Improve dataset card: Add paper and code links, sample usage, and refine tags

#3
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +36 -10
README.md CHANGED
@@ -33,31 +33,57 @@ dataset_info:
33
  dataset_size: 2289772991
34
  tags:
35
  - visual
 
 
 
36
  ---
37
 
38
  ## ABC Pretraining Data
39
 
40
- <!-- Provide a quick summary of the dataset. -->
41
- This the the pretraining data for ABC. This dataset is derived from Google's [Conceptual Captions](https://ai.google.com/research/ConceptualCaptions/) dataset.
42
- The each item in the dataset contain a URL where the corresponding image can be downloaded and mined negatives for each item. Full dataaset is ~300 GB of images. For a detailed description of how we mined the negatives please check out our ppaer ;).
43
- **Update** I have added the images to this repository, for an example of how to use and download this dataset see our [repository](https://github.com/TIGER-AI-Lab/ABC).
44
 
45
- ## Paper and Website
 
 
46
 
47
- For more information, please refer to [Website](https://tiger-ai-lab.github.io/ABC/).
48
 
49
- ## Citation
 
 
50
 
51
- If you find any of our work helpful please connsider citing:
52
 
 
 
 
 
 
 
 
 
 
 
53
  ```
 
 
 
 
 
 
 
 
 
 
 
 
54
  @misc{schneider2025abcachievingbettercontrol,
55
- title={ABC: Achieving Better Control of Multimodal Embeddings using VLMs},
56
  author={Benjamin Schneider and Florian Kerschbaum and Wenhu Chen},
57
  year={2025},
58
  eprint={2503.00329},
59
  archivePrefix={arXiv},
60
  primaryClass={cs.CV},
61
- url={https://arxiv.org/abs/2503.00329},
62
  }
63
  ```
 
33
  dataset_size: 2289772991
34
  tags:
35
  - visual
36
+ - multimodal
37
+ - vision-language-model
38
+ - retrieval
39
  ---
40
 
41
  ## ABC Pretraining Data
42
 
43
+ This dataset contains the pretraining data for ABC, an open-source multimodal embedding model that uses a vision-language model backbone to deeply integrate image features with natural language instructions, advancing the state of visual embeddings with natural language control.
 
 
 
44
 
45
+ This dataset is derived from Google's [Conceptual Captions](https://ai.google.com/research/ConceptualCaptions/) dataset.
46
+ Each item in the dataset contains a URL where the corresponding image can be downloaded and mined negatives for each item. The full dataset is ~300 GB of images. For a detailed description of how we mined the negatives, please check out our paper.
47
+ **Update**: The images have been added to this repository. For an example of how to use and download this dataset, see our [repository](https://github.com/TIGER-AI-Lab/ABC).
48
 
49
+ ## Paper, Project Page, and Code
50
 
51
+ - Paper: [ABC: Achieving Better Control of Multimodal Embeddings using VLMs](https://huggingface.co/papers/2503.00329)
52
+ - Project Page: [https://tiger-ai-lab.github.io/ABC/](https://tiger-ai-lab.github.io/ABC/)
53
+ - Code: [https://github.com/TIGER-AI-Lab/ABC](https://github.com/TIGER-AI-Lab/ABC)
54
 
55
+ ## Sample Usage
56
 
57
+ ### Quick Start
58
+ First, install the necessary dependencies by cloning the repository and installing requirements:
59
+ ```bash
60
+ git clone https://github.com/TIGER-AI-Lab/ABC
61
+ cd ABC
62
+ pip install -r requirements.txt
63
+ ```
64
+ Then, you can start making multimodal embeddings:
65
+ ```python
66
+ python -i ./quick_start.py
67
  ```
68
+
69
+ ### Fetching Datasets from 🤗 Hub
70
+ Our datasets are hosted on HuggingFace Hub. The text data and dataset metadata can be fetched using HF's `load_dataset` utility.
71
+ To fetch the images from our datasets, we provide scripts in the `fetch_datasets` directory.
72
+ These scripts will pull the pretraining/finetuning image data off the hub and unpack them in your huggingface datasets cache (under a directory called `tigerlab`).
73
+ Run `python ./fetch_datasets/pretrain.py` to get the pretraining dataset and `python ./fetch_datasets/instruct.py` to get the finetuning dataset, respectively.
74
+
75
+ ## Citation
76
+
77
+ If you find any of our work helpful, please consider citing:
78
+
79
+ ```bibtex
80
  @misc{schneider2025abcachievingbettercontrol,
81
+ title={ABC: Achieving Better Control of Multimodal Embeddings using VLMs},
82
  author={Benjamin Schneider and Florian Kerschbaum and Wenhu Chen},
83
  year={2025},
84
  eprint={2503.00329},
85
  archivePrefix={arXiv},
86
  primaryClass={cs.CV},
87
+ url={https://arxiv.org/abs/2503.00329},
88
  }
89
  ```