|
from lerobot.common.datasets.utils import build_dataset_frame, hw_to_dataset_features
|
|
from lerobot.common.policies.act.modeling_act import ACTPolicy
|
|
from lerobot.common.robots.lekiwi import LeKiwiClient, LeKiwiClientConfig
|
|
from lerobot.common.utils.control_utils import predict_action
|
|
from lerobot.common.utils.utils import get_safe_torch_device
|
|
|
|
NB_CYCLES_CLIENT_CONNECTION = 1000
|
|
|
|
robot_config = LeKiwiClientConfig(remote_ip="172.18.134.136", id="lekiwi")
|
|
robot = LeKiwiClient(robot_config)
|
|
|
|
robot.connect()
|
|
|
|
policy = ACTPolicy.from_pretrained("pepijn223/act_lekiwi_circle")
|
|
policy.reset()
|
|
|
|
obs_features = hw_to_dataset_features(robot.observation_features, "observation")
|
|
|
|
print("Running inference")
|
|
i = 0
|
|
while i < NB_CYCLES_CLIENT_CONNECTION:
|
|
obs = robot.get_observation()
|
|
|
|
observation_frame = build_dataset_frame(obs_features, obs, prefix="observation")
|
|
action_values = predict_action(
|
|
observation_frame, policy, get_safe_torch_device(policy.config.device), policy.config.use_amp
|
|
)
|
|
action = {key: action_values[i].item() for i, key in enumerate(robot.action_features)}
|
|
robot.send_action(action)
|
|
i += 1
|
|
|
|
robot.disconnect()
|
|
|