Datasets:

Formats:
text
ArXiv:
Libraries:
Datasets
protenix / tests /test_utils.py
Yimingbear's picture
Upload folder using huggingface_hub
2872543 verified
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import unittest
import torch
import torch.nn.functional as F
from protenix.model.utils import (
aggregate_atom_to_token,
broadcast_token_to_atom,
centre_random_augmentation,
expand_at_dim,
move_final_dim_to_dim,
pad_at_dim,
reshape_at_dim,
)
class TestUtils(unittest.TestCase):
def setUp(self):
self._start_time = time.time()
return super().setUp()
def test_reshape_at_dim(self):
x = torch.rand([1, 3 * 4, 5, 2 * 5 * 7, 9])
x_reshape = reshape_at_dim(x, dim=1, target_shape=(3, 4))
x_rs = x.reshape([1, 3, 4, 5, 2 * 5 * 7, 9])
self.assertTrue(torch.allclose(x_reshape, x_rs))
x_reshape = reshape_at_dim(x, dim=-2, target_shape=(5, 2, 7))
x_rs = x.reshape([1, 3 * 4, 5, 5, 2, 7, 9])
self.assertTrue(torch.allclose(x_reshape, x_rs))
def test_move_final_dim_to_dim(self):
x = torch.rand([3, 2, 4, 5, 3, 7])
x_perm = x.permute(0, 1, 2, 3, 5, 4)
self.assertTrue(torch.allclose(move_final_dim_to_dim(x, dim=-2), x_perm))
x_perm = x.permute(0, 1, 2, 3, 4, 5)
self.assertTrue(torch.allclose(move_final_dim_to_dim(x, dim=-1), x_perm))
x_perm = x.permute(5, 0, 1, 2, 3, 4)
self.assertTrue(torch.allclose(move_final_dim_to_dim(x, dim=0), x_perm))
x_perm = x.permute(0, 1, 5, 2, 3, 4)
self.assertTrue(torch.allclose(move_final_dim_to_dim(x, dim=2), x_perm))
def test_pad_at_dim(self):
x = torch.rand([3, 2, 4, 5, 3, 7])
x_pad = F.pad(x, (0, 0, 1, 2))
self.assertTrue(torch.allclose(pad_at_dim(x, dim=-2, pad_length=(1, 2)), x_pad))
x_pad = F.pad(x, (0, 0, 0, 0, 3, 5))
self.assertTrue(torch.allclose(pad_at_dim(x, dim=-3, pad_length=(3, 5)), x_pad))
def test_aggregate_atom_to_token(self):
# value check
N_atom = 10
n_token = 3
x_atom = torch.ones([10, N_atom, 3])
atom_to_token_idx = torch.Tensor([0, 0, 0, 0, 1, 1, 1, 1, 2, 2]).long()
out = aggregate_atom_to_token(
x_atom=x_atom,
atom_to_token_idx=atom_to_token_idx,
n_token=n_token,
reduce="sum",
)
self.assertTrue(torch.equal(torch.unique(out), torch.tensor([2, 4])))
out = aggregate_atom_to_token(
x_atom=x_atom,
atom_to_token_idx=atom_to_token_idx,
n_token=n_token,
reduce="mean",
)
self.assertTrue(torch.equal(torch.unique(out), torch.tensor([1])))
# batch shape check
# it support batch mode
x_atom = torch.ones([N_atom, 3])
x_atom = expand_at_dim(x_atom, dim=0, n=2)
atom_to_token_idx = expand_at_dim(atom_to_token_idx, dim=0, n=2)
out = aggregate_atom_to_token(
x_atom=x_atom,
atom_to_token_idx=atom_to_token_idx,
n_token=n_token,
reduce="sum",
)
self.assertTrue(torch.equal(torch.unique(out), torch.tensor([2, 4])))
def test_broadcast_token_to_atom(self):
N_token = 3
x_token = torch.zeros([10, N_token, 3])
for i in range(N_token):
x_token[:, i, :] = i
atom_to_token_idx = torch.Tensor([0, 0, 0, 0, 1, 1, 1, 1, 2, 2]).long()
out = broadcast_token_to_atom(
x_token=x_token, atom_to_token_idx=atom_to_token_idx
)
# value check
self.assertTrue(torch.all(out[:, :4, :].eq(0)))
self.assertTrue(torch.all(out[:, 4:8, :].eq(1)))
self.assertTrue(torch.all(out[:, 8:, :].eq(2)))
# batch mode check
x_token = expand_at_dim(x_token, 0, 2)
atom_to_token_idx = expand_at_dim(atom_to_token_idx, 0, 2)
self.assertTrue(torch.all(out[..., :4, :].eq(0)))
self.assertTrue(torch.all(out[..., 4:8, :].eq(1)))
self.assertTrue(torch.all(out[..., 8:, :].eq(2)))
# also it does not support an extra N sample dim after batch dim
def test_centre_random_augmentation(self):
bs_dims = (4, 3, 2)
N_atom = 7
N_sample = 8
x = torch.rand(size=(*bs_dims, N_atom, 3))
out = centre_random_augmentation(x_input_coords=x, N_sample=N_sample)
# shape check
self.assertEqual(out.shape, torch.Size((*bs_dims, N_sample, N_atom, 3)))
def tearDown(self):
elapsed_time = time.time() - self._start_time
print(f"Test {self.id()} took {elapsed_time:.6f}s")
if __name__ == "__main__":
unittest.main()