from lerobot.common.datasets.utils import build_dataset_frame, hw_to_dataset_features from lerobot.common.policies.act.modeling_act import ACTPolicy from lerobot.common.robots.lekiwi import LeKiwiClient, LeKiwiClientConfig from lerobot.common.utils.control_utils import predict_action from lerobot.common.utils.utils import get_safe_torch_device NB_CYCLES_CLIENT_CONNECTION = 1000 robot_config = LeKiwiClientConfig(remote_ip="172.18.134.136", id="lekiwi") robot = LeKiwiClient(robot_config) robot.connect() policy = ACTPolicy.from_pretrained("pepijn223/act_lekiwi_circle") policy.reset() obs_features = hw_to_dataset_features(robot.observation_features, "observation") print("Running inference") i = 0 while i < NB_CYCLES_CLIENT_CONNECTION: obs = robot.get_observation() observation_frame = build_dataset_frame(obs_features, obs, prefix="observation") action_values = predict_action( observation_frame, policy, get_safe_torch_device(policy.config.device), policy.config.use_amp ) action = {key: action_values[i].item() for i, key in enumerate(robot.action_features)} robot.send_action(action) i += 1 robot.disconnect()