nielsr HF Staff commited on
Commit
3d73010
·
verified ·
1 Parent(s): 2410c30

Improve dataset card: Add paper, code, project links, task category, and sample usage

Browse files

This PR significantly enhances the `Code-Regression` dataset card by:
- Adding direct links to the associated paper, GitHub repository, and project page at the top of the README for quick access to source information.
- Updating the introductory paragraph to provide clearer context about the dataset's role in "code-to-metric regression."
- Incorporating `task_categories: ['text-generation']` into the metadata, making the dataset more discoverable under relevant AI task filters.
- Adding a dedicated "Sample Usage with `RegressLM`" section, featuring a Python code snippet from the official GitHub README that demonstrates how to perform inference with models trained using this dataset.
- Wrapping the existing BibTeX citations with ````bibtex` markers for better formatting.

Files changed (1) hide show
  1. README.md +31 -5
README.md CHANGED
@@ -7,12 +7,15 @@ tags:
7
  - leetcode
8
  - kernel
9
  - text regression
 
 
10
  ---
 
11
  # Code-Regression
12
 
13
- A unified regression dataset collated from three sources (APPS, KBSS, CDSS) along with our own custom profiling for training and evaluating regression models that map code strings to a target metric.
14
 
15
- This is part of a larger research paper on regression-language models for code.
16
 
17
  **Link for Graph-Regression dataset**: https://huggingface.co/datasets/akhauriyash/GraphArch-Regression
18
 
@@ -49,6 +52,26 @@ from datasets import load_dataset
49
  ds = load_dataset("akhauriyash/Code-Regression")
50
  ```
51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  ## Testing Code-Regression with a basic Gemma RLM model
53
 
54
  Use the code below as reference for evaluating a basic RegressLM model ( better, more models to come! :) )
@@ -81,9 +104,12 @@ for SPACE in spaces:
81
  if SPACE != "CDSS" or language is None or lang == language:
82
  targets.append(float(row["target"]))
83
  if SPACE == "CDSS":
84
- inputs.append(f"# {SPACE}\n# Language: {lang}\n{row['input']}")
 
 
85
  else:
86
- inputs.append(f"{SPACE}\n{row['input']}")
 
87
  except: continue
88
  if len(inputs) >= MAX_ITEMS: break
89
  preds = []
@@ -129,7 +155,7 @@ Paliskara, S., & Saroufim, M. (2025). KernelBook. https://huggingface.co/dataset
129
 
130
  If you found this dataset useful for your research, please cite the original sources above as well as:
131
 
132
- ```
133
  @article{akhauri2025regressionlanguagemodelscode,
134
  title={Regression Language Models for Code},
135
  author={Yash Akhauri and Xingyou Song and Arissa Wongpanich and Bryan Lewandowski and Mohamed S. Abdelfattah},
 
7
  - leetcode
8
  - kernel
9
  - text regression
10
+ task_categories:
11
+ - text-generation
12
  ---
13
+
14
  # Code-Regression
15
 
16
+ [Paper](https://huggingface.co/papers/2509.26476) | [GitHub Repository](https://github.com/google-deepmind/regress-lm/tree/main) | [Project Page](https://research.google/blog/simulating-large-systems-with-regression-language-models/)
17
 
18
+ A unified regression dataset collated from three sources (APPS, KBSS, CDSS) along with our own custom profiling for training and evaluating regression models that map code strings to a target metric. This dataset supports "code-to-metric regression," which involves predicting numeric outcomes of code executions using Regression Language Models (RLM), as described in the linked paper.
19
 
20
  **Link for Graph-Regression dataset**: https://huggingface.co/datasets/akhauriyash/GraphArch-Regression
21
 
 
52
  ds = load_dataset("akhauriyash/Code-Regression")
53
  ```
54
 
55
+ ## Sample Usage with `RegressLM`
56
+
57
+ The `regress_lm` library provides the `RegressLM` class for decoding floating-point predictions from a given input and fine-tuning against new data. Below is an example of how to instantiate `RegressLM` and use it for inference.
58
+
59
+ ```python
60
+ from regress_lm import core
61
+ from regress_lm import rlm
62
+
63
+ # Create RegressLM from scratch. Optionally, use `from_t5gemma_encoder`.
64
+ reg_lm = rlm.RegressLM.from_scratch(max_input_len=2048)
65
+
66
+ # Example (x,y) pairs, which can be fine-tuned against.
67
+ examples = [core.Example(x='hello', y=0.3), core.Example(x='world', y=-0.3)]
68
+ reg_lm.fine_tune(examples)
69
+
70
+ # Query inputs.
71
+ query1, query2 = core.ExampleInput(x='hi'), core.ExampleInput(x='bye')
72
+ samples1, samples2 = reg_lm.sample([query1, query2], num_samples=128)
73
+ ```
74
+
75
  ## Testing Code-Regression with a basic Gemma RLM model
76
 
77
  Use the code below as reference for evaluating a basic RegressLM model ( better, more models to come! :) )
 
104
  if SPACE != "CDSS" or language is None or lang == language:
105
  targets.append(float(row["target"]))
106
  if SPACE == "CDSS":
107
+ inputs.append(f"# {SPACE}
108
+ # Language: {lang}
109
+ {row['input']}")
110
  else:
111
+ inputs.append(f"{SPACE}
112
+ {row['input']}")
113
  except: continue
114
  if len(inputs) >= MAX_ITEMS: break
115
  preds = []
 
155
 
156
  If you found this dataset useful for your research, please cite the original sources above as well as:
157
 
158
+ ```bibtex
159
  @article{akhauri2025regressionlanguagemodelscode,
160
  title={Regression Language Models for Code},
161
  author={Yash Akhauri and Xingyou Song and Arissa Wongpanich and Bryan Lewandowski and Mohamed S. Abdelfattah},