Datasets:

Formats:
text
ArXiv:
Libraries:
Datasets
File size: 5,104 Bytes
2872543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import unittest

import torch
import torch.nn.functional as F

from protenix.model.utils import (
    aggregate_atom_to_token,
    broadcast_token_to_atom,
    centre_random_augmentation,
    expand_at_dim,
    move_final_dim_to_dim,
    pad_at_dim,
    reshape_at_dim,
)


class TestUtils(unittest.TestCase):
    def setUp(self):
        self._start_time = time.time()
        return super().setUp()

    def test_reshape_at_dim(self):
        x = torch.rand([1, 3 * 4, 5, 2 * 5 * 7, 9])
        x_reshape = reshape_at_dim(x, dim=1, target_shape=(3, 4))
        x_rs = x.reshape([1, 3, 4, 5, 2 * 5 * 7, 9])
        self.assertTrue(torch.allclose(x_reshape, x_rs))

        x_reshape = reshape_at_dim(x, dim=-2, target_shape=(5, 2, 7))
        x_rs = x.reshape([1, 3 * 4, 5, 5, 2, 7, 9])
        self.assertTrue(torch.allclose(x_reshape, x_rs))

    def test_move_final_dim_to_dim(self):
        x = torch.rand([3, 2, 4, 5, 3, 7])
        x_perm = x.permute(0, 1, 2, 3, 5, 4)
        self.assertTrue(torch.allclose(move_final_dim_to_dim(x, dim=-2), x_perm))
        x_perm = x.permute(0, 1, 2, 3, 4, 5)
        self.assertTrue(torch.allclose(move_final_dim_to_dim(x, dim=-1), x_perm))
        x_perm = x.permute(5, 0, 1, 2, 3, 4)
        self.assertTrue(torch.allclose(move_final_dim_to_dim(x, dim=0), x_perm))
        x_perm = x.permute(0, 1, 5, 2, 3, 4)
        self.assertTrue(torch.allclose(move_final_dim_to_dim(x, dim=2), x_perm))

    def test_pad_at_dim(self):
        x = torch.rand([3, 2, 4, 5, 3, 7])
        x_pad = F.pad(x, (0, 0, 1, 2))
        self.assertTrue(torch.allclose(pad_at_dim(x, dim=-2, pad_length=(1, 2)), x_pad))

        x_pad = F.pad(x, (0, 0, 0, 0, 3, 5))
        self.assertTrue(torch.allclose(pad_at_dim(x, dim=-3, pad_length=(3, 5)), x_pad))

    def test_aggregate_atom_to_token(self):
        # value check
        N_atom = 10
        n_token = 3
        x_atom = torch.ones([10, N_atom, 3])
        atom_to_token_idx = torch.Tensor([0, 0, 0, 0, 1, 1, 1, 1, 2, 2]).long()
        out = aggregate_atom_to_token(
            x_atom=x_atom,
            atom_to_token_idx=atom_to_token_idx,
            n_token=n_token,
            reduce="sum",
        )
        self.assertTrue(torch.equal(torch.unique(out), torch.tensor([2, 4])))
        out = aggregate_atom_to_token(
            x_atom=x_atom,
            atom_to_token_idx=atom_to_token_idx,
            n_token=n_token,
            reduce="mean",
        )
        self.assertTrue(torch.equal(torch.unique(out), torch.tensor([1])))
        # batch shape check
        # it support batch mode
        x_atom = torch.ones([N_atom, 3])
        x_atom = expand_at_dim(x_atom, dim=0, n=2)
        atom_to_token_idx = expand_at_dim(atom_to_token_idx, dim=0, n=2)
        out = aggregate_atom_to_token(
            x_atom=x_atom,
            atom_to_token_idx=atom_to_token_idx,
            n_token=n_token,
            reduce="sum",
        )
        self.assertTrue(torch.equal(torch.unique(out), torch.tensor([2, 4])))

    def test_broadcast_token_to_atom(self):
        N_token = 3
        x_token = torch.zeros([10, N_token, 3])
        for i in range(N_token):
            x_token[:, i, :] = i
        atom_to_token_idx = torch.Tensor([0, 0, 0, 0, 1, 1, 1, 1, 2, 2]).long()
        out = broadcast_token_to_atom(
            x_token=x_token, atom_to_token_idx=atom_to_token_idx
        )
        # value check
        self.assertTrue(torch.all(out[:, :4, :].eq(0)))
        self.assertTrue(torch.all(out[:, 4:8, :].eq(1)))
        self.assertTrue(torch.all(out[:, 8:, :].eq(2)))
        # batch mode check
        x_token = expand_at_dim(x_token, 0, 2)
        atom_to_token_idx = expand_at_dim(atom_to_token_idx, 0, 2)
        self.assertTrue(torch.all(out[..., :4, :].eq(0)))
        self.assertTrue(torch.all(out[..., 4:8, :].eq(1)))
        self.assertTrue(torch.all(out[..., 8:, :].eq(2)))
        # also it does not support an extra N sample dim after batch dim

    def test_centre_random_augmentation(self):
        bs_dims = (4, 3, 2)
        N_atom = 7
        N_sample = 8

        x = torch.rand(size=(*bs_dims, N_atom, 3))
        out = centre_random_augmentation(x_input_coords=x, N_sample=N_sample)
        # shape check
        self.assertEqual(out.shape, torch.Size((*bs_dims, N_sample, N_atom, 3)))

    def tearDown(self):
        elapsed_time = time.time() - self._start_time
        print(f"Test {self.id()} took {elapsed_time:.6f}s")


if __name__ == "__main__":
    unittest.main()