Datasets:
Improve dataset card: Add paper, code, project links, task category, and sample usage (#2)
Browse files- Improve dataset card: Add paper, code, project links, task category, and sample usage (3d73010ff8a105c6049750be3b6f25f0bcefb546)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
|
@@ -7,12 +7,15 @@ tags:
|
|
| 7 |
- leetcode
|
| 8 |
- kernel
|
| 9 |
- text regression
|
|
|
|
|
|
|
| 10 |
---
|
|
|
|
| 11 |
# Code-Regression
|
| 12 |
|
| 13 |
-
|
| 14 |
|
| 15 |
-
|
| 16 |
|
| 17 |
**Link for Graph-Regression dataset**: https://huggingface.co/datasets/akhauriyash/GraphArch-Regression
|
| 18 |
|
|
@@ -49,6 +52,26 @@ from datasets import load_dataset
|
|
| 49 |
ds = load_dataset("akhauriyash/Code-Regression")
|
| 50 |
```
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
## Testing Code-Regression with a basic Gemma RLM model
|
| 53 |
|
| 54 |
Use the code below as reference for evaluating a basic RegressLM model ( better, more models to come! :) )
|
|
@@ -81,9 +104,12 @@ for SPACE in spaces:
|
|
| 81 |
if SPACE != "CDSS" or language is None or lang == language:
|
| 82 |
targets.append(float(row["target"]))
|
| 83 |
if SPACE == "CDSS":
|
| 84 |
-
inputs.append(f"# {SPACE}
|
|
|
|
|
|
|
| 85 |
else:
|
| 86 |
-
inputs.append(f"{SPACE}
|
|
|
|
| 87 |
except: continue
|
| 88 |
if len(inputs) >= MAX_ITEMS: break
|
| 89 |
preds = []
|
|
@@ -129,7 +155,7 @@ Paliskara, S., & Saroufim, M. (2025). KernelBook. https://huggingface.co/dataset
|
|
| 129 |
|
| 130 |
If you found this dataset useful for your research, please cite the original sources above as well as:
|
| 131 |
|
| 132 |
-
```
|
| 133 |
@article{akhauri2025regressionlanguagemodelscode,
|
| 134 |
title={Regression Language Models for Code},
|
| 135 |
author={Yash Akhauri and Xingyou Song and Arissa Wongpanich and Bryan Lewandowski and Mohamed S. Abdelfattah},
|
|
|
|
| 7 |
- leetcode
|
| 8 |
- kernel
|
| 9 |
- text regression
|
| 10 |
+
task_categories:
|
| 11 |
+
- text-generation
|
| 12 |
---
|
| 13 |
+
|
| 14 |
# Code-Regression
|
| 15 |
|
| 16 |
+
[Paper](https://huggingface.co/papers/2509.26476) | [GitHub Repository](https://github.com/google-deepmind/regress-lm/tree/main) | [Project Page](https://research.google/blog/simulating-large-systems-with-regression-language-models/)
|
| 17 |
|
| 18 |
+
A unified regression dataset collated from three sources (APPS, KBSS, CDSS) along with our own custom profiling for training and evaluating regression models that map code strings to a target metric. This dataset supports "code-to-metric regression," which involves predicting numeric outcomes of code executions using Regression Language Models (RLM), as described in the linked paper.
|
| 19 |
|
| 20 |
**Link for Graph-Regression dataset**: https://huggingface.co/datasets/akhauriyash/GraphArch-Regression
|
| 21 |
|
|
|
|
| 52 |
ds = load_dataset("akhauriyash/Code-Regression")
|
| 53 |
```
|
| 54 |
|
| 55 |
+
## Sample Usage with `RegressLM`
|
| 56 |
+
|
| 57 |
+
The `regress_lm` library provides the `RegressLM` class for decoding floating-point predictions from a given input and fine-tuning against new data. Below is an example of how to instantiate `RegressLM` and use it for inference.
|
| 58 |
+
|
| 59 |
+
```python
|
| 60 |
+
from regress_lm import core
|
| 61 |
+
from regress_lm import rlm
|
| 62 |
+
|
| 63 |
+
# Create RegressLM from scratch. Optionally, use `from_t5gemma_encoder`.
|
| 64 |
+
reg_lm = rlm.RegressLM.from_scratch(max_input_len=2048)
|
| 65 |
+
|
| 66 |
+
# Example (x,y) pairs, which can be fine-tuned against.
|
| 67 |
+
examples = [core.Example(x='hello', y=0.3), core.Example(x='world', y=-0.3)]
|
| 68 |
+
reg_lm.fine_tune(examples)
|
| 69 |
+
|
| 70 |
+
# Query inputs.
|
| 71 |
+
query1, query2 = core.ExampleInput(x='hi'), core.ExampleInput(x='bye')
|
| 72 |
+
samples1, samples2 = reg_lm.sample([query1, query2], num_samples=128)
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
## Testing Code-Regression with a basic Gemma RLM model
|
| 76 |
|
| 77 |
Use the code below as reference for evaluating a basic RegressLM model ( better, more models to come! :) )
|
|
|
|
| 104 |
if SPACE != "CDSS" or language is None or lang == language:
|
| 105 |
targets.append(float(row["target"]))
|
| 106 |
if SPACE == "CDSS":
|
| 107 |
+
inputs.append(f"# {SPACE}
|
| 108 |
+
# Language: {lang}
|
| 109 |
+
{row['input']}")
|
| 110 |
else:
|
| 111 |
+
inputs.append(f"{SPACE}
|
| 112 |
+
{row['input']}")
|
| 113 |
except: continue
|
| 114 |
if len(inputs) >= MAX_ITEMS: break
|
| 115 |
preds = []
|
|
|
|
| 155 |
|
| 156 |
If you found this dataset useful for your research, please cite the original sources above as well as:
|
| 157 |
|
| 158 |
+
```bibtex
|
| 159 |
@article{akhauri2025regressionlanguagemodelscode,
|
| 160 |
title={Regression Language Models for Code},
|
| 161 |
author={Yash Akhauri and Xingyou Song and Arissa Wongpanich and Bryan Lewandowski and Mohamed S. Abdelfattah},
|