0 = Relu(%/cells.16/conv2/Conv_output_0) %/cells.16/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/nl_1/Relu_output_0, %onnx::Conv_752, %onnx::Conv_753) %/cells.16/Add_output_0 = Add(%/cells.16/conv3/Conv_output_0, %/cells.15/Add_output_0) %/cells.17/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/Add_output_0, %onnx::Conv_755, %onnx::Conv_756) %/cells.17/nl/Relu_output_0 = Relu(%/cells.17/conv1/Conv_output_0) %/cells.17/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.17/shuffle/Reshape_output_0 = Reshape(%/cells.17/nl/Relu_output_0, %/cells.17/shuffle/Constant_output_0) %/cells.17/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.17/shuffle/Reshape_output_0) %/cells.17/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.17/shuffle/Reshape_1_output_0 = Reshape(%/cells.17/shuffle/Transpose_output_0, %/cells.17/shuffle/Constant_1_output_0) %/cells.17/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.17/shuffle/Reshape_1_output_0, %onnx::Conv_758, %onnx::Conv_759) %/cells.17/nl_1/Relu_output_0 = Relu(%/cells.17/conv2/Conv_output_0) %/cells.17/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/nl_1/Relu_output_0, %onnx::Conv_761, %onnx::Conv_762) %/cells.18/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/conv3/Conv_output_0, %onnx::Conv_764, %onnx::Conv_765) %/cells.18/nl/Relu_output_0 = Relu(%/cells.18/conv1/Conv_output_0) %/cells.18/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.18/nl/Relu_output_0, %onnx::Conv_767, %onnx::Conv_768) %/cells.18/nl_1/Relu_output_0 = Relu(%/cells.18/conv2/Conv_output_0) %/cells.18/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/nl_1/Relu_output_0, %onnx::Conv_770, %onnx::Conv_771) %/cells.18/Add_output_0 = Add(%/cells.18/conv3/Conv_output_0, %/cells.17/conv3/Conv_output_0) %/cells.19/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/Add_output_0, %onnx::Conv_773, %onnx::Conv_774) %/cells.19/nl/Relu_output_0 = Relu(%/cells.19/conv1/Conv_output_0) %/cells.19/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.19/nl/Relu_output_0, %onnx::Conv_776, %onnx::Conv_777) %/cells.19/nl_1/Relu_output_0 = Relu(%/cells.19/conv2/Conv_output_0) %/cells.19/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/nl_1/Relu_output_0, %onnx::Conv_779, %onnx::Conv_780) %/cells.19/Add_output_0 = Add(%/cells.19/conv3/Conv_output_0, %/cells.18/Add_output_0) %/cells.20/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/Add_output_0, %onnx::Conv_782, %onnx::Conv_783) %/cells.20/nl/Relu_output_0 = Relu(%/cells.20/conv1/Conv_output_0) %/cells.20/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.20/nl/Relu_output_0, %onnx::Conv_785, %onnx::Conv_786) %/cells.20/nl_1/Relu_output_0 = Relu(%/cells.20/conv2/Conv_output_0) %/cells.20/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/nl_1/Relu_output_0, %onnx::Conv_788, %onnx::Conv_789) %/cells.20/Add_output_0 = Add(%/cells.20/conv3/Conv_output_0, %/cells.19/Add_output_0) %/cells.21/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/Add_output_0, %onnx::Conv_791, %onnx::Conv_792) %/cells.21/relu/Relu_output_0 = Relu(%/cells.21/conv/Conv_output_0) %/header/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/relu/Relu_output_0, %onnx::Conv_794, %onnx::Conv_795) %/header/relu/Relu_output_0 = Relu(%/header/conv/Conv_output_0) %/avgpool/GlobalAveragePool_output_0 = GlobalAveragePool(%/header/relu/Relu_output_0) %/Constant_output_0 = Constant[value = <Tensor>]() %/Reshape_output_0 = Reshape(%/avgpool/GlobalAveragePool_output_0, %/Constant_output_0) %612 = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias) return %612 }
val_accuracy
0
89,349,760
2,305,964
{'zcp_synflow': 80.09361736096291, 'zcp_zen': 69.13285827636719, 'zcp_epe_nas': 0.00015999920000638146, 'zcp_fisher': 0.1393628865480423, 'zcp_flops': 89349760.0, 'zcp_grad_norm': 24.19607925415039, 'zcp_grasp': -0.6269760131835938, 'zcp_jacov': -16.05194956558284, 'zcp_l2_norm': 662.1394653320312, 'zcp_nwot': 214.88378987383192, 'zcp_params': 2305964.0, 'zcp_plain': -0.0013865637592971325, 'zcp_snip': 38.00193786621094, 'lat_1080ti_1': 0.5204719997787972, 'lat_1080ti_32': 0.5659851206828316, 'lat_1080ti_64': 0.5990878778939719, 'lat_2080ti_1': 0.5958451295592189, 'lat_2080ti_32': 0.5836745915726919, 'lat_2080ti_64': 0.5704755487446825, 'lat_essential_ph_1': 0.32075471698113206, 'lat_eyeriss': 0.6683384372765114, 'lat_fpga': 0.7503636489575396, 'lat_gold_6226': 0.5450132258464436, 'lat_gold_6240': 0.6889197876907966, 'lat_pixel2': 0.43478260869565216, 'lat_pixel3': 0.6975302617914462, 'lat_raspi4': 0.6969157412732605, 'lat_samsung_a50': 0.2736842105263158, 'lat_samsung_s7': 0.2440944881889764, 'lat_silver_4114': 0.6517922776309893, 'lat_silver_4210r': 0.6255324665522993, 'lat_titan_rtx_1': 0.5341944988561914, 'lat_titan_rtx_32': 0.5561598051969695, 'lat_titan_rtx_64': 0.5718109531650867, 'lat_titanx_1': 0.28387214790005866, 'lat_titanx_32': 0.5696258353219211, 'lat_titanx_64': 0.6652357835215776, 'lat_titanxp_1': 0.518992713940281, 'lat_titanxp_32': 0.5788742219975535, 'lat_titanxp_64': 0.5935235743727539}
FBNet_4771
FBNet
4771
4771
graph main_graph ( %input.1[FLOAT, 1x3x32x32] %fc.weight[FLOAT, 100x1504] %fc.bias[FLOAT, 100] %onnx::Conv_678[FLOAT, 16x3x3x3] %onnx::Conv_679[FLOAT, 16] %onnx::Conv_681[FLOAT, 96x16x1x1] %onnx::Conv_682[FLOAT, 96] %onnx::Conv_684[FLOAT, 96x1x5x5] %onnx::Conv_687[FLOAT, 16x96x1x1] %onnx::Conv_690[FLOAT, 16x8x1x1] %onnx::Conv_693[FLOAT, 16x1x3x3] %onnx::Conv_696[FLOAT, 24x8x1x1] %onnx::Conv_697[FLOAT, 24] %onnx::Conv_699[FLOAT, 72x24x1x1] %onnx::Conv_700[FLOAT, 72] %onnx::Conv_702[FLOAT, 72x1x5x5] %onnx::Conv_705[FLOAT, 24x72x1x1] %onnx::Conv_708[FLOAT, 24x24x1x1] %onnx::Conv_711[FLOAT, 24x1x3x3] %onnx::Conv_714[FLOAT, 24x24x1x1] %onnx::Conv_717[FLOAT, 24x24x1x1] %onnx::Conv_720[FLOAT, 24x1x3x3] %onnx::Conv_723[FLOAT, 32x24x1x1] %onnx::Conv_724[FLOAT, 32] %onnx::Conv_726[FLOAT, 32x16x1x1] %onnx::Conv_729[FLOAT, 32x1x5x5] %onnx::Conv_732[FLOAT, 32x16x1x1] %onnx::Conv_735[FLOAT, 96x32x1x1] %onnx::Conv_738[FLOAT, 96x1x5x5] %onnx::Conv_741[FLOAT, 32x96x1x1] %onnx::Conv_744[FLOAT, 192x32x1x1] %onnx::Conv_745[FLOAT, 192] %onnx::Conv_747[FLOAT, 192x1x5x5] %onnx::Conv_750[FLOAT, 32x192x1x1] %onnx::Conv_753[FLOAT, 32x32x1x1] %onnx::Conv_756[FLOAT, 32x1x5x5] %onnx::Conv_759[FLOAT, 64x32x1x1] %onnx::Conv_760[FLOAT, 64] %onnx::Conv_762[FLOAT, 64x64x1x1] %onnx::Conv_765[FLOAT, 64x1x3x3] %onnx::Conv_768[FLOAT, 64x64x1x1] %onnx::Conv_771[FLOAT, 384x64x1x1] %onnx::Conv_772[FLOAT, 384] %onnx::Conv_774[FLOAT, 384x1x3x3] %onnx::Conv_777[FLOAT, 64x384x1x1] %onnx::Conv_780[FLOAT, 64x32x1x1] %onnx::Conv_783[FLOAT, 64x1x3x3] %onnx::Conv_786[FLOAT, 64x32x1x1] %onnx::Conv_789[FLOAT, 64x32x1x1] %onnx::Conv_792[FLOAT, 64x1x5x5] %onnx::Conv_795[FLOAT, 112x32x1x1] %onnx::Conv_796[FLOAT, 112] %onnx::Conv_798[FLOAT, 112x56x1x1] %onnx::Conv_801[FLOAT, 112x1x3x3] %onnx::Conv_804[FLOAT, 112x56x1x1] %onnx::Conv_807[FLOAT, 672x112x1x1] %onnx::Conv_808[FLOAT, 672] %onnx::Conv_810[FLOAT, 672x1x3x3] %onnx::Conv_813[FLOAT, 112x672x1x1] %onnx::Conv_816[FLOAT, 672x112x1x1] %onnx::Conv_819[FLOAT, 672x1x5x5] %onnx::Conv_822[FLOAT, 184x672x1x1] %onnx::Conv_823[FLOAT, 184] %onnx::Conv_825[FLOAT, 184x92x1x1] %onnx::Conv_828[FLOAT, 184x1x5x5] %onnx::Conv_831[FLOAT, 184x92x1x1] %onnx::Conv_834[FLOAT, 1104x184x1x1] %onnx::Conv_835[FLOAT, 1104] %onnx::Conv_837[FLOAT, 1104x1x5x5] %onnx::Conv_840[FLOAT, 184x1104x1x1] %onnx::Conv_843[FLOAT, 184x184x1x1] %onnx::Conv_846[FLOAT, 184x1x3x3] %onnx::Conv_849[FLOAT, 184x184x1x1] %onnx::Conv_852[FLOAT, 184x184x1x1] %onnx::Conv_855[FLOAT, 184x1x3x3] %onnx::Conv_858[FLOAT, 352x184x1x1] %onnx::Conv_859[FLOAT, 352] %onnx::Conv_861[FLOAT, 1504x352x1x1] %onnx::Conv_862[FLOAT, 1504] ) { %onnx::Conv_856 = Identity(%onnx::Conv_823) %onnx::Conv_853 = Identity(%onnx::Conv_823) %onnx::Conv_850 = Identity(%onnx::Conv_823) %onnx::Conv_847 = Identity(%onnx::Conv_823) %onnx::Conv_844 = Identity(%onnx::Conv_823) %onnx::Conv_841 = Identity(%onnx::Conv_823) %onnx::Conv_838 = Identity(%onnx::Conv_835) %onnx::Conv_832 = Identity(%onnx::Conv_823) %onnx::Conv_829 = Identity(%onnx::Conv_823) %onnx::Conv_826 = Identity(%onnx::Conv_823) %onnx::Conv_820 = Identity(%onnx::Conv_808) %onnx::Conv_817 = Identity(%onnx::Conv_808) %onnx::Conv_814 = Identity(%onnx::Conv_796) %onnx::Conv_811 = Identity(%onnx::Conv_808) %onnx::Conv_805 = Identity(%onnx::Conv_796) %onnx::Conv_802 = Identity(%onnx::Conv_796) %onnx::Conv_799 = Identity(%onnx::Conv_796) %onnx::Conv_793 = Identity(%onnx::Conv_760) %onnx::Conv_790 = Identity(%onnx::Conv_760) %onnx::Conv_787 = Identity(%onnx::Conv_760) %onnx::Conv_784 = Identity(%onnx::Conv_760) %onnx::Conv_781 = Identity(%onnx::Conv_760) %onnx::Conv_778 = Identity(%onnx::Conv_760) %onnx::Conv_775 = Identity(%onnx::Conv_772) %onnx::Conv_769 = Identity(%onnx::Conv_760) %onnx::Conv_766 = Identity(%onnx::Conv_760) %onnx::Conv_763 = Identity(%onnx::Conv_760) %onnx::Conv_757 = Identity(%onnx::Conv_724) %onnx::Conv_754 = Identity(%onnx::Conv_724) %onnx::Conv_751 = Identity(%onnx::Conv_724) %onnx::Conv_748 = Identity(%onnx::Conv_745) %onnx::Conv_742 = Identity(%onnx::Conv_724) %onnx::Conv_739 = Identity(%onnx::Conv_682) %onnx::Conv_736 = Identity(%onnx::Conv_682) %onnx::Conv_733 = Identity(%onnx::Conv_724) %onnx::Conv_730 = Identity(%onnx::Conv_724) %onnx::Conv_727 = Identity(%onnx::Conv_724) %onnx::Conv_721 = Identity(%onnx::Conv_697) %onnx::Conv_718 = Identity(%onnx::Conv_697) %onnx::Conv_715 = Identity(%onnx::Conv_697) %onnx::Conv_712 = Identity(%onnx::Conv_697) %onnx::Conv_709 = Identity(%onnx::Conv_697) %onnx::Conv_706 = Identity(%onnx::Conv_697) %onnx::Conv_703 = Identity(%onnx::Conv_700) %onnx::Conv_694 = Identity(%onnx::Conv_679) %onnx::Conv_691 = Identity(%onnx::Conv_679) %onnx::Conv_688 = Identity(%onnx::Conv_679) %onnx::Conv_685 = Identity(%onnx::Conv_682) %/stem/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_678, %onnx::Conv_679) %/stem/relu/Relu_output_0 = Relu(%/stem/conv/Conv_output_0) %/cells.0/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/stem/relu/Relu_output_0, %onnx::Conv_681, %onnx::Conv_682) %/cells.0/nl/Relu_output_0 = Relu(%/cells.0/conv1/Conv_output_0) %/cells.0/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.0/nl/Relu_output_0, %onnx::Conv_684, %onnx::Conv_685) %/cells.0/nl_1/Relu_output_0 = Relu(%/cells.0/conv2/Conv_output_0) %/cells.0/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/nl_1/Relu_output_0, %onnx::Conv_687, %onnx::Conv_688) %/cells.0/Add_output_0 = Add(%/cells.0/conv3/Conv_output_0, %/stem/relu/Relu_output_0) %/cells.1/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/Add_output_0, %onnx::Conv_690, %onnx::Conv_691) %/cells.1/nl/Relu_output_0 = Relu(%/cells.1/conv1/Conv_output_0) %/cells.1/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.1/shuffle/Reshape_output_0 = Reshape(%/cells.1/nl/Relu_output_0, %/cells.1/shuffle/Constant_output_0) %/cells.1/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.1/shuffle/Reshape_output_0) %/cells.1/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.1/shuffle/Reshape_1_output_0 = Reshape(%/cells.1/shuffle/Transpose_output_0, %/cells.1/shuffle/Constant_1_output_0) %/cells.1/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 16, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.1/shuffle/Reshape_1_output_0, %onnx::Conv_693, %onnx::Conv_694) %/cells.1/nl_1/Relu_output_0 = Relu(%/cells.1/conv2/Conv_output_0) %/cells.1/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/nl_1/Relu_output_0, %onnx::Conv_696, %onnx::Conv_697) %/cells.2/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/conv3/Conv_output_0, %onnx::Conv_699, %onnx::Conv_700) %/cells.2/nl/Relu_output_0 = Relu(%/cells.2/conv1/Conv_output_0) %/cells.2/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 72, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.2/nl/Relu_output_0, %onnx::Conv_702, %onnx::Conv_703) %/cells.2/nl_1/Relu_output_0 = Relu(%/cells.2/conv2/Conv_output_0) %/cells.2/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/nl_1/Relu_output_0, %onnx::Conv_705, %onnx::Conv_706) %/cells.2/Add_output_0 = Add(%/cells.2/conv3/Conv_output_0, %/cells.1/conv3/Conv_output_0) %/cells.3/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/Add_output_0, %onnx::Conv_708, %onnx::Conv_709) %/cells.3/nl/Relu_output_0 = Relu(%/cells.3/conv1/Conv_output_0) %/cells.3/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.3/nl/Relu_output_0, %onnx::Conv_711, %onnx::Conv_712) %/cells.3/nl_1/Relu_output_0 = Relu(%/cells.3/conv2/Conv_output_0) %/cells.3/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/nl_1/Relu_output_0, %onnx::Conv_714, %onnx::Conv_715) %/cells.3/Add_output_0 = Add(%/cells.3/conv3/Conv_output_0, %/cells.2/Add_output_0) %/cells.5/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/Add_output_0, %onnx::Conv_717, %onnx::Conv_718) %/cells.5/nl/Relu_output_0 = Relu(%/cells.5/conv1/Conv_output_0) %/cells.5/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.5/nl/Relu_output_0, %onnx::Conv_720, %onnx::Conv_721) %/cells.5/nl_1/Relu_output_0 = Relu(%/cells.5/conv2/Conv_output_0) %/cells.5/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/nl_1/Relu_output_0, %onnx::Conv_723, %onnx::Conv_724) %/cells.6/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/conv3/Conv_output_0, %onnx::Conv_726, %onnx::Conv_727) %/cells.6/nl/Relu_output_0 = Relu(%/cells.6/conv1/Conv_output_0) %/cells.6/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.6/shuffle/Reshape_output_0 = Reshape(%/cells.6/nl/Relu_output_0, %/cells.6/shuffle/Constant_output_0) %/cells.6/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.6/shuffle/Reshape_output_0) %/cells.6/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.6/shuffle/Reshape_1_output_0 = Reshape(%/cells.6/shuffle/Transpose_output_0, %/cells.6/shuffle/Constant_1_output_0) %/cells.6/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.6/shuffle/Reshape_1_output_0, %onnx::Conv_729, %onnx::Conv_730) %/cells.6/nl_1/Relu_output_0 = Relu(%/cells.6/conv2/Conv_output_0) %/cells.6/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/nl_1/Relu_output_0, %onnx::Conv_732, %onnx::Conv_733) %/cells.6/Add_output_0 = Add(%/cells.6/conv3/Conv_output_0, %/cells.5/conv3/Conv_output_0) %/cells.7/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/Add_output_0, %onnx::Conv_735, %onnx::Conv_736) %/cells.7/nl/Relu_output_0 = Relu(%/cells.7/conv1/Conv_output_0) %/cells.7/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.7/nl/Relu_output_0, %onnx::Conv_738, %onnx::Conv_739) %/cells.7/nl_1/Relu_output_0 = Relu(%/cells.7/conv2/Conv_output_0) %/cells.7/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/nl_1/Relu_output_0, %onnx::Conv_741, %onnx::Conv_742) %/cells.7/Add_output_0 = Add(%/cells.7/conv3/Conv_output_0, %/cells.6/Add_output_0) %/cells.8/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/Add_output_0, %onnx::Conv_744, %onnx::Conv_745) %/cells.8/nl/Relu_output_0 = Relu(%/cells.8/conv1/Conv_output_0) %/cells.8/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.8/nl/Relu_output_0, %onnx::Conv_747, %onnx::Conv_748) %/cells.8/nl_1/Relu_output_0 = Relu(%/cells.8/conv2/Conv_output_0) %/cells.8/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/nl_1/Relu_output_0, %onnx::Conv_750, %onnx::Conv_751) %/cells.8/Add_output_0 = Add(%/cells.8/conv3/Conv_output_0, %/cells.7/Add_output_0) %/cells.9/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/Add_output_0, %onnx::Conv_753, %onnx::Conv_754) %/cells.9/nl/Relu_output_0 = Relu(%/cells.9/conv1/Conv_output_0) %/cells.9/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.9/nl/Relu_output_0, %onnx::Conv_756, %onnx::Conv_757) %/cells.9/nl_1/Relu_output_0 = Relu(%/cells.9/conv2/Conv_output_0) %/cells.9/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/nl_1/Relu_output_0, %onnx::Conv_759, %onnx::Conv_760) %/cells.10/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/conv3/Conv_output_0, %onnx::Conv_762, %onnx::Conv_763) %/cells.10/nl/Relu_output_0 = Relu(%/cells.10/conv1/Conv_output_0) %/cells.10/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.10/nl/Relu_output_0, %onnx::Conv_765, %onnx::Conv_766) %/cells.10/nl_1/Relu_output_0 = Relu(%/cells.10/conv2/Conv_output_0) %/cells.10/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/nl_1/Relu_output_0, %onnx::Conv_768, %onnx::Conv_769) %/cells.10/Add_output_0 = Add(%/cells.10/conv3/Conv_output_0, %/cells.9/conv3/Conv_output_0) %/cells.11/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/Add_output_0, %onnx::Conv_771, %onnx::Conv_772) %/cells.11/nl/Relu_output_0 = Relu(%/cells.11/conv1/Conv_output_0) %/cells.11/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 384, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.11/nl/Relu_output_0, %onnx::Conv_774, %onnx::Conv_775) %/cells.11/nl_1/Relu_output_0 = Relu(%/cells.11/conv2/Conv_output_0) %/cells.11/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/nl_1/Relu_output_0, %onnx::Conv_777, %onnx::Conv_778) %/cells.11/Add_output_0 = Add(%/cells.11/conv3/Conv_output_0, %/cells.10/Add_output_0) %/cells.12/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/Add_output_0, %onnx::Conv_780, %onnx::Conv_781) %/cells.12/nl/Relu_output_0 = Relu(%/cells.12/conv1/Conv_output_0) %/cells.12/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.12/shuffle/Reshape_output_0 = Reshape(%/cells.12/nl/Relu_output_0, %/cells.12/shuffle/Constant_output_0) %/cells.12/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.12/shuffle/Reshape_output_0) %/cells.12/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.12/shuffle/Reshape_1_output_0 = Reshape(%/cells.12/shuffle/Transpose_output_0, %/cells.12/shuffle/Constant_1_output_0) %/cells.12/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.12/shuffle/Reshape_1_output_0, %onnx::Conv_783, %onnx::Conv_784) %/cells.12/nl_1/Relu_output_0 = Relu(%/cells.12/conv2/Conv_output_0) %/cells.12/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/nl_1/Relu_output_0, %onnx::Conv_786, %onnx::Conv_787) %/cells.12/Add_output_0 = Add(%/cells.12/conv3/Conv_output_0, %/cells.11/Add_output_0) %/cells.13/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/Add_output_0, %onnx::Conv_789, %onnx::Conv_790) %/cells.13/nl/Relu_output_0 = Relu(%/cells.13/conv1/Conv_output_0) %/cells.13/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.13/shuffle/Reshape_output_0 = Reshape(%/cells.13/nl/Relu_output_0, %/cells.13/shuffle/Constant_output_0) %/cells.13/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.13/shuffle/Reshape_output_0) %/cells.13/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.13/shuffle/Reshape_1_output_0 = Reshape(%/cells.13/shuffle/Transpose_output_0, %/cells.13/shuffle/Constant_1_output_0) %/cells.13/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.13/shuffle/Reshape_1_output_0, %onnx::Conv_792, %onnx::Conv_793) %/cells.13/nl_1/Relu_output_0 = Relu(%/cells.13/conv2/Conv_output_0) %/cells.13/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/nl_1/Relu_output_0, %onnx::Conv_795, %onnx::Conv_796) %/cells.15/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/conv3/Conv_output_0, %onnx::Conv_798, %onnx::Conv_799) %/cells.15/nl/Relu_output_0 = Relu(%/cells.15/conv1/Conv_output_0) %/cells.15/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.15/shuffle/Reshape_output_0 = Reshape(%/cells.15/nl/Relu_output_0, %/cells.15/shuffle/Constant_output_0) %/cells.15/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.15/shuffle/Reshape_output_0) %/cells.15/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.15/shuffle/Reshape_1_output_0 = Reshape(%/cells.15/shuffle/Transpose_output_0, %/cells.15/shuffle/Constant_1_output_0) %/cells.15/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.15/shuffle/Reshape_1_output_0, %onnx::Conv_801, %onnx::Conv_802) %/cells.15/nl_1/Relu_output_0 = Relu(%/cells.15/conv2/Conv_output_0) %/cells.15/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/nl_1/Relu_output_0, %onnx::Conv_804, %onnx::Conv_805) %/cells.15/Add_output_0 = Add(%/cells.15/conv3/Conv_output_0, %/cells.13/conv3/Conv_output_0) %/cells.16/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/Add_output_0, %onnx::Conv_807, %onnx::Conv_808) %/cells.16/nl/Relu_output_0 = Relu(%/cells.16/conv1/Conv_output_0) %/cells.16/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.16/nl/Relu_output_0, %onnx::Conv_810, %onnx::Conv_811) %/cells.16/nl_1/Relu_output_0 = Relu(%/cells.16/conv2/Conv_output_0) %/cells.16/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/nl_1/Relu_output_0, %onnx::Conv_813, %onnx::Conv_814) %/cells.16/Add_output_0 = Add(%/cells.16/conv3/Conv_output_0, %/cells.15/Add_output_0) %/cells.17/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/Add_output_0, %onnx::Conv_816, %onnx::Conv_817) %/cells.17/nl/Relu_output_0 = Relu(%/cells.17/conv1/Conv_output_0) %/cells.17/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.17/nl/Relu_output_0, %onnx::Conv_819, %onnx::Conv_820) %/cells.17/nl_1/Relu_output_0 = Relu(%/cells.17/conv2/Conv_output_0) %/cells.17/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/nl_1/Relu_output_0, %onnx::Conv_822, %onnx::Conv_823) %/cells.18/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/conv3/Conv_output_0, %onnx::Conv_825, %onnx::Conv_826) %/cells.18/nl/Relu_output_0 = Relu(%/cells.18/conv1/Conv_output_0) %/cells.18/shuffle/Constant_output_0 = Constant[value = <Tensor>]() %/cells.18/shuffle/Reshape_output_0 = Reshape(%/cells.18/nl/Relu_output_0, %/cells.18/shuffle/Constant_output_0) %/cells.18/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.18/shuffle/Reshape_output_0) %/cells.18/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]() %/cells.18/shuffle/Reshape_1_output_0 = Reshape(%/cells.18/shuffle/Transpose_output_0, %/cells.18/shuffle/Constant_1_output_0) %/cells.18/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.18/shuffle/Reshape_1_output_0, %onnx::Conv_828, %onnx::Conv_829) %/cells.18/nl_1/Relu_output_0 = Relu(%/cells.18/conv2/Conv_output_0) %/cells.18/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/nl_1/Relu_output_0, %onnx::Conv_831, %onnx::Conv_832) %/cells.18/Add_output_0 = Add(%/cells.18/conv3/Conv_output_0, %/cells.17/conv3/Conv_output_0) %/cells.19/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/Add_output_0, %onnx::Conv_834, %onnx::Conv_835) %/cells.19/nl/Relu_output_0 = Relu(%/cells.19/conv1/Conv_output_0) %/cells.19/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.19/nl/Relu_output_0, %onnx::Conv_837, %onnx::Conv_838) %/cells.19/nl_1/Relu_output_0 = Relu(%/cells.19/conv2/Conv_output_0) %/cells.19/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/nl_1/Relu_output_0, %onnx::Conv_840, %onnx::Conv_841) %/cells.19/Add_output_0 = Add(%/cells.19/conv3/Conv_output_0, %/cells.18/Add_output_0) %/cells.20/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/Add_output_0, %onnx::Conv_843, %onnx::Conv_844) %/cells.20/nl/Relu_output_0 = Relu(%/cells.20/conv1/Conv_output_0) %/cells.20/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.20/nl/Relu_output_0, %onnx::Conv_846, %onnx::Conv_847) %/cells.20/nl_1/Relu_output_0 = Relu(%/cells.20/conv2/Conv_output_0) %/cells.20/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/nl_1/Relu_output_0, %onnx::Conv_849, %onnx::Conv_850) %/cells.20/Add_output_0 = Add(%/cells.20/conv3/Conv_output_0, %/cells.19/Add_output_0) %/cells.21/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/Add_output_0, %onnx::Conv_852, %onnx::Conv_853) %/cells.21/nl/Relu_output_0 = Relu(%/cells.21/conv1/Conv_output_0) %/cells.21/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.21/nl/Relu_output_0, %onnx::Conv_855, %onnx::Conv_856) %/cells.21/nl_1/Relu_output_0 = Relu(%/cells.21/conv2/Conv_output_0) %/cells.21/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/nl_1/Relu_output_0, %onnx::Conv_858, %onnx::Conv_859) %/header/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/conv3/Conv_output_0, %onnx::Conv_861, %onnx::Conv_862) %/header/relu/Relu_output_0 = Relu(%/header/conv/Conv_output_0) %/avgpool/GlobalAveragePool_output_0 = GlobalAveragePool(%/header/relu/Relu_output_0) %/Constant_output_0 = Constant[value = <Tensor>]() %/Reshape_output_0 = Reshape(%/avgpool/GlobalAveragePool_output_0, %/Constant_output_0) %676 = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias) return %676 }
val_accuracy
0
65,905,792
1,850,804
{'zcp_synflow': 74.45914513395928, 'zcp_zen': 65.81018829345703, 'zcp_epe_nas': 0.00015999920000638146, 'zcp_fisher': 0.1806827336549759, 'zcp_flops': 65905792.0, 'zcp_grad_norm': 26.138343811035156, 'zcp_grasp': -0.3742866516113281, 'zcp_jacov': -16.069036510659764, 'zcp_l2_norm': 595.3342895507812, 'zcp_nwot': 210.59283885337132, 'zcp_params': 1850804.0, 'zcp_plain': -0.005425572860985994, 'zcp_snip': 44.5767936706543, 'lat_1080ti_1': 0.6014201526658447, 'lat_1080ti_32': 0.5453269999146533, 'lat_1080ti_64': 0.4547705564046725, 'lat_2080ti_1': 0.6513435290634121, 'lat_2080ti_32': 0.5805432788169245, 'lat_2080ti_64': 0.4534496435581907, 'lat_essential_ph_1': 0.3018867924528302, 'lat_eyeriss': 0.4329305191352025, 'lat_fpga': 0.404466697671657, 'lat_gold_6226': 0.3340004640499575, 'lat_gold_6240': 0.4948968582963916, 'lat_pixel2': 0.43478260869565216, 'lat_pixel3': 0.4352346146182577, 'lat_raspi4': 0.43137202568855676, 'lat_samsung_a50': 0.17894736842105263, 'lat_samsung_s7': 0.3228346456692913, 'lat_silver_4114': 0.49559436419752245, 'lat_silver_4210r': 0.5396103748660447, 'lat_titan_rtx_1': 0.6148024991938857, 'lat_titan_rtx_32': 0.5775268822041426, 'lat_titan_rtx_64': 0.4913464369880751, 'lat_titanx_1': 0.3377277900145658, 'lat_titanx_32': 0.5138761004809946, 'lat_titanx_64': 0.4112458308271014, 'lat_titanxp_1': 0.5897930729637024, 'lat_titanxp_32': 0.5437168642685023, 'lat_titanxp_64': 0.45080964110827554}
FBNet_2978
FBNet
2978
2978
"graph main_graph (\n %input.1[FLOAT, 1x3x32x32]\n %fc.weight[FLOAT, 100x1504]\n %fc.bias[FLOAT, (...TRUNCATED)
val_accuracy
0
47,598,976
1,381,932
"{'zcp_synflow': 73.81326985261533, 'zcp_zen': 64.21788024902344, 'zcp_epe_nas': 18.820997031323483,(...TRUNCATED)
FBNet_2426
FBNet
2426
2426
"graph main_graph (\n %input.1[FLOAT, 1x3x32x32]\n %fc.weight[FLOAT, 100x1504]\n %fc.bias[FLOAT, (...TRUNCATED)
val_accuracy
0
74,623,104
1,715,716
"{'zcp_synflow': 68.94106884809352, 'zcp_zen': 61.849754333496094, 'zcp_epe_nas': 7.152478175373565,(...TRUNCATED)
FBNet_873
FBNet
873
873
"graph main_graph (\n %input.1[FLOAT, 1x3x32x32]\n %fc.weight[FLOAT, 100x1504]\n %fc.bias[FLOAT, (...TRUNCATED)
val_accuracy
0
77,806,720
2,044,812
"{'zcp_synflow': 81.12326995173713, 'zcp_zen': 71.46871185302734, 'zcp_epe_nas': 8.297040847397502, (...TRUNCATED)
End of preview. Expand in Data Studio

GraphArch-Regression

A unified regression dataset collated from multiple graph/architecture search sources (FBNet, Hiaml, Inception, NB101, NB201, NDS, OfaMB, OfaPN, OfaRN, SNAS, Twopath) for training and evaluating models that map ONNX-readable graph strings to a target metric.

Schema

  • identifier (string): Source key for the example, e.g. FBNet_0, SNAS_42.
  • space (string): Logical dataset source (FBNet, Hiaml, Inception, NB101, NB201, NDS, OfaMB, OfaPN, OfaRN, SNAS, Twopath).
  • uid (string): Original UID, if provided by the source.
  • arch_str (string): Architecture identity; first non-empty among arch_str, hash, uid.
  • input (string): ONNX-readable graph string (onnx_readable).
  • target_metric (string): Always val_accuracy.
  • val_accuracy (number | null): Primary regression target (Accuracy)
  • flops (number | null): FLOPs for the architecture (if available).
  • params (number | null): Parameter count (if available).
  • metadata (string): Python-dict-like string including only keys that start with zcp_ or lat_ (e.g., zero-cost proxies and latency measurements). Not populated for SNAS. These can be used for multi-objective regression.
  • metainformation (string): Only for SNAS; Python-dict-like string of selected fields {arch_str, macro, train_time_sec, steps_ran, precision, batch_size}.

Dataset Size

With this dataset, we provide ONNX text for universal-NAS regression training over 611931 architectures:

  • Amoeba: 4983
  • DARTS: 5000
  • DARTS_fix-w-d: 5000
  • DARTS_lr-wd: 5000
  • ENAS: 4999
  • ENAS_fix-w-d: 5000
  • FBNet: 5000
  • Hiaml: 4629
  • Inception: 580
  • NASBench101 (NB101): 423624
  • NASBench201 (NB201): 15625
  • NASNet: 4846
  • OfaMB: 7491
  • OfaPN: 8206
  • OfaRN: 10000
  • PNAS: 4999
  • PNAS_fix-w-d: 4559
  • SNAS: 85500
  • TwoPath: 6890

Tip: turn metadata or metainformation back into a dict with:

from ast import literal_eval
meta = literal_eval(row["metadata"])

How to load with 🤗 Datasets

from datasets import load_dataset
ds = load_dataset("akhauriyash/GraphArch-Regression")

Testing Graph Architecture Regression with a basic Gemma RLM model

Use the code below as reference for evaluating a basic RegressLM model ( better, more models to come! :) )

Note that the best practice is to fine-tune this base model on more NAS ONNX graph data, and few-shot transfer to the target search space (Say NASNet, etc.). If we want to finetune on 16 examples from say, ENAS, the optimal strategy we found was to construct a small NAS dataset of e.g., DARTS, NASNet, Amoeba, ENAS and use ~(1024, 1024, 1024, 16) samples from each, and up-sample (repeat) the 16 ENAS samples 8 times. Random-shuffle the dataset and fine-tune the RLM with 1e-4 LR (cosine decay) to avoid catastrophic forgetting. The code below is just illustrative to demonstrate non-trivial NAS performance. The model training corpus was only 1% NAS data, the rest was code.

import torch
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from scipy.stats import spearmanr
from tqdm import tqdm

REPO_ID = "akhauriyash/RLM-GemmaS-Code-v0"
DATASET = "akhauriyash/GraphArch-Regression"
dataset = load_dataset(DATASET, split="train")
tok = AutoTokenizer.from_pretrained(REPO_ID, trust_remote_code=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForSeq2SeqLM.from_pretrained(REPO_ID, trust_remote_code=True).to(device).eval()
MAX_ITEMS, BATCH_SIZE, spaces, results = 512, 4, ["NASBench101", "ENAS", "NASNet"], {}
n_out_tokens = getattr(model.config, "num_tokens_per_obj", 8) * getattr(model.config, "max_num_objs", 1)
n_out_tokens = model.config.num_tokens_per_obj * model.config.max_num_objs

for SPACE in spaces:
    inputs, targets = [], []
    for row in tqdm(dataset, desc=f"Processing {SPACE} till {MAX_ITEMS} items"):
        if row.get("space") == SPACE and "input" in row and "val_accuracy" in row:
            try:
                targets.append(float(row["val_accuracy"]))
                inputs.append(f"{SPACE}\n\n{row['input']}")
            except: continue
            if len(inputs) >= MAX_ITEMS: break
    preds = []
    for i in tqdm(range(0, len(inputs), BATCH_SIZE)):
        enc = tok(inputs[i:i+BATCH_SIZE], return_tensors="pt", truncation=True, padding=True, max_length=4096).to(device)
        batch_preds = []
        for _ in range(8):
            out = model.generate(**enc, max_new_tokens=n_out_tokens, min_new_tokens=n_out_tokens, do_sample=True, top_p=0.95, temperature=1.0)
            decoded = [tok.token_ids_to_floats(seq.tolist()) for seq in out]
            decoded = [d[0] if isinstance(d, list) and d else float("nan") for d in decoded]
            batch_preds.append(decoded)
        preds.extend(torch.tensor(batch_preds).median(dim=0).values.tolist())
    spear, _ = spearmanr(np.array(targets), np.array(preds))
    results[SPACE] = spear; print(f"Spearman ρ for {SPACE}: {spear:.3f}")

print("Spearman ρ | NASBench101 | ENAS | NASNet")
print(f"{REPO_ID} | " + " | ".join(f"{results[s]:.3f}" for s in spaces))

We got the following results when testing on a random subset of the GraphArch-Regression dataset.

Model ID                                 | NASBench101  | ENAS  | NASNet
akhauriyash/RegressLM-gemma-s-RLM-table3 | 0.384        | 0.211 | 0.209 

Credits

This dataset was collated from several graph/NAS sources, along with our own profiling where applicable. We export and generate the ONNX descriptions of all architectures in our dataset. Please credit and cite the original datasets accordingly.

Inception, Hiaml, Ofa-MB/PN/RN, Twopath: Mills, K. G., Han, F. X., Zhang, J., Chudak, F., Mamaghani, A. S., Salameh, M., Lu, W., Jui, S., & Niu, D. (2023). Gennape: Towards generalized neural architecture performance estimators. Proceedings of the AAAI Conference on Artificial Intelligence, 37(8), 9190–9199.

NDS: Radosavovic, Ilija, et al. "On network design spaces for visual recognition." Proceedings of the IEEE/CVF international conference on computer vision. 2019.

NB101: Ying, Chris, et al. "Nas-bench-101: Towards reproducible neural architecture search." International conference on machine learning. PMLR, 2019.

NB201: Dong, Xuanyi, and Yi Yang. "Nas-bench-201: Extending the scope of reproducible neural architecture search."

FBNet: Wu, Bichen, et al. "Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

Further, multi-objective latency and zero cost proxies were sourced from

Krishnakumar, Arjun, et al. "Nas-bench-suite-zero: Accelerating research on zero cost proxies." Advances in Neural Information Processing Systems 35 (2022): 28037-28051.

Akhauri, Yash, and Mohamed S. Abdelfattah. "Encodings for prediction-based neural architecture search." arXiv preprint arXiv:2403.02484 (2024).

Akhauri, Yash, and Mohamed Abdelfattah. "On latency predictors for neural architecture search." Proceedings of Machine Learning and Systems 6 (2024): 512-523.

Lee, Hayeon, et al. "Help: Hardware-adaptive efficient latency prediction for nas via meta-learning.".

Citations

If you found this dataset useful for your research, please cite the original sources above as well as:

@article{akhauri2025regressionlanguagemodelscode,
      title={Regression Language Models for Code}, 
      author={Yash Akhauri and Xingyou Song and Arissa Wongpanich and Bryan Lewandowski and Mohamed S. Abdelfattah},
      journal={arXiv preprint arXiv:2509.26476},
      year={2025}
}

@article{akhauri2025performance,
  title={Performance Prediction for Large Systems via Text-to-Text Regression},
  author={Akhauri, Yash and Lewandowski, Bryan and Lin, Cheng-Hsi and Reyes, Adrian N and Forbes, Grant C and Wongpanich, Arissa and Yang, Bangding and Abdelfattah, Mohamed S and Perel, Sagi and Song, Xingyou},
  journal={arXiv preprint arXiv:2506.21718},
  year={2025}
}
Downloads last month
64

Models trained or fine-tuned on akhauriyash/GraphArch-Regression