File size: 13,679 Bytes
2e865d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# import requests

from PIL import Image, ImageDraw, ImageFont
# from transformers import AutoProcessor, AutoModelForVision2Seq, Kosmos2ForConditionalGeneration, Kosmos2Config, Kosmos2Model, BitsAndBytesConfig, TrainingArguments
# from mse import mse
# import datasets
# from datasets import Features, Value, Sequence, load_dataset
# import pandas as pd
# import numpy as np
import torch
import os
# import glob
# import re
# import math
import random
# from jsonl2json import JsonlToJsonFormatter

import json
import csv
import shutil 


# from io import BytesIO
# from peft import LoraConfig
# from trl import SFTTrainer

class MSEDataset(torch.utils.data.Dataset):
    def __init__(self, data_path, images_path, split="train", shuffle=False):
        self.json_list = []
        with open(data_path, 'r') as json_file:
            self.json_list = [json.loads(jline) for jline in json_file.read().splitlines()]
        self.json_list = self.json_list[:64860]
        self.max_size = len(self.json_list)
        first_split_index = int(self.max_size * 0.9)
        second_split_index = first_split_index + int(self.max_size * 0.05)
        if split == "train":
            self.json_list = self.json_list[:first_split_index]
        elif split == "test":
            self.json_list = self.json_list[first_split_index:second_split_index]
        elif split == "eval":
            self.json_list = self.json_list[second_split_index:]
        else:
            print("Invalid Input")
        self.max_size = len(self.json_list)

        if shuffle:
            random.shuffle(self.json_list)
        
        self.images_path = images_path

        self.default_prompt = "<grounding> An image of a question which says "
        # print(len(json_list))
        # print(len(json_list[0]["answers"]))
        # print(json_list[0]["answers"][0]["score"])

    def __getitem__(self, idx):
        
        # question_id = self.json_list[idx]['id']
        # question_body = self.json_list[idx]['body']
        # prompt = self.default_prompt + question_body
        # question_image = None
        # question_dir = self.images_path + "/" + str(question_id) + "/"
        # question_path = question_dir + "question_0.jpg"
        # if os.path.exists(question_path):
        #     question_image = Image.open(question_path)
        # for answer in self.json_list[idx]['answers']:


        # item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
        # item['labels'] = torch.tensor(self.labels[idx])
        return self.json_list[idx]

    def __len__(self):
        return self.max_size

def convert_jsonl_to_json(input_jsonl_file, output_json_folder):
    # Ensure the output folder exists
    os.makedirs(output_json_folder, exist_ok=True)
    
    # Determine the output JSON filename
    base_name = os.path.splitext(os.path.basename(input_jsonl_file))[0]
    output_json_file = os.path.join(output_json_folder, base_name + '.json')
    
    # Read the JSONL file and aggregate the data
    data = []
    with open(input_jsonl_file, 'r') as jsonl_file:
        for line_number, line in enumerate(jsonl_file, start=1):
            line = line.strip()
            if not line:  # Skip empty lines
                continue
            try:
                data.append(json.loads(line))
            except json.JSONDecodeError as e:
                print(f"Error decoding JSON on line {line_number}: {e}")
                continue
    
    # Write to the JSON file
    with open(output_json_file, 'w') as json_file:
        json.dump(data, json_file, indent=4)
    
    print(f"Converted {input_jsonl_file} to {output_json_file}")

if __name__=="__main__":
    # 64860 lines converted: 90% (58374, index 0) train, 5% (3243, index 58374) val, 5% (3243, index 61617)

    # ds = datasets.load_dataset("nurik040404/mse", features=features)
    # jsonl = JsonlToJsonFormatter('dataset.jsonl', 'dataset.json')
    # jsonl.to_json()
    # df.to_json('mse_dataset.json')
    # train, eval, test = np.split(df.sample(frac=1, random_state=42), 
    #                    [int(.6*len(df)), int(.8*len(df))])
    # train.to_json('mse_dataset_train.json')
    # eval.to_json('mse_dataset_eval.json')
    # test.to_json('mse_dataset_test.json')

    

    # dataset_path = 'mse_dataset_test.json'

    # mse_dataset = MSEDataset(data_path="dataset.jsonl", images_path="mse_images", split="train")
    # print(mse_dataset[0])
    # print(mse_dataset[0]['answers'])
    # print(mse_dataset[0]['answers'][:]['score'])
    
    # print('Started train split')

    # with open('train.csv', 'w', newline='') as file:
    #     writer = csv.writer(file)
    #     field = ["question_id", "question_text", "question_image", "answer_id", "answer_text", "answer_image"]
    #     writer.writerow(field)
        # writer.writerow(["Oladele Damilola", "40", "Nigeria"])

    # for qas in mse_dataset:
    #     question_id = qas['id']
    #     question_text = qas['body']
    #     question_image = 'train_images/' + question_id + '/question_0.jpg'
    #     answers = qas['answers']

    #     source = 'mse_images/' + question_id
    #     destination = 'train_images/'
    #     if os.path.exists('train_images/' + question_id) is False:
    #         shutil.move(source, destination)
        
    #     max_score = None
        
    #     for answer in answers:
    #         if max_score == None:
    #             max_score = answer['score']
    #         if max_score > answer['score']:
    #             max_score = answer['score']

    #     for answer in answers:
    #         if answer['accepted'] or answer['score'] == max_score:
    #             writer.writerow([question_id, question_image, question_text, answer['id'], answer['body'], destination + question_id + '/' + answer['id'] + '_0.jpg'])

    print('Started train split')
    mse_dataset = MSEDataset(data_path="dataset.jsonl", images_path="mse_images", split="train")
    with open('train.csv', 'w', newline='') as file:
        writer = csv.writer(file, delimiter ="█", lineterminator="\u2063")
        field = ["question_id", "question_text", "question_image", "answer_id", "answer_text", "answer_image"]
        writer.writerow(field)
        # writer.writerow(["Oladele Damilola", "40", "Nigeria"])

        for qas in mse_dataset:
            question_id = qas['id']
            question_text = qas['body']
            question_image = 'train_images/' + question_id + '/question_0.jpg'
            answers = qas['answers']

            destination = 'train_images/'
            source = 'mse_images/' + question_id
            if os.path.exists('train_images/' + question_id) is False:
                shutil.move(source, destination)
            
            max_score = None
            for answer in answers:
                if max_score == None:
                    max_score = answer['score']
                if max_score > answer['score']:
                    max_score = answer['score']

            for answer in answers:
                if answer['accepted'] or answer['score'] == max_score:
                    writer.writerow([question_id, question_image, question_text, answer['id'], answer['body'], destination + question_id + '/' + answer['id'] + '_0.jpg'])
    

    print('Started test split')
    mse_dataset = MSEDataset(data_path="dataset.jsonl", images_path="mse_images", split="test")
    with open('test.csv', 'w', newline='') as file:
        writer = csv.writer(file, delimiter ="█", lineterminator="\u2063")
        field = ["question_id", "question_text", "question_image", "answer_id", "answer_text", "answer_image"]
        writer.writerow(field)
        # writer.writerow(["Oladele Damilola", "40", "Nigeria"])

        for qas in mse_dataset:
            question_id = qas['id']
            question_text = qas['body']
            question_image = 'test_images/' + question_id + '/question_0.jpg'
            answers = qas['answers']

            source = 'mse_images/' + question_id
            destination = 'test_images/'
            if os.path.exists('test_images/' + question_id) is False:
                shutil.move(source, destination)
            
            max_score = None
            for answer in answers:
                if max_score == None:
                    max_score = answer['score']
                if max_score > answer['score']:
                    max_score = answer['score']

            for answer in answers:
                if answer['accepted'] or answer['score'] == max_score:
                    writer.writerow([question_id, question_image, question_text, answer['id'], answer['body'], destination + question_id + '/' + answer['id'] + '_0.jpg'])
                

    print('Started val split')
    mse_dataset = MSEDataset(data_path="dataset.jsonl", images_path="mse_images", split="eval")
    with open('val.csv', 'w', newline='') as file:
        writer = csv.writer(file, delimiter ="█", lineterminator="\u2063")
        field = ["question_id", "question_text", "question_image", "answer_id", "answer_text", "answer_image"]
        writer.writerow(field)
        # writer.writerow(["Oladele Damilola", "40", "Nigeria"])

        for qas in mse_dataset:
            question_id = qas['id']
            question_text = qas['body']
            question_image = 'val_images/' + question_id + '/question_0.jpg'
            answers = qas['answers']

            source = 'mse_images/' + question_id
            destination = 'val_images/'
            if os.path.exists('val_images/' + question_id) is False:
                shutil.move(source, destination)
            
            max_score = None
            for answer in answers:
                if max_score == None:
                    max_score = answer['score']
                if max_score > answer['score']:
                    max_score = answer['score']

            for answer in answers:
                if answer['accepted'] or answer['score'] == max_score:
                    writer.writerow([question_id, question_image, question_text, answer['id'], answer['body'], destination + question_id + '/' + answer['id'] + '_0.jpg'])
    
    print('Finished generating dataset')

    # convert_jsonl_to_json("dataset.jsonl", "dataset.json")
    # Keys: "id", "body", "answers": "id", "body", "score", "accepted"
    

    # dataset_train = load_dataset("json", data_files="mse_dataset_train.json", split=None)
    # dataset_eval = load_dataset("json", data_files="mse_dataset.json", split=None)
    # dataset_test = load_dataset("json", data_files="mse_dataset_test.json", split=None)
    # print(dataset_eval.description)
    # dataset = load_dataset("json", data_files="dataset.json", split=None)

    # print(dataset)
    # df = pd.read_json(dataset_path)
    # df = df.drop(df.columns[[1, 2, 3, 5, 6, 9]], axis=1)
    # df.to_json(dataset_path)
    # mse_list = df.to_dict(orient='records')
    # print(df.columns)
    # print(df["body"])
    # print(df["answers"])
    # print(mse_list[0])

    # test_dataset = MSEDataset(data_path=dataset_path, images_path="mse_images/")
    # print(len(test_dataset))
    # print(test_dataset[0])

    # ds = load_dataset('json', data_files='dataset.jsonl')


    # dataset = load_dataset("TheFusion21/PokemonCards", split="train")
    # Dataset({
    #     features: ['id', 'image_url', 'caption', 'name', 'hp', 'set_name'],
    #     num_rows: 13139
    # })

    # # load image
    # example = dataset[1]
    # image_url = example["image_url"]
    # response = requests.get(image_url)
    # # Read the image from the response content
    # image = Image.open(BytesIO(response.content))
    # image
    # {'id': 'ex12-1',
    # 'image_url': 'https://images.pokemontcg.io/ex12/1_hires.png',
    # 'caption': "A Stage 1 Pokemon Card of type Colorless with the title Aerodactyl and 70 HP of rarity Rare Holo evolved from Mysterious Fossil from the set Legend Maker.  It has the attack Power Blow with the cost Colorless, the energy cost 1 and the damage of 10+ with the description: Does 10 damage plus 10 more damage for each Energy attached to Aerodactyl. It has the attack Speed Stroke with the cost Colorless, Colorless, Colorless, the energy cost 3 and the damage of 40 with the description: During your opponent's next turn, prevent all effects, including damage, done to Aerodactyl by attacks from your opponent's Pokemon-ex. It has the ability Reactive Protection with the description: Any damage done to Aerodactyl by attacks from your opponent's Pokemon is reduced by 10 for each React Energy card attached to Aerodactyl (after applying Weakness and Resistance). It has weakness against Lightning 2. It has resistance against Fighting -30. ",
    # 'name': 'Aerodactyl',
    # 'hp': 70,
    # 'set_name': 'Legend Maker'}

    # class Kosmos2DataCollator:
    #     def __init__(self, processor):
    #         self.processor = processor

    #     def __call__(self, examples):
    #         texts = []
    #         images = []
    #         bboxes = []
    #         for example in examples:
    #             texts.append(example['caption'])
    #             image_url = example["image_url"]
    #             images.append(Image.open(BytesIO(requests.get(image_url).content)))


    #         batch = self.processor(images = images, text = texts, return_tensors="pt", truncation= True, padding=True)

    #         labels = batch["input_ids"].clone()
    #         if self.processor.tokenizer.pad_token_id is not None:
    #             labels[labels == self.processor.tokenizer.pad_token_id] = -100
    #         batch["labels"] = labels

    #         return batch

    # data_collator = Kosmos2DataCollator(processor)