|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import time |
|
import unittest |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from protenix.model.utils import ( |
|
aggregate_atom_to_token, |
|
broadcast_token_to_atom, |
|
centre_random_augmentation, |
|
expand_at_dim, |
|
move_final_dim_to_dim, |
|
pad_at_dim, |
|
reshape_at_dim, |
|
) |
|
|
|
|
|
class TestUtils(unittest.TestCase): |
|
def setUp(self): |
|
self._start_time = time.time() |
|
return super().setUp() |
|
|
|
def test_reshape_at_dim(self): |
|
x = torch.rand([1, 3 * 4, 5, 2 * 5 * 7, 9]) |
|
x_reshape = reshape_at_dim(x, dim=1, target_shape=(3, 4)) |
|
x_rs = x.reshape([1, 3, 4, 5, 2 * 5 * 7, 9]) |
|
self.assertTrue(torch.allclose(x_reshape, x_rs)) |
|
|
|
x_reshape = reshape_at_dim(x, dim=-2, target_shape=(5, 2, 7)) |
|
x_rs = x.reshape([1, 3 * 4, 5, 5, 2, 7, 9]) |
|
self.assertTrue(torch.allclose(x_reshape, x_rs)) |
|
|
|
def test_move_final_dim_to_dim(self): |
|
x = torch.rand([3, 2, 4, 5, 3, 7]) |
|
x_perm = x.permute(0, 1, 2, 3, 5, 4) |
|
self.assertTrue(torch.allclose(move_final_dim_to_dim(x, dim=-2), x_perm)) |
|
x_perm = x.permute(0, 1, 2, 3, 4, 5) |
|
self.assertTrue(torch.allclose(move_final_dim_to_dim(x, dim=-1), x_perm)) |
|
x_perm = x.permute(5, 0, 1, 2, 3, 4) |
|
self.assertTrue(torch.allclose(move_final_dim_to_dim(x, dim=0), x_perm)) |
|
x_perm = x.permute(0, 1, 5, 2, 3, 4) |
|
self.assertTrue(torch.allclose(move_final_dim_to_dim(x, dim=2), x_perm)) |
|
|
|
def test_pad_at_dim(self): |
|
x = torch.rand([3, 2, 4, 5, 3, 7]) |
|
x_pad = F.pad(x, (0, 0, 1, 2)) |
|
self.assertTrue(torch.allclose(pad_at_dim(x, dim=-2, pad_length=(1, 2)), x_pad)) |
|
|
|
x_pad = F.pad(x, (0, 0, 0, 0, 3, 5)) |
|
self.assertTrue(torch.allclose(pad_at_dim(x, dim=-3, pad_length=(3, 5)), x_pad)) |
|
|
|
def test_aggregate_atom_to_token(self): |
|
|
|
N_atom = 10 |
|
n_token = 3 |
|
x_atom = torch.ones([10, N_atom, 3]) |
|
atom_to_token_idx = torch.Tensor([0, 0, 0, 0, 1, 1, 1, 1, 2, 2]).long() |
|
out = aggregate_atom_to_token( |
|
x_atom=x_atom, |
|
atom_to_token_idx=atom_to_token_idx, |
|
n_token=n_token, |
|
reduce="sum", |
|
) |
|
self.assertTrue(torch.equal(torch.unique(out), torch.tensor([2, 4]))) |
|
out = aggregate_atom_to_token( |
|
x_atom=x_atom, |
|
atom_to_token_idx=atom_to_token_idx, |
|
n_token=n_token, |
|
reduce="mean", |
|
) |
|
self.assertTrue(torch.equal(torch.unique(out), torch.tensor([1]))) |
|
|
|
|
|
x_atom = torch.ones([N_atom, 3]) |
|
x_atom = expand_at_dim(x_atom, dim=0, n=2) |
|
atom_to_token_idx = expand_at_dim(atom_to_token_idx, dim=0, n=2) |
|
out = aggregate_atom_to_token( |
|
x_atom=x_atom, |
|
atom_to_token_idx=atom_to_token_idx, |
|
n_token=n_token, |
|
reduce="sum", |
|
) |
|
self.assertTrue(torch.equal(torch.unique(out), torch.tensor([2, 4]))) |
|
|
|
def test_broadcast_token_to_atom(self): |
|
N_token = 3 |
|
x_token = torch.zeros([10, N_token, 3]) |
|
for i in range(N_token): |
|
x_token[:, i, :] = i |
|
atom_to_token_idx = torch.Tensor([0, 0, 0, 0, 1, 1, 1, 1, 2, 2]).long() |
|
out = broadcast_token_to_atom( |
|
x_token=x_token, atom_to_token_idx=atom_to_token_idx |
|
) |
|
|
|
self.assertTrue(torch.all(out[:, :4, :].eq(0))) |
|
self.assertTrue(torch.all(out[:, 4:8, :].eq(1))) |
|
self.assertTrue(torch.all(out[:, 8:, :].eq(2))) |
|
|
|
x_token = expand_at_dim(x_token, 0, 2) |
|
atom_to_token_idx = expand_at_dim(atom_to_token_idx, 0, 2) |
|
self.assertTrue(torch.all(out[..., :4, :].eq(0))) |
|
self.assertTrue(torch.all(out[..., 4:8, :].eq(1))) |
|
self.assertTrue(torch.all(out[..., 8:, :].eq(2))) |
|
|
|
|
|
def test_centre_random_augmentation(self): |
|
bs_dims = (4, 3, 2) |
|
N_atom = 7 |
|
N_sample = 8 |
|
|
|
x = torch.rand(size=(*bs_dims, N_atom, 3)) |
|
out = centre_random_augmentation(x_input_coords=x, N_sample=N_sample) |
|
|
|
self.assertEqual(out.shape, torch.Size((*bs_dims, N_sample, N_atom, 3))) |
|
|
|
def tearDown(self): |
|
elapsed_time = time.time() - self._start_time |
|
print(f"Test {self.id()} took {elapsed_time:.6f}s") |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|