Zenos5 commited on
Commit
2e865d1
·
verified ·
1 Parent(s): 085677c

Upload dataset text and code

Browse files
.gitattributes CHANGED
@@ -57,3 +57,14 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ dataset.jsonl filter=lfs diff=lfs merge=lfs -text
61
+ mse_dataset_eval.json filter=lfs diff=lfs merge=lfs -text
62
+ mse_dataset_test.json filter=lfs diff=lfs merge=lfs -text
63
+ mse_dataset_train.json filter=lfs diff=lfs merge=lfs -text
64
+ mse_dataset.json filter=lfs diff=lfs merge=lfs -text
65
+ mse_llemma_dataset.jsonl filter=lfs diff=lfs merge=lfs -text
66
+ mse_llemma_text_dataset.jsonl filter=lfs diff=lfs merge=lfs -text
67
+ mse_text_img_QA_dataset.jsonl filter=lfs diff=lfs merge=lfs -text
68
+ mse_text_img_QA_ds_test.jsonl filter=lfs diff=lfs merge=lfs -text
69
+ mse_text_img_QA_ds_train.jsonl filter=lfs diff=lfs merge=lfs -text
70
+ mse_text_img_QA_ds_val.jsonl filter=lfs diff=lfs merge=lfs -text
before_run.sh ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # module load python/3.11
4
+ # pip install virtualenv
5
+
6
+ # python -m venv mse_env
7
+ # source ./mse_env/Scripts/activate
8
+ # pip3 install pnglatex
9
+ # pip3 install -r requirements.txt
10
+ # pip install unsloth
11
+
12
+ # pip3 install transformers datasets accelerate
13
+ # pip uninstall install llm-toolkit
14
+ # pip install -q -U transformers accelerate bitsandbytes seqeval evaluate trl peft
15
+ # pip3 install -q -U bitsandbytes==0.42.0
16
+ # pip3 install -q -U peft==0.8.2
17
+ # pip3 install -q -U trl==0.7.10
18
+ # pip3 install -q -U accelerate==0.27.1
19
+ # pip3 install -q -U datasets==2.17.0
20
+ # pip3 install -q -U transformers==4.38.0
21
+ # pip3 install zope.interface=e0n<
22
+ # pip3 install jsonl2json
23
+
24
+ # CONDA SETUP
25
+ # conda create -n gguf-finetune python=3.10 -y
26
+ # conda init
27
+ activate gguf-finetune
28
+ CMAKE_ARGS="-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DGGML_CUDA=on" \
29
+ pip install llama-cpp-python --upgrade
30
+
31
+ conda deactivate
convert_mse.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import os
3
+ import io
4
+ from PIL import Image
5
+
6
+ from pnglatex import pnglatex
7
+ from pdf2image import convert_from_path
8
+ import jsonlines
9
+ import json
10
+
11
+ import numpy as np
12
+
13
+ from pylatex import (
14
+ Alignat,
15
+ Axis,
16
+ Document,
17
+ Figure,
18
+ Math,
19
+ Matrix,
20
+ Plot,
21
+ Section,
22
+ Subsection,
23
+ Tabular,
24
+ TikZ,
25
+ )
26
+ from pylatex.utils import italic, NoEscape
27
+ from pylatex.package import Package
28
+
29
+ # Question, Answer, Raw_Score, Normalized_Score
30
+
31
+ def generate_pdf(latex, name, pre=True):
32
+ try:
33
+ doc = Document(default_filepath=name, geometry_options=geometry_options)
34
+ doc.packages.append(Package('amsmath'))
35
+ doc.packages.append(Package('graphicx'))
36
+ if pre:
37
+ doc.append(NoEscape(latex))
38
+ else:
39
+ is_text = True
40
+ while r"\$" in latex:
41
+ pos = latex.index(r"\$")
42
+ if is_text:
43
+ # print(latex[:pos])
44
+ doc.append(latex[:pos])
45
+ is_text = False
46
+ else:
47
+ # print("$" + latex[:pos] + "$")
48
+ doc.append(NoEscape("$" + latex[:pos] + "$"))
49
+ is_text = True
50
+ latex = latex[pos+2:]
51
+
52
+ doc.generate_pdf(name, clean=True, clean_tex=True, compiler="pdflatex", silent=True)
53
+ except:
54
+ print("pre-ran " + name)
55
+
56
+ def latex_to_image(latex, name):
57
+
58
+ while latex.index('\n') == 0:
59
+ latex = latex[1:]
60
+
61
+ generate_pdf(latex, name)
62
+ generate_pdf(latex, name, False)
63
+
64
+ images = convert_from_path(name + '.pdf')
65
+
66
+ for i in range(len(images)):
67
+ # Save pages as images in the pdf
68
+ images[i].save(name + '_' + str(i) + '.jpg', 'JPEG')
69
+
70
+ os.remove(name + ".pdf")
71
+
72
+ if __name__=="__main__":
73
+ print("STARTED")
74
+
75
+ geometry_options = {"tmargin": "1cm", "lmargin": "1cm", "rmargin": "1cm", "bmargin": "1cm"}
76
+
77
+ with jsonlines.open('dataset.jsonl') as reader_obj:
78
+ count = 0
79
+ for row in reader_obj.iter(type=dict, skip_invalid=True):
80
+ question_path = "output/" + row["id"]
81
+ if not os.path.exists(question_path):
82
+ os.makedirs(question_path)
83
+
84
+ # # Test first row
85
+ if count >= 27674:
86
+
87
+ # print(row)
88
+ # print(row["id"])
89
+ # print(row["score"])
90
+ # print(row["body"])
91
+ # print(row["answers"])
92
+ # print(row["answers"][0]["id"])
93
+ # print(row["answers"][0]["body"])
94
+ # print(row["answers"][0]["score"])
95
+ # print(row["answers"][0]["score"])
96
+
97
+ try:
98
+ latex_to_image(row["body"], question_path + "/question")
99
+ except:
100
+ print(count, question_path + "/question", " question could not generate")
101
+ for i in range(len(row["answers"])):
102
+ try:
103
+ latex_to_image(row["answers"][i]["body"], question_path + "/" + row["answers"][i]["id"])
104
+ except:
105
+ print(count, question_path + "/" + row["answers"][i]["id"], " answer could not generate")
106
+ print(count, question_path)
107
+ count += 1
108
+ print(count, end=" ")
dataset.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:becd5feb86d636c3d063300e9e6d8abb5f6c6d331933da9a6191ae2c5deab25e
3
+ size 1745622006
mse_dataset.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd00585e5699ced7af6f1facf3294db9181dd41f1bf5c7465d588a4ab0e4ad6f
3
+ size 238797612
mse_dataset_count.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import jsonlines
2
+
3
+ # import ollama
4
+
5
+ #ollama run Hudson/llemma:7b
6
+ #deepeval set-ollama Hudson/llemma:7b
7
+
8
+ if __name__=="__main__":
9
+ question_count = 0
10
+ answer_count = 0
11
+ avg_a_per_q = 0.0
12
+
13
+ with jsonlines.open("mse_text_img_QA_dataset.jsonl", mode='r') as reader:
14
+ count = 0
15
+ for row in reader:
16
+ question_count += 1
17
+ for i in range(len(row["answers"])):
18
+ answer_count += 1
19
+
20
+ avg_a_per_q = (answer_count * 1.0) / question_count
21
+
22
+ print("MSE Dataset:")
23
+ print("Number of Questions = ", question_count)
24
+ print("Number of Answers = ", answer_count)
25
+ print("Average number of Answers per Question = ", avg_a_per_q)
26
+
27
+
mse_dataset_eval.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c62f710b8f4d0575cea823c3cdd21dfb25001ea03dc4309b60ae56ea96a7bd6
3
+ size 41622977
mse_dataset_test.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ac89031ef505bb7c0c3db62318d939fa4b49546e1468f16284f0e16460001c2
3
+ size 42083070
mse_dataset_train.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80b85f83c9349ad9b86133561e653bcc669c47fe72b175af49f898b88fe6b81f
3
+ size 123926219
mse_jsonl_resize.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import jsonlines
2
+
3
+ if __name__=="__main__":
4
+ total_lines = 460729
5
+ num_img_lines = 64860
6
+ first_split_index = int(num_img_lines * 0.9)
7
+ second_split_index = first_split_index + int((num_img_lines) * 0.05)
8
+
9
+ print("Sizes of datasets:")
10
+ print("Train:", first_split_index, "\n90%")
11
+ print("Test:", second_split_index - first_split_index, "\n5%")
12
+ print("Val:", num_img_lines - second_split_index, "\n5%")
13
+
14
+ # with jsonlines.open("dataset.jsonl", mode='r') as reader:
15
+ # with jsonlines.open("mse_text_img_QA_dataset.jsonl", mode='w') as writer1:
16
+ # with jsonlines.open("mse_llemma_dataset.jsonl", mode='w') as writer2:
17
+ # count = 0
18
+ # for obj in reader:
19
+ # if count < num_img_lines:
20
+ # writer1.write(obj)
21
+ # else:
22
+ # writer2.write(obj)
23
+ # count = count + 1
24
+ # print(count)
25
+
26
+
27
+ # with jsonlines.open("mse_text_img_QA_dataset.jsonl", mode='r') as reader:
28
+ # with jsonlines.open("mse_text_img_QA_ds_train.jsonl", mode='w') as writer1:
29
+ # with jsonlines.open("mse_text_img_QA_ds_test.jsonl", mode='w') as writer2:
30
+ # with jsonlines.open("mse_text_img_QA_ds_val.jsonl", mode='w') as writer3:
31
+ # count = 0
32
+ # for obj in reader:
33
+ # if count < first_split_index:
34
+ # writer1.write(obj)
35
+ # elif count < second_split_index:
36
+ # writer2.write(obj)
37
+ # else:
38
+ # writer3.write(obj)
39
+ # count = count + 1
40
+
41
+ with jsonlines.open("mse_llemma_dataset.jsonl", mode='r') as reader:
42
+ with jsonlines.open("mse_llemma_text_dataset.jsonl", mode='w') as writer:
43
+ for obj in reader:
44
+ qa = "Question: " + obj["body"] + "\nAnswer: "
45
+ is_accepted = False
46
+ best_score = float('-inf')
47
+ output_text = ""
48
+ for i in range(len(obj["answers"])):
49
+ if bool(obj["answers"][i]["accepted"]) == True:
50
+ if is_accepted == False:
51
+ is_accepted = True
52
+ best_score = int(obj["answers"][i]["score"])
53
+ output_text = obj["answers"][i]["body"]
54
+ elif int(obj["answers"][i]["score"]) > best_score:
55
+ best_score = int(obj["answers"][i]["score"])
56
+ output_text = obj["answers"][i]["body"]
57
+ elif int(obj["answers"][i]["score"]) > best_score:
58
+ best_score = int(obj["answers"][i]["score"])
59
+ output_text = obj["answers"][i]["body"]
60
+ qa = qa + output_text
61
+ text_dict = {}
62
+ text_dict["text"] = qa
63
+ text_dict["meta"] = None
64
+ writer.write(text_dict)
65
+
mse_llemma_dataset.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79b7921ed377dfa9186788b0e12e470a514aedab9d6e8cab894bcd4626dcc503
3
+ size 1498029955
mse_llemma_text_dataset.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7efbc99b9dec9fdcb5e742f8e4bfb7c5c51500c1d6af876374ce398f986fd11d
3
+ size 732924307
mse_output_log.txt ADDED
The diff for this file is too large to render. See raw diff
 
mse_output_total_lines.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Number of lines = 460729
mse_text_img_QA_dataset.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2656446007c8faa6aa80e98be97ae4bda505298db160687280a17d61aada02c
3
+ size 245256472
mse_text_img_QA_dataset_stats.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ MSE Dataset:
2
+ Number of Questions = 64860
3
+ Number of Answers = 117380
4
+ Average number of Answers per Question = 1.8097440641381437
mse_text_img_QA_ds_test.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9565d457e0e63d0628ecd2d369c77f3e444edd1f6b5f44f400a94f76676fe5d4
3
+ size 12128980
mse_text_img_QA_ds_test_100.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
mse_text_img_QA_ds_train.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16e93ba1b8c4a69d473731417d5165a21bde55fed1198a202174de206e5ad5db
3
+ size 221280962
mse_text_img_QA_ds_val.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ae7837ef50c9a2484a2002e3ff50dbb06334e21b4a3c32f6eca6e012b1e0c80
3
+ size 11846530
mse_text_img_process.py ADDED
@@ -0,0 +1,320 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import requests
2
+
3
+ from PIL import Image, ImageDraw, ImageFont
4
+ # from transformers import AutoProcessor, AutoModelForVision2Seq, Kosmos2ForConditionalGeneration, Kosmos2Config, Kosmos2Model, BitsAndBytesConfig, TrainingArguments
5
+ # from mse import mse
6
+ # import datasets
7
+ # from datasets import Features, Value, Sequence, load_dataset
8
+ # import pandas as pd
9
+ # import numpy as np
10
+ import torch
11
+ import os
12
+ # import glob
13
+ # import re
14
+ # import math
15
+ import random
16
+ # from jsonl2json import JsonlToJsonFormatter
17
+
18
+ import json
19
+ import csv
20
+ import shutil
21
+
22
+
23
+ # from io import BytesIO
24
+ # from peft import LoraConfig
25
+ # from trl import SFTTrainer
26
+
27
+ class MSEDataset(torch.utils.data.Dataset):
28
+ def __init__(self, data_path, images_path, split="train", shuffle=False):
29
+ self.json_list = []
30
+ with open(data_path, 'r') as json_file:
31
+ self.json_list = [json.loads(jline) for jline in json_file.read().splitlines()]
32
+ self.json_list = self.json_list[:64860]
33
+ self.max_size = len(self.json_list)
34
+ first_split_index = int(self.max_size * 0.9)
35
+ second_split_index = first_split_index + int(self.max_size * 0.05)
36
+ if split == "train":
37
+ self.json_list = self.json_list[:first_split_index]
38
+ elif split == "test":
39
+ self.json_list = self.json_list[first_split_index:second_split_index]
40
+ elif split == "eval":
41
+ self.json_list = self.json_list[second_split_index:]
42
+ else:
43
+ print("Invalid Input")
44
+ self.max_size = len(self.json_list)
45
+
46
+ if shuffle:
47
+ random.shuffle(self.json_list)
48
+
49
+ self.images_path = images_path
50
+
51
+ self.default_prompt = "<grounding> An image of a question which says "
52
+ # print(len(json_list))
53
+ # print(len(json_list[0]["answers"]))
54
+ # print(json_list[0]["answers"][0]["score"])
55
+
56
+ def __getitem__(self, idx):
57
+
58
+ # question_id = self.json_list[idx]['id']
59
+ # question_body = self.json_list[idx]['body']
60
+ # prompt = self.default_prompt + question_body
61
+ # question_image = None
62
+ # question_dir = self.images_path + "/" + str(question_id) + "/"
63
+ # question_path = question_dir + "question_0.jpg"
64
+ # if os.path.exists(question_path):
65
+ # question_image = Image.open(question_path)
66
+ # for answer in self.json_list[idx]['answers']:
67
+
68
+
69
+ # item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
70
+ # item['labels'] = torch.tensor(self.labels[idx])
71
+ return self.json_list[idx]
72
+
73
+ def __len__(self):
74
+ return self.max_size
75
+
76
+ def convert_jsonl_to_json(input_jsonl_file, output_json_folder):
77
+ # Ensure the output folder exists
78
+ os.makedirs(output_json_folder, exist_ok=True)
79
+
80
+ # Determine the output JSON filename
81
+ base_name = os.path.splitext(os.path.basename(input_jsonl_file))[0]
82
+ output_json_file = os.path.join(output_json_folder, base_name + '.json')
83
+
84
+ # Read the JSONL file and aggregate the data
85
+ data = []
86
+ with open(input_jsonl_file, 'r') as jsonl_file:
87
+ for line_number, line in enumerate(jsonl_file, start=1):
88
+ line = line.strip()
89
+ if not line: # Skip empty lines
90
+ continue
91
+ try:
92
+ data.append(json.loads(line))
93
+ except json.JSONDecodeError as e:
94
+ print(f"Error decoding JSON on line {line_number}: {e}")
95
+ continue
96
+
97
+ # Write to the JSON file
98
+ with open(output_json_file, 'w') as json_file:
99
+ json.dump(data, json_file, indent=4)
100
+
101
+ print(f"Converted {input_jsonl_file} to {output_json_file}")
102
+
103
+ if __name__=="__main__":
104
+ # 64860 lines converted: 90% (58374, index 0) train, 5% (3243, index 58374) val, 5% (3243, index 61617)
105
+
106
+ # ds = datasets.load_dataset("nurik040404/mse", features=features)
107
+ # jsonl = JsonlToJsonFormatter('dataset.jsonl', 'dataset.json')
108
+ # jsonl.to_json()
109
+ # df.to_json('mse_dataset.json')
110
+ # train, eval, test = np.split(df.sample(frac=1, random_state=42),
111
+ # [int(.6*len(df)), int(.8*len(df))])
112
+ # train.to_json('mse_dataset_train.json')
113
+ # eval.to_json('mse_dataset_eval.json')
114
+ # test.to_json('mse_dataset_test.json')
115
+
116
+
117
+
118
+ # dataset_path = 'mse_dataset_test.json'
119
+
120
+ # mse_dataset = MSEDataset(data_path="dataset.jsonl", images_path="mse_images", split="train")
121
+ # print(mse_dataset[0])
122
+ # print(mse_dataset[0]['answers'])
123
+ # print(mse_dataset[0]['answers'][:]['score'])
124
+
125
+ # print('Started train split')
126
+
127
+ # with open('train.csv', 'w', newline='') as file:
128
+ # writer = csv.writer(file)
129
+ # field = ["question_id", "question_text", "question_image", "answer_id", "answer_text", "answer_image"]
130
+ # writer.writerow(field)
131
+ # writer.writerow(["Oladele Damilola", "40", "Nigeria"])
132
+
133
+ # for qas in mse_dataset:
134
+ # question_id = qas['id']
135
+ # question_text = qas['body']
136
+ # question_image = 'train_images/' + question_id + '/question_0.jpg'
137
+ # answers = qas['answers']
138
+
139
+ # source = 'mse_images/' + question_id
140
+ # destination = 'train_images/'
141
+ # if os.path.exists('train_images/' + question_id) is False:
142
+ # shutil.move(source, destination)
143
+
144
+ # max_score = None
145
+
146
+ # for answer in answers:
147
+ # if max_score == None:
148
+ # max_score = answer['score']
149
+ # if max_score > answer['score']:
150
+ # max_score = answer['score']
151
+
152
+ # for answer in answers:
153
+ # if answer['accepted'] or answer['score'] == max_score:
154
+ # writer.writerow([question_id, question_image, question_text, answer['id'], answer['body'], destination + question_id + '/' + answer['id'] + '_0.jpg'])
155
+
156
+ print('Started train split')
157
+ mse_dataset = MSEDataset(data_path="dataset.jsonl", images_path="mse_images", split="train")
158
+ with open('train.csv', 'w', newline='') as file:
159
+ writer = csv.writer(file, delimiter ="█", lineterminator="\u2063")
160
+ field = ["question_id", "question_text", "question_image", "answer_id", "answer_text", "answer_image"]
161
+ writer.writerow(field)
162
+ # writer.writerow(["Oladele Damilola", "40", "Nigeria"])
163
+
164
+ for qas in mse_dataset:
165
+ question_id = qas['id']
166
+ question_text = qas['body']
167
+ question_image = 'train_images/' + question_id + '/question_0.jpg'
168
+ answers = qas['answers']
169
+
170
+ destination = 'train_images/'
171
+ source = 'mse_images/' + question_id
172
+ if os.path.exists('train_images/' + question_id) is False:
173
+ shutil.move(source, destination)
174
+
175
+ max_score = None
176
+ for answer in answers:
177
+ if max_score == None:
178
+ max_score = answer['score']
179
+ if max_score > answer['score']:
180
+ max_score = answer['score']
181
+
182
+ for answer in answers:
183
+ if answer['accepted'] or answer['score'] == max_score:
184
+ writer.writerow([question_id, question_image, question_text, answer['id'], answer['body'], destination + question_id + '/' + answer['id'] + '_0.jpg'])
185
+
186
+
187
+ print('Started test split')
188
+ mse_dataset = MSEDataset(data_path="dataset.jsonl", images_path="mse_images", split="test")
189
+ with open('test.csv', 'w', newline='') as file:
190
+ writer = csv.writer(file, delimiter ="█", lineterminator="\u2063")
191
+ field = ["question_id", "question_text", "question_image", "answer_id", "answer_text", "answer_image"]
192
+ writer.writerow(field)
193
+ # writer.writerow(["Oladele Damilola", "40", "Nigeria"])
194
+
195
+ for qas in mse_dataset:
196
+ question_id = qas['id']
197
+ question_text = qas['body']
198
+ question_image = 'test_images/' + question_id + '/question_0.jpg'
199
+ answers = qas['answers']
200
+
201
+ source = 'mse_images/' + question_id
202
+ destination = 'test_images/'
203
+ if os.path.exists('test_images/' + question_id) is False:
204
+ shutil.move(source, destination)
205
+
206
+ max_score = None
207
+ for answer in answers:
208
+ if max_score == None:
209
+ max_score = answer['score']
210
+ if max_score > answer['score']:
211
+ max_score = answer['score']
212
+
213
+ for answer in answers:
214
+ if answer['accepted'] or answer['score'] == max_score:
215
+ writer.writerow([question_id, question_image, question_text, answer['id'], answer['body'], destination + question_id + '/' + answer['id'] + '_0.jpg'])
216
+
217
+
218
+ print('Started val split')
219
+ mse_dataset = MSEDataset(data_path="dataset.jsonl", images_path="mse_images", split="eval")
220
+ with open('val.csv', 'w', newline='') as file:
221
+ writer = csv.writer(file, delimiter ="█", lineterminator="\u2063")
222
+ field = ["question_id", "question_text", "question_image", "answer_id", "answer_text", "answer_image"]
223
+ writer.writerow(field)
224
+ # writer.writerow(["Oladele Damilola", "40", "Nigeria"])
225
+
226
+ for qas in mse_dataset:
227
+ question_id = qas['id']
228
+ question_text = qas['body']
229
+ question_image = 'val_images/' + question_id + '/question_0.jpg'
230
+ answers = qas['answers']
231
+
232
+ source = 'mse_images/' + question_id
233
+ destination = 'val_images/'
234
+ if os.path.exists('val_images/' + question_id) is False:
235
+ shutil.move(source, destination)
236
+
237
+ max_score = None
238
+ for answer in answers:
239
+ if max_score == None:
240
+ max_score = answer['score']
241
+ if max_score > answer['score']:
242
+ max_score = answer['score']
243
+
244
+ for answer in answers:
245
+ if answer['accepted'] or answer['score'] == max_score:
246
+ writer.writerow([question_id, question_image, question_text, answer['id'], answer['body'], destination + question_id + '/' + answer['id'] + '_0.jpg'])
247
+
248
+ print('Finished generating dataset')
249
+
250
+ # convert_jsonl_to_json("dataset.jsonl", "dataset.json")
251
+ # Keys: "id", "body", "answers": "id", "body", "score", "accepted"
252
+
253
+
254
+ # dataset_train = load_dataset("json", data_files="mse_dataset_train.json", split=None)
255
+ # dataset_eval = load_dataset("json", data_files="mse_dataset.json", split=None)
256
+ # dataset_test = load_dataset("json", data_files="mse_dataset_test.json", split=None)
257
+ # print(dataset_eval.description)
258
+ # dataset = load_dataset("json", data_files="dataset.json", split=None)
259
+
260
+ # print(dataset)
261
+ # df = pd.read_json(dataset_path)
262
+ # df = df.drop(df.columns[[1, 2, 3, 5, 6, 9]], axis=1)
263
+ # df.to_json(dataset_path)
264
+ # mse_list = df.to_dict(orient='records')
265
+ # print(df.columns)
266
+ # print(df["body"])
267
+ # print(df["answers"])
268
+ # print(mse_list[0])
269
+
270
+ # test_dataset = MSEDataset(data_path=dataset_path, images_path="mse_images/")
271
+ # print(len(test_dataset))
272
+ # print(test_dataset[0])
273
+
274
+ # ds = load_dataset('json', data_files='dataset.jsonl')
275
+
276
+
277
+ # dataset = load_dataset("TheFusion21/PokemonCards", split="train")
278
+ # Dataset({
279
+ # features: ['id', 'image_url', 'caption', 'name', 'hp', 'set_name'],
280
+ # num_rows: 13139
281
+ # })
282
+
283
+ # # load image
284
+ # example = dataset[1]
285
+ # image_url = example["image_url"]
286
+ # response = requests.get(image_url)
287
+ # # Read the image from the response content
288
+ # image = Image.open(BytesIO(response.content))
289
+ # image
290
+ # {'id': 'ex12-1',
291
+ # 'image_url': 'https://images.pokemontcg.io/ex12/1_hires.png',
292
+ # 'caption': "A Stage 1 Pokemon Card of type Colorless with the title Aerodactyl and 70 HP of rarity Rare Holo evolved from Mysterious Fossil from the set Legend Maker. It has the attack Power Blow with the cost Colorless, the energy cost 1 and the damage of 10+ with the description: Does 10 damage plus 10 more damage for each Energy attached to Aerodactyl. It has the attack Speed Stroke with the cost Colorless, Colorless, Colorless, the energy cost 3 and the damage of 40 with the description: During your opponent's next turn, prevent all effects, including damage, done to Aerodactyl by attacks from your opponent's Pokemon-ex. It has the ability Reactive Protection with the description: Any damage done to Aerodactyl by attacks from your opponent's Pokemon is reduced by 10 for each React Energy card attached to Aerodactyl (after applying Weakness and Resistance). It has weakness against Lightning 2. It has resistance against Fighting -30. ",
293
+ # 'name': 'Aerodactyl',
294
+ # 'hp': 70,
295
+ # 'set_name': 'Legend Maker'}
296
+
297
+ # class Kosmos2DataCollator:
298
+ # def __init__(self, processor):
299
+ # self.processor = processor
300
+
301
+ # def __call__(self, examples):
302
+ # texts = []
303
+ # images = []
304
+ # bboxes = []
305
+ # for example in examples:
306
+ # texts.append(example['caption'])
307
+ # image_url = example["image_url"]
308
+ # images.append(Image.open(BytesIO(requests.get(image_url).content)))
309
+
310
+
311
+ # batch = self.processor(images = images, text = texts, return_tensors="pt", truncation= True, padding=True)
312
+
313
+ # labels = batch["input_ids"].clone()
314
+ # if self.processor.tokenizer.pad_token_id is not None:
315
+ # labels[labels == self.processor.tokenizer.pad_token_id] = -100
316
+ # batch["labels"] = labels
317
+
318
+ # return batch
319
+
320
+ # data_collator = Kosmos2DataCollator(processor)
process_mse_data.sh ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ #SBATCH --time=1:00:00 # walltime. hours:minutes:seconds
4
+ #SBATCH --ntasks=8 # number of processor cores (i.e. tasks)
5
+ #SBATCH --nodes=1 # number of nodes
6
+ #SBATCH --gpus=1
7
+ #SBATCH --mem=80G # 164G memory per CPU core
8
+ #SBATCH [email protected] # email address
9
+ #SBATCH --mail-type=BEGIN
10
+ #SBATCH --mail-type=END
11
+ #SBATCH --mail-type=FAIL
12
+ #SBATCH --qos=cs
13
+ #SBATCH --partition=cs
14
+
15
+ # some helpful debugging options
16
+ set -e
17
+ set -u
18
+
19
+ # LOAD MODULES, INSERT CODE, AND RUN YOUR PROGRAMS HERE
20
+ # module load python/3.11
21
+
22
+ source ./mse_env/Scripts/activate
23
+
24
+ # python mse_text_img_process.py
25
+ # python convert_mse.py
26
+
27
+ # pip install jsonlines
28
+ # pip install deepeval
29
+
30
+ NUM_TEST_CASES=100
31
+
32
+ # python mse_ollama_run.py --num $NUM_TEST_CASES --test f --shot 0 --out_file metric_test_orig_100_f.txt
33
+ # echo "Test case faithfulness finished"
34
+
35
+ NUM_SHOT=1
36
+
37
+ # deepeval set-local-model --model-name Hudson/llemma:7b
38
+ # deepeval set-ollama Hudson/llemma:7b
39
+ # python mse_ollama_run.py --num $NUM_TEST_CASES --test ar --shot $NUM_SHOT --out_file metric_test_1_shot_100_ar.txt
40
+ # echo "Test case answer relevancy finished"
41
+ python mse_ollama_run.py --num $NUM_TEST_CASES --test crec --shot $NUM_SHOT --out_file metric_test_1_shot_100_crec.txt
42
+ echo "Test case contexual recall finished"
43
+ python mse_ollama_run.py --num $NUM_TEST_CASES --test cp --shot $NUM_SHOT --out_file metric_test_1_shot_100_cp.txt
44
+ echo "Test case contextual precision finished"
45
+
46
+
47
+ NUM_SHOT=5
48
+ python mse_ollama_run.py --num $NUM_TEST_CASES --test ar --shot $NUM_SHOT --out_file metric_test_5_shot_100_ar.txt
49
+ echo "Test case answer relevancy finished"
50
+ python mse_ollama_run.py --num $NUM_TEST_CASES --test crec --shot $NUM_SHOT --out_file metric_test_5_shot_100_crec.txt
51
+ echo "Test case contexual recall finished"
52
+ python mse_ollama_run.py --num $NUM_TEST_CASES --test cp --shot $NUM_SHOT --out_file metric_test_5_shot_100_cp.txt
53
+ echo "Test case contextual precision finished"
54
+
55
+
56
+ NUM_SHOT=10
57
+ python mse_ollama_run.py --num $NUM_TEST_CASES --test ar --shot $NUM_SHOT --out_file metric_test_10_shot_100_ar.txt
58
+ echo "Test case answer relevancy finished"
59
+ python mse_ollama_run.py --num $NUM_TEST_CASES --test crec --shot $NUM_SHOT --out_file metric_test_10_shot_100_crec.txt
60
+ echo "Test case contexual recall finished"
61
+ python mse_ollama_run.py --num $NUM_TEST_CASES --test cp --shot $NUM_SHOT --out_file metric_test_10_shot_100_cp.txt
62
+ echo "Test case contextual precision finished"
63
+
64
+
65
+
66
+ # python mse_ollama_run.py --num $NUM_TEST_CASES --test crel --out_file metric_test_orig_100_crel.txt
67
+ # echo "Test case contextual relevancy finished"
68
+
69
+
70
+ # python mse_ollama_run.py --num $NUM_TEST_CASES --test f --out_file metric_test_orig_100_f.txt
71
+ # echo "Test case faithfulness finished"
72
+
73
+ # python mse_jsonl_resize.py
74
+
75
+ # python finetune.py
requirements.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ numpy
2
+ matplotlib
3
+ scipy
4
+ sentencepiece
5
+ protobuf
6
+ torch
7
+ gradio
8
+ torchvision
9
+ opencv-python-headless
10
+ tensorboardX
11
+ transformers
12
+ datasets
13
+ pylatex
14
+ pnglatex
15
+ zstandard
16
+ jsonlines
17
+ pyramid==1.5
18
+ deepeval
19
+ ollama
20
+ jsonlines
stats_mse_text_img_QA_ds.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ Sizes of datasets:
2
+ Train: 58374
3
+ 90%
4
+ Test: 3243
5
+ 5%
6
+ Val: 3243
7
+ 5%