username
stringlengths
1
118
score
float64
0
100
timestamp
stringdate
2025-04-24 16:18:04
2025-09-20 03:16:04
code
stringlengths
10
42.3k
DaquaviousDinglenut
10
2025-09-10T02:02:14.436643+00:00
https://huggingface.co/spaces/DaquaviousDinglenut/Final_Assignment_Template/tree/main
JanGo1
35
2025-09-10T03:16:36.173019+00:00
https://huggingface.co/spaces/JanGo1/Agents_Final_Assignment/tree/main
ArturoNereu
15
2025-09-10T03:23:48.047419+00:00
https://huggingface.co/spaces/ArturoNereu/GAIA_Agent/tree/main
cyborgmass
0
2025-09-10T05:46:28.449067+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
khizarsait
10
2025-09-10T06:27:37.235763+00:00
https://huggingface.co/spaces/khizarsait/Final_Assignment_Template_KS/tree/main
quablab
30
2025-09-10T07:57:49.500179+00:00
https://huggingface.co/spaces/quablab/Final_Assignment_Template/tree/main
xuhai951753
10
2025-09-10T08:06:47.093148+00:00
https://huggingface.co/spaces/None/tree/main
mayarelsayed
0
2025-09-10T08:37:22.714677+00:00
https://huggingface.co/spaces/mayarelsayed/Final_Assignment_Template/tree/main
taufftauff
30
2025-09-10T10:57:13.884727+00:00
https://huggingface.co/spaces/None/tree/main
svl09
35
2025-09-10T12:04:13.836224+00:00
https://huggingface.co/spaces/None/tree/main
Taruuunn
30
2025-09-10T16:40:13.231515+00:00
https://huggingface.co/spaces/Taruuunn/Final_Assignment_Template/tree/main
PawLew
35
2025-09-10T16:53:47.709830+00:00
https://huggingface.co/spaces/PawLew/Final_Assignment_Agents_Course/tree/main
GiuSSE
30
2025-09-10T19:14:13.391040+00:00
https://huggingface.co/spaces/GiuSSE/Final_Assignment_Template/tree/main
Blannikus
0
2025-09-10T19:54:56.845334+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
Harshazpcg
40
2025-09-10T21:29:51.544644+00:00
local_development
alexander-oleynik
100
2025-09-10T21:53:26.463858+00:00
https://huggingface.co/spaces/alexander-oleynik/agent-demo/tree/main
gurugopinath
30
2025-09-11T00:24:45.606030+00:00
https://huggingface.co/spaces/None/tree/main
Alex549
40
2025-09-11T05:46:14.639653+00:00
# Prerequisites: Having run `prepare_data.py` to set up the data # %% import dotenv dotenv.load_dotenv() # %% # import os # from huggingface_hub import login # login(token=os.getenv("HF_TOKEN")) # %% import os import base64 LANGFUSE_PUBLIC_KEY = os.getenv("LANGFUSE_PUBLIC_KEY") LANGFUSE_SECRET_KEY = os.getenv("LANGFUSE_SECRET_KEY") LANGFUSE_AUTH=base64.b64encode(f"{LANGFUSE_PUBLIC_KEY}:{LANGFUSE_SECRET_KEY}".encode()).decode() os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://cloud.langfuse.com/api/public/otel" # EU data region os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}" from opentelemetry.sdk.trace import TracerProvider from openinference.instrumentation.smolagents import SmolagentsInstrumentor from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter from opentelemetry.sdk.trace.export import SimpleSpanProcessor trace_provider = TracerProvider() trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter())) SmolagentsInstrumentor().instrument(tracer_provider=trace_provider) # %% from smolagents import LiteLLMModel, InferenceClientModel, OpenAIServerModel class InferenceClientModelWithUsage(InferenceClientModel): last_input_token_count = -1 last_output_token_count = -1 class OpenAIServerModelWithUsage(OpenAIServerModel): last_input_token_count = -1 last_output_token_count = -1 # %% from smolagents import ( CodeAgent, DuckDuckGoSearchTool, InferenceClientModel, VisitWebpageTool, FinalAnswerTool, tool ) # %% agent_llm = InferenceClientModelWithUsage( model_id="Qwen/Qwen2.5-Coder-32B-Instruct", provider="together" ) # %% import base64 from openai import OpenAI # 2. Image Comprehension Tool @tool def image_comprehension( image_path: str, question: str = "Describe this image in detail." ) -> str: """ Analyze an image using GPT-4 Vision, given a specific question. Args: image_path (str): The path to the image file. question (str): The question to ask about the image. Returns: str: A response to the question about the image. """ try: # Initialize OpenAI client client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) # Read and encode the image with open(image_path, "rb") as image_file: image_bytes = image_file.read() image_base64 = base64.b64encode(image_bytes).decode("utf-8") # Create the message payload directly for OpenAI API messages = [ { "role": "user", "content": [ { "type": "text", "text": question }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{image_base64}" } } ] } ] # Make the API call directly to OpenAI response = client.chat.completions.create( model="gpt-4o", messages=messages, max_tokens=1000 ) return response.choices[0].message.content except Exception as e: error_msg = f"Error processing image: {str(e)}" return error_msg # # Test the image comprehension tool # image_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/5b2a14e8-6e59-479c-80e3-4696e8980152.jpg" # image_description = image_comprehension(image_path, question="Describe this image in detail.") # print(f"Image Description:\n{image_description}") # %% # 3. Text Extraction Tool (from image) @tool def extract_text_from_image(image_path: str) -> str: """ Extract text from an image file using a multimodal model. Args: image_path: A local image file path (strings). Returns: str: A single string containing the concatenated text extracted from each image. """ all_text = "" extracted_text = image_comprehension( image_path, question="Extract all the text from this image. Return only the extracted text, no explanations." ) all_text += extracted_text + "\n\n" return all_text.strip() # Test the text extraction tool image_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/b7f857e4-d8aa-4387-af2a-0e844df5b9d8.png" # Example image image_text = extract_text_from_image(image_path) print(f"Extracted Text:\n{image_text}") # %% # 4. Speech to Text Tool @tool def transcribe_audio(audio_path: str) -> str: """ Transcribe audio using OpenAI's Whisper model. Args: audio_path (str): The path to the audio file. Returns: str: The transcribed text from the audio. """ try: client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) with open(audio_path, "rb") as audio_file: transcript = client.audio.transcriptions.create( file=audio_file, model="gpt-4o-transcribe", response_format="text" ) return transcript except Exception as e: error_msg = f"Error transcribing audio: {str(e)}" return error_msg # # Test the transcribe audio tool # audio_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/1f975693-876d-457b-a649-393859e79bf3.mp3" # transcript = transcribe_audio(audio_path) # print(f"Transcription for '{audio_path}':\n{transcript}") # %% # 5. TXT viewer @tool def read_txt(file_path: str) -> str: """ Read and return the content of a TXT file. Args: file_path (str): The path to the TXT file. Returns: str: The content of the TXT file. """ try: with open(file_path, "r", encoding="utf-8") as file: content = file.read() return content except Exception as e: error_msg = f"Error reading TXT file: {str(e)}" return error_msg # # Test the read_txt tool # txt_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/389793a7-ca17-4e82-81cb-2b3a2391b4b9.txt" # txt_content = read_txt(txt_path) # print(f"Content of '{txt_path}':\n{txt_content}") # %% # %pip install python-docx # %% # %pip install pdfplumber # %% # %pip install langchain-community # %% # %pip install tabulate # %% # 6. docx viewer import pandas as pd from docx import Document from docx.oxml.ns import qn @tool def read_docx(path: str) -> str: """ Read a DOCX file and return its content Args: path (str): The path to the DOCX file. Returns: str: The content of the DOCX file with page headers and breaks. """ doc = Document(path) out_parts: list[str] = [] # ---------- helpers ---------- def breaks_in_paragraph(p) -> int: """Count explicit page-break markers present in this paragraph.""" n = 0 for run in p.runs: n += len(run._element.xpath(".//w:br[@w:type='page']")) n += len(run._element.xpath(".//w:lastRenderedPageBreak")) if p._p.xpath(".//w:pPr/w:pageBreakBefore"): n += 1 return n def table_to_markdown(tbl) -> str: rows = [[cell.text.strip() for cell in row.cells] for row in tbl.rows] max_len = max((len(r) for r in rows), default=0) norm = [r + [""] * (max_len - len(r)) for r in rows] return pd.DataFrame(norm).to_markdown(index=False) def iter_block_items(doc_): from docx.text.paragraph import Paragraph from docx.table import Table for child in doc_._element.body.iterchildren(): if child.tag == qn("w:p"): yield Paragraph(child, doc_) elif child.tag == qn("w:tbl"): yield Table(child, doc_) # ---------- pagination state ---------- page_num = 1 have_started_this_page = False pending_page_break = False # collapse consecutive break markers def ensure_page_header(): nonlocal have_started_this_page if not have_started_this_page: out_parts.append(f"[DOCX Page {page_num}]") have_started_this_page = True # ---------- render ---------- for block in iter_block_items(doc): # If this block is a paragraph, handle its breaks & text if hasattr(block, "text"): # Paragraph text = block.text.strip() has_breaks = breaks_in_paragraph(block) > 0 # If we see a break marker: schedule a single transition if has_breaks: if have_started_this_page: out_parts.append("\n--- PAGE BREAK ---\n") if not pending_page_break: page_num += 1 pending_page_break = True have_started_this_page = False # next content starts the new page # Emit any text in this paragraph (after handling break) if text: # If a break was pending, this is the first content on the new page if pending_page_break: pending_page_break = False ensure_page_header() out_parts.append(text) # Tables: just print on the current page (DOCX page breaks are paragraph-based) elif hasattr(block, "rows"): # Table if pending_page_break: if have_started_this_page: out_parts.append("\n--- PAGE BREAK ---\n") # move to the next page once have_started_this_page = False pending_page_break = False # header for the new page ensure_page_header() else: ensure_page_header() out_parts.append(table_to_markdown(block)) return "\n".join(out_parts) # # Test the read_docx tool # docx_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/cffe0e32-c9a6-4c52-9877-78ceb4aaa9fb.docx" # docx_content = read_docx(docx_path) # print(f"Content of '{docx_path}':\n{docx_content}") # %% # 7. pdf viewer import pdfplumber import pandas as pd from collections import defaultdict from math import floor from langchain_community.document_loaders import UnstructuredPDFLoader def smart_pdf_reader( path: str, detect_text_tables: bool = True, x_bin: float = 6.0, min_rows: int = 3, min_cols: int = 3, min_lines_for_column: float = 0.5, table_mode: str = "auto" # "auto", "lines", or "text" ) -> str: """ PDF viewer: - distinguishing table vs text with alignment heuristics - tables rendered using your preferred markdown converter """ # Coerce numeric inputs def _as_float(x, default): try: return float(x[0] if isinstance(x, (list, tuple)) else x) except: return float(default) def _as_int(x, default): try: return int(x[0] if isinstance(x, (list, tuple)) else x) except: return int(default) xb = _as_float(x_bin, 6.0) mr = _as_int(min_rows, 3) mc = _as_int(min_cols, 3) def valid_table_rows(rows) -> bool: if not rows: return False clean = [[("" if c is None else str(c).strip()) for c in r] for r in rows] clean = [r for r in clean if any(r)] if len(clean) < mr: return False ncols = max(len(r) for r in clean) return mc <= ncols <= 30 def tables_for_page(page): def strategies(mode): if mode == "auto": return [ dict(vertical_strategy="lines", horizontal_strategy="lines"), dict(vertical_strategy="text", horizontal_strategy="text"), ] if mode == "lines": return [dict(vertical_strategy="lines", horizontal_strategy="lines")] return [dict(vertical_strategy="text", horizontal_strategy="text")] for strategy in strategies(table_mode): # Skip text-based unless alignment check passes if strategy["vertical_strategy"] == "text": if not detect_text_tables or not is_probably_tabular(page): continue tbls = page.find_tables(table_settings=strategy) or [] results = [t for t in tbls if valid_table_rows(t.extract())] if results: return results return [] def is_probably_tabular(page) -> bool: words = page.extract_words() or [] if len(words) < 20: return False lines = defaultdict(list) for w in words: lines[round(w["top"],1)].append(w) nonempty = sum(1 for ws in lines.values() if ws) if nonempty < mr: return False bins = defaultdict(int) for ws in lines.values(): xs = sorted(w["x0"] for w in ws if "x0" in w) if not xs: continue gaps = [xs[i+1]-xs[i] for i in range(len(xs)-1)] med_gap = sorted(gaps)[len(gaps)//2] if gaps else 0 threshold = 1.5*(med_gap or 1.0) chunks = [xs[0]] + [xs[i+1] for i,g in enumerate(gaps) if g>threshold] used = set(floor(x/xb)*xb for x in chunks) for b in used: bins[b]+=1 needed = max(1, int(nonempty * float(min_lines_for_column)+0.5)) dominant = [b for b,c in bins.items() if c>=needed] return len(dominant)>=mc def table_to_markdown(rows): clean = [[("" if c is None else str(c).strip()) for c in r] for r in rows] clean = [r for r in clean if any(r)] max_len = max(len(r) for r in clean) clean = [r + [""]*(max_len-len(r)) for r in clean] df = pd.DataFrame(clean) return df.to_markdown(index=False) parts = [] with pdfplumber.open(path) as pdf: total = len(pdf.pages) for i, page in enumerate(pdf.pages, start=1): parts.append(f"[PDF Page {i}]") tbl_objs = tables_for_page(page) bboxes = [t.bbox for t in tbl_objs] filtered = page for bb in bboxes: filtered = filtered.outside_bbox(bb) text = (filtered.extract_text() or "").strip() if text: parts.append(text) if tbl_objs: tcount = 0 for t in tbl_objs: rows = t.extract() md = table_to_markdown(rows) if md: tcount += 1 parts.append(f"**Table {i}.{tcount}**\n\n{md}") if i < total: parts.append("\n--- PAGE BREAK ---\n") return "\n".join(parts) def basic_pdf_reader(path: str) -> str: """ Return PDF text with a separator after each page. """ loader = UnstructuredPDFLoader(path, mode="elements") elements = loader.load() out, last_page = [], None for d in elements: page = (d.metadata or {}).get("page_number") if page is not None and page != last_page: if last_page is not None: out.append("\n--- PAGE BREAK ---\n") out.append(f"[PDF Page {page}]") last_page = page txt = (d.page_content or "").strip() if txt: out.append(txt) return "\n".join(out) @tool def read_pdf( path: str, ) -> str: """ Load and return the content of a PDF file. Args: path (str): The path to the PDF file. Returns: str: The content of the PDF file. """ try: return smart_pdf_reader(path) except Exception as e: print(f"Smart reader failed: {e}") return basic_pdf_reader(path) # # Test the read_pdf tool # # pdf_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/e9a2c537-8232-4c3f-85b0-b52de6bcba99.pdf" # # pdf_path = "HF_Agents_Course/u4.final_project/gaia/2023/test/8f697523-6988-4c4f-8d72-760a45681f68.pdf" # # pdf_path = "HF_Agents_Course/u4.final_project/gaia/2023/test/32f386b9-73ee-4455-b412-ddad508aa979.pdf" # # pdf_path = "HF_Agents_Course/u4.final_project/gaia/2023/test/021a5339-744f-42b7-bd9b-9368b3efda7a.pdf" # # pdf_path = "HF_Agents_Course/u4.final_project/gaia/2023/test/634fca59-03b2-4cdf-9ce4-0205df22f256.pdf" # pdf_path = "HF_Agents_Course/u4.final_project/gaia/2023/test/be353748-74eb-4904-8f17-f180ce087f1a.pdf" # # pdf_content = read_pdf(pdf_path) # pdf_content = read_pdf(pdf_path) # print(f"Content of '{pdf_path}':\n{pdf_content}") # %% # %pip install unstructured # %% # %pip install python-pptx # %% # 8. pptx viewer from langchain_community.document_loaders import UnstructuredPowerPointLoader @tool def read_pptx(path: str) -> str: """ Load and return the content of a PPTX file. Args: path (str): The path to the PPTX file. Returns: str: The content of the PPTX file. """ loader = UnstructuredPowerPointLoader(path, mode="elements") elements = loader.load() out, last_slide = [], None for d in elements: meta = d.metadata or {} slide_no = meta.get("page_number") # Unstructured uses page_number for slides if slide_no is not None and slide_no != last_slide: if last_slide is not None: out.append("\n--- SLIDE BREAK ---\n") out.append(f"[Slide {slide_no}]") last_slide = slide_no txt = (d.page_content or "").strip() if txt: out.append(txt) return "\n".join(out) # # Test the read_pptx tool # pptx_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/a3fbeb63-0e8c-4a11-bff6-0e3b484c3e9c.pptx" # pptx_content = read_pptx(pptx_path) # print(f"Content of '{pptx_path}':\n{pptx_content}") # %% # %pip install openpyxl # %% # 9. xlsx viewer import pandas as pd from openpyxl import load_workbook from openpyxl.utils import get_column_letter @tool def read_excel( path: str, max_rows_per_sheet: int = 10000 ) -> str: """ Load and return the content of a PDF file Args: path (str): The path to the PDF file. max_rows_per_sheet (int): Maximum number of rows to read per sheet. Returns: str: The content of the PDF file. """ wb = load_workbook(path, data_only=True) parts = [] def format_cell(value, numfmt: str) -> str: if value is None: return "" if not isinstance(value, (int, float)): return str(value) nf = (numfmt or "").lower() is_currency = ("$" in nf) or ("[$" in nf) or ("accounting" in nf) if not is_currency: return f"{value}" symbol = "$" if "[$" in nf: try: sym = nf.split("[$", 1)[1].split("]", 1)[0] symbol = (sym.split("-", 1)[0] or "$").strip() except Exception: pass decimals = 2 if "." in nf: after = nf.split(".", 1)[1] z = 0 for ch in after: if ch == "0": z += 1 elif ch in "#,; ]": continue else: break if z > 0: decimals = z use_grouping = "," in nf.split(".", 1)[0] neg_paren = "(" in nf and ")" in nf and value < 0 abs_val = abs(value) num_str = f"{abs_val:,.{decimals}f}" if use_grouping else f"{abs_val:.{decimals}f}" if neg_paren: return f"({symbol}{num_str})" return f"{'-' if value < 0 else ''}{symbol}{num_str}" for ws in wb.worksheets: rows = [] max_row = min(ws.max_row, max_rows_per_sheet) if max_rows_per_sheet else ws.max_row max_col = ws.max_column for r in range(1, max_row + 1): row_vals = [] for c in range(1, max_col + 1): cell = ws.cell(row=r, column=c) row_vals.append(format_cell(cell.value, cell.number_format)) rows.append(row_vals) # Trim trailing empty rows/columns while rows and all(v == "" for v in rows[-1]): rows.pop() while rows and rows and rows[0] and all(v == "" for v in (row[-1] for row in rows)): for row in rows: row.pop() if not rows: parts.append(f"### Sheet: {ws.title}\n\n*(empty)*\n\n--- SHEET BREAK ---\n") continue df = pd.DataFrame(rows).fillna("") ncols = df.shape[1] # Set Excel-style column headers df.columns = [get_column_letter(i) for i in range(1, ncols + 1)] df.insert(0, "", range(1, len(df) + 1)) # new first column for row numbers md = df.to_markdown(index=False) parts.append(f"### Sheet: {ws.title}\n\n{md}\n\n--- SHEET BREAK ---\n") return "\n".join(parts) if parts else "(No sheets found)" # # Test the view_xlsx_as_markdown_tables tool # # xlsx_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/3da89939-209c-4086-8520-7eb734e6b4ef.xlsx" # xlsx_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/4d0aa727-86b1-406b-9b33-f870dd14a4a5.xlsx" # # xlsx_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/5cfb274c-0207-4aa7-9575-6ac0bd95d9b2.xlsx" # # xlsx_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/7bd855d8-463d-4ed5-93ca-5fe35145f733.xlsx" # # xlsx_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/65afbc8a-89ca-4ad5-8d62-355bb401f61d.xlsx" # # xlsx_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/076c8171-9b3b-49b9-a477-244d2a532826.xlsx" # # xlsx_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/32102e3e-d12a-4209-9163-7b3a104efe5d.xlsx" # # xlsx_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/54612da3-fd56-4941-80f4-5eb82330de25.xlsx" # # xlsx_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/c526d8d6-5987-4da9-b24c-83466fa172f3.xlsx" # xlsx_content = read_excel(xlsx_path) # print(f"Content of '{xlsx_path}':\n{xlsx_content}") # %% # 10. py executor from __future__ import annotations from typing import List, Optional, Dict, Any import os, sys, textwrap, subprocess MAX_OUTPUT_CHARS = 60_000 # prevent enormous payloads in chat history def _truncate(s: str, limit: int = MAX_OUTPUT_CHARS) -> str: if s is None: return "" if len(s) <= limit: return s tail = "\n...[truncated]" return s[: max(0, limit - len(tail))] + tail def run_python_file_raw( path: str, args: Optional[List[str]] = None, timeout_sec: int = 30, env: Optional[Dict[str, str]] = None ) -> Dict[str, Any]: """ Execute a local .py file in a subprocess (no shell). Returns a dict: {exit_code, stdout, stderr}. - args: optional CLI args passed to the script - timeout_sec: hard limit for process execution (default: 30s) - env: extra environment variables to add/override Notes: * Uses the same interpreter as the host (sys.executable). * Runs with CWD = script's directory. * Output is truncated to keep agent state small. """ if not path.lower().endswith(".py"): return {"exit_code": -1, "stdout": "", "stderr": "Refusing to run non-.py file."} if not os.path.exists(path): return {"exit_code": -1, "stdout": "", "stderr": f"File not found: {path}"} args = list(args or []) cwd = os.path.dirname(os.path.abspath(path)) or None cmd = [sys.executable, "-u", path, *args] # -u for unbuffered stdout/stderr # Compose env safely run_env = os.environ.copy() if env: for k, v in env.items(): if isinstance(k, str) and isinstance(v, str): run_env[k] = v try: proc = subprocess.run( # safe: no shell cmd, cwd=cwd, env=run_env, capture_output=True, # capture both text=True, # decode to str timeout=timeout_sec, # hard stop check=False, # don't raise on nonzero ) return { "exit_code": proc.returncode, "stdout": _truncate(proc.stdout), "stderr": _truncate(proc.stderr), } except subprocess.TimeoutExpired as e: # e.stdout/e.stderr may be bytes or None depending on Python version; normalize out = e.stdout.decode() if isinstance(e.stdout, (bytes, bytearray)) else (e.stdout or "") err = e.stderr.decode() if isinstance(e.stderr, (bytes, bytearray)) else (e.stderr or "") return { "exit_code": -9, "stdout": _truncate(out), "stderr": _truncate((err or "") + f"\n[timeout after {timeout_sec}s]"), } except Exception as e: return {"exit_code": -1, "stdout": "", "stderr": f"Exception: {e.__class__.__name__}: {e}"} @tool def run_python_file( path: str, args: Optional[List[str]] = None, timeout_sec: int = 30, env: Optional[Dict[str, str]] = None ) -> str: """ Execute a local .py file in a subprocess (no shell). Args: path (str): The path to the .py file args (Optional[List[str]]): optional CLI args passed to the script timeout_sec (int): hard limit for process execution (default: 30s) env (Optional[Dict[str, str]]): extra environment variables to add/override Returns: str: exit code, stdout and stderr from running the .py file """ result = run_python_file_raw( path=path, args=args, timeout_sec=timeout_sec, env=env ) return ( f"## Exit Code: {result['exit_code']}\n\n" f"## stdout:\n" f"{result['stdout']}\n\n" f"## stderr:\n" f"{result['stderr']}\n\n" ) # # Test the run_python_file tool # py_path = "HF_Agents_Course/u4.final_project/gaia/2023/validation/f918266a-b3e0-4914-865d-4faa564f1aef.py" # print(f"Running '{py_path}'") # result = run_python_file(py_path, timeout_sec=100) # print(result) # %% # 11. Calculator @tool def calculator(expression: str) -> float|str: """ Evaluate a mathematical expression. Args: expression (str): The mathematical expression to evaluate. Returns: float|str: The result of the evaluation or an error message. """ try: result = eval(expression) return result except Exception as e: return f"Error evaluating expression: {e}" # # Test the calculator function # print(calculator("2 //xt 2")) # print(calculator("10 / 0")) # print(calculator("10 / 2")) # %% # %pip install statsmodels matplotlib seaborn # %% # %pip install wikipedia-api # %% from smolagents import WikipediaSearchTool agent = CodeAgent( # model=InferenceClientModelWithUsage( # model_id="Qwen/Qwen2.5-Coder-32B-Instruct", # # provider="together" # # model_id="Qwen/Qwen3-30B-A3B", # # provider="nebius", # ), model=OpenAIServerModelWithUsage( model_id="gpt-4o", max_tokens=16384, # api_key=os.getenv("OPENAI_API_KEY"), # max_input_tokens=8192, # max_output_tokens=1024, # temperature=0.0, # top_p=1.0, # frequency_penalty=0.0, # presence_penalty=0.0, ), tools=[ DuckDuckGoSearchTool(), VisitWebpageTool(), WikipediaSearchTool(), image_comprehension, extract_text_from_image, transcribe_audio, read_txt, read_docx, read_pdf, read_pptx, read_excel, run_python_file, calculator, FinalAnswerTool() ], additional_authorized_imports=[ "pandas", "numpy", "matplotlib", "seaborn", "sklearn", "scipy", "statsmodels", ], planning_interval=5, verbosity_level=2, max_steps=20, ) agent.visualize() # %% from tqdm import tqdm def get_answer( question: str, file_path: str=None, # timeout_seconds: int = 60 # 1 minute default ): sys_msg =f""" You are a helpful assistant with access to various tools. You should answer the user's question using the tools at your disposal. User Question: {question} Currently the user has provided the following file(s) as input: {file_path if file_path else 'No file provided.'} Produce your responses using the follow process: 1. Think about what tools you need to use, in particular if there is a file to process. 2. Use one tool at a time 3. Observe the result 4. Decide if you need more information or can provide a final answer. 5. If you need more information, use another tool. If you still need more information, repeat the process until you can provide a final answer. Do not ask the user for more information. 6. Only provide the final answer, with no explanations and no enclosures. AGAIN, YOU ONLY NEED TO PROVIDE THE FINAL ANSWER AND NOTHING ELSE. For example, for this question "What is the capital of France?", you should just respond with "Paris" (without quotes), instead of "The capital of France is Paris." Be concise and direct in your responses.""" try: response = agent.run( sys_msg ) print(( "Agent run completed.\n" "Response:\n" f"{response}\n" )) except Exception as e: response = f"Error during agent execution: {str(e)}" # print(response) return response # %% import pandas as pd test_dataset_path = "final_test.csv" test_df = pd.read_csv(test_dataset_path) test_df["file_path"] = test_df["file_path"].apply(lambda x: x if isinstance(x, str) else "") test_df # %% tqdm.pandas(desc="Processing rows ...") test_df["predicted_answer"] = test_df.progress_apply( lambda row: get_answer( question=row["question"], file_path=row["file_path"] if isinstance(row["file_path"], str) else None ), axis=1 ) test_df.to_csv("test_with_predictions.csv", index=False) # %% test_df.iloc[6]["question"] # %% test_df # %% test_df # %% tqdm.pandas(desc="Processing rows ...") test_df["predicted_answer"] = test_df.progress_apply( lambda row: get_answer( question=row["question"], file_path=row["file_path"] if isinstance(row["file_path"], str) else None ) if (isinstance(row["predicted_answer"], str) and "Error" in row["predicted_answer"]) else row["predicted_answer"], axis=1 ) test_df.to_csv("test_with_predictions.csv", index=False) # %% task_11_answer = get_answer( question=test_df.iloc[11]["question"], file_path=test_df.iloc[11]["file_path"] if isinstance(test_df.iloc[11]["file_path"], str) else None ) test_df.at[11, "predicted_answer"] = task_11_answer test_df.to_csv("test_with_predictions.csv", index=False) # %% # val_split = pd.read_csv("val_split.csv") # val_split["file_path"] = val_split["file_path"].apply(lambda x: x if isinstance(x, str) else "") # # val_split = val_split.iloc[:10].copy(deep=True) # # Randomly sample 10 rows # val_split = val_split.sample(n=10, random_state=42) # tqdm.pandas(desc="Processing rows ...") # val_split["predicted_answer"] = val_split.progress_apply( # lambda row: get_answer( # question=row["question"], # file_path=row["file_path"] if isinstance(row["file_path"], str) else None # ), axis=1 # ) # %% # val_split["predicted_answer"] # %% # for _, row in val_split.iterrows(): # question = row["question"] # predicted_answer = row["predicted_answer"] # ground_truth = row["Final answer"] # print(( # "Question:\n" # f"{question}\n\n" # "File:\n" # f"{row['file_path']}\n\n" # "Predicted Answer:\n" # f"{predicted_answer}\n\n" # "Ground Truth:\n" # f"{ground_truth}\n" # "========================\n" # ))
Diaby02
30
2025-09-11T11:08:17.077568+00:00
https://huggingface.co/spaces/Diaby02/Final_Assignment_Template/tree/main
ankitdoiphode
40
2025-09-11T11:28:59.558434+00:00
https://huggingface.co/spaces/ankitdoiphode/Final_Assignment_Template/tree/main
Hyeonseo
100
2025-09-11T13:12:02.717085+00:00
https://huggingface.co/spaces/Hyeonseo/Final_Assignment_Template/tree/main
iwantmorebugs
45
2025-09-11T16:42:22.995722+00:00
iwantmorebugs
lcfdiniz
35
2025-09-11T18:35:35.725350+00:00
https://huggingface.co/spaces/lcfdiniz/Agents_Course_Final_Assignment/tree/main
sagidu
0
2025-09-11T20:12:10.506822+00:00
https://huggingface.co/spaces/None/tree/main
jfr4nc0
100
2025-09-12T00:31:45.099517+00:00
https://huggingface.co/spaces/jfr4nc0/Final_Assignment_Template/tree/main
NishaSharma65
45
2025-09-12T03:56:01.172795+00:00
https://huggingface.co/spaces/NishaSharma65/Final_Assignment_Template/tree/main
OF-013
40
2025-09-12T07:42:12.094428+00:00
https://huggingface.co/spaces/OF-013/Final_Assignment_Template/tree/main
aksamota
45
2025-09-12T12:27:48.551808+00:00
https://huggingface.co/spaces/aksamota/unit-04_final-assignment/tree/main
gabzer
60
2025-09-12T16:14:50.425467+00:00
https://huggingface.co/spaces/gabzer/GAIA_benchmark_agent/tree/main
harveytuan
40
2025-09-12T17:31:30.171677+00:00
https://huggingface.co/spaces/harveytuan/Final_Assignment_Template911/tree/main
tgarity
40
2025-09-12T18:50:46.752555+00:00
https://huggingface.co/spaces/None/tree/main
annytran
0
2025-09-12T19:25:20.635578+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
DevforMM
30
2025-09-12T21:32:02.661628+00:00
https://huggingface.co/spaces/None/tree/main
dbb2
15
2025-09-13T01:51:17.598270+00:00
https://huggingface.co/spaces/dbb2/Final_Assignment_Template/tree/main
hhhhmmmm
0
2025-09-13T02:20:51.400202+00:00
https://huggingface.co/spaces/hhhhmmmm/Final_Assignment_Template/tree/main
najmussaqib313
0
2025-09-13T05:39:05.056274+00:00
https://huggingface.co/spaces/najmussaqib313/Final_Assignment_Template/tree/main
jhcadfergu
40
2025-09-13T08:21:39.885066+00:00
https://huggingface.co/spaces/jhcadfergu/unit4_test/tree/main
yuHuuH
100
2025-09-13T08:57:10.721810+00:00
https://huggingface.co/spaces/yuHuuH/Final/tree/main
wojji
30
2025-09-13T16:16:27.154514+00:00
https://huggingface.co/spaces/wojji/Final_Assignment_Template/tree/main
aashita-n
0
2025-09-13T16:58:10.497784+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
carolinacon
90
2025-09-13T20:00:39.891374+00:00
https://huggingface.co/spaces/carolinacon/Final_Assignment_Template/tree/main
AkramZennad
30
2025-09-13T20:24:09.541111+00:00
https://huggingface.co/spaces/None/tree/main
martinjolif
0
2025-09-13T21:29:57.536606+00:00
https://huggingface.co/spaces/None/tree/main
ffyang
0
2025-09-13T23:56:00.393450+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
hardwired
40
2025-09-14T02:28:41.744125+00:00
https://huggingface.co/spaces/SwetaPati022/SP_agents-course-final/tree/main
mykytazaginei
0
2025-09-14T12:33:40.699605+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
matapanda
10
2025-09-14T12:40:23.559004+00:00
https://huggingface.co/spaces/None/tree/main
MarcAVGL
0
2025-09-14T12:42:33.921384+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
mouhamed-hussam
35
2025-09-14T12:54:57.624736+00:00
https://huggingface.co/spaces/hussam-mislmani/tree/main
morgannedewitte
0
2025-09-14T14:47:18.110410+00:00
https://huggingface.co/spaces/morgannedewitte/Final_Assignment_Template/tree/main
tuongtn
0
2025-09-14T16:19:22.366164+00:00
https://huggingface.co/spaces/tuongtn/Final_Assignment_Template/tree/main
RiverWangHuggingFace
10
2025-09-14T18:08:34.447582+00:00
https://huggingface.co/spaces/RiverWangHuggingFace/Final_Assignment_Template/tree/main
jedrzejbrzezicki
0
2025-09-14T18:38:25.667895+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
tonyshumai
5
2025-09-14T20:18:07.395401+00:00
https://huggingface.co/spaces/tonyshumai/Final_Assignment_Template/tree/main
SwetaPati022
35
2025-09-15T00:32:04.473237+00:00
https://huggingface.co/spaces/SwetaPati022/SP_Final_Assignment_Template/tree/main
RenxiuF
5
2025-09-15T01:48:19.894369+00:00
https://huggingface.co/spaces/RenxiuF/Final_Assignment/tree/main
ribokle
50
2025-09-15T05:25:28.188292+00:00
https://huggingface.co/spaces/ribokle/Final_Assignment_Template_r/tree/main
Khaitakate
0
2025-09-15T07:03:17.372485+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
manuferr
35
2025-09-15T08:19:58.461988+00:00
https://huggingface.co/spaces/manuferr/Final_Assignment_Template/tree/main
Annukul
15
2025-09-15T08:36:01.675390+00:00
https://huggingface.co/spaces/Annukul/Final_Assignment_Template_GAIA_Agent_2/tree/main
Chenchloe2025
10
2025-09-15T08:38:58.215250+00:00
https://huggingface.co/spaces/Chenchloe2025/Final_Assignment_Template/tree/main
mert-colab
10
2025-09-15T11:24:09.751293+00:00
https://huggingface.co/spaces/None/tree/main
lien1119
100
2025-09-15T12:32:31.412492+00:00
https://huggingface.co/spaces/tannguyen20/Final_Assignment_Template/tree/main
Alejandro2329
50
2025-09-15T13:02:16.801625+00:00
https://huggingface.co/spaces/Alejandro2329/Final_Assignment_Template/tree/main
plomitt
50
2025-09-15T13:25:38.298282+00:00
https://huggingface.co/spaces/None/tree/main
apoorvsinghal
0
2025-09-15T14:13:15.242046+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
coldfirex
50
2025-09-15T16:19:49.617549+00:00
https://huggingface.co/spaces/coldfirex/Final_Assignment_Template/tree/main
theraykar
5
2025-09-15T16:24:51.736918+00:00
https://huggingface.co/spaces/None/tree/main
trebull
0
2025-09-15T16:50:50.794550+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
FaizRah
0
2025-09-15T17:18:54.737349+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
Rama3017
0
2025-09-15T19:05:23.574537+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
YousefAshraf
50
2025-09-15T19:30:29.414513+00:00
https://huggingface.co/spaces/YousefAshraf/Final_Assignment_Template/tree/main
JM1599
0
2025-09-15T20:37:07.442208+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
jsnmls
0
2025-09-15T20:57:25.360734+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
keylazy
0
2025-09-15T23:34:15.097506+00:00
https://huggingface.co/spaces/keylazy/HF_Agent_Final_Assignment/tree/main
groudas
40
2025-09-16T00:15:35.871338+00:00
https://huggingface.co/spaces/None/tree/main
your-hf-username
15
2025-09-16T04:52:24.917709+00:00
https://huggingface.co/spaces/None/tree/main
mt
5
2025-09-16T06:10:18.267170+00:00
https://huggingface.co
Agogaga
0
2025-09-16T06:34:57.552066+00:00
https://huggingface.co/spaces/Agogaga/Agents_Course_Final/tree/main
MajdT
30
2025-09-16T06:41:15.350396+00:00
https://local-run.example/this-is-a-dummy-agent-code-url-for-local-execution
AGiorni
35
2025-09-16T06:45:18.637116+00:00
https://huggingface.co/spaces/AGiorni/Final_Assignment_Template/tree/main
Vizagil
0
2025-09-16T11:22:21.005440+00:00
https://huggingface.co/spaces/Vizagil/Final_Assignment_Template/tree/main
Shorina
5
2025-09-16T12:47:28.882533+00:00
https://huggingface.co/spaces/Shorina/Final_Assignment_Template/tree/main
Tsantaris
0
2025-09-16T14:24:55.641253+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
rounaqnayak
100
2025-09-16T14:36:47.853683+00:00
https://huggingface.co/spaces/clokoihue/hf_agents_course_gaia_agent/tree/main
Mikrokot
35
2025-09-16T15:04:29.625054+00:00
https://huggingface.co/spaces/None/tree/main
HemanthMarisetti
0
2025-09-17T05:45:35.923691+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
haooozhe
0
2025-09-17T07:33:41.228145+00:00
https://huggingface.co/spaces/haooozhe/Final_Assignment_Template/tree/main
jaedgo
30
2025-09-17T07:50:05.265373+00:00
https://huggingface.co/spaces/jaedgo/Final_Assignment_Template/tree/main
Marvin12311
0
2025-09-17T08:05:01.506554+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
abdelrahmanwael2
0
2025-09-17T10:15:22.552195+00:00
https://huggingface.co/spaces/abdelrahmanwael2/Final_Assignment/tree/main
domin3
30
2025-09-17T11:52:11.336856+00:00
https://huggingface.co/spaces/domin3/agent_course/tree/main
Ali-Mones
0
2025-09-17T13:18:15.420549+00:00
https://huggingface.co/spaces/Ali-Mones/Final_Assignment_Template/tree/main
PureZinc
0
2025-09-17T13:43:05.673989+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
Petros1994
0
2025-09-17T14:38:09.600461+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
mohamed2003IX
20
2025-09-17T15:56:11.470777+00:00
https://huggingface.co/spaces/None/tree/main
floridaman29
0
2025-09-17T20:35:04.578281+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
nuricankazaz
0
2025-09-17T21:06:16.771500+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
lez82bell
0
2025-09-17T21:08:56.596437+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main
Ajeyprabhu
0
2025-09-18T06:03:15.701678+00:00
https://huggingface.co/spaces/agents-course/Final_Assignment_Template/tree/main