code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def is_first_subword(self, tokens: Union[str, int, List[str], List[int]]) \ -> Union[bool, List[bool]]: """Whether the token is the first subword token in a list of subword tokens Parameters ---------- tokens The input tokens Returns ------- ret Whether the token is the first subword token in a sequence of subword tokens that construct the token """ if isinstance(tokens, str): return tokens.startswith(self._meta_symbol) elif isinstance(tokens, int): return tokens in self._first_subword_id_set elif isinstance(tokens, list): if len(tokens) == 0: return [] if isinstance(tokens[0], str): return [ele.startswith(self._meta_symbol) for ele in tokens] elif isinstance(tokens[0], int): return [ele in self._first_subword_id_set for ele in tokens] else: raise NotImplementedError else: raise NotImplementedError
Whether the token is the first subword token in a list of subword tokens Parameters ---------- tokens The input tokens Returns ------- ret Whether the token is the first subword token in a sequence of subword tokens that construct the token
is_first_subword
python
dmlc/gluon-nlp
src/gluonnlp/data/tokenizers/yttm.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/data/tokenizers/yttm.py
Apache-2.0
def __getstate__(self): """Support multiprocessing by making it pickleble""" state = self.__dict__.copy() state['_bpe'] = None return state
Support multiprocessing by making it pickleble
__getstate__
python
dmlc/gluon-nlp
src/gluonnlp/data/tokenizers/yttm.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/data/tokenizers/yttm.py
Apache-2.0
def list_sources(embedding_name=None): """Get valid token embedding names and their pre-trained file names. Parameters ---------- embedding_name : str or None, default None The pre-trained token embedding name. Returns ------- dict or list: A list of all the valid pre-trained token embedding file names (`source`) for the specified token embedding name (`embedding_name`). If the text embedding name is set to None, returns a dict mapping each valid token embedding name to a list of valid pre-trained files (`source`). """ if embedding_name is not None: embedding_name = embedding_name.lower() if embedding_name == 'fasttext.bin': return list(C.FAST_TEXT_BIN_SHA1.keys()) if embedding_name not in text_embedding_reg: raise KeyError('Cannot find `embedding_name` {}. Use ' '`list_sources(embedding_name=None).keys()` to get all the valid' 'embedding names.'.format(embedding_name)) return list(text_embedding_reg[embedding_name].keys()) else: return {embedding_name: list(embedding_cls.keys()) for embedding_name, embedding_cls in text_embedding_reg.items()}
Get valid token embedding names and their pre-trained file names. Parameters ---------- embedding_name : str or None, default None The pre-trained token embedding name. Returns ------- dict or list: A list of all the valid pre-trained token embedding file names (`source`) for the specified token embedding name (`embedding_name`). If the text embedding name is set to None, returns a dict mapping each valid token embedding name to a list of valid pre-trained files (`source`).
list_sources
python
dmlc/gluon-nlp
src/gluonnlp/embedding/embed_loader.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/embedding/embed_loader.py
Apache-2.0
def load_embeddings(vocab=None, pretrained_name_or_dir='glove.6B.50d', unknown='<unk>', unk_method=None): """Load pretrained word embeddings for building an embedding matrix for a given Vocab. This function supports loading GloVe, Word2Vec and FastText word embeddings from remote sources. You can also load your own embedding file(txt with Word2Vec or GloVe format) from a given file path. Glove: an unsupervised learning algorithm for obtaining vector representations for words. Training is performed on aggregated global word-word co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space. (Source from https://nlp.stanford.edu/projects/glove/) Available sources: ['glove.42B.300d', 'glove.6B.100d', 'glove.6B.200d', 'glove.6B.300d', 'glove.6B.50d', \ 'glove.840B.300d', 'glove.twitter.27B.100d', 'glove.twitter.27B.200d', \ 'glove.twitter.27B.25d', 'glove.twitter.27B.50d'] Word2Vec: an unsupervised learning algorithm for obtaining vector representations for words. Training is performed with continuous bag-of-words or skip-gram architecture for computing vector representations of words. Available sources: ['GoogleNews-vectors-negative300', 'freebase-vectors-skipgram1000', \ 'freebase-vectors-skipgram1000-en'] FastText: an open-source, free, lightweight library that allows users to learn text representations and text classifiers. It works on standard, generic hardware. Models can later be reduced in size to even fit on mobile devices. (Source from https://fasttext.cc/) Available sources: ['cc.af.300', ..., 'cc.en.300', ..., 'crawl-300d-2M', 'crawl-300d-2M-subword', \ 'wiki-news-300d-1M', 'wiki-news-300d-1M-subword', \ 'wiki.aa', ..., 'wiki.multi.ar', ..., 'wiki.zu'] Detailed sources can be founded by `gluonnlp.embedding.list_sources('FastText')` For 'wiki.multi' embedding: Word Translation Without Parallel Data Alexis Conneau, Guillaume Lample, Marc'Aurelio Ranzato, Ludovic Denoyer, and Herve Jegou. https://arxiv.org/abs/1710.04087 Parameters ---------- vocab : gluonnlp.data.Vocab object, default None A vocabulary on which an embedding matrix is built. If `vocab` is `None`, then all tokens in the pretrained file will be used. pretrained_name_or_dir : str, default 'glove.6B.50d' A file path for a pretrained embedding file or the name of the pretrained token embedding file. This method would first check if it is a file path. If not, the method will load from cache or download. unknown : str, default '<unk>' To specify the unknown token in the pretrained file. unk_method : Callable, default None A function which receives `List[str]` and returns `numpy.ndarray`. The input of the function is a list of words which are in the `vocab`, but do not occur in the pretrained file. And the function is aimed to return an embedding matrix for these words. If `unk_method` is None, we generate vectors for these words, by sampling from normal distribution with the same std and mean of the embedding matrix. It is only useful when `vocab` is not `None`. Returns ------- If `vocab` is `None` numpy.ndarray: An embedding matrix in the pretrained file. gluonnlp.data.Vocab: The vocabulary in the pretrained file. Otherwise, numpy.ndarray: An embedding matrix for the given vocabulary. """ assert isinstance(vocab, (Vocab, type(None))), "Only gluonnlp.data.Vocab is supported." file_path = _check_and_get_path(pretrained_name_or_dir) if file_path is None: raise ValueError("Cannot recognize `{}`".format(pretrained_name_or_dir)) if file_path.endswith('.npz'): matrix, result = _load_embedding_npz(file_path, vocab, unknown) else: matrix, result = _load_embedding_txt(file_path, vocab, unknown) dim = matrix.shape[-1] logging.info("Pre-trained embedding dim: {}".format(dim)) if vocab is None: return matrix, result else: hit_flags = result total_hits = sum(hit_flags) logging.info("Found {} out of {} words in the pretrained embedding.".format(total_hits, len(vocab))) if total_hits != len(vocab): if unk_method is None: found_vectors = matrix[hit_flags] mean = np.mean(found_vectors, axis=0, keepdims=True) std = np.std(found_vectors, axis=0, keepdims=True) unfound_vec_num = len(vocab) - total_hits r_vecs = np.random.randn(unfound_vec_num, dim).astype('float32') * std + mean matrix[hit_flags == False] = r_vecs else: unk_idxs = (hit_flags == False).nonzero()[0] matrix[hit_flags == False] = unk_method(vocab.to_tokens(unk_idxs)) return matrix
Load pretrained word embeddings for building an embedding matrix for a given Vocab. This function supports loading GloVe, Word2Vec and FastText word embeddings from remote sources. You can also load your own embedding file(txt with Word2Vec or GloVe format) from a given file path. Glove: an unsupervised learning algorithm for obtaining vector representations for words. Training is performed on aggregated global word-word co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space. (Source from https://nlp.stanford.edu/projects/glove/) Available sources: ['glove.42B.300d', 'glove.6B.100d', 'glove.6B.200d', 'glove.6B.300d', 'glove.6B.50d', 'glove.840B.300d', 'glove.twitter.27B.100d', 'glove.twitter.27B.200d', 'glove.twitter.27B.25d', 'glove.twitter.27B.50d'] Word2Vec: an unsupervised learning algorithm for obtaining vector representations for words. Training is performed with continuous bag-of-words or skip-gram architecture for computing vector representations of words. Available sources: ['GoogleNews-vectors-negative300', 'freebase-vectors-skipgram1000', 'freebase-vectors-skipgram1000-en'] FastText: an open-source, free, lightweight library that allows users to learn text representations and text classifiers. It works on standard, generic hardware. Models can later be reduced in size to even fit on mobile devices. (Source from https://fasttext.cc/) Available sources: ['cc.af.300', ..., 'cc.en.300', ..., 'crawl-300d-2M', 'crawl-300d-2M-subword', 'wiki-news-300d-1M', 'wiki-news-300d-1M-subword', 'wiki.aa', ..., 'wiki.multi.ar', ..., 'wiki.zu'] Detailed sources can be founded by `gluonnlp.embedding.list_sources('FastText')` For 'wiki.multi' embedding: Word Translation Without Parallel Data Alexis Conneau, Guillaume Lample, Marc'Aurelio Ranzato, Ludovic Denoyer, and Herve Jegou. https://arxiv.org/abs/1710.04087 Parameters ---------- vocab : gluonnlp.data.Vocab object, default None A vocabulary on which an embedding matrix is built. If `vocab` is `None`, then all tokens in the pretrained file will be used. pretrained_name_or_dir : str, default 'glove.6B.50d' A file path for a pretrained embedding file or the name of the pretrained token embedding file. This method would first check if it is a file path. If not, the method will load from cache or download. unknown : str, default '<unk>' To specify the unknown token in the pretrained file. unk_method : Callable, default None A function which receives `List[str]` and returns `numpy.ndarray`. The input of the function is a list of words which are in the `vocab`, but do not occur in the pretrained file. And the function is aimed to return an embedding matrix for these words. If `unk_method` is None, we generate vectors for these words, by sampling from normal distribution with the same std and mean of the embedding matrix. It is only useful when `vocab` is not `None`. Returns ------- If `vocab` is `None` numpy.ndarray: An embedding matrix in the pretrained file. gluonnlp.data.Vocab: The vocabulary in the pretrained file. Otherwise, numpy.ndarray: An embedding matrix for the given vocabulary.
load_embeddings
python
dmlc/gluon-nlp
src/gluonnlp/embedding/embed_loader.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/embedding/embed_loader.py
Apache-2.0
def get_fasttext_model(model_name_or_dir='cc.en.300'): """ Load fasttext model from the binaray file This method will load fasttext model binaray file from a given file path or remote sources, and return a `fasttext` model object. See `fasttext.cc` for more usage information. Available sources: ['wiki-news-300d-1M-subword', 'crawl-300d-2M-subword', \ 'cc.af.300', ..., 'cc.en.300', ..., 'wiki.aa', ..., 'wiki.en', ..., 'wiki.zu'] Detailed sources can be founded by `gluonnlp.embedding.list_sources('FastText.bin')` Parameters ---------- model_name_or_dir : str, default 'cc.en.300' A file path for a FastText binary file or the name of the FastText model. This method would first check if it is a file path. If not, the method will load from cache or download. Returns ------- fasttext.FastText._FastText: A FastText model based on `fasttext` package. """ if os.path.exists(model_name_or_dir): file_path = model_name_or_dir else: source = model_name_or_dir root_path = os.path.expanduser(os.path.join(get_home_dir(), 'embedding')) embedding_dir = os.path.join(root_path, 'fasttext') if source not in C.FAST_TEXT_BIN_SHA1: raise ValueError('Cannot recognize {} for the bin file'.format(source)) file_name, file_hash = C.FAST_TEXT_BIN_SHA1[source] file_path = _get_file_path('fasttext', file_name, file_hash) return fasttext.load_model(file_path)
Load fasttext model from the binaray file This method will load fasttext model binaray file from a given file path or remote sources, and return a `fasttext` model object. See `fasttext.cc` for more usage information. Available sources: ['wiki-news-300d-1M-subword', 'crawl-300d-2M-subword', 'cc.af.300', ..., 'cc.en.300', ..., 'wiki.aa', ..., 'wiki.en', ..., 'wiki.zu'] Detailed sources can be founded by `gluonnlp.embedding.list_sources('FastText.bin')` Parameters ---------- model_name_or_dir : str, default 'cc.en.300' A file path for a FastText binary file or the name of the FastText model. This method would first check if it is a file path. If not, the method will load from cache or download. Returns ------- fasttext.FastText._FastText: A FastText model based on `fasttext` package.
get_fasttext_model
python
dmlc/gluon-nlp
src/gluonnlp/embedding/embed_loader.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/embedding/embed_loader.py
Apache-2.0
def forward(self, data, valid_length): """ Generate the representation given the inputs. This is used in training or fine-tuning a Bert model. Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length : Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C) """ # 1. Embed the data time_axis = 1 if self.layout == 'NT' else 0 attn_mask = gen_self_attn_mask(data, valid_length, dtype=self._dtype, attn_type='full', layout=self.layout) out = data all_encodings_outputs = [] additional_outputs = [] for layer_idx in range(self._num_layers): groups_id = layer_idx // self._num_layers_each_group layer = self.all_encoder_groups[groups_id] out, attention_weights = layer(out, attn_mask) # out : [batch_size, seq_len, units] # attention_weights : [batch_size, num_heads, seq_len, seq_len] if self._output_all_encodings: out = npx.sequence_mask(out, sequence_length=valid_length, use_sequence_length=True, axis=time_axis) all_encodings_outputs.append(out) if self._output_attention: additional_outputs.append(attention_weights) if not self._output_all_encodings: # if self._output_all_encodings, SequenceMask is already applied above out = npx.sequence_mask(out, sequence_length=valid_length, use_sequence_length=True, axis=time_axis) return out, additional_outputs else: return all_encodings_outputs, additional_outputs
Generate the representation given the inputs. This is used in training or fine-tuning a Bert model. Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length : Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/albert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/albert.py
Apache-2.0
def forward(self, inputs, token_types, valid_length=None): """Generate the representation given the inputs. This is used in training or fine-tuning a Albert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. valid_length : The valid length of each sequence Shape (batch_size,) Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units) - layout = 'TN' Shape (seq_length, batch_size, units) pooled_output This is optional. Shape (batch_size, units) """ initial_embedding = self.get_initial_embedding(inputs, token_types) # Projecting the embedding into units prev_out = initial_embedding if self.embed_size != self.units: prev_out = self.embed_factorized_proj(prev_out) outputs = [] if self._compute_layout != self._layout: # Swap input to reflect the compute_layout contextual_embeddings, additional_outputs = self.encoder(np.swapaxes(prev_out, 0, 1), valid_length) contextual_embeddings = np.swapaxes(contextual_embeddings, 0, 1) else: contextual_embeddings, additional_outputs = self.encoder(prev_out, valid_length) outputs.append(contextual_embeddings) if self.use_pooler: pooled_out = self.apply_pooling(contextual_embeddings) outputs.append(pooled_out) return tuple(outputs) if len(outputs) > 1 else outputs[0]
Generate the representation given the inputs. This is used in training or fine-tuning a Albert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. valid_length : The valid length of each sequence Shape (batch_size,) Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units) - layout = 'TN' Shape (seq_length, batch_size, units) pooled_output This is optional. Shape (batch_size, units)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/albert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/albert.py
Apache-2.0
def get_initial_embedding(self, inputs, token_types=None): """Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types The types of tokens. If it is None, it will be initialized as all zeros. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) Returns ------- embedding The initial embedding that will be fed into the encoder - layout = 'NT' Shape (batch_size, seq_length, C_embed) - layout = 'TN' Shape (seq_length, batch_size, C_embed) """ if self.layout == 'NT': batch_axis, time_axis = 0, 1 else: batch_axis, time_axis = 1, 0 embedding = self.word_embed(inputs) if token_types is None: token_types = np.zeros_like(inputs) type_embedding = self.token_type_embed(token_types) embedding = embedding + type_embedding if self.pos_embed_type is not None: positional_embedding = self.token_pos_embed(npx.arange_like(inputs, axis=time_axis)) positional_embedding = np.expand_dims(positional_embedding, axis=batch_axis) embedding = embedding + positional_embedding # Extra layer normalization plus dropout embedding = self.embed_layer_norm(embedding) embedding = self.embed_dropout(embedding) return embedding
Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types The types of tokens. If it is None, it will be initialized as all zeros. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) Returns ------- embedding The initial embedding that will be fed into the encoder - layout = 'NT' Shape (batch_size, seq_length, C_embed) - layout = 'TN' Shape (seq_length, batch_size, C_embed)
get_initial_embedding
python
dmlc/gluon-nlp
src/gluonnlp/models/albert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/albert.py
Apache-2.0
def apply_pooling(self, sequence): """Generate the representation given the inputs. This is used for pre-training or fine-tuning a Bert model. Get the first token of the whole sequence which is [CLS] Parameters ---------- sequence - layout = 'NT' Shape (batch_size, sequence_length, units) - layout = 'TN' Shape (sequence_length, batch_size, units) Returns ------- pooled_out Shape (batch_size, units) """ if self.layout == 'NT': outputs = sequence[:, 0, :] else: outputs = sequence[0, :, :] return self.pooler(outputs)
Generate the representation given the inputs. This is used for pre-training or fine-tuning a Bert model. Get the first token of the whole sequence which is [CLS] Parameters ---------- sequence - layout = 'NT' Shape (batch_size, sequence_length, units) - layout = 'TN' Shape (sequence_length, batch_size, units) Returns ------- pooled_out Shape (batch_size, units)
apply_pooling
python
dmlc/gluon-nlp
src/gluonnlp/models/albert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/albert.py
Apache-2.0
def from_cfg(cls, cfg, use_pooler=True, dtype=None) -> 'AlbertModel': """ Parameters ---------- cfg use_pooler Whether to use pooler dtype The dtype of the backbone model Returns ------- model The created AlbertModel """ cfg = cls.get_cfg().clone_merge(cfg) assert cfg.VERSION == 1, 'Wrong version!' embed_initializer = mx.init.create(*cfg.INITIALIZER.embed) weight_initializer = mx.init.create(*cfg.INITIALIZER.weight) bias_initializer = mx.init.create(*cfg.INITIALIZER.bias) if dtype is None: dtype = cfg.MODEL.dtype return cls(vocab_size=cfg.MODEL.vocab_size, units=cfg.MODEL.units, hidden_size=cfg.MODEL.hidden_size, embed_size=cfg.MODEL.embed_size, num_layers=cfg.MODEL.num_layers, num_heads=cfg.MODEL.num_heads, num_groups=cfg.MODEL.num_groups, max_length=cfg.MODEL.max_length, hidden_dropout_prob=cfg.MODEL.hidden_dropout_prob, attention_dropout_prob=cfg.MODEL.attention_dropout_prob, num_token_types=cfg.MODEL.num_token_types, pos_embed_type=cfg.MODEL.pos_embed_type, activation=cfg.MODEL.activation, layer_norm_eps=cfg.MODEL.layer_norm_eps, dtype=dtype, layout=cfg.MODEL.layout, embed_initializer=embed_initializer, weight_initializer=weight_initializer, bias_initializer=bias_initializer, use_pooler=use_pooler)
Parameters ---------- cfg use_pooler Whether to use pooler dtype The dtype of the backbone model Returns ------- model The created AlbertModel
from_cfg
python
dmlc/gluon-nlp
src/gluonnlp/models/albert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/albert.py
Apache-2.0
def forward(self, inputs, token_types, valid_length, masked_positions): """Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types The type of the token. For example, if the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length : The valid length of each sequence Shape (batch_size,) masked_positions : The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units) - layout = 'TN' Shape (seq_length, batch_size, units) pooled_out Shape (batch_size, units) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size) """ contextual_embeddings, pooled_out = self.backbone_model(inputs, token_types, valid_length) if self.layout == 'NT': mlm_features = select_vectors_by_position(contextual_embeddings, masked_positions) else: mlm_features = select_vectors_by_position(np.swapaxes(contextual_embeddings, 0, 1), masked_positions) mlm_scores = self.mlm_decoder(mlm_features) return contextual_embeddings, pooled_out, mlm_scores
Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types The type of the token. For example, if the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length : The valid length of each sequence Shape (batch_size,) masked_positions : The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units) - layout = 'TN' Shape (seq_length, batch_size, units) pooled_out Shape (batch_size, units) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/albert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/albert.py
Apache-2.0
def __init__(self, backbone_cfg, weight_initializer=None, bias_initializer=None): """ Parameters ---------- backbone_cfg The cfg of the backbone model weight_initializer bias_initializer """ super().__init__() self.backbone_model = AlbertModel.from_cfg(backbone_cfg) if weight_initializer is None: weight_initializer = self.backbone_model.weight_initializer if bias_initializer is None: bias_initializer = self.backbone_model.bias_initializer # Construct sop_classifier for sentence order prediction self.sop_classifier = nn.Dense(units=2, in_units=self.backbone_model.units, weight_initializer=weight_initializer) self.mlm_decoder = nn.HybridSequential() # Extra non-linear layer self.mlm_decoder.add(nn.Dense(units=self.backbone_model.embed_size, in_units=self.backbone_model.units, flatten=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer)) self.mlm_decoder.add(get_activation(self.backbone_model.activation)) self.mlm_decoder.add(nn.LayerNorm(epsilon=self.backbone_model.layer_norm_eps, in_channels=self.backbone_model.embed_size)) # only load the dense weights with a re-initialized bias # parameters are stored in 'word_embed_bias' which is # not used in original embedding self.mlm_decoder.add(nn.Dense(units=self.backbone_model.vocab_size, in_units=self.backbone_model.embed_size, flatten=False, bias_initializer=bias_initializer)) self.mlm_decoder[-1].weight = self.backbone_model.word_embed.weight
Parameters ---------- backbone_cfg The cfg of the backbone model weight_initializer bias_initializer
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/albert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/albert.py
Apache-2.0
def forward(self, inputs, token_types, valid_length, masked_positions): """Generate the representation given the inputs. This is used in training or fine-tuning a Albert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types Type of the tokens. If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) sop_score : Shape (batch_size, 2) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size) """ contextual_embeddings, pooled_out = self.backbone_model(inputs, token_types, valid_length) sop_score = self.sop_classifier(pooled_out) if self.layout == 'NT': mlm_features = select_vectors_by_position(contextual_embeddings, masked_positions) else: mlm_features = select_vectors_by_position(np.swapaxes(contextual_embeddings, 0, 1), masked_positions) mlm_scores = self.mlm_decoder(mlm_features) return contextual_embeddings, pooled_out, sop_score, mlm_scores
Generate the representation given the inputs. This is used in training or fine-tuning a Albert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types Type of the tokens. If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) sop_score : Shape (batch_size, 2) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/albert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/albert.py
Apache-2.0
def get_pretrained_albert(model_name: str = 'google_albert_base_v2', root: str = get_model_zoo_home_dir(), load_backbone: str = True, load_mlm: str = False)\ -> Tuple[CN, SentencepieceTokenizer, str, str]: """Get the pretrained Albert weights Parameters ---------- model_name The name of the Albert model. root The downloading root load_backbone Whether to load the weights of the backbone network load_mlm Whether to load the weights of MLM Returns ------- cfg Network configuration tokenizer The SentencepieceTokenizer backbone_params_path Path to the parameter of the backbone network mlm_params_path Path to the parameter that includes both the backbone and the MLM """ assert model_name in PRETRAINED_URL, '{} is not found. All available are {}'.format( model_name, list_pretrained_albert()) cfg_path = PRETRAINED_URL[model_name]['cfg'] if isinstance(cfg_path, CN): cfg = cfg_path else: cfg = None spm_model_path = PRETRAINED_URL[model_name]['spm_model'] vocab_path = PRETRAINED_URL[model_name]['vocab'] params_path = PRETRAINED_URL[model_name]['params'] mlm_params_path = PRETRAINED_URL[model_name]['mlm_params'] local_paths = dict() download_jobs = [('spm_model', spm_model_path), ('vocab', vocab_path)] if cfg is None: download_jobs.append(('cfg', cfg_path)) for key, path in download_jobs: local_paths[key] = download(url=get_repo_model_zoo_url() + path, path=os.path.join(root, path), sha1_hash=FILE_STATS[path]) if load_backbone: local_params_path = download(url=get_repo_model_zoo_url() + params_path, path=os.path.join(root, params_path), sha1_hash=FILE_STATS[params_path]) else: local_params_path = None if load_mlm: local_mlm_params_path = download(url=get_repo_model_zoo_url() + mlm_params_path, path=os.path.join(root, mlm_params_path), sha1_hash=FILE_STATS[mlm_params_path]) else: local_mlm_params_path = None do_lower = True if 'lowercase' in PRETRAINED_URL[model_name]\ and PRETRAINED_URL[model_name]['lowercase'] else False tokenizer = SentencepieceTokenizer(local_paths['spm_model'], vocab=local_paths['vocab'], lowercase=do_lower) if cfg is None: cfg = AlbertModel.get_cfg().clone_merge(local_paths['cfg']) return cfg, tokenizer, local_params_path, local_mlm_params_path
Get the pretrained Albert weights Parameters ---------- model_name The name of the Albert model. root The downloading root load_backbone Whether to load the weights of the backbone network load_mlm Whether to load the weights of MLM Returns ------- cfg Network configuration tokenizer The SentencepieceTokenizer backbone_params_path Path to the parameter of the backbone network mlm_params_path Path to the parameter that includes both the backbone and the MLM
get_pretrained_albert
python
dmlc/gluon-nlp
src/gluonnlp/models/albert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/albert.py
Apache-2.0
def __init__(self, use_pooler: bool = False, classifier_activation: bool = False, extract_feature: bool = False, pooler_activation='tanh', **kwargs): """ Parameters ---------- use_pooler Whether to use pooler classifier_activation extract_feature Whether to extract the feature pooler_activation **kwargs """ super().__init__(**kwargs) assert self._src_vocab_size == self._tgt_vocab_size, \ 'Vocab size mismatch between encoder and decoder' self._vocab_size = self._src_vocab_size self.extract_feature = extract_feature self.use_pooler = use_pooler self.classifier_activation = classifier_activation if not extract_feature: if self.tie_weights: self.tgt_final_layer = \ nn.Dense(units=self._tgt_vocab_size, in_units=self.dec_units, flatten=False, use_bias=False, dtype=self._dtype) self.tgt_final_layer.weight = self.tgt_embed_layer.weight else: self.tgt_final_layer = \ nn.Dense(units=self._tgt_vocab_size, in_units=self.dec_units, flatten=False, weight_initializer=self.weight_initializer, use_bias=False, dtype=self._dtype) elif use_pooler and classifier_activation: # Construct pooler self.pooler = nn.Dense(units=self.units, in_units=self.units, flatten=False, activation=pooler_activation, weight_initializer=self.weight_initializer, bias_initializer=self.bias_initializer, dtype=self._dtype)
Parameters ---------- use_pooler Whether to use pooler classifier_activation extract_feature Whether to extract the feature pooler_activation **kwargs
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/bart.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/bart.py
Apache-2.0
def forward(self, src_data, src_valid_length, tgt_data, tgt_valid_length): """ Parameters ---------- src_data - layout = 'NT' Shape (batch_size, src_length) - layout = 'TN' Shape (src_length, batch_size) src_valid_length Shape (batch_size,) tgt_data - layout = 'NT' Shape (batch_size, tgt_length) - layout = 'TN' Shape (tgt_length, batch_size) tgt_valid_length Shape (batch_size,) Returns ------- A tuple contains - If 'self.extract_feature' = True - contextual_embedding - layout = 'NT' Shape (batch_size, tgt_length, units) - layout = 'TN' Shape (tgt_length, batch_size, units) - pooled_output, optional, only enabled if use_pooler = True Shape (batch_size, units) - If 'self.extract_feature' = False - dec_out - layout = 'NT' Shape (batch_size, tgt_length, tgt_vocab_size) - layout = 'TN' Shape (tgt_length, batch_size, tgt_vocab_size) """ enc_out = self.encode(src_data, src_valid_length) contextual_embedding = self.decode_seq(tgt_data, tgt_valid_length, enc_out, src_valid_length) if self.extract_feature: if self.use_pooler: pooled_output = self.apply_pooling(contextual_embedding, tgt_valid_length) return contextual_embedding, pooled_output else: return contextual_embedding else: dec_out = self.tgt_final_layer(contextual_embedding) return dec_out
Parameters ---------- src_data - layout = 'NT' Shape (batch_size, src_length) - layout = 'TN' Shape (src_length, batch_size) src_valid_length Shape (batch_size,) tgt_data - layout = 'NT' Shape (batch_size, tgt_length) - layout = 'TN' Shape (tgt_length, batch_size) tgt_valid_length Shape (batch_size,) Returns ------- A tuple contains - If 'self.extract_feature' = True - contextual_embedding - layout = 'NT' Shape (batch_size, tgt_length, units) - layout = 'TN' Shape (tgt_length, batch_size, units) - pooled_output, optional, only enabled if use_pooler = True Shape (batch_size, units) - If 'self.extract_feature' = False - dec_out - layout = 'NT' Shape (batch_size, tgt_length, tgt_vocab_size) - layout = 'TN' Shape (tgt_length, batch_size, tgt_vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/bart.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/bart.py
Apache-2.0
def apply_pooling(self, sequence, valid_length): """Generate the representation given the inputs. This is used for pre-training or fine-tuning a BART model. In BART, the pooled output is the embedding of the last token. Parameters ---------- sequence - layout = 'NT' Shape (batch_size, sequence_length, units) - layout = 'TN' Shape (sequence_length, batch_size, units) valid_length Valid length of each sequence Shape (batch_size,) Returns ------- outputs Shape (batch_size, units) """ if self._layout == 'NT': batch_indices = mx.npx.arange_like(sequence, axis=0).astype(mx.np.int32) outputs = sequence[batch_indices, valid_length - 1] elif self._layout == 'TN': batch_indices = mx.npx.arange_like(sequence, axis=1).astype(mx.np.int32) outputs = sequence[valid_length - 1, batch_indices] else: raise NotImplementedError if self.classifier_activation: return self.pooler(outputs) else: return outputs
Generate the representation given the inputs. This is used for pre-training or fine-tuning a BART model. In BART, the pooled output is the embedding of the last token. Parameters ---------- sequence - layout = 'NT' Shape (batch_size, sequence_length, units) - layout = 'TN' Shape (sequence_length, batch_size, units) valid_length Valid length of each sequence Shape (batch_size,) Returns ------- outputs Shape (batch_size, units)
apply_pooling
python
dmlc/gluon-nlp
src/gluonnlp/models/bart.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/bart.py
Apache-2.0
def from_cfg(cls, cfg, dtype=None, extract_feature=False, use_pooler=True, classifier_activation=False): """ Parameters ---------- cfg The configuration dtype Data type of the loaded config extract_feature Whether to only extract feature. If so, the output of the layer will be contextual embeddings or the contextual embedding + pooled output use_pooler Whether to use pooler classifier_activation Whether to use the classifier activation Returns ------- model The initialized BartModel """ cfg = cls.get_cfg().clone_merge(cfg) embed_initializer = mx.init.create(*cfg.INITIALIZER.embed) weight_initializer = mx.init.create(*cfg.INITIALIZER.weight) bias_initializer = mx.init.create(*cfg.INITIALIZER.bias) if dtype is None: dtype = cfg.MODEL.dtype return cls(src_vocab_size=cfg.MODEL.vocab_size, tgt_vocab_size=cfg.MODEL.vocab_size, max_src_length=cfg.MODEL.max_src_length, max_tgt_length=cfg.MODEL.max_tgt_length, scale_embed=cfg.MODEL.scale_embed, pos_embed_type=cfg.MODEL.pos_embed_type, shared_embed=cfg.MODEL.shared_embed, tie_weights=cfg.MODEL.tie_weights, data_norm=cfg.MODEL.data_norm, extract_feature=extract_feature, use_pooler=use_pooler, classifier_activation=classifier_activation, attention_dropout=cfg.MODEL.attention_dropout, activation_dropout=cfg.MODEL.activation_dropout, dropout=cfg.MODEL.dropout, pooler_activation=cfg.MODEL.pooler_activation, layer_norm_eps=cfg.MODEL.layer_norm_eps, enc_num_layers=cfg.MODEL.ENCODER.num_layers, enc_units=cfg.MODEL.ENCODER.units, enc_num_heads=cfg.MODEL.ENCODER.num_heads, enc_hidden_size=cfg.MODEL.ENCODER.hidden_size, enc_recurrent=cfg.MODEL.ENCODER.recurrent, enc_activation=cfg.MODEL.ENCODER.activation, enc_pre_norm=cfg.MODEL.ENCODER.pre_norm, dec_num_layers=cfg.MODEL.DECODER.num_layers, dec_units=cfg.MODEL.DECODER.units, dec_num_heads=cfg.MODEL.DECODER.num_heads, dec_hidden_size=cfg.MODEL.DECODER.hidden_size, dec_recurrent=cfg.MODEL.DECODER.recurrent, dec_activation=cfg.MODEL.DECODER.activation, dec_pre_norm=cfg.MODEL.DECODER.pre_norm, layout=cfg.MODEL.layout, embed_initializer=embed_initializer, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype)
Parameters ---------- cfg The configuration dtype Data type of the loaded config extract_feature Whether to only extract feature. If so, the output of the layer will be contextual embeddings or the contextual embedding + pooled output use_pooler Whether to use pooler classifier_activation Whether to use the classifier activation Returns ------- model The initialized BartModel
from_cfg
python
dmlc/gluon-nlp
src/gluonnlp/models/bart.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/bart.py
Apache-2.0
def get_pretrained_bart(model_name: str = 'fairseq_bart_base', root: str = get_model_zoo_home_dir(), load_backbone: bool = True) \ -> Tuple[CN, HuggingFaceByteBPETokenizer, str, List]: """Get the pretrained RoBERTa weights Parameters ---------- model_name The name of the RoBERTa model. root The downloading root load_backbone Whether to load the weights of the backbone network Returns ------- cfg Network configuration tokenizer The HuggingFaceByteBPETokenizer params_path Path to the parameters additional_output The additional outputs """ assert model_name in PRETRAINED_URL, '{} is not found. All available are {}'.format( model_name, list_pretrained_bart()) cfg_path = PRETRAINED_URL[model_name]['cfg'] if isinstance(cfg_path, CN): cfg = cfg_path else: cfg = None merges_path = PRETRAINED_URL[model_name]['merges'] vocab_path = PRETRAINED_URL[model_name]['vocab'] params_path = PRETRAINED_URL[model_name]['params'] local_paths = dict() download_jobs = [('vocab', vocab_path), ('merges', merges_path)] if cfg is None: download_jobs.append(('cfg', cfg_path)) for k, path in download_jobs: local_paths[k] = download(url=get_repo_model_zoo_url() + path, path=os.path.join(root, path), sha1_hash=FILE_STATS[path]) if load_backbone: local_params_path = download(url=get_repo_model_zoo_url() + params_path, path=os.path.join(root, params_path), sha1_hash=FILE_STATS[params_path]) else: local_params_path = None do_lower = True if 'lowercase' in PRETRAINED_URL[model_name]\ and PRETRAINED_URL[model_name]['lowercase'] else False tokenizer = HuggingFaceByteBPETokenizer( merges_file=local_paths['merges'], vocab_file=local_paths['vocab'], lowercase=do_lower) additional_out = [] if cfg is None: cfg = BartModel.get_cfg().clone_merge(local_paths['cfg']) return cfg, tokenizer, local_params_path, additional_out
Get the pretrained RoBERTa weights Parameters ---------- model_name The name of the RoBERTa model. root The downloading root load_backbone Whether to load the weights of the backbone network Returns ------- cfg Network configuration tokenizer The HuggingFaceByteBPETokenizer params_path Path to the parameters additional_output The additional outputs
get_pretrained_bart
python
dmlc/gluon-nlp
src/gluonnlp/models/bart.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/bart.py
Apache-2.0
def get_backbone(model_name: str, root: str = get_model_zoo_home_dir(), **kwargs) -> Tuple['Block', str, BaseTokenizer, str, List]: """Get the backbone network Parameters ---------- model_name The name of the pretrained model root Downloaded directory of the model zoo Returns ------- model_cls The class to construct the backbone network cfg Path to the config file of the backbone tokenizer The tokenizer that is bound to the backbone model backbone_param_path The path to the pretrained backbone weights others The other items returned by the create function. Will be wrapped into a list Examples -------- >>> from gluonnlp.models import get_backbone >>> model_cls, cfg, tokenizer, backbone_param_path, _ = get_backbone('google_en_cased_bert_base') >>> model = model_cls.from_cfg(cfg) >>> model.load_parameters(backbone_param_path) """ model_cls, local_create_fn = None, None for backbone_type in BACKBONE_REGISTRY.list_keys(): ele_model_cls, ele_local_create_fn, list_key_fn = BACKBONE_REGISTRY.get(backbone_type) if model_name in list_key_fn(): model_cls = ele_model_cls local_create_fn = ele_local_create_fn if model_cls is None or local_create_fn is None: raise KeyError('The backbone model "{}" is not found! ' 'Here are all available backbone models = {}' .format(model_name, list_backbone_names())) cfg, tokenizer, local_params_path, *others = local_create_fn(model_name=model_name, root=root, **kwargs) return model_cls, cfg, tokenizer, local_params_path, others
Get the backbone network Parameters ---------- model_name The name of the pretrained model root Downloaded directory of the model zoo Returns ------- model_cls The class to construct the backbone network cfg Path to the config file of the backbone tokenizer The tokenizer that is bound to the backbone model backbone_param_path The path to the pretrained backbone weights others The other items returned by the create function. Will be wrapped into a list Examples -------- >>> from gluonnlp.models import get_backbone >>> model_cls, cfg, tokenizer, backbone_param_path, _ = get_backbone('google_en_cased_bert_base') >>> model = model_cls.from_cfg(cfg) >>> model.load_parameters(backbone_param_path)
get_backbone
python
dmlc/gluon-nlp
src/gluonnlp/models/base.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/base.py
Apache-2.0
def forward(self, data, valid_length): """ Generate the representation given the inputs. This is used in training or fine-tuning a bert model. Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) """ if self.layout == 'NT': time_axis, batch_axis = 1, 0 else: time_axis, batch_axis = 0, 1 # 1. Embed the data attn_mask = gen_self_attn_mask(data, valid_length, dtype=self._dtype, attn_type='full', layout=self.layout) out = data all_encodings_outputs = [] additional_outputs = [] for layer_idx in range(self._num_layers): layer = self.all_layers[layer_idx] out, attention_weights = layer(out, attn_mask) # out : [batch_size, seq_len, units] or [seq_len, batch_size, units] # attention_weights : [batch_size, num_heads, seq_len, seq_len] if self._output_all_encodings: out = npx.sequence_mask(out, sequence_length=valid_length, use_sequence_length=True, axis=time_axis) all_encodings_outputs.append(out) if self._output_attention: additional_outputs.append(attention_weights) if not self._output_all_encodings: # if self._output_all_encodings, SequenceMask is already applied above out = npx.sequence_mask(out, sequence_length=valid_length, use_sequence_length=True, axis=time_axis) return out, additional_outputs else: return all_encodings_outputs, additional_outputs
Generate the representation given the inputs. This is used in training or fine-tuning a bert model. Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/bert.py
Apache-2.0
def forward(self, inputs, token_types, valid_length): # pylint: disable=arguments-differ """Generate the representation given the inputs. This is used in training or fine-tuning a bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (batch_size, seq_length) valid_length : The valid length of each sequence Shape (batch_size,) Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_output This is optional. Shape (batch_size, units) """ initial_embedding = self.get_initial_embedding(inputs, token_types) prev_out = initial_embedding outputs = [] if self._compute_layout != self._layout: # Swap the axes if the compute_layout and layout mismatch contextual_embeddings, additional_outputs = self.encoder(np.swapaxes(prev_out, 0, 1), valid_length) contextual_embeddings = np.swapaxes(contextual_embeddings, 0, 1) else: contextual_embeddings, additional_outputs = self.encoder(prev_out, valid_length) outputs.append(contextual_embeddings) if self.use_pooler: pooled_out = self.apply_pooling(contextual_embeddings) outputs.append(pooled_out) return tuple(outputs) if len(outputs) > 1 else outputs[0]
Generate the representation given the inputs. This is used in training or fine-tuning a bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (batch_size, seq_length) valid_length : The valid length of each sequence Shape (batch_size,) Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_output This is optional. Shape (batch_size, units)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/bert.py
Apache-2.0
def get_initial_embedding(self, inputs, token_types=None): """Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types The type of tokens. If None, it will be initialized as all zero. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) Returns ------- embedding The initial embedding that will be fed into the encoder - layout = 'NT' Shape (batch_size, seq_length, C_emb) - layout = 'TN' Shape (seq_length, batch_size, C_emb) """ if self.layout == 'NT': time_axis, batch_axis = 1, 0 else: time_axis, batch_axis = 0, 1 embedding = self.word_embed(inputs) if token_types is None: token_types = np.zeros_like(inputs) type_embedding = self.token_type_embed(token_types) embedding = embedding + type_embedding if self.pos_embed_type is not None: positional_embedding = self.token_pos_embed(npx.arange_like(inputs, axis=time_axis)) positional_embedding = np.expand_dims(positional_embedding, axis=batch_axis) embedding = embedding + positional_embedding # Extra layer normalization plus dropout embedding = self.embed_layer_norm(embedding) embedding = self.embed_dropout(embedding) return embedding
Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types The type of tokens. If None, it will be initialized as all zero. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) Returns ------- embedding The initial embedding that will be fed into the encoder - layout = 'NT' Shape (batch_size, seq_length, C_emb) - layout = 'TN' Shape (seq_length, batch_size, C_emb)
get_initial_embedding
python
dmlc/gluon-nlp
src/gluonnlp/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/bert.py
Apache-2.0
def apply_pooling(self, sequence): """Generate the representation given the inputs. This is used for pre-training or fine-tuning a bert model. Get the first token of the whole sequence which is [CLS]. Parameters ---------- sequence - layout = 'NT' Shape (batch_size, sequence_length, units) - layout = 'TN' Shape (sequence_length, batch_size, units) Returns ------- outputs Shape (batch_size, units) """ if self.layout == 'NT': outputs = sequence[:, 0, :] else: outputs = sequence[0, :, :] return self.pooler(outputs)
Generate the representation given the inputs. This is used for pre-training or fine-tuning a bert model. Get the first token of the whole sequence which is [CLS]. Parameters ---------- sequence - layout = 'NT' Shape (batch_size, sequence_length, units) - layout = 'TN' Shape (sequence_length, batch_size, units) Returns ------- outputs Shape (batch_size, units)
apply_pooling
python
dmlc/gluon-nlp
src/gluonnlp/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/bert.py
Apache-2.0
def from_cfg(cls, cfg, use_pooler=True, dtype=None) -> 'BertModel': """ Parameters ---------- cfg Configuration use_pooler Whether to output the pooled feature dtype data type of the model Returns ------- ret The constructed BertModel """ cfg = BertModel.get_cfg().clone_merge(cfg) assert cfg.VERSION == 1, 'Wrong version!' embed_initializer = mx.init.create(*cfg.INITIALIZER.embed) weight_initializer = mx.init.create(*cfg.INITIALIZER.weight) bias_initializer = mx.init.create(*cfg.INITIALIZER.bias) if dtype is None: dtype = cfg.MODEL.dtype return cls(vocab_size=cfg.MODEL.vocab_size, units=cfg.MODEL.units, hidden_size=cfg.MODEL.hidden_size, num_layers=cfg.MODEL.num_layers, num_heads=cfg.MODEL.num_heads, max_length=cfg.MODEL.max_length, hidden_dropout_prob=cfg.MODEL.hidden_dropout_prob, attention_dropout_prob=cfg.MODEL.attention_dropout_prob, num_token_types=cfg.MODEL.num_token_types, pos_embed_type=cfg.MODEL.pos_embed_type, activation=cfg.MODEL.activation, layer_norm_eps=cfg.MODEL.layer_norm_eps, dtype=dtype, embed_initializer=embed_initializer, weight_initializer=weight_initializer, bias_initializer=bias_initializer, use_pooler=use_pooler, layout=cfg.MODEL.layout, compute_layout=cfg.MODEL.compute_layout)
Parameters ---------- cfg Configuration use_pooler Whether to output the pooled feature dtype data type of the model Returns ------- ret The constructed BertModel
from_cfg
python
dmlc/gluon-nlp
src/gluonnlp/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/bert.py
Apache-2.0
def forward(self, inputs, token_types, valid_length, masked_positions): """Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length : The valid length of each sequence Shape (batch_size,) masked_positions : The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units) pooled_out Shape (batch_size, units) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size) """ contextual_embeddings, pooled_out = self.backbone_model(inputs, token_types, valid_length) if self.layout == 'NT': mlm_features = select_vectors_by_position(contextual_embeddings, masked_positions) else: mlm_features = select_vectors_by_position(np.swapaxes(contextual_embeddings, 0, 1), masked_positions) mlm_scores = self.mlm_decoder(mlm_features) return contextual_embeddings, pooled_out, mlm_scores
Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length : The valid length of each sequence Shape (batch_size,) masked_positions : The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units) pooled_out Shape (batch_size, units) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/bert.py
Apache-2.0
def forward(self, inputs, token_types, valid_length, masked_positions): """Generate the representation given the inputs. This is used in training or fine-tuning a bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) nsp_score : Shape (batch_size, 2) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size) """ contextual_embeddings, pooled_out = self.backbone_model(inputs, token_types, valid_length) nsp_score = self.nsp_classifier(pooled_out) if self.layout == 'NT': mlm_features = select_vectors_by_position(contextual_embeddings, masked_positions) else: mlm_features = select_vectors_by_position(np.swapaxes(contextual_embeddings, 0, 1), masked_positions) mlm_scores = self.mlm_decoder(mlm_features) return contextual_embeddings, pooled_out, nsp_score, mlm_scores
Generate the representation given the inputs. This is used in training or fine-tuning a bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) nsp_score : Shape (batch_size, 2) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/bert.py
Apache-2.0
def get_pretrained_bert(model_name: str = 'google_en_cased_bert_base', root: str = get_model_zoo_home_dir(), load_backbone: str = True, load_mlm: str = False)\ -> Tuple[CN, HuggingFaceWordPieceTokenizer, str, str]: """Get the pretrained bert weights Parameters ---------- model_name The name of the bert model. root The downloading root load_backbone Whether to load the weights of the backbone network load_mlm Whether to load the weights of MLM Returns ------- cfg Network configuration tokenizer The HuggingFaceWordPieceTokenizer backbone_params_path Path to the parameter of the backbone network mlm_params_path Path to the parameter that includes both the backbone and the MLM """ assert model_name in PRETRAINED_URL, '{} is not found. All available are {}'.format( model_name, list_pretrained_bert()) cfg_path = PRETRAINED_URL[model_name]['cfg'] if isinstance(cfg_path, CN): cfg = cfg_path else: cfg = None vocab_path = PRETRAINED_URL[model_name]['vocab'] params_path = PRETRAINED_URL[model_name]['params'] mlm_params_path = PRETRAINED_URL[model_name]['mlm_params'] local_paths = dict() download_jobs = [('vocab', vocab_path)] if cfg is None: download_jobs.append(('cfg', cfg_path)) for key, path in download_jobs: local_paths[key] = download(url=get_repo_model_zoo_url() + path, path=os.path.join(root, path), sha1_hash=FILE_STATS[path]) if load_backbone: local_params_path = download(url=get_repo_model_zoo_url() + params_path, path=os.path.join(root, params_path), sha1_hash=FILE_STATS[params_path]) else: local_params_path = None if load_mlm and mlm_params_path is not None: local_mlm_params_path = download(url=get_repo_model_zoo_url() + mlm_params_path, path=os.path.join(root, mlm_params_path), sha1_hash=FILE_STATS[mlm_params_path]) else: local_mlm_params_path = None do_lower = True if 'lowercase' in PRETRAINED_URL[model_name]\ and PRETRAINED_URL[model_name]['lowercase'] else False tokenizer = HuggingFaceWordPieceTokenizer( vocab_file=local_paths['vocab'], unk_token='[UNK]', pad_token='[PAD]', cls_token='[CLS]', sep_token='[SEP]', mask_token='[MASK]', lowercase=do_lower) if cfg is None: cfg = BertModel.get_cfg().clone_merge(local_paths['cfg']) return cfg, tokenizer, local_params_path, local_mlm_params_path
Get the pretrained bert weights Parameters ---------- model_name The name of the bert model. root The downloading root load_backbone Whether to load the weights of the backbone network load_mlm Whether to load the weights of MLM Returns ------- cfg Network configuration tokenizer The HuggingFaceWordPieceTokenizer backbone_params_path Path to the parameter of the backbone network mlm_params_path Path to the parameter that includes both the backbone and the MLM
get_pretrained_bert
python
dmlc/gluon-nlp
src/gluonnlp/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/bert.py
Apache-2.0
def get_generator_cfg(model_config): """ Get the generator configuration from the Electra model config. The size of generator is usually smaller than discriminator but same in electra small, which exists a conflict between source code and original paper. """ generator_cfg = model_config.clone() generator_layers_scale = model_config.MODEL.generator_layers_scale generator_units_scale = model_config.MODEL.generator_units_scale generator_cfg.defrost() # the round function is used to slove int(0.3333*768)!=256 for electra base generator_cfg.MODEL.units = round(generator_units_scale * model_config.MODEL.units) generator_cfg.MODEL.hidden_size = round(generator_units_scale * model_config.MODEL.hidden_size) generator_cfg.MODEL.num_heads = round(generator_units_scale * model_config.MODEL.num_heads) generator_cfg.MODEL.num_layers = round(generator_layers_scale * model_config.MODEL.num_layers) generator_cfg.freeze() return generator_cfg
Get the generator configuration from the Electra model config. The size of generator is usually smaller than discriminator but same in electra small, which exists a conflict between source code and original paper.
get_generator_cfg
python
dmlc/gluon-nlp
src/gluonnlp/models/electra.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/electra.py
Apache-2.0
def __init__(self, units=512, hidden_size=2048, num_layers=6, num_heads=8, attention_dropout_prob=0., hidden_dropout_prob=0., output_attention=False, dtype='float32', output_all_encodings=False, layer_norm_eps=1E-12, weight_initializer=TruncNorm(stdev=0.02), bias_initializer='zeros', activation='gelu', layout='NT'): """ Parameters ---------- units The number of units hidden_size The hidden size num_layers Number of layers num_heads Number of heads attention_dropout_prob Dropout probability of the attention layer hidden_dropout_prob Dropout probability output_attention Whether to output the attention weights dtype Data type of the weights output_all_encodings layer_norm_eps weight_initializer bias_initializer activation layout """ super().__init__() assert units % num_heads == 0, \ 'In ElectraEncoder, The units should be divisible ' \ 'by the number of heads. Received units={}, num_heads={}' \ .format(units, num_heads) self._dtype = dtype self._layout = layout self._num_layers = num_layers self._output_attention = output_attention self._output_all_encodings = output_all_encodings self.all_encoder_layers = nn.HybridSequential() for layer_idx in range(num_layers): self.all_encoder_layers.add( TransformerEncoderLayer(units=units, hidden_size=hidden_size, num_heads=num_heads, attention_dropout_prob=attention_dropout_prob, hidden_dropout_prob=hidden_dropout_prob, layer_norm_eps=layer_norm_eps, weight_initializer=weight_initializer, bias_initializer=bias_initializer, activation=activation, dtype=dtype, layout=layout))
Parameters ---------- units The number of units hidden_size The hidden size num_layers Number of layers num_heads Number of heads attention_dropout_prob Dropout probability of the attention layer hidden_dropout_prob Dropout probability output_attention Whether to output the attention weights dtype Data type of the weights output_all_encodings layer_norm_eps weight_initializer bias_initializer activation layout
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/electra.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/electra.py
Apache-2.0
def forward(self, data, valid_length): """Generate the representation given the inputs. This is used in training or fine-tuning a Electra model. Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) """ if self.layout == 'NT': time_axis, batch_axis = 1, 0 else: time_axis, batch_axis = 0, 1 # 1. Embed the data attn_mask = gen_self_attn_mask(data, valid_length, dtype=self._dtype, layout=self._layout, attn_type='full') out = data all_encodings_outputs = [] additional_outputs = [] for layer_idx in range(self._num_layers): layer = self.all_encoder_layers[layer_idx] out, attention_weights = layer(out, attn_mask) # out : [batch_size, seq_len, units] # attention_weights : [batch_size, num_heads, seq_len, seq_len] if self._output_all_encodings: out = npx.sequence_mask(out, sequence_length=valid_length, use_sequence_length=True, axis=time_axis) all_encodings_outputs.append(out) if self._output_attention: additional_outputs.append(attention_weights) if not self._output_all_encodings: # if self._output_all_encodings, SequenceMask is already applied above out = npx.sequence_mask(out, sequence_length=valid_length, use_sequence_length=True, axis=time_axis) return out, additional_outputs else: return all_encodings_outputs, additional_outputs
Generate the representation given the inputs. This is used in training or fine-tuning a Electra model. Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/electra.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/electra.py
Apache-2.0
def forward(self, inputs, token_types, valid_length=None): """Generate the representation given the inputs. This is used in training or fine-tuning a Electra model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_output This is optional. Shape (batch_size, units) """ initial_embedding = self.get_initial_embedding(inputs, token_types) # Projecting the embedding into units prev_out = initial_embedding if self.embed_size != self.units: prev_out = self.embed_factorized_proj(prev_out) outputs = [] if self._compute_layout != self._layout: # Swap the axes if the compute_layout and layout mismatch contextual_embeddings, additional_outputs = self.encoder(np.swapaxes(prev_out, 0, 1), valid_length) contextual_embeddings = np.swapaxes(contextual_embeddings, 0, 1) else: contextual_embeddings, additional_outputs = self.encoder(prev_out, valid_length) outputs.append(contextual_embeddings) if self.use_pooler: # Here we just get the first token ([CLS]) without any pooling strategy, # which is slightly different from bert model with the pooled_out # the attribute name is keeping the same as bert and albert model with defualt # use_pooler=True if self._layout == 'NT': pooled_out = contextual_embeddings[:, 0, :] else: pooled_out = contextual_embeddings[0, :, :] outputs.append(pooled_out) return tuple(outputs) if len(outputs) > 1 else outputs[0]
Generate the representation given the inputs. This is used in training or fine-tuning a Electra model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_output This is optional. Shape (batch_size, units)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/electra.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/electra.py
Apache-2.0
def get_initial_embedding(self, inputs, token_types=None): """Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types The type of tokens. If None, it will be initialized as all zero. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) Returns ------- embedding The initial embedding that will be fed into the encoder - layout = 'NT' Shape (batch_size, seq_length, C_embed) - layout = 'TN' Shape (seq_length, batch_size, C_embed) """ if self.layout == 'NT': time_axis, batch_axis = 1, 0 else: time_axis, batch_axis = 0, 1 embedding = self.word_embed(inputs) if token_types is None: token_types = np.zeros_like(inputs) type_embedding = self.token_type_embed(token_types) embedding = embedding + type_embedding if self.pos_embed_type is not None: positional_embedding = self.token_pos_embed(npx.arange_like(inputs, axis=time_axis)) positional_embedding = np.expand_dims(positional_embedding, axis=batch_axis) embedding = embedding + positional_embedding # Extra layer normalization plus dropout embedding = self.embed_layer_norm(embedding) embedding = self.embed_dropout(embedding) return embedding
Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types The type of tokens. If None, it will be initialized as all zero. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) Returns ------- embedding The initial embedding that will be fed into the encoder - layout = 'NT' Shape (batch_size, seq_length, C_embed) - layout = 'TN' Shape (seq_length, batch_size, C_embed)
get_initial_embedding
python
dmlc/gluon-nlp
src/gluonnlp/models/electra.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/electra.py
Apache-2.0
def apply_layerwise_decay(self, layerwise_decay: int, not_included: Optional[List[str]] = None, num_additional_layers: int = 2): """Apply the layer-wise gradient decay .. math:: lr = lr * layerwise_decay^(max_depth - layer_depth) Parameters ---------- layerwise_decay Power rate of the layer-wise decay not_included A list or parameter names that not included in the layer-wise decay num_additional_layers The number of layers after the current backbone. This helps determine the max depth """ # Consider the task specific finetuning layer as the last layer, following with pooler # In addition, the embedding parameters have the smaller learning rate based on this # setting. max_depth = self.num_layers + num_additional_layers for _, value in self.collect_params('.*embed*').items(): value.lr_mult = layerwise_decay ** max_depth for (layer_depth, layer) in enumerate(self.encoder.all_encoder_layers): layer_params = layer.collect_params() for key, value in layer_params.items(): if not_included: for pn in not_included: if pn in key: continue value.lr_mult = layerwise_decay**(max_depth - (layer_depth + 1))
Apply the layer-wise gradient decay .. math:: lr = lr * layerwise_decay^(max_depth - layer_depth) Parameters ---------- layerwise_decay Power rate of the layer-wise decay not_included A list or parameter names that not included in the layer-wise decay num_additional_layers The number of layers after the current backbone. This helps determine the max depth
apply_layerwise_decay
python
dmlc/gluon-nlp
src/gluonnlp/models/electra.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/electra.py
Apache-2.0
def frozen_params(self, untunable_depth: int, not_included: Optional[List[str]] = None): """Froze part of parameters according to layer depth. That is, make all layer that shallower than `untunable_depth` untunable to stop the gradient backward computation and accelerate the training. Parameters ---------- untunable_depth the depth of the neural network starting from 1 to number of layers not_included A list or parameter names that not included in the untunable parameters """ all_layers = self.encoder.all_encoder_layers for _, value in self.collect_params('.*embed*').items(): value.grad_req = 'null' for layer in all_layers[:untunable_depth]: for key, value in layer.collect_params().items(): if not_included: for pn in not_included: if pn in key: continue value.grad_req = 'null'
Froze part of parameters according to layer depth. That is, make all layer that shallower than `untunable_depth` untunable to stop the gradient backward computation and accelerate the training. Parameters ---------- untunable_depth the depth of the neural network starting from 1 to number of layers not_included A list or parameter names that not included in the untunable parameters
frozen_params
python
dmlc/gluon-nlp
src/gluonnlp/models/electra.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/electra.py
Apache-2.0
def forward(self, inputs, token_types, valid_length): """Getting the scores of the replaced token detection of the whole sentence based on the corrupted tokens produced from a generator. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) rtd_scores - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) """ contextual_embeddings, pooled_out = self.backbone_model(inputs, token_types, valid_length) rtd_scores = self.rtd_encoder(contextual_embeddings).squeeze(-1) return contextual_embeddings, pooled_out, rtd_scores
Getting the scores of the replaced token detection of the whole sentence based on the corrupted tokens produced from a generator. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) rtd_scores - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/electra.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/electra.py
Apache-2.0
def __init__(self, backbone_cfg, weight_initializer=None, bias_initializer=None): """ Parameters ---------- backbone_cfg Configuration of the backbone model weight_initializer bias_initializer """ super().__init__() self.backbone_model = ElectraModel.from_cfg(backbone_cfg) if weight_initializer is None: weight_initializer = self.backbone_model.weight_initializer if bias_initializer is None: bias_initializer = self.backbone_model.bias_initializer self.mlm_decoder = nn.HybridSequential() # Extra non-linear layer self.mlm_decoder.add(nn.Dense(units=self.backbone_model.embed_size, in_units=self.backbone_model.units, flatten=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer)) self.mlm_decoder.add(get_activation(self.backbone_model.activation)) self.mlm_decoder.add(nn.LayerNorm(epsilon=self.backbone_model.layer_norm_eps, in_channels=self.backbone_model.embed_size)) # only load the dense weights with a re-initialized bias # parameters are stored in 'word_embed_bias' which is # not used in original embedding self.mlm_decoder.add( nn.Dense( units=self.backbone_model.vocab_size, in_units=self.backbone_model.embed_size, flatten=False, bias_initializer=bias_initializer)) self.mlm_decoder[-1].weight = self.backbone_model.word_embed.weight
Parameters ---------- backbone_cfg Configuration of the backbone model weight_initializer bias_initializer
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/electra.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/electra.py
Apache-2.0
def tie_embeddings(self, word_embed_params=None, token_type_embed_params=None, token_pos_embed_params=None, embed_layer_norm_params=None): """Tie the embedding layers between the backbone and the MLM decoder Parameters ---------- word_embed_params token_type_embed_params token_pos_embed_params embed_layer_norm_params """ self.backbone_model.word_embed.share_parameters(word_embed_params) self.mlm_decoder[-1].share_parameters(word_embed_params) self.backbone_model.token_type_embed.share_parameters(token_type_embed_params) self.backbone_model.token_pos_embed.share_parameters(token_pos_embed_params) self.backbone_model.embed_layer_norm.share_parameters(embed_layer_norm_params)
Tie the embedding layers between the backbone and the MLM decoder Parameters ---------- word_embed_params token_type_embed_params token_pos_embed_params embed_layer_norm_params
tie_embeddings
python
dmlc/gluon-nlp
src/gluonnlp/models/electra.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/electra.py
Apache-2.0
def forward(self, inputs, token_types, valid_length, masked_positions): """Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length : The valid length of each sequence Shape (batch_size,) masked_positions : The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size) """ contextual_embeddings, pooled_out = self.backbone_model(inputs, token_types, valid_length) if self.backbone_model.layout == 'NT': mlm_features = select_vectors_by_position(contextual_embeddings, masked_positions) else: mlm_features = select_vectors_by_position(np.swapaxes(contextual_embeddings, 0, 1), masked_positions) mlm_scores = self.mlm_decoder(mlm_features) return contextual_embeddings, pooled_out, mlm_scores
Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length : The valid length of each sequence Shape (batch_size,) masked_positions : The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/electra.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/electra.py
Apache-2.0
def __init__(self, disc_cfg, uniform_generator=False, tied_generator=False, tied_embeddings=True, disallow_correct=False, temperature=1.0, gumbel_eps=1E-9, dtype='float32', weight_initializer=None, bias_initializer=None): """ Parameters ---------- disc_cfg : Config for discriminator model including scaled size for generator uniform_generator : Wether to get a generator with uniform weights, the mlm_scores from which are totally random. In this case , a discriminator learns from a random 15% of the input tokens distinct from the subset. tied_generator : Whether to tie backbone model weights of generator and discriminator. The size of G and D are required to be same if set to True. tied_embeddings : Whether to tie the embeddings of generator and discriminator disallow_correct : Whether the correct smaples of generator are allowed, that is 15% of tokens are always fake. temperature : Temperature of gumbel distribution for sampling from generator weight_initializer bias_initializer """ super().__init__() self._uniform_generator = uniform_generator self._tied_generator = tied_generator self._tied_embeddings = tied_embeddings self._disallow_correct = disallow_correct self._temperature = temperature self._gumbel_eps = gumbel_eps self._dtype = dtype self.disc_cfg = disc_cfg self.vocab_size = disc_cfg.MODEL.vocab_size self.gen_cfg = get_generator_cfg(disc_cfg) self.discriminator = ElectraDiscriminator(disc_cfg, weight_initializer=weight_initializer, bias_initializer=bias_initializer) self.disc_backbone = self.discriminator.backbone_model if not uniform_generator and not tied_generator: self.generator = ElectraGenerator(self.gen_cfg, weight_initializer=weight_initializer, bias_initializer=bias_initializer) if tied_embeddings: self.generator.tie_embeddings(self.disc_backbone.word_embed.collect_params(), self.disc_backbone.token_type_embed.collect_params(), self.disc_backbone.token_pos_embed.collect_params(), self.disc_backbone.embed_layer_norm.collect_params()) elif tied_generator: # Reuse the weight of the discriminator backbone model self.generator = ElectraGenerator(self.gen_cfg, weight_initializer=weight_initializer, bias_initializer=bias_initializer) # TODO(sxjscience, zheyu) Verify self.generator.backbone_model = self.disc_backbone elif uniform_generator: # get the mlm_scores randomly over vocab self.generator = None
Parameters ---------- disc_cfg : Config for discriminator model including scaled size for generator uniform_generator : Wether to get a generator with uniform weights, the mlm_scores from which are totally random. In this case , a discriminator learns from a random 15% of the input tokens distinct from the subset. tied_generator : Whether to tie backbone model weights of generator and discriminator. The size of G and D are required to be same if set to True. tied_embeddings : Whether to tie the embeddings of generator and discriminator disallow_correct : Whether the correct smaples of generator are allowed, that is 15% of tokens are always fake. temperature : Temperature of gumbel distribution for sampling from generator weight_initializer bias_initializer
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/electra.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/electra.py
Apache-2.0
def forward(self, inputs, token_types, valid_length, original_tokens, masked_positions): """Getting the mlm scores of each masked positions from a generator, then produces the corrupted tokens sampling from a gumbel distribution. We also get the ground-truth and scores of the replaced token detection which is output by a discriminator. The ground-truth is an array with same shape as the input using 1 stand for original token and 0 for replacement. Notice: There is a problem when the masked positions have duplicate indexs. Try to avoid that in the data preprocessing process. In addition, loss calculation should be done in the training scripts as well. Parameters ---------- inputs The masked input - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types The token types. If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence. Shape (batch_size,) original_tokens The original tokens that appear in the unmasked input sequence. Shape (batch_size, num_masked_positions). masked_positions : The masked position of the sequence. Shape (batch_size, num_masked_positions). Returns ------- mlm_scores The masked language model score. Shape (batch_size, num_masked_positions, vocab_size) rtd_scores The replaced-token-detection score. Predicts whether the tokens are replaced or not. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) replaced_inputs Shape (batch_size, num_masked_positions) labels - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) """ if self._uniform_generator: # generate the corrupt tokens randomly with a mlm_scores vector whose value is all 0 zero_logits = np.zeros((1, 1, self.vocab_size), dtype=self._dtype) mlm_scores = np.expand_dims(np.zeros_like(masked_positions, dtype=self._dtype), axis=-1) mlm_scores = mlm_scores + zero_logits else: _, _, mlm_scores = self.generator(inputs, token_types, valid_length, masked_positions) corrupted_tokens, fake_data, labels = self.get_corrupted_tokens( inputs, original_tokens, masked_positions, mlm_scores) # The discriminator takes the same input as the generator and the token_ids are # replaced with fake data _, _, rtd_scores = self.discriminator(fake_data, token_types, valid_length) return mlm_scores, rtd_scores, corrupted_tokens, labels
Getting the mlm scores of each masked positions from a generator, then produces the corrupted tokens sampling from a gumbel distribution. We also get the ground-truth and scores of the replaced token detection which is output by a discriminator. The ground-truth is an array with same shape as the input using 1 stand for original token and 0 for replacement. Notice: There is a problem when the masked positions have duplicate indexs. Try to avoid that in the data preprocessing process. In addition, loss calculation should be done in the training scripts as well. Parameters ---------- inputs The masked input - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types The token types. If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence. Shape (batch_size,) original_tokens The original tokens that appear in the unmasked input sequence. Shape (batch_size, num_masked_positions). masked_positions : The masked position of the sequence. Shape (batch_size, num_masked_positions). Returns ------- mlm_scores The masked language model score. Shape (batch_size, num_masked_positions, vocab_size) rtd_scores The replaced-token-detection score. Predicts whether the tokens are replaced or not. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) replaced_inputs Shape (batch_size, num_masked_positions) labels - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/electra.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/electra.py
Apache-2.0
def get_corrupted_tokens(self, inputs, original_tokens, masked_positions, logits): """ Sample from the generator to create corrupted input. Parameters ---------- inputs The masked input - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) original_tokens The original tokens that appear in the unmasked input sequence Shape (batch_size, num_masked_positions). masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). logits The logits of each tokens Shape (batch_size, num_masked_positions, vocab_size) Returns ------- corrupted_tokens Shape (batch_size, ) fake_data - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) labels - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) """ if self._disallow_correct: # TODO(sxjscience), Revise the implementation disallow = npx.one_hot(masked_positions, depth=self.vocab_size, dtype=self._dtype) logits = logits - 1000.0 * disallow # gumbel_softmax() samples from the logits with a noise of Gumbel distribution prob = gumbel_softmax( logits, temperature=self._temperature, eps=self._gumbel_eps, use_np_gumbel=False) corrupted_tokens = np.argmax(prob, axis=-1).astype(np.int32) if self.disc_backbone.layout == 'TN': inputs = inputs.T original_data = update_vectors_by_position(inputs, original_tokens, masked_positions) fake_data = update_vectors_by_position(inputs, corrupted_tokens, masked_positions) updates_mask = add_vectors_by_position(np.zeros_like(inputs), np.ones_like(masked_positions), masked_positions) # Dealing with multiple zeros in masked_positions which # results in a non-zero value in the first index [CLS] updates_mask = np.minimum(updates_mask, 1) labels = updates_mask * np.not_equal(fake_data, original_data) if self.disc_backbone.layout == 'TN': return corrupted_tokens, fake_data.T, labels.T else: return corrupted_tokens, fake_data, labels
Sample from the generator to create corrupted input. Parameters ---------- inputs The masked input - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) original_tokens The original tokens that appear in the unmasked input sequence Shape (batch_size, num_masked_positions). masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). logits The logits of each tokens Shape (batch_size, num_masked_positions, vocab_size) Returns ------- corrupted_tokens Shape (batch_size, ) fake_data - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) labels - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size)
get_corrupted_tokens
python
dmlc/gluon-nlp
src/gluonnlp/models/electra.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/electra.py
Apache-2.0
def get_pretrained_electra(model_name: str = 'google_electra_small', root: str = get_model_zoo_home_dir(), load_backbone: bool = True, load_disc: bool = False, load_gen: bool = False) \ -> Tuple[CN, HuggingFaceWordPieceTokenizer, Optional[str], Tuple[Optional[str], Optional[str]]]: """Get the pretrained Electra weights Parameters ---------- model_name The name of the Electra model. root The downloading root load_backbone Whether to load the weights of the backbone network load_disc Whether to load the weights of the discriminator load_gen Whether to load the weights of the generator Returns ------- cfg Network configuration tokenizer The HuggingFaceWordPieceTokenizer backbone_params_path Path to the parameter of the backbone network other_net_params_paths Path to the parameter of the discriminator and the generator. They will be returned inside a tuple. """ assert model_name in PRETRAINED_URL, '{} is not found. All available are {}'.format( model_name, list_pretrained_electra()) cfg_path = PRETRAINED_URL[model_name]['cfg'] if isinstance(cfg_path, CN): cfg = cfg_path else: cfg = None vocab_path = PRETRAINED_URL[model_name]['vocab'] params_path = PRETRAINED_URL[model_name]['params'] disc_params_path = PRETRAINED_URL[model_name]['disc_model'] gen_params_path = PRETRAINED_URL[model_name]['gen_model'] local_paths = dict() download_jobs = [('vocab', vocab_path)] if cfg is None: download_jobs.append(('cfg', cfg_path)) for k, path in download_jobs: local_paths[k] = download(url=get_repo_model_zoo_url() + path, path=os.path.join(root, path), sha1_hash=FILE_STATS[path]) if load_backbone: local_params_path = download(url=get_repo_model_zoo_url() + params_path, path=os.path.join(root, params_path), sha1_hash=FILE_STATS[params_path]) else: local_params_path = None if load_disc: local_disc_params_path = download(url=get_repo_model_zoo_url() + disc_params_path, path=os.path.join(root, disc_params_path), sha1_hash=FILE_STATS[disc_params_path]) else: local_disc_params_path = None if load_gen: local_gen_params_path = download(url=get_repo_model_zoo_url() + gen_params_path, path=os.path.join(root, gen_params_path), sha1_hash=FILE_STATS[gen_params_path]) else: local_gen_params_path = None do_lower = True if 'lowercase' in PRETRAINED_URL[model_name]\ and PRETRAINED_URL[model_name]['lowercase'] else False tokenizer = HuggingFaceWordPieceTokenizer( vocab_file=local_paths['vocab'], unk_token='[UNK]', pad_token='[PAD]', cls_token='[CLS]', sep_token='[SEP]', mask_token='[MASK]', lowercase=do_lower) if cfg is None: cfg = ElectraModel.get_cfg().clone_merge(local_paths['cfg']) return cfg, tokenizer, local_params_path, (local_disc_params_path, local_gen_params_path)
Get the pretrained Electra weights Parameters ---------- model_name The name of the Electra model. root The downloading root load_backbone Whether to load the weights of the backbone network load_disc Whether to load the weights of the discriminator load_gen Whether to load the weights of the generator Returns ------- cfg Network configuration tokenizer The HuggingFaceWordPieceTokenizer backbone_params_path Path to the parameter of the backbone network other_net_params_paths Path to the parameter of the discriminator and the generator. They will be returned inside a tuple.
get_pretrained_electra
python
dmlc/gluon-nlp
src/gluonnlp/models/electra.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/electra.py
Apache-2.0
def forward(self, x, layer_states): """ Parameters ---------- x - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) layer_states - layout = 'NT' Shape (2, batch_size, prev_len, C_in) - layout = 'TN' Shape (2, prev_len, batch_size, C_in) """ x = self.ln(x) if self._layout == 'NT': batch_axis, time_axis = 0, 1 prev_len = npx.shape_array(layer_states)[2] else: batch_axis, time_axis = 1, 0 prev_len = npx.shape_array(layer_states)[1] query, key, value = np.split(self.qkv(x), 3, axis=-1) if layer_states is not None: prev_key, prev_value = layer_states[0], layer_states[1] key = np.concatenate([prev_key, key], axis=time_axis) value = np.concatenate([prev_value, value], axis=time_axis) new_states = np.stack([key, value], axis=0) # gen mask query_pos = npx.arange_like(query, axis=time_axis) if prev_len is not None: query_pos = query_pos + prev_len key_pos = npx.arange_like(key, axis=time_axis) # (query_len, key_len) mask = (npx.reshape(key_pos, (1, -1)) <= npx.reshape(query_pos, (-1, 1))).astype(self._dtype) # broadcast to (batch_size, query_len, key_len) mask = npx.broadcast_like( np.expand_dims(mask, axis=0), query, lhs_axes=0, rhs_axes=batch_axis ) query = npx.reshape(query, (-2, -2, self._num_heads, -1)) key = npx.reshape(key, (-2, -2, self._num_heads, -1)) value = npx.reshape(value, (-2, -2, self._num_heads, -1)) out, [_, attn_weight] = self.attention_cell(query, key, value, mask) out = self.out_proj(out) out = self.hidden_dropout(out) return out, new_states
Parameters ---------- x - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) layer_states - layout = 'NT' Shape (2, batch_size, prev_len, C_in) - layout = 'TN' Shape (2, prev_len, batch_size, C_in)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/gpt2.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/gpt2.py
Apache-2.0
def forward(self, x, layer_states): """ Parameters ---------- x - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) layer_states - layout = 'NT' Shape (2, batch_size, prev_len, C_in) - layout = 'TN' Shape (2, prev_len, batch_size, C_in) Returns ------- new_x - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) new_states - layout = 'NT' Shape (2, batch_size, prev_len + seq_length, C_in) - layout = 'TN' Shape (2, prev_len + seq_length, batch_size, C_in) """ h, new_layer_states = self.atten(x, layer_states) x = x + h h = self.ffn(x) return h, new_layer_states
Parameters ---------- x - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) layer_states - layout = 'NT' Shape (2, batch_size, prev_len, C_in) - layout = 'TN' Shape (2, prev_len, batch_size, C_in) Returns ------- new_x - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) new_states - layout = 'NT' Shape (2, batch_size, prev_len + seq_length, C_in) - layout = 'TN' Shape (2, prev_len + seq_length, batch_size, C_in)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/gpt2.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/gpt2.py
Apache-2.0
def forward(self, x, states): """ Parameters ---------- x - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) states The previous states - layout = 'NT' Shape (num_layers, 2, batch_size, prev_len, C_in)] - layout = 'TN' Shape (num_layers, 2, prev_len, batch_size, C_in)] Returns ------- new_x Output - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) new_states The new states - layout = 'NT' Shape (num_layers, 2, batch_size, prev_len + seq_length, C_in) - layout = 'TN' Shape (num_layers, 2, prev_len + seq_length, batch_size, C_in) """ prev_len = npx.shape_array(states)[3] if self._layout == 'NT' else \ npx.shape_array(states)[2] x = self.get_initial_embedding(x, prev_len) if self._layout != self._compute_layout: x = np.swapaxes(x, 0, 1) states = np.swapaxes(states, 2, 3) new_states = [] for layer_idx in range(self._num_layers): layer_states = None if states is None else states[layer_idx] x, new_layer_states = self._layers[layer_idx](x, layer_states) new_states.append(new_layer_states) new_states = np.stack(new_states, axis=0) x = self._final_ln(x) if self._layout != self._compute_layout: x = np.swapaxes(x, 0, 1) new_states = np.swapaxes(new_states, 2, 3) return x, new_states
Parameters ---------- x - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) states The previous states - layout = 'NT' Shape (num_layers, 2, batch_size, prev_len, C_in)] - layout = 'TN' Shape (num_layers, 2, prev_len, batch_size, C_in)] Returns ------- new_x Output - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) new_states The new states - layout = 'NT' Shape (num_layers, 2, batch_size, prev_len + seq_length, C_in) - layout = 'TN' Shape (num_layers, 2, prev_len + seq_length, batch_size, C_in)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/gpt2.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/gpt2.py
Apache-2.0
def get_initial_embedding(self, inputs, prev_len): """Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) prev_len The previous length. It will be a scalar. Returns ------- embedding - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) """ embedding = self._embed(inputs) if self._layout == 'NT': batch_axis, time_axis = 0, 1 else: batch_axis, time_axis = 1, 0 if self._pos_embed_type is not None: pos = npx.arange_like(inputs, axis=time_axis) if prev_len is not None: pos = pos + prev_len positional_embedding = self._pos_embed(pos) positional_embedding = np.expand_dims(positional_embedding, axis=batch_axis) embedding = embedding + positional_embedding embedding = self._embed_dropout(embedding) return embedding
Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) prev_len The previous length. It will be a scalar. Returns ------- embedding - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C)
get_initial_embedding
python
dmlc/gluon-nlp
src/gluonnlp/models/gpt2.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/gpt2.py
Apache-2.0
def init_states(self, batch_size, ctx, dtype=None): """Initialize the states required for incremental decoding Returns ------- init_states - layout = 'NT' Shape (num_layers, 2, batch_size, 0, C_in) - layout = 'TN' Shape (num_layers, 2, 0, batch_size, C_in) """ if dtype is None: dtype = self._dtype return mx.np.zeros(shape=(self._num_layers, 2, batch_size, 0, self._units), ctx=ctx, dtype=dtype) if self.layout == 'NT' else \ mx.np.zeros(shape=(self._num_layers, 2, 0, batch_size, self._units), ctx=ctx, dtype=dtype)
Initialize the states required for incremental decoding Returns ------- init_states - layout = 'NT' Shape (num_layers, 2, batch_size, 0, C_in) - layout = 'TN' Shape (num_layers, 2, 0, batch_size, C_in)
init_states
python
dmlc/gluon-nlp
src/gluonnlp/models/gpt2.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/gpt2.py
Apache-2.0
def forward(self, inputs, states): """Getting the logits. This can be used for language modeling. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) states The states. - layout = 'NT' Shape (num_layers, 2, batch_size, prev_len, C_in) - layout = 'TN' Shape (num_layers, 2, prev_len, batch_size, C_in) Returns ------- logits - layout = 'NT' Shape (batch_size, seq_length, vocab_size). - layout = 'TN' Shape (seq_length, batch_size, vocab_size). new_states - layout = 'NT' Shape (num_layers, 2, batch_size, prev_len + seq_length, C_in) - layout = 'TN' Shape (num_layers, 2, prev_len + seq_length, batch_size, C_in) """ contextual_embeddings, new_states = self._backbone_model(inputs, states) logits = self._lm_head(contextual_embeddings) return logits, new_states
Getting the logits. This can be used for language modeling. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) states The states. - layout = 'NT' Shape (num_layers, 2, batch_size, prev_len, C_in) - layout = 'TN' Shape (num_layers, 2, prev_len, batch_size, C_in) Returns ------- logits - layout = 'NT' Shape (batch_size, seq_length, vocab_size). - layout = 'TN' Shape (seq_length, batch_size, vocab_size). new_states - layout = 'NT' Shape (num_layers, 2, batch_size, prev_len + seq_length, C_in) - layout = 'TN' Shape (num_layers, 2, prev_len + seq_length, batch_size, C_in)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/gpt2.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/gpt2.py
Apache-2.0
def get_pretrained_gpt2(model_name: str = 'gpt2_124M', root: str = get_model_zoo_home_dir(), load_backbone: bool = True, load_lm: bool = False)\ -> Tuple[CN, HuggingFaceByteBPETokenizer, str, str]: """Get the pretrained GPT-2 weights Parameters ---------- model_name The name of the GPT-2 model. root The downloading root load_backbone Whether to load the weights of the backbone network load_lm Whether to load the weights of LM Returns ------- cfg Network configuration tokenizer The HuggingFaceByteBPETokenizer params_path Path to the parameters lm_params_path Path to the parameter that includes both the backbone and the LM """ assert model_name in PRETRAINED_URL, '{} is not found. All available are {}'.format( model_name, list_pretrained_gpt2()) cfg_path = PRETRAINED_URL[model_name]['cfg'] if isinstance(cfg_path, CN): cfg = cfg_path else: cfg = None merges_path = PRETRAINED_URL[model_name]['merges'] vocab_path = PRETRAINED_URL[model_name]['vocab'] params_path = PRETRAINED_URL[model_name]['params'] lm_params_path = PRETRAINED_URL[model_name]['lm_params'] local_paths = dict() download_jobs = [('vocab', vocab_path), ('merges', merges_path)] if cfg is None: download_jobs.append(('cfg', cfg_path)) for k, path in download_jobs: local_paths[k] = download(url=get_repo_model_zoo_url() + path, path=os.path.join(root, path), sha1_hash=FILE_STATS[path]) if load_backbone: local_params_path = download(url=get_repo_model_zoo_url() + params_path, path=os.path.join(root, params_path), sha1_hash=FILE_STATS[params_path]) else: local_params_path = None if load_lm and lm_params_path is not None: local_lm_params_path = download(url=get_repo_model_zoo_url() + lm_params_path, path=os.path.join(root, lm_params_path), sha1_hash=FILE_STATS[lm_params_path]) else: local_lm_params_path = None tokenizer = HuggingFaceByteBPETokenizer( merges_file=local_paths['merges'], vocab_file=local_paths['vocab']) if cfg is None: cfg = GPT2Model.get_cfg().clone_merge(local_paths['cfg']) return cfg, tokenizer, local_params_path, local_lm_params_path
Get the pretrained GPT-2 weights Parameters ---------- model_name The name of the GPT-2 model. root The downloading root load_backbone Whether to load the weights of the backbone network load_lm Whether to load the weights of LM Returns ------- cfg Network configuration tokenizer The HuggingFaceByteBPETokenizer params_path Path to the parameters lm_params_path Path to the parameter that includes both the backbone and the LM
get_pretrained_gpt2
python
dmlc/gluon-nlp
src/gluonnlp/models/gpt2.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/gpt2.py
Apache-2.0
def __init__(self, use_bottleneck: bool = True, units: int = 512, real_units: int = 128, hidden_size: int = 2048, num_heads: int = 8, num_stacked_ffn: int = 1, bottleneck_strategy: str = 'qk_sharing', attention_dropout_prob: float = 0.1, hidden_dropout_prob: float = 0.1, activation_dropout_prob: float = 0.0, activation: str = 'gelu', normalization: str = 'layer_norm', layer_norm_eps: float = 1e-12, use_qkv_bias: bool = True, weight_initializer: Optional[InitializerType] = None, bias_initializer: Optional[InitializerType] = 'zeros', dtype='float32', layout='NT'): """ Parameters ---------- use_bottleneck Whether to use the bottleneck layer. units size of inter-bottleneck real_units size of intra-bottleneck hidden_size size of feed-forward network num_heads num_stacked_ffn attention_dropout_prob hidden_dropout_prob activation_dropout_prob activation normalization layer_norm_eps onlyv valid when normalization is 'layer_norm' use_qkv_bias weight_initializer bias_initializer dtype Data type of the block layout Layout of the input + output """ super().__init__() self._use_bottleneck = use_bottleneck self._units = units self._real_units = real_units self._num_heads = num_heads self._num_stacked_ffn = num_stacked_ffn self._bottleneck_strategy = bottleneck_strategy self._dtype = dtype self._layout = layout assert real_units % num_heads == 0, 'units must be divisive by the number of heads' self.dropout_layer = nn.Dropout(hidden_dropout_prob) if use_bottleneck: self.in_bottleneck_proj = nn.Dense(units=real_units, in_units=units, flatten=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=self._dtype) self.in_bottleneck_ln = get_norm_layer(normalization=normalization, in_channels=real_units, epsilon=layer_norm_eps) self.out_bottleneck_proj = nn.Dense(units=units, in_units=real_units, flatten=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=self._dtype) self.out_bottleneck_ln = get_norm_layer(normalization=normalization, in_channels=units, epsilon=layer_norm_eps) if bottleneck_strategy == 'qk_sharing': self.shared_qk = nn.Dense(units=real_units, in_units=units, flatten=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=self._dtype) self.shared_qk_ln = get_norm_layer(normalization=normalization, in_channels=real_units, epsilon=layer_norm_eps) self.attention_proj = nn.Dense(units=real_units, flatten=False, in_units=real_units, use_bias=True, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=self._dtype) # The in_units of qkv varies according to the sharing strategy if self._use_bottleneck: if self._bottleneck_strategy == 'qk_sharing': attn_query_in_units = real_units attn_key_in_units = real_units attn_value_in_units = units elif self._bottleneck_strategy == 'from_bottleneck': attn_query_in_units = real_units attn_key_in_units = real_units attn_value_in_units = real_units elif self._bottleneck_strategy == 'from_input': attn_query_in_units = units attn_key_in_units = units attn_value_in_units = units else: raise NotImplementedError else: attn_query_in_units = units attn_key_in_units = units attn_value_in_units = units self.attn_query = nn.Dense(units=real_units, in_units=attn_query_in_units, flatten=False, use_bias=use_qkv_bias, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=self._dtype) self.attn_key = nn.Dense(units=real_units, in_units=attn_key_in_units, flatten=False, use_bias=use_qkv_bias, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=self._dtype) self.attn_value = nn.Dense(units=real_units, in_units=attn_value_in_units, flatten=False, use_bias=use_qkv_bias, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=self._dtype) attention_layout = 'NTK' if self._layout == 'NT' else 'TNK' self.attention_cell = \ MultiHeadAttentionCell( query_units=real_units, num_heads=num_heads, attention_dropout=attention_dropout_prob, scaled=True, dtype=self._dtype, layout=attention_layout ) self.layer_norm = get_norm_layer(normalization=normalization, in_channels=real_units, epsilon=layer_norm_eps) self.stacked_ffn = nn.HybridSequential() for ffn_idx in range(num_stacked_ffn): is_last_ffn = (ffn_idx == (num_stacked_ffn - 1)) # only apply dropout on last ffn layer if use bottleneck dropout = float(hidden_dropout_prob * (not use_bottleneck) * is_last_ffn) self.stacked_ffn.add( PositionwiseFFN(units=real_units, hidden_size=hidden_size, dropout=dropout, activation_dropout=activation_dropout_prob, weight_initializer=weight_initializer, bias_initializer=bias_initializer, activation=activation, normalization=normalization, layer_norm_eps=layer_norm_eps, dtype=self._dtype))
Parameters ---------- use_bottleneck Whether to use the bottleneck layer. units size of inter-bottleneck real_units size of intra-bottleneck hidden_size size of feed-forward network num_heads num_stacked_ffn attention_dropout_prob hidden_dropout_prob activation_dropout_prob activation normalization layer_norm_eps onlyv valid when normalization is 'layer_norm' use_qkv_bias weight_initializer bias_initializer dtype Data type of the block layout Layout of the input + output
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/mobilebert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/mobilebert.py
Apache-2.0
def forward(self, data, attn_mask): """ Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) attn_mask The attention mask Shape (batch_size, seq_length, seq_length) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) attn_weight Shape (batch_size, seq_length, seq_length) """ if self._use_bottleneck: bn_proj = self.in_bottleneck_proj(data) bn_proj = self.in_bottleneck_ln(bn_proj) input = bn_proj if self._bottleneck_strategy == 'qk_sharing': # for Mobile Bert qk_shared = self.shared_qk(data) qk_shared = self.shared_qk_ln(qk_shared) query = qk_shared key = qk_shared value = data elif self._bottleneck_strategy == 'from_bottleneck': # for Mobile Bert Tiny query = bn_proj key = bn_proj value = bn_proj elif self._bottleneck_strategy == 'from_input': query = data key = data value = data else: raise NotImplementedError else: input = data query = data key = data value = data query = npx.reshape(self.attn_query(query), (-2, -2, self._num_heads, -1)) key = npx.reshape(self.attn_key(key), (-2, -2, self._num_heads, -1)) value = npx.reshape(self.attn_value(value), (-2, -2, self._num_heads, -1)) out, [_, attn_weight] = self.attention_cell(query, key, value, attn_mask) out = self.attention_proj(out) if not self._use_bottleneck: out = self.dropout_layer(out) out = out + input out = self.layer_norm(out) for ffn_idx in range(self._num_stacked_ffn): ffn = self.stacked_ffn[ffn_idx] out = ffn(out) if self._use_bottleneck: out = self.out_bottleneck_proj(out) out = self.dropout_layer(out) out = out + data out = self.out_bottleneck_ln(out) return out, attn_weight
Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) attn_mask The attention mask Shape (batch_size, seq_length, seq_length) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) attn_weight Shape (batch_size, seq_length, seq_length)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/mobilebert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/mobilebert.py
Apache-2.0
def forward(self, data, valid_length): """ Generate the representation given the inputs. This is used in training or fine-tuning a mobile bert model. Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) """ if self._layout == 'NT': batch_axis, time_axis = 0, 1 elif self._layout == 'TN': batch_axis, time_axis = 1, 0 else: raise NotImplementedError('Received layout="{}". ' 'Only "NT" and "TN" are supported.'.format(self._layout)) # 1. Embed the data attn_mask = gen_self_attn_mask(data, valid_length, dtype=self._dtype, layout=self._layout, attn_type='full') out = data all_encodings_outputs = [] additional_outputs = [] all_encodings_outputs.append(out) for layer_idx in range(self._num_layers): layer = self.all_layers[layer_idx] out, attention_weights = layer(out, attn_mask) # out : [batch_size, seq_len, units] # attention_weights : [batch_size, num_heads, seq_len, seq_len] if self._output_all_encodings: out = npx.sequence_mask(out, sequence_length=valid_length, use_sequence_length=True, axis=time_axis) all_encodings_outputs.append(out) if self._output_attention: additional_outputs.append(attention_weights) if not self._output_all_encodings: # if self._output_all_encodings, SequenceMask is already applied above out = npx.sequence_mask(out, sequence_length=valid_length, use_sequence_length=True, axis=time_axis) return out, additional_outputs else: return all_encodings_outputs, additional_outputs
Generate the representation given the inputs. This is used in training or fine-tuning a mobile bert model. Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/mobilebert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/mobilebert.py
Apache-2.0
def forward(self, inputs, token_types, valid_length): # pylint: disable=arguments-differ """Generate the representation given the inputs. This is used in training or fine-tuning a mobile bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) Returns ------- contextual_embedding : Shape (batch_size, seq_length, units). pooled_output : This is optional. Shape (batch_size, units) """ embedding = self.get_initial_embedding(inputs, token_types) if self._compute_layout != self._layout: contextual_embeddings, additional_outputs = self.encoder(np.swapaxes(embedding, 0, 1), valid_length) contextual_embeddings = np.swapaxes(contextual_embeddings, 0, 1) else: contextual_embeddings, additional_outputs = self.encoder(embedding, valid_length) if self.use_pooler: pooled_out = self.apply_pooling(contextual_embeddings) return contextual_embeddings, pooled_out else: return contextual_embeddings
Generate the representation given the inputs. This is used in training or fine-tuning a mobile bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) Returns ------- contextual_embedding : Shape (batch_size, seq_length, units). pooled_output : This is optional. Shape (batch_size, units)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/mobilebert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/mobilebert.py
Apache-2.0
def get_initial_embedding(self, inputs, token_types=None): """Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types Type of tokens. If None, it will be initialized as all zero - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) Returns ------- embedding The initial embedding that will be fed into the encoder """ if self._layout == 'NT': batch_axis, time_axis = 0, 1 elif self._layout == 'TN': batch_axis, time_axis = 1, 0 else: raise NotImplementedError word_embedding = self.word_embed(inputs) if self.trigram_embed: if self._layout == 'NT': word_embedding = np.concatenate( [np.pad(word_embedding[:, 1:], ((0, 0), (0, 1), (0, 0))), word_embedding, np.pad(word_embedding[:, :-1], ((0, 0), (1, 0), (0, 0)))], axis=-1) elif self._layout == 'TN': word_embedding = np.concatenate( [np.pad(word_embedding[1:, :], ((0, 1), (0, 0), (0, 0))), word_embedding, np.pad(word_embedding[:-1, :], ((1, 0), (0, 0), (0, 0)))], axis=-1) else: raise NotImplementedError # Projecting the embedding into units only for word embedding if self.trigram_embed or self.embed_size != self.units: word_embedding = self.embed_factorized_proj(word_embedding) if token_types is None: token_types = np.zeros_like(inputs) type_embedding = self.token_type_embed(token_types) embedding = word_embedding + type_embedding if self.pos_embed_type is not None: positional_embedding =\ self.token_pos_embed(npx.arange_like(embedding, axis=time_axis)) positional_embedding = np.expand_dims(positional_embedding, axis=batch_axis) embedding = embedding + positional_embedding # Extra layer normalization plus dropout embedding = self.embed_layer_norm(embedding) embedding = self.embed_dropout(embedding) return embedding
Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types Type of tokens. If None, it will be initialized as all zero - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) Returns ------- embedding The initial embedding that will be fed into the encoder
get_initial_embedding
python
dmlc/gluon-nlp
src/gluonnlp/models/mobilebert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/mobilebert.py
Apache-2.0
def apply_pooling(self, sequence): """Generate the representation given the inputs. This is used for pre-training or fine-tuning a mobile bert model. Get the first token of the whole sequence which is [CLS] Parameters ---------- sequence - layout = 'NT' Shape (batch_size, sequence_length, units) - layout = 'TN' Shape (sequence_length, batch_size, units) Returns ------- outputs Shape (batch_size, units) """ if self._layout == 'NT': outputs = sequence[:, 0, :] else: outputs = sequence[0, :, :] if self.classifier_activation: return self.pooler(outputs) else: return outputs
Generate the representation given the inputs. This is used for pre-training or fine-tuning a mobile bert model. Get the first token of the whole sequence which is [CLS] Parameters ---------- sequence - layout = 'NT' Shape (batch_size, sequence_length, units) - layout = 'TN' Shape (sequence_length, batch_size, units) Returns ------- outputs Shape (batch_size, units)
apply_pooling
python
dmlc/gluon-nlp
src/gluonnlp/models/mobilebert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/mobilebert.py
Apache-2.0
def forward(self, inputs, token_types, valid_length, masked_positions): """Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types The type of the token. For example, if the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) mlm_scores Shape (batch_size, num_masked_positions, vocab_size) """ contextual_embeddings, pooled_out = self.backbone_model(inputs, token_types, valid_length) if self.backbone_model.layout == 'TN': mlm_features = select_vectors_by_position(np.swapaxes(contextual_embeddings, 0, 1), masked_positions) else: mlm_features = select_vectors_by_position(contextual_embeddings, masked_positions) intermediate_output = self.mlm_decoder(mlm_features) if self.backbone_model.embed_size != self.backbone_model.units: scores = self.embedding_table( intermediate_output[:, :, :self.backbone_model.embed_size]) extra_scores = self.extra_table( intermediate_output[:, :, self.backbone_model.embed_size:]) mlm_scores = scores + extra_scores else: mlm_scores = self.embedding_table(intermediate_output) return contextual_embeddings, pooled_out, mlm_scores
Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types The type of the token. For example, if the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) mlm_scores Shape (batch_size, num_masked_positions, vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/mobilebert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/mobilebert.py
Apache-2.0
def forward(self, inputs, token_types, valid_length, masked_positions): """Generate the representation given the inputs. This is used in training or fine-tuning a mobile mobile bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) nsp_score Shape (batch_size, 2) mlm_scores Shape (batch_size, num_masked_positions, vocab_size) """ contextual_embeddings, pooled_out = self.backbone_model(inputs, token_types, valid_length) nsp_score = self.nsp_classifier(pooled_out) if self.backbone_model.layout == 'NT': mlm_features = select_vectors_by_position(contextual_embeddings, masked_positions) else: mlm_features = select_vectors_by_position(np.swapaxes(contextual_embeddings, 0, 1), masked_positions) intermediate_output = self.mlm_decoder(mlm_features) if self.backbone_model.embed_size != self.backbone_model.units: scores = self.embedding_table( intermediate_output[:, :, :self.backbone_model.embed_size]) extra_scores = self.extra_table( intermediate_output[:, :, self.backbone_model.embed_size:]) mlm_scores = scores + extra_scores else: mlm_scores = self.embedding_table(intermediate_output) return contextual_embeddings, pooled_out, nsp_score, mlm_scores
Generate the representation given the inputs. This is used in training or fine-tuning a mobile mobile bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) nsp_score Shape (batch_size, 2) mlm_scores Shape (batch_size, num_masked_positions, vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/mobilebert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/mobilebert.py
Apache-2.0
def get_pretrained_mobilebert(model_name: str = 'google_uncased_mobilebert', root: str = get_model_zoo_home_dir(), load_backbone: str = True, load_mlm: str = False)\ -> Tuple[CN, HuggingFaceWordPieceTokenizer, str, str]: """Get the pretrained mobile bert weights Parameters ---------- model_name The name of the mobile bert model. root The downloading root load_backbone Whether to load the weights of the backbone network load_mlm Whether to load the weights of MLM Returns ------- cfg Network configuration tokenizer The HuggingFaceWordPieceTokenizer backbone_params_path Path to the parameter of the backbone network mlm_params_path Path to the parameter that includes both the backbone and the MLM """ assert model_name in PRETRAINED_URL, '{} is not found. All available are {}'.format( model_name, list_pretrained_mobilebert()) cfg_path = PRETRAINED_URL[model_name]['cfg'] if isinstance(cfg_path, CN): cfg = cfg_path else: cfg = None vocab_path = PRETRAINED_URL[model_name]['vocab'] params_path = PRETRAINED_URL[model_name]['params'] mlm_params_path = PRETRAINED_URL[model_name]['mlm_params'] local_paths = dict() download_jobs = [('vocab', vocab_path)] if cfg is None: download_jobs.append(('cfg', cfg_path)) for k, path in download_jobs: local_paths[k] = download(url=get_repo_model_zoo_url() + path, path=os.path.join(root, path), sha1_hash=FILE_STATS[path]) if load_backbone: local_params_path = download(url=get_repo_model_zoo_url() + params_path, path=os.path.join(root, params_path), sha1_hash=FILE_STATS[params_path]) else: local_params_path = None if load_mlm and mlm_params_path is not None: local_mlm_params_path = download(url=get_repo_model_zoo_url() + mlm_params_path, path=os.path.join(root, mlm_params_path), sha1_hash=FILE_STATS[mlm_params_path]) else: local_mlm_params_path = None do_lower = True if 'lowercase' in PRETRAINED_URL[model_name]\ and PRETRAINED_URL[model_name]['lowercase'] else False tokenizer = HuggingFaceWordPieceTokenizer( vocab_file=local_paths['vocab'], unk_token='[UNK]', pad_token='[PAD]', cls_token='[CLS]', sep_token='[SEP]', mask_token='[MASK]', lowercase=do_lower) if cfg is None: cfg = MobileBertModel.get_cfg().clone_merge(local_paths['cfg']) return cfg, tokenizer, local_params_path, local_mlm_params_path
Get the pretrained mobile bert weights Parameters ---------- model_name The name of the mobile bert model. root The downloading root load_backbone Whether to load the weights of the backbone network load_mlm Whether to load the weights of MLM Returns ------- cfg Network configuration tokenizer The HuggingFaceWordPieceTokenizer backbone_params_path Path to the parameter of the backbone network mlm_params_path Path to the parameter that includes both the backbone and the MLM
get_pretrained_mobilebert
python
dmlc/gluon-nlp
src/gluonnlp/models/mobilebert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/mobilebert.py
Apache-2.0
def __init__(self, vocab_size=50265, units=768, hidden_size=3072, num_layers=12, num_heads=12, max_length=512, hidden_dropout_prob=0.1, attention_dropout_prob=0.1, pos_embed_type='learned', activation='gelu', pooler_activation='tanh', layer_norm_eps=1E-5, embed_initializer=TruncNorm(stdev=0.02), weight_initializer=TruncNorm(stdev=0.02), bias_initializer='zeros', dtype='float32', use_pooler=True, classifier_activation=False, encoder_normalize_before=True, output_all_encodings=False, layout='NT', compute_layout='auto'): """ Parameters ---------- vocab_size units hidden_size num_layers num_heads max_length hidden_dropout_prob attention_dropout_prob pos_embed_type activation pooler_activation layer_norm_eps embed_initializer weight_initializer bias_initializer dtype use_pooler Whether to output the CLS hidden state classifier_activation Whether to use classification head encoder_normalize_before Whether to normalize before the output_all_encodings Whether to output all encodings layout The layout compute_layout The computation layout """ super().__init__() self._dtype = dtype self._output_all_encodings = output_all_encodings self.vocab_size = vocab_size self.units = units self.hidden_size = hidden_size self.num_layers = num_layers self.num_heads = num_heads self.max_length = max_length self.hidden_dropout_prob = hidden_dropout_prob self.attention_dropout_prob = attention_dropout_prob self.pos_embed_type = pos_embed_type self.activation = activation self.pooler_activation = pooler_activation self.layer_norm_eps = layer_norm_eps self.use_pooler = use_pooler self.classifier_activation = classifier_activation self.encoder_normalize_before = encoder_normalize_before self.weight_initializer = weight_initializer self.bias_initializer = bias_initializer self._layout = layout if compute_layout == 'auto' or compute_layout is None: self._compute_layout = layout else: self._compute_layout = compute_layout self.word_embed = nn.Embedding( input_dim=self.vocab_size, output_dim=self.units, weight_initializer=embed_initializer, dtype=self._dtype ) if self.encoder_normalize_before: self.embed_ln = nn.LayerNorm( epsilon=self.layer_norm_eps, in_channels=self.units) self.embed_dropout = nn.Dropout(self.hidden_dropout_prob) self.pos_embed = PositionalEmbedding( units=self.units, max_length=self.max_length, dtype=self._dtype, method=pos_embed_type) self.encoder = RobertaEncoder( units=self.units, hidden_size=self.hidden_size, num_layers=self.num_layers, num_heads=self.num_heads, attention_dropout_prob=self.attention_dropout_prob, hidden_dropout_prob=self.hidden_dropout_prob, layer_norm_eps=self.layer_norm_eps, weight_initializer=weight_initializer, bias_initializer=bias_initializer, activation=self.activation, dtype=self._dtype, output_all_encodings=self._output_all_encodings, layout=self._compute_layout, ) if self.use_pooler and self.classifier_activation: # Construct pooler self.pooler = nn.Dense(units=self.units, in_units=self.units, flatten=False, activation=self.pooler_activation, weight_initializer=weight_initializer, bias_initializer=bias_initializer)
Parameters ---------- vocab_size units hidden_size num_layers num_heads max_length hidden_dropout_prob attention_dropout_prob pos_embed_type activation pooler_activation layer_norm_eps embed_initializer weight_initializer bias_initializer dtype use_pooler Whether to output the CLS hidden state classifier_activation Whether to use classification head encoder_normalize_before Whether to normalize before the output_all_encodings Whether to output all encodings layout The layout compute_layout The computation layout
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/roberta.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/roberta.py
Apache-2.0
def get_initial_embedding(self, inputs): """Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) Returns ------- embedding The initial embedding that will be fed into the encoder - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) """ if self._layout == 'NT': batch_axis, time_axis = 0, 1 else: batch_axis, time_axis = 1, 0 embedding = self.word_embed(inputs) if self.pos_embed_type: positional_embedding = self.pos_embed(npx.arange_like(inputs, axis=time_axis)) positional_embedding = np.expand_dims(positional_embedding, axis=batch_axis) embedding = embedding + positional_embedding if self.encoder_normalize_before: embedding = self.embed_ln(embedding) embedding = self.embed_dropout(embedding) return embedding
Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) Returns ------- embedding The initial embedding that will be fed into the encoder - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C)
get_initial_embedding
python
dmlc/gluon-nlp
src/gluonnlp/models/roberta.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/roberta.py
Apache-2.0
def apply_pooling(self, sequence): """Generate the representation given the inputs. This is used for pre-training or fine-tuning a mobile bert model. Get the first token of the whole sequence which is [CLS] Parameters ---------- sequence - layout = 'NT' Shape (batch_size, sequence_length, units) - layout = 'TN' Shape (sequence_length, batch_size, units) Returns ------- ret Shape (batch_size, units) """ if self._layout == 'NT': outputs = sequence[:, 0, :] elif self._layout == 'TN': outputs = sequence[0, :, :] else: raise NotImplementedError if self.classifier_activation: return self.pooler(outputs) else: return outputs
Generate the representation given the inputs. This is used for pre-training or fine-tuning a mobile bert model. Get the first token of the whole sequence which is [CLS] Parameters ---------- sequence - layout = 'NT' Shape (batch_size, sequence_length, units) - layout = 'TN' Shape (sequence_length, batch_size, units) Returns ------- ret Shape (batch_size, units)
apply_pooling
python
dmlc/gluon-nlp
src/gluonnlp/models/roberta.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/roberta.py
Apache-2.0
def forward(self, inputs, valid_length, masked_positions): """Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size) """ all_encodings_outputs, pooled_out = self.backbone_model(inputs, valid_length) if self.backbone_model._output_all_encodings: contextual_embeddings = all_encodings_outputs[-1] else: contextual_embeddings = all_encodings_outputs if self.backbone_model.layout == 'TN': contextual_embeddings = np.swapaxes(contextual_embeddings, 0, 1) mlm_features = select_vectors_by_position(contextual_embeddings, masked_positions) mlm_scores = self.mlm_decoder(mlm_features) return all_encodings_outputs, pooled_out, mlm_scores
Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/roberta.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/roberta.py
Apache-2.0
def get_pretrained_roberta(model_name: str = 'fairseq_roberta_base', root: str = get_model_zoo_home_dir(), load_backbone: bool = True, load_mlm: bool = False) \ -> Tuple[CN, HuggingFaceByteBPETokenizer, str, str]: """Get the pretrained RoBERTa weights Parameters ---------- model_name The name of the RoBERTa model. root The downloading root load_backbone Whether to load the weights of the backbone network load_mlm Whether to load the weights of MLM Returns ------- cfg Network configuration tokenizer The HuggingFaceByteBPETokenizer params_path Path to the parameters mlm_params_path Path to the parameter that includes both the backbone and the MLM """ assert model_name in PRETRAINED_URL, '{} is not found. All available are {}'.format( model_name, list_pretrained_roberta()) cfg_path = PRETRAINED_URL[model_name]['cfg'] if isinstance(cfg_path, CN): cfg = cfg_path else: cfg = None merges_path = PRETRAINED_URL[model_name]['merges'] vocab_path = PRETRAINED_URL[model_name]['vocab'] params_path = PRETRAINED_URL[model_name]['params'] mlm_params_path = PRETRAINED_URL[model_name]['mlm_params'] local_paths = dict() download_jobs = [('vocab', vocab_path), ('merges', merges_path)] if cfg is None: download_jobs.append(('cfg', cfg_path)) for k, path in download_jobs: local_paths[k] = download(url=get_repo_model_zoo_url() + path, path=os.path.join(root, path), sha1_hash=FILE_STATS[path]) if load_backbone: local_params_path = download(url=get_repo_model_zoo_url() + params_path, path=os.path.join(root, params_path), sha1_hash=FILE_STATS[params_path]) else: local_params_path = None if load_mlm and mlm_params_path is not None: local_mlm_params_path = download(url=get_repo_model_zoo_url() + mlm_params_path, path=os.path.join(root, mlm_params_path), sha1_hash=FILE_STATS[mlm_params_path]) else: local_mlm_params_path = None do_lower = True if 'lowercase' in PRETRAINED_URL[model_name]\ and PRETRAINED_URL[model_name]['lowercase'] else False tokenizer = HuggingFaceByteBPETokenizer( merges_file=local_paths['merges'], vocab_file=local_paths['vocab'], lowercase=do_lower) if cfg is None: cfg = RobertaModel.get_cfg().clone_merge(local_paths['cfg']) return cfg, tokenizer, local_params_path, local_mlm_params_path
Get the pretrained RoBERTa weights Parameters ---------- model_name The name of the RoBERTa model. root The downloading root load_backbone Whether to load the weights of the backbone network load_mlm Whether to load the weights of MLM Returns ------- cfg Network configuration tokenizer The HuggingFaceByteBPETokenizer params_path Path to the parameters mlm_params_path Path to the parameter that includes both the backbone and the MLM
get_pretrained_roberta
python
dmlc/gluon-nlp
src/gluonnlp/models/roberta.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/roberta.py
Apache-2.0
def __init__( self, d_model, d_kv, d_ff, is_decoder, num_heads=12, dropout_prob=0.1, layer_norm_eps=1E-6, activation='relu', init_factor=1.0, layout='NT', dtype='float32' ): """ Parameters ---------- d_model Equivalent to transformer's `units`. d_kv d_kv * num_heads (see below) = inner_dim. d_ff Equivalent to transformer's `hidden_size`. is_decoder If is_decoder, apply cross-attention. num_heads dropout_prob We use the same dropout rate for all dropout layers. layer_norm_eps activation Type of feed forward projection. Currently supported are `relu` and `gated-gelu`. init_factor A scalor factor in sd of weight initialization. layout dtype """ super().__init__() self._d_model = d_model self._d_kv = d_kv self._d_ff = d_ff self._is_decoder = is_decoder self._num_heads = num_heads self._inner_dim = self._num_heads * self._d_kv self._dtype = dtype assert layout in ['TN', 'NT'], \ 'Invalid layout: {}. Only "TN" and "NT" are supported.'.format(layout) self._layout = layout self._time_axis = 1 if self.layout == 'NT' else 0 self.self_attn_layer_norm = RMSNorm( in_channels=d_model, center=False, scale=True, gamma_initializer=Constant(1.0 * init_factor), variance_epsilon=layer_norm_eps, dtype=dtype ) # avoid scaling before softmax # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 self.self_attn_q = nn.Dense( units=self._inner_dim, in_units=d_model, flatten=False, use_bias=False, weight_initializer=Normal((d_model * d_kv) ** -0.5 * init_factor), dtype=dtype ) self.self_attn_k = nn.Dense( units=self._inner_dim, in_units=d_model, flatten=False, use_bias=False, weight_initializer=Normal(d_model ** -0.5 * init_factor), dtype=dtype ) self.self_attn_v = nn.Dense( units=self._inner_dim, in_units=d_model, flatten=False, use_bias=False, weight_initializer=Normal(d_model ** -0.5 * init_factor), dtype=dtype ) self.self_attn = MultiHeadAttentionCell( query_units=self._inner_dim, num_heads=num_heads, attention_dropout=dropout_prob, scaled=False, normalized=False, dtype=dtype, layout='NTK' if layout == 'NT' else 'TNK', use_einsum=False ) self.self_attn_proj = nn.Dense( units=d_model, in_units=self._inner_dim, flatten=False, use_bias=False, weight_initializer=Normal(self._inner_dim ** -0.5 * init_factor), dtype=dtype ) if is_decoder: self.cross_attn_layer_norm = RMSNorm( in_channels=d_model, center=False, scale=True, gamma_initializer=Constant(1.0 * init_factor), variance_epsilon=layer_norm_eps, dtype=dtype ) # avoid scaling before softmax self.cross_attn_q = nn.Dense( units=self._inner_dim, in_units=d_model, flatten=False, use_bias=False, weight_initializer=Normal((d_model * d_kv) ** -0.5 * init_factor), dtype=dtype ) self.cross_attn_k = nn.Dense( units=self._inner_dim, in_units=d_model, flatten=False, use_bias=False, weight_initializer=Normal(d_model ** -0.5 * init_factor), dtype=dtype ) self.cross_attn_v = nn.Dense( units=self._inner_dim, in_units=d_model, flatten=False, use_bias=False, weight_initializer=Normal(d_model ** -0.5 * init_factor), dtype=dtype ) self.cross_attn = MultiHeadAttentionCell( query_units=self._inner_dim, num_heads=num_heads, attention_dropout=dropout_prob, scaled=False, normalized=False, dtype=dtype, layout='NTK' if layout == 'NT' else 'TNK', use_einsum=False ) self.cross_attn_proj = nn.Dense( units=d_model, in_units=self._inner_dim, flatten=False, use_bias=False, weight_initializer=Normal(self._inner_dim ** -0.5 * init_factor), dtype=dtype ) assert activation in ['relu', 'gated-gelu'], \ '{} is not supported. Please choose from "relu" and "gated-gelu"'.format(activation) # the weight_initializer here is equivalent to Normal(in_units ** -0.5 * init_factor) self.ffn = PositionwiseFFN( units=d_model, hidden_size=d_ff, use_bias=False, activation_dropout=dropout_prob, dropout=dropout_prob, weight_initializer=Xavier('gaussian', 'in', np.sqrt(init_factor)), activation='relu' if activation == 'relu' else 'gelu(tanh)', use_gated_activation=False if activation == 'relu' else True, normalization='rms_norm', layer_norm_eps=layer_norm_eps, pre_norm=True, dtype=dtype, center=False, scale=True, gamma_initializer=Constant(1.0 * init_factor) ) self.dropout = nn.Dropout(dropout_prob)
Parameters ---------- d_model Equivalent to transformer's `units`. d_kv d_kv * num_heads (see below) = inner_dim. d_ff Equivalent to transformer's `hidden_size`. is_decoder If is_decoder, apply cross-attention. num_heads dropout_prob We use the same dropout rate for all dropout layers. layer_norm_eps activation Type of feed forward projection. Currently supported are `relu` and `gated-gelu`. init_factor A scalor factor in sd of weight initialization. layout dtype
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def incremental_decode( self, step_hidden_states, step_position_embeddings, past_key_value, mem_states, step_mem_attn_mask ): """Incrementally generate the output given the decoder input. Parameters ---------- step_hidden_states Stepwise hidden states where L_seq = 1 as in `forward` case. - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) step_position_embeddings Stepwise relative position embeddings. Shape (num_heads, 1, (L_past_seq + 1)) past_key_value A tuple containing past key and past value. Presumably they are of the same shape. - layout = 'NT' Shape (B, L_past_seq, num_heads, d_kv) - layout = 'TN' Shape (L_past_seq, B, num_heads, d_kv) mem_states Encoded results. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) step_mem_attn_mask Stepwise attention mask for cross-attention. Shape (B, 1, L_src_seq) Returns ------- step_hidden_states - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) (self_key, self_value) The updated `past_key_value` tuple. Presumably they are of the same shape. - layout = 'NT' Shape (B, (L_past_seq + 1), num_heads, d_kv) - layout = 'TN' Shape ((L_past_seq + 1), B, num_heads, d_kv) """ # 1. self-attention out = self.self_attn_layer_norm(step_hidden_states) step_self_query, step_self_key, step_self_value = ( self.transpose_for_scores(self.self_attn_q(out)), self.transpose_for_scores(self.self_attn_k(out)), self.transpose_for_scores(self.self_attn_v(out)) ) self_key, self_value = ( np.concatenate([past_key_value[0], step_self_key], axis=self._time_axis), np.concatenate([past_key_value[1], step_self_value], axis=self._time_axis) ) out, _ = self.self_attn( step_self_query, self_key, self_value, None, step_position_embeddings ) out = self.dropout(self.self_attn_proj(out)) step_hidden_states = step_hidden_states + out # 2. cross-attention out = self.cross_attn_layer_norm(step_hidden_states) step_cross_query, cross_key, cross_value = ( self.transpose_for_scores(self.cross_attn_q(out)), self.transpose_for_scores(self.cross_attn_k(mem_states)), self.transpose_for_scores(self.cross_attn_v(mem_states)) ) out, _ = self.cross_attn( step_cross_query, cross_key, cross_value, step_mem_attn_mask ) out = self.dropout(self.cross_attn_proj(out)) step_hidden_states = step_hidden_states + out # 3. feed forward step_hidden_states = self.ffn(step_hidden_states) return step_hidden_states, (self_key, self_value)
Incrementally generate the output given the decoder input. Parameters ---------- step_hidden_states Stepwise hidden states where L_seq = 1 as in `forward` case. - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) step_position_embeddings Stepwise relative position embeddings. Shape (num_heads, 1, (L_past_seq + 1)) past_key_value A tuple containing past key and past value. Presumably they are of the same shape. - layout = 'NT' Shape (B, L_past_seq, num_heads, d_kv) - layout = 'TN' Shape (L_past_seq, B, num_heads, d_kv) mem_states Encoded results. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) step_mem_attn_mask Stepwise attention mask for cross-attention. Shape (B, 1, L_src_seq) Returns ------- step_hidden_states - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) (self_key, self_value) The updated `past_key_value` tuple. Presumably they are of the same shape. - layout = 'NT' Shape (B, (L_past_seq + 1), num_heads, d_kv) - layout = 'TN' Shape ((L_past_seq + 1), B, num_heads, d_kv)
incremental_decode
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def forward( self, hidden_states, self_attn_mask, position_embeddings, mem_states=None, mem_attn_mask=None ): """ Parameters ---------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) self_attn_mask if is_decoder, it should be a "causal" attention mask. Shape (B, L_seq, L_seq) position_embeddings Relative position embeddings for self-attention, while cross-attention is free of position encoding. Shape (num_heads, L_seq, L_seq) mem_states Encoded results. Only applicable to decoder layers. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_attn_mask Attention mask ask for cross-attention. Only applicable to decoder layers. Shape (B, L_seq, L_src_seq) Returns ------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) """ # 1. self-attention out = self.self_attn_layer_norm(hidden_states) self_query, self_key, self_value = ( self.transpose_for_scores(self.self_attn_q(out)), self.transpose_for_scores(self.self_attn_k(out)), self.transpose_for_scores(self.self_attn_v(out)) ) out, _ = self.self_attn( self_query, self_key, self_value, self_attn_mask, position_embeddings ) out = self.dropout(self.self_attn_proj(out)) hidden_states = hidden_states + out # 2. cross-attention, if needed if self._is_decoder: out = self.cross_attn_layer_norm(hidden_states) cross_query, cross_key, cross_value = ( self.transpose_for_scores(self.cross_attn_q(out)), self.transpose_for_scores(self.cross_attn_k(mem_states)), self.transpose_for_scores(self.cross_attn_v(mem_states)) ) out, _ = self.cross_attn( cross_query, cross_key, cross_value, mem_attn_mask ) out = self.dropout(self.cross_attn_proj(out)) hidden_states = hidden_states + out # 3. feed forward hidden_states = self.ffn(hidden_states) return hidden_states
Parameters ---------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) self_attn_mask if is_decoder, it should be a "causal" attention mask. Shape (B, L_seq, L_seq) position_embeddings Relative position embeddings for self-attention, while cross-attention is free of position encoding. Shape (num_heads, L_seq, L_seq) mem_states Encoded results. Only applicable to decoder layers. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_attn_mask Attention mask ask for cross-attention. Only applicable to decoder layers. Shape (B, L_seq, L_src_seq) Returns ------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def __init__( self, d_model, d_kv, d_ff, num_layers=12, num_heads=12, dropout_prob=0.1, layer_norm_eps=1E-6, activation='relu', init_factor=1.0, layout='NT', dtype='float32' ): """ Parameters ---------- d_model Equivalent to transformer's `units`. d_kv d_kv * num_heads (see below) = inner_dim. d_ff Equivalent to transformer's `hidden_size`. num_layers num_heads dropout_prob We use the same dropout rate for all dropout layers. layer_norm_eps activation Type of feed forward projection. Currently supported are `relu` and `gated-gelu`. init_factor A scalor factor in sd of weight initialization. layout dtype """ super().__init__() self._d_model = d_model self._d_kv = d_kv self._d_ff = d_ff self._num_layers = num_layers self._num_heads = num_heads self._inner_dim = num_heads * d_kv self._dtype = dtype assert layout in ['TN', 'NT'], \ 'Invalid layout: {}. Only "TN" and "NT" are supported.'.format(layout) self._layout = layout self._time_axis = 1 if self.layout == 'NT' else 0 self.relative_position_encoder = RelAttentionScoreCell( query_units=self._inner_dim, num_heads=num_heads, method='t5', bidirectional=True, embed_initializer=Normal(d_model ** -0.5 * init_factor), layout='NTK' if layout == 'NT' else 'TNK', dtype=dtype ) self.layers = nn.HybridSequential() for _ in range(num_layers): self.layers.add( T5Block( d_model=d_model, d_kv=d_kv, d_ff=d_ff, is_decoder=False, num_heads=num_heads, dropout_prob=dropout_prob, layer_norm_eps=layer_norm_eps, activation=activation, init_factor=init_factor, layout=layout, dtype=dtype ) ) self.final_layer_norm = RMSNorm( in_channels=d_model, center=False, scale=True, gamma_initializer=Constant(1.0 * init_factor), variance_epsilon=layer_norm_eps, dtype=dtype ) self.dropout = nn.Dropout(dropout_prob)
Parameters ---------- d_model Equivalent to transformer's `units`. d_kv d_kv * num_heads (see below) = inner_dim. d_ff Equivalent to transformer's `hidden_size`. num_layers num_heads dropout_prob We use the same dropout rate for all dropout layers. layer_norm_eps activation Type of feed forward projection. Currently supported are `relu` and `gated-gelu`. init_factor A scalor factor in sd of weight initialization. layout dtype
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def forward(self, hidden_states, valid_length): """ Parameters ---------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) """ # 1. relative position embeddings and attention masks position_embeddings = self.relative_position_encoder( gen_rel_position(hidden_states, layout=self.layout) ) self_attn_mask = gen_self_attn_mask( hidden_states, valid_length, dtype=self._dtype, attn_type='full', layout=self.layout ) # 2. encoder blocks and other layers hidden_states = self.dropout(hidden_states) for layer in self.layers: hidden_states = layer( hidden_states, self_attn_mask, position_embeddings ) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
Parameters ---------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def incremental_decode( self, step_hidden_states, position, past_key_values, mem_states, mem_valid_length ): """Incrementally generate the output given the decoder input. Parameters ---------- step_hidden_states Stepwise hidden states where L_seq = 1 as in `forward` case. - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) position Current position index in incremental decoding. Shape (B,) past_key_values A list of tuples where each one corresponds to the `past_key_value` of a decoder layer. mem_states Encoded results. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- step_hidden_states - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) present_key_values A list of tuples containing the updated `past_key_value` for each decoder layer. """ # 1. relative position embeddings and attention mask # step_position_embeddings: Shape (num_heads, 1, L_seq), for self-attention # step_mem_attn_mask: Shape (B, 1, L_src_seq), for cross-attention position_embeddings = self.relative_position_encoder( gen_rel_position( step_hidden_states, past_data=past_key_values[0][0], layout=self.layout ) ) step_position_embeddings = position_embeddings[:, -1:, :] step_mem_attn_mask = gen_mem_attn_mask( mem_states, mem_valid_length, step_hidden_states, dtype=self._dtype, layout=self.layout ) # 2. decoder blocks and other layers step_hidden_states = self.dropout(step_hidden_states) present_key_values = [] for i, layer in enumerate(self.layers): step_hidden_states, present_key_value = layer.incremental_decode( step_hidden_states, step_position_embeddings, past_key_values[i], mem_states, step_mem_attn_mask ) present_key_values.append(present_key_value) step_hidden_states = self.final_layer_norm(step_hidden_states) step_hidden_states = self.dropout(step_hidden_states) return step_hidden_states, present_key_values
Incrementally generate the output given the decoder input. Parameters ---------- step_hidden_states Stepwise hidden states where L_seq = 1 as in `forward` case. - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) position Current position index in incremental decoding. Shape (B,) past_key_values A list of tuples where each one corresponds to the `past_key_value` of a decoder layer. mem_states Encoded results. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- step_hidden_states - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) present_key_values A list of tuples containing the updated `past_key_value` for each decoder layer.
incremental_decode
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def forward(self, hidden_states, valid_length, mem_states, mem_valid_length): """ Parameters ---------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) valid_length Valid sequence length for each sample feeded into the decoder. Shape (B,) mem_states Encoded results. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_valid_length Valid sequence length for each sample feeded into the encoder: mem_valid_length = src_valid_length. Shape (B,) Returns ------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) """ # 1. relative position embeddings and attention masks # position_embeddings: Shape (num_heads, L_seq, L_seq), broadcastable, for self-attention # self_attn_mask: Shape (B, L_seq, L_seq), for self-attention # mem_attn_mask: Shape (B, L_seq, L_src_seq), for cross-attention position_embeddings = self.relative_position_encoder( gen_rel_position(hidden_states, layout=self.layout) ) self_attn_mask = gen_self_attn_mask( hidden_states, valid_length, dtype=self._dtype, attn_type='causal', layout=self.layout ) mem_attn_mask = gen_mem_attn_mask( mem_states, mem_valid_length, hidden_states, valid_length, dtype=self._dtype, layout=self.layout ) # 2. decoder blocks and other layers hidden_states = self.dropout(hidden_states) for layer in self.layers: hidden_states = layer( hidden_states, self_attn_mask, position_embeddings, mem_states, mem_attn_mask ) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
Parameters ---------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) valid_length Valid sequence length for each sample feeded into the decoder. Shape (B,) mem_states Encoded results. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_valid_length Valid sequence length for each sample feeded into the encoder: mem_valid_length = src_valid_length. Shape (B,) Returns ------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def __init__( self, vocab_size=32128, d_model=768, d_kv=64, d_ff=3072, num_layers=12, num_heads=12, dropout_prob=0.1, layer_norm_eps=1E-6, activation='relu', init_factor=1.0, layout='NT', dtype='float32' ): """ Parameters ---------- vocab_size vocab_size should be no smaller than len(tokenizer._sp_model). d_model Equivalent to transformer's `units`. d_kv d_kv * num_heads (see below) = inner_dim. d_ff Equivalent to transformer's `hidden_size`. num_layers num_heads dropout_prob We use the same dropout rate for all dropout layers. layer_norm_eps activation Type of feed forward projection. Currently supported are `relu` and `gated-gelu`. init_factor A scalor factor in sd of weight initialization. layout dtype """ super().__init__() assert vocab_size > 0, 'Vocab size {} is not valid.'.format(vocab_size) self._vocab_size = vocab_size self._d_model = d_model self._d_kv = d_kv self._d_ff = d_ff self._num_layers = num_layers self._num_heads = num_heads self._inner_dim = num_heads * d_kv self._activation = activation self._init_factor = init_factor self._dtype = dtype assert layout in ['TN', 'NT'], \ 'Invalid layout: {}. Only "TN" and "NT" are supported.'.format(layout) self._layout = layout self._time_axis = 1 if self.layout == 'NT' else 0 # input embedding weights are shared between across encoder and decoder self.input_embedding_layer = nn.Embedding( input_dim=vocab_size, output_dim=d_model, weight_initializer=Normal(1.0 * init_factor), dtype=dtype ) self.encoder = T5Encoder( d_model=d_model, d_kv=d_kv, d_ff=d_ff, num_layers=num_layers, num_heads=num_heads, dropout_prob=dropout_prob, layer_norm_eps=layer_norm_eps, activation=activation, init_factor=init_factor, layout=layout, dtype=dtype ) self.decoder = T5Decoder( d_model=d_model, d_kv=d_kv, d_ff=d_ff, num_layers=num_layers, num_heads=num_heads, dropout_prob=dropout_prob, layer_norm_eps=layer_norm_eps, activation=activation, init_factor=init_factor, layout=layout, dtype=dtype )
Parameters ---------- vocab_size vocab_size should be no smaller than len(tokenizer._sp_model). d_model Equivalent to transformer's `units`. d_kv d_kv * num_heads (see below) = inner_dim. d_ff Equivalent to transformer's `hidden_size`. num_layers num_heads dropout_prob We use the same dropout rate for all dropout layers. layer_norm_eps activation Type of feed forward projection. Currently supported are `relu` and `gated-gelu`. init_factor A scalor factor in sd of weight initialization. layout dtype
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def encode(self, src_data, src_valid_length): """Encode the source data to memory states. Parameters ---------- src_data Token ids feeded into the encoder. - layout = 'NT' Shape (B, L_src_seq) - layout = 'TN' Shape (L_src_seq, B) src_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- enc_out - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) """ src_hidden_states = self.input_embedding_layer(src_data) enc_out = self.encoder( src_hidden_states, src_valid_length ) return enc_out
Encode the source data to memory states. Parameters ---------- src_data Token ids feeded into the encoder. - layout = 'NT' Shape (B, L_src_seq) - layout = 'TN' Shape (L_src_seq, B) src_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- enc_out - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model)
encode
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def decode(self, tgt_data, tgt_valid_length, mem_states, mem_valid_length): """Decode based on target data and memory states. Parameters ---------- tgt_data Token ids feeded into the decoder. - layout = 'NT' Shape (B, L_seq) - layout = 'TN' Shape (L_seq, B) tgt_valid_length Valid sequence length for each sample feeded into the decoder. Shape (B,) mem_states - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_valid_length Valid sequence length for each sample feeded into the encoder: mem_valid_length = src_valid_length. Shape (B,) Returns ------- dec_out - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) """ tgt_hidden_states = self.input_embedding_layer(tgt_data) dec_out = self.decoder( tgt_hidden_states, tgt_valid_length, mem_states, mem_valid_length ) return dec_out
Decode based on target data and memory states. Parameters ---------- tgt_data Token ids feeded into the decoder. - layout = 'NT' Shape (B, L_seq) - layout = 'TN' Shape (L_seq, B) tgt_valid_length Valid sequence length for each sample feeded into the decoder. Shape (B,) mem_states - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_valid_length Valid sequence length for each sample feeded into the encoder: mem_valid_length = src_valid_length. Shape (B,) Returns ------- dec_out - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model)
decode
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def forward(self, src_data, src_valid_length, tgt_data, tgt_valid_length): """ Parameters ---------- src_data Token ids feeded into the encoder. - layout = 'NT' Shape (B, L_src_seq) - layout = 'TN' Shape (L_src_seq, B) src_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) tgt_data Token ids feeded into the decoder. - layout = 'NT' Shape (B, L_seq) - layout = 'TN' Shape (L_seq, B) tgt_valid_length Valid sequence length for each sample feeded into the decoder. Shape (B,) Returns ------- dec_out - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) """ enc_out = self.encode(src_data, src_valid_length) dec_out = self.decode(tgt_data, tgt_valid_length, enc_out, src_valid_length) return dec_out
Parameters ---------- src_data Token ids feeded into the encoder. - layout = 'NT' Shape (B, L_src_seq) - layout = 'TN' Shape (L_src_seq, B) src_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) tgt_data Token ids feeded into the decoder. - layout = 'NT' Shape (B, L_seq) - layout = 'TN' Shape (L_seq, B) tgt_valid_length Valid sequence length for each sample feeded into the decoder. Shape (B,) Returns ------- dec_out - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def state_batch_axis(self): """The returned 4-tuple corresponds to the batch axes of `init_states()` results. Returns ------- enc_out_batch_axis src_valid_length_batch_axis position_batch_axis dec_layer_batch_axes """ if self.model.layout == 'NT': return 0, 0, 0, self.model.decoder.state_batch_axis else: return 1, 0, 0, self.model.decoder.state_batch_axis
The returned 4-tuple corresponds to the batch axes of `init_states()` results. Returns ------- enc_out_batch_axis src_valid_length_batch_axis position_batch_axis dec_layer_batch_axes
state_batch_axis
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def init_states(self, src_data, src_valid_length): """Initialize the states required for incremental decoding. Parameters ---------- src_data Token ids feeded into the encoder. - layout = 'NT' Shape (B, L_src_seq) - layout = 'TN' Shape (L_src_seq, B) src_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- enc_out Encoded results from src_data. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) src_valid_length Shape (B,) position Shape (B,) dec_states A list of `past_key_value` for incremental decoding. """ batch_size = src_data.shape[1 - self.model._time_axis] # NT: 0; TN: 1 ctx = src_data.ctx enc_out = self.model.encode(src_data, src_valid_length) position = np.zeros((batch_size,), dtype=np.int32, ctx=ctx) key_values = self.model.decoder._init_key_values(batch_size, ctx, dtype=enc_out.dtype) return enc_out, src_valid_length, position, key_values
Initialize the states required for incremental decoding. Parameters ---------- src_data Token ids feeded into the encoder. - layout = 'NT' Shape (B, L_src_seq) - layout = 'TN' Shape (L_src_seq, B) src_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- enc_out Encoded results from src_data. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) src_valid_length Shape (B,) position Shape (B,) dec_states A list of `past_key_value` for incremental decoding.
init_states
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def forward(self, step_data, past_states): """ Parameters ---------- step_data Stepwise batched token ids for incremental decoding. Shape (B,) past_states A 4-tuple containing states of last incremental decoding step. 1. mem_states - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) 2. mem_valid_length Shape (B,) 3. position Shape (B,) 4. dec_states A list of `past_key_value` tuples whose shape depend on layout. Returns ------- step_hidden_states Stepwise hidden states with time axis squeezed out. Shape (B, vocab_size) new_states Similar to past_states, but updated for next incremental decoding step. """ mem_states, mem_valid_length, position, past_key_values = past_states step_hidden_states = self.model.input_embedding_layer(step_data) # NT: (B, d_model) -> (B, 1, d_model); TN: (B, d_model) -> (1, B, d_model) step_hidden_states = np.expand_dims(step_hidden_states, axis=self.model._time_axis) step_hidden_states, present_key_values = self.model.decoder.incremental_decode( step_hidden_states, position, past_key_values, mem_states, mem_valid_length ) step_hidden_states = self.output_layer(step_hidden_states) # NT: (B, 1, vocab_size) -> (B, vocab_size); TN: (1, B, vocab_size) -> (B, vocab_size) step_hidden_states = npx.reshape(step_hidden_states, (-5, -1)) return step_hidden_states, (mem_states, mem_valid_length, position + 1, present_key_values)
Parameters ---------- step_data Stepwise batched token ids for incremental decoding. Shape (B,) past_states A 4-tuple containing states of last incremental decoding step. 1. mem_states - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) 2. mem_valid_length Shape (B,) 3. position Shape (B,) 4. dec_states A list of `past_key_value` tuples whose shape depend on layout. Returns ------- step_hidden_states Stepwise hidden states with time axis squeezed out. Shape (B, vocab_size) new_states Similar to past_states, but updated for next incremental decoding step.
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def transformer_base(): """Configuration of Transformer WMT EN-DE Base""" cfg = CN() cfg.MODEL = CN() cfg.MODEL.src_vocab_size = -1 cfg.MODEL.tgt_vocab_size = -1 cfg.MODEL.max_src_length = -1 cfg.MODEL.max_tgt_length = -1 cfg.MODEL.scale_embed = True cfg.MODEL.pos_embed_type = "sinusoidal" cfg.MODEL.shared_embed = True cfg.MODEL.tie_weights = True cfg.MODEL.attention_dropout = 0.0 cfg.MODEL.activation_dropout = 0.0 cfg.MODEL.dropout = 0.1 cfg.MODEL.layout = 'NT' cfg.MODEL.dtype = 'float32' # Parameters for the encoder cfg.MODEL.ENCODER = CN() cfg.MODEL.ENCODER.num_layers = 6 cfg.MODEL.ENCODER.units = 512 cfg.MODEL.ENCODER.num_heads = 8 cfg.MODEL.ENCODER.hidden_size = 2048 cfg.MODEL.ENCODER.recurrent = False cfg.MODEL.ENCODER.activation = 'relu' cfg.MODEL.ENCODER.pre_norm = False cfg.MODEL.ENCODER.use_qkv_bias = True # Parameters for the decoder cfg.MODEL.DECODER = CN() cfg.MODEL.DECODER.num_layers = 6 cfg.MODEL.DECODER.units = 512 cfg.MODEL.DECODER.num_heads = 8 cfg.MODEL.DECODER.hidden_size = 2048 cfg.MODEL.DECODER.recurrent = False cfg.MODEL.DECODER.activation = 'relu' cfg.MODEL.DECODER.pre_norm = False cfg.MODEL.DECODER.use_qkv_bias = False # Parameters for the initializer cfg.INITIALIZER = CN() cfg.INITIALIZER.embed = ['xavier', 'gaussian', 'in', 1.0] cfg.INITIALIZER.weight = ['xavier', 'uniform', 'avg', 3.0] cfg.INITIALIZER.bias = ['zeros'] cfg.VERSION = 1 cfg.freeze() return cfg
Configuration of Transformer WMT EN-DE Base
transformer_base
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def __init__(self, units: int = 512, hidden_size: int = 2048, num_heads: int = 8, attention_dropout_prob: float = 0.1, hidden_dropout_prob: float = 0.1, activation_dropout_prob: float = 0.0, layer_norm_eps: float = 1e-12, pre_norm: bool = False, use_qkv_bias: bool = True, weight_initializer: Optional[InitializerType] = None, bias_initializer: Optional[InitializerType] = 'zeros', activation: str = 'relu', dtype='float32', layout='NT'): """ Parameters ---------- units hidden_size num_heads attention_dropout_prob hidden_dropout_prob activation_dropout_prob layer_norm_eps pre_norm Whether to attach the normalization layer before attention layer If pre_norm: norm(data) -> attn -> res(+data) -> ffn Else: data -> attn -> norm(res(+data)) -> ffn use_qkv_bias Whether to use bias for self attention weight_initializer bias_initializer activation dtype layout """ super().__init__() self._units = units self._hidden_size = hidden_size self._num_heads = num_heads self._attention_dropout_prob = attention_dropout_prob self._hidden_dropout_prob = hidden_dropout_prob self._activation_dropout_prob = activation_dropout_prob self._pre_norm = pre_norm self._dtype = dtype self._layout = layout assert layout in ['TN', 'NT'], 'Invalid layout received = {}. ' \ 'Only "TN" and "NT" are accepted!'.format(layout) assert self._units % self._num_heads == 0, 'units must be divisive by the number of heads' self.dropout_layer = nn.Dropout(hidden_dropout_prob) self.attn_qkv = nn.Dense(3 * units, flatten=False, use_bias=use_qkv_bias, in_units=units, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=self._dtype) self.attention_proj = nn.Dense(units=units, flatten=False, in_units=units, use_bias=True, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=self._dtype) attention_layout = 'NTK' if self._layout == 'NT' else 'TNK' self.attention_cell = \ MultiHeadAttentionCell( query_units=self._units, num_heads=self._num_heads, attention_dropout=self._attention_dropout_prob, scaled=True, dtype=self._dtype, layout=attention_layout ) self.layer_norm = nn.LayerNorm(epsilon=layer_norm_eps, in_channels=units) self.ffn = PositionwiseFFN(units=units, hidden_size=hidden_size, dropout=hidden_dropout_prob, activation_dropout=activation_dropout_prob, weight_initializer=weight_initializer, bias_initializer=bias_initializer, layer_norm_eps=layer_norm_eps, activation=activation, pre_norm=pre_norm, dtype=self._dtype)
Parameters ---------- units hidden_size num_heads attention_dropout_prob hidden_dropout_prob activation_dropout_prob layer_norm_eps pre_norm Whether to attach the normalization layer before attention layer If pre_norm: norm(data) -> attn -> res(+data) -> ffn Else: data -> attn -> norm(res(+data)) -> ffn use_qkv_bias Whether to use bias for self attention weight_initializer bias_initializer activation dtype layout
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def forward(self, data, attn_mask): """ Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) attn_mask Shape (batch_size, seq_length, seq_length) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) attn_weight Shape (batch_size, seq_length, seq_length) """ if self._pre_norm: data = self.layer_norm(data) query, key, value = np.split(self.attn_qkv(data), 3, axis=-1) query = npx.reshape(query, (-2, -2, self._num_heads, -1)) key = npx.reshape(key, (-2, -2, self._num_heads, -1)) value = npx.reshape(value, (-2, -2, self._num_heads, -1)) out, [_, attn_weight] = self.attention_cell(query, key, value, attn_mask) out = self.attention_proj(out) out = self.dropout_layer(out) out = out + data if not self._pre_norm: out = self.layer_norm(out) out = self.ffn(out) return out, attn_weight
Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) attn_mask Shape (batch_size, seq_length, seq_length) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) attn_weight Shape (batch_size, seq_length, seq_length)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def __init__(self, num_layers=6, recurrent=False, units=512, hidden_size=2048, num_heads=8, activation_dropout=0.0, dropout=0.1, use_qkv_bias=True, attention_dropout=0.1, layer_norm_eps=1E-5, data_norm=False, pre_norm=False, weight_initializer=None, bias_initializer='zeros', activation='relu', dtype='float32', layout='NT'): """ Parameters ---------- num_layers : The number of layers recurrent : bool Whether the layers share weights or not units hidden_size num_heads dropout layer_norm_eps data_norm Whether to apply LayerNorm to the data pre_norm Whether to apply LayerNorm before the attention layer. weight_initializer bias_initializer activation dtype layout """ super().__init__() self._dtype = dtype self.num_layers = num_layers self._recurrent = recurrent self._data_norm = data_norm self._pre_norm = pre_norm self._layout = layout assert layout in ['TN', 'NT'], 'Invalid layout received = {}. ' \ 'Only "TN" and "NT" are accepted!'.format(layout) self.dropout_layer = nn.Dropout(dropout) if self._pre_norm: self.ln_final = nn.LayerNorm(epsilon=layer_norm_eps, in_channels=units) if self._data_norm: self.ln_data = nn.LayerNorm(epsilon=layer_norm_eps, in_channels=units) # Construct the intermediate layers self.layers = nn.HybridSequential() real_num_layers = 1 if recurrent else num_layers for i in range(real_num_layers): self.layers.add(TransformerEncoderLayer( units=units, hidden_size=hidden_size, num_heads=num_heads, hidden_dropout_prob=dropout, attention_dropout_prob=attention_dropout, activation_dropout_prob=activation_dropout, use_qkv_bias=use_qkv_bias, layer_norm_eps=layer_norm_eps, weight_initializer=weight_initializer, bias_initializer=bias_initializer, pre_norm=pre_norm, activation=activation, layout=self._layout, dtype=dtype))
Parameters ---------- num_layers : The number of layers recurrent : bool Whether the layers share weights or not units hidden_size num_heads dropout layer_norm_eps data_norm Whether to apply LayerNorm to the data pre_norm Whether to apply LayerNorm before the attention layer. weight_initializer bias_initializer activation dtype layout
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def forward(self, data, valid_length): """ Parameters ---------- data : - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length : Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) """ # 1. Embed the data attn_mask = gen_self_attn_mask(data, valid_length, dtype=self._dtype, layout=self.layout, attn_type='full') out = self.dropout_layer(data) if self._data_norm: out = self.ln_data(out) for i in range(self.num_layers): if self._recurrent: layer = self.layers[0] else: layer = self.layers[i] out, _ = layer(out, attn_mask) if self._pre_norm: out = self.ln_final(out) return out
Parameters ---------- data : - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length : Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def __init__(self, units: int = 512, mem_units: Optional[int] = None, hidden_size: int = 2048, num_heads: int = 8, activation_dropout: float = 0.0, dropout: float = 0.1, attention_dropout: float = 0.1, layer_norm_eps: float = 1E-5, activation: str = 'relu', pre_norm: bool = False, use_qkv_bias: bool = True, weight_initializer=None, bias_initializer='zeros', dtype='float32', layout='NT'): """ Parameters ---------- units mem_units The number of units in the memory. By default, it is initialized to be the same as the units. hidden_size num_heads activation_dropout dropout attention_dropout layer_norm_eps activation pre_norm Whether to apply normalization before the attention layer use_qkv_bias Whether to use bias for both self attention and contextual attention weight_initializer bias_initializer dtype Data type layout Layout of the input """ super().__init__() self._dtype = dtype self._units = units if mem_units is None: mem_units = units self._mem_units = mem_units self._pre_norm = pre_norm self._num_heads = num_heads self._attention_dropout = attention_dropout self._dtype = dtype self._layout = layout assert layout in ['TN', 'NT'], 'Invalid layout received = {}. ' \ 'Only "TN" and "NT" are accepted!'.format(layout) attention_layout = 'NTK' if layout == 'NT' else 'TNK' self.dropout_layer = nn.Dropout(dropout) if units % num_heads: raise ValueError('In Transformer, units should be divided exactly by the number of ' 'heads. Received units={}, num_heads={}'.format(units, num_heads)) self.attn_in_qkv = nn.Dense(3 * units, in_units=units, use_bias=use_qkv_bias, flatten=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype) self.self_attention = MultiHeadAttentionCell(query_units=units, num_heads=num_heads, attention_dropout=self._attention_dropout, dtype=dtype, layout=attention_layout) self.proj_in = nn.Dense(units=units, in_units=units, flatten=False, use_bias=True, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype) self.attn_inter_q = nn.Dense(units, in_units=units, use_bias=use_qkv_bias, flatten=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype) self.attn_inter_k = nn.Dense(units, in_units=mem_units, use_bias=use_qkv_bias, flatten=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype) self.attn_inter_v = nn.Dense(units, in_units=mem_units, use_bias=use_qkv_bias, flatten=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype) self.inter_attention = MultiHeadAttentionCell(query_units=units, num_heads=num_heads, attention_dropout=self._attention_dropout, dtype=dtype, layout=attention_layout) self.proj_inter = nn.Dense(units=units, in_units=units, flatten=False, use_bias=True, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype) # TODO(sxjscience) Add DType to LayerNorm self.ln_in = nn.LayerNorm(epsilon=layer_norm_eps, in_channels=units) self.ln_inter = nn.LayerNorm(epsilon=layer_norm_eps, in_channels=units) self.ffn = PositionwiseFFN(units=units, hidden_size=hidden_size, dropout=dropout, activation_dropout=activation_dropout, weight_initializer=weight_initializer, bias_initializer=bias_initializer, layer_norm_eps=layer_norm_eps, activation=activation, pre_norm=pre_norm, dtype=dtype)
Parameters ---------- units mem_units The number of units in the memory. By default, it is initialized to be the same as the units. hidden_size num_heads activation_dropout dropout attention_dropout layer_norm_eps activation pre_norm Whether to apply normalization before the attention layer use_qkv_bias Whether to use bias for both self attention and contextual attention weight_initializer bias_initializer dtype Data type layout Layout of the input
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def forward(self, data, mem, self_causal_mask, mem_attn_mask): """ Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) mem - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) self_causal_mask Shape (batch_size, seq_length, seq_length) Mask for the causal self-attention. self_causal_mask[i, j, :] masks the elements that token `j` attends to. To understand the self-causal attention mask, we can look at the following example: .. code-block:: none ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 0, 0, 0, 0, 0, 0, 0 'can': 1, 1, 0, 0, 0, 0, 0, 0 'now': 1, 1, 1, 0, 0, 0, 0, 0 'use': 1, 1, 1, 1, 0, 0, 0, 0 'numpy': 1, 1, 1, 1, 1, 0, 0, 0 'in': 1, 1, 1, 1, 1, 1, 0, 0 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 0 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 mem_attn_mask : Shape (batch_size, seq_length, mem_length) Mask between the decoding input and the memory. .. code-block:: none ['numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 1, 1, 1 'can': 1, 1, 1, 1 'now': 1, 1, 1, 1 'use': 1, 1, 1, 1 Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) """ # 1. Get the causal self-attention value if self._pre_norm: data = self.ln_in(data) self_query, self_key, self_value = np.split(self.attn_in_qkv(data), 3, axis=-1) out, [_, self_attn_weight] = self.self_attention( npx.reshape(self_query, (-2, -2, self._num_heads, -1)), npx.reshape(self_key, (-2, -2, self._num_heads, -1)), npx.reshape(self_value, (-2, -2, self._num_heads, -1)), self_causal_mask) out = self.proj_in(out) out = self.dropout_layer(out) out = out + data if not self._pre_norm: out = self.ln_in(out) # 2. Attend to the contextual memory data = out if self._pre_norm: data = self.ln_inter(data) out, [_, context_attn_weight] = self.inter_attention( npx.reshape(self.attn_inter_q(data), (-2, -2, self._num_heads, -1)), npx.reshape(self.attn_inter_k(mem), (-2, -2, self._num_heads, -1)), npx.reshape(self.attn_inter_v(mem), (-2, -2, self._num_heads, -1)), mem_attn_mask) out = self.proj_inter(out) out = self.dropout_layer(out) out = out + data if not self._pre_norm: out = self.ln_inter(out) # 3. Encode the output via an FFN layer out = self.ffn(out) return out
Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) mem - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) self_causal_mask Shape (batch_size, seq_length, seq_length) Mask for the causal self-attention. self_causal_mask[i, j, :] masks the elements that token `j` attends to. To understand the self-causal attention mask, we can look at the following example: .. code-block:: none ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 0, 0, 0, 0, 0, 0, 0 'can': 1, 1, 0, 0, 0, 0, 0, 0 'now': 1, 1, 1, 0, 0, 0, 0, 0 'use': 1, 1, 1, 1, 0, 0, 0, 0 'numpy': 1, 1, 1, 1, 1, 0, 0, 0 'in': 1, 1, 1, 1, 1, 1, 0, 0 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 0 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 mem_attn_mask : Shape (batch_size, seq_length, mem_length) Mask between the decoding input and the memory. .. code-block:: none ['numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 1, 1, 1 'can': 1, 1, 1, 1 'now': 1, 1, 1, 1 'use': 1, 1, 1, 1 Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def init_states(self, batch_size, ctx, dtype='float32'): """Initialize the states required for incremental decoding Returns ------- init_key - layout = 'NT' Shape (batch_size, 0, N, C_key) - layout = 'TN' Shape (0, batch_size, N, C_key) init_value - layout = 'NT' Shape (batch_size, 0, N, C_value) - layout = 'TN' Shape (0, batch_size, N, C_value) """ if self.layout == 'NT': init_key = mx.np.zeros(shape=(batch_size, 0, self._num_heads, self._units // self._num_heads), ctx=ctx, dtype=dtype) init_value = mx.np.zeros(shape=(batch_size, 0, self._num_heads, self._units // self._num_heads), ctx=ctx, dtype=dtype) else: init_key = mx.np.zeros(shape=(0, batch_size, self._num_heads, self._units // self._num_heads), ctx=ctx, dtype=dtype) init_value = mx.np.zeros(shape=(0, batch_size, self._num_heads, self._units // self._num_heads), ctx=ctx, dtype=dtype) return init_key, init_value
Initialize the states required for incremental decoding Returns ------- init_key - layout = 'NT' Shape (batch_size, 0, N, C_key) - layout = 'TN' Shape (0, batch_size, N, C_key) init_value - layout = 'NT' Shape (batch_size, 0, N, C_value) - layout = 'TN' Shape (0, batch_size, N, C_value)
init_states
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def incremental_decode(self, data, states, mem, mem_valid_length, mem_attn_mask=None): """Incrementally generate the output given the decoder input. Parameters ---------- data Shape (batch_size, C_in) states The previous states, contains 1. layout = 'NT': - prev_multi_key Shape (batch_size, prev_seq_length, num_heads, C_key) - prev_multi_value Shape (batch_size, prev_seq_length, num_heads, C_value) 2. layout = 'TN' - prev_multi_key Shape (prev_seq_length, batch_size, num_heads, C_key) - prev_multi_value Shape (prev_seq_length, batch_size, num_heads, C_value) mem The memory 1. layout = 'NT' Shape (batch_size, mem_length, C_mem) 2. layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Valid length of the memory Shape (batch_size,) mem_attn_mask The attention mask between data and the memory Has shape (batch_size, 1, mem_length) Returns ------- out Shape (batch_size, C_out) updated_states - new_key Shape (batch_size, prev_seq_length + 1, num_heads, C_key) - new_value Shape (batch_size, prev_seq_length + 1, num_heads, C_value) """ if self._pre_norm: data = self.ln_in(data) if self.layout == 'NT': time_axis = 1 else: time_axis = 0 data = np.expand_dims(data, axis=time_axis) # Shape (B, prev_L, #Head, C_K), (B, prev_L, #Head, C_V) # or (prev_L, B, #Head, C_K), (prev_L, B, #Head, C_V) prev_key, prev_value = states if mem_attn_mask is None: mem_attn_mask = gen_mem_attn_mask(mem, mem_valid_length, data, None, dtype=self._dtype, layout=self.layout) # 1. Get the causal self-attention value, we need to attend to both the current data # and the previous stored key/values # Shape (B, 1, 3 * num_heads * C_key) # or (1, B, 3 * num_heads * C_key) step_qkv = self.attn_in_qkv(data) step_query, step_key, step_value = np.split(step_qkv, 3, axis=-1) step_query = npx.reshape(step_query, (-2, -2, self._num_heads, -1)) step_key = npx.reshape(step_key, (-2, -2, self._num_heads, -1)) step_value = npx.reshape(step_value, (-2, -2, self._num_heads, -1)) new_key = np.concatenate([prev_key, step_key], axis=time_axis) new_value = np.concatenate([prev_value, step_value], axis=time_axis) out, [_, attn_weight] = self.self_attention(step_query, new_key, new_value, None) out = self.proj_in(out) out = self.dropout_layer(out) out = out + data if not self._pre_norm: out = self.ln_in(out) # 2. Attend to the contextual memory data = out if self._pre_norm: data = self.ln_inter(data) out, _ = self.inter_attention(npx.reshape(self.attn_inter_q(data), (-2, -2, self._num_heads, -1)), npx.reshape(self.attn_inter_k(mem), (-2, -2, self._num_heads, -1)), npx.reshape(self.attn_inter_v(mem), (-2, -2, self._num_heads, -1)), mem_attn_mask) out = self.proj_inter(out) out = self.dropout_layer(out) out = out + data if not self._pre_norm: out = self.ln_inter(out) # 3. Encode the output via an FFN layer out = self.ffn(out) out = npx.reshape(out, (-5, -1)) return out, (new_key, new_value)
Incrementally generate the output given the decoder input. Parameters ---------- data Shape (batch_size, C_in) states The previous states, contains 1. layout = 'NT': - prev_multi_key Shape (batch_size, prev_seq_length, num_heads, C_key) - prev_multi_value Shape (batch_size, prev_seq_length, num_heads, C_value) 2. layout = 'TN' - prev_multi_key Shape (prev_seq_length, batch_size, num_heads, C_key) - prev_multi_value Shape (prev_seq_length, batch_size, num_heads, C_value) mem The memory 1. layout = 'NT' Shape (batch_size, mem_length, C_mem) 2. layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Valid length of the memory Shape (batch_size,) mem_attn_mask The attention mask between data and the memory Has shape (batch_size, 1, mem_length) Returns ------- out Shape (batch_size, C_out) updated_states - new_key Shape (batch_size, prev_seq_length + 1, num_heads, C_key) - new_value Shape (batch_size, prev_seq_length + 1, num_heads, C_value)
incremental_decode
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def forward(self, data, valid_length, mem_data, mem_valid_length): """ Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) valid_length Shape (batch_size,) mem_data - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) """ # 1. Embed the data out = self.dropout_layer(data) if self._data_norm: out = self.ln_data(out) self_causal_mask = gen_self_attn_mask(data, valid_length, dtype=self._dtype, attn_type='causal', layout=self._layout) mem_attn_mask = gen_mem_attn_mask(mem_data, mem_valid_length, data, valid_length, dtype=self._dtype, layout=self._layout) for i in range(self.num_layers): if self.recurrent: layer = self.layers[0] else: layer = self.layers[i] out = layer(out, mem_data, self_causal_mask, mem_attn_mask) if self._pre_norm: out = self.ln_final(out) return out
Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) valid_length Shape (batch_size,) mem_data - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def init_states(self, batch_size, ctx, dtype='float32'): """Initialize the states required for incremental decoding Returns ------- states A list of states, each includes: - init_key - layout = 'NT' Shape (batch_size, 0, N, C_key) - layout = 'TN' Shape (0, batch_size, N, C_key) - init_value : - layout = 'NT' Shape (batch_size, 0, N, C_value) - layout = 'TN' Shape (0, batch_size, N, C_value) """ states = [] for i in range(self.num_layers): if self.recurrent: layer = self.layers[0] else: layer = self.layers[i] states.append(layer.init_states(batch_size=batch_size, ctx=ctx, dtype=dtype)) return states
Initialize the states required for incremental decoding Returns ------- states A list of states, each includes: - init_key - layout = 'NT' Shape (batch_size, 0, N, C_key) - layout = 'TN' Shape (0, batch_size, N, C_key) - init_value : - layout = 'NT' Shape (batch_size, 0, N, C_value) - layout = 'TN' Shape (0, batch_size, N, C_value)
init_states
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def incremental_decode(self, data, states, mem, mem_valid_length): """Incrementally generate the output given the decoder input. Parameters ---------- data Shape (batch_size, C_in) states The previous states, contain a list of 1. layout = 'NT' - prev_multi_key Shape (batch_size, prev_seq_length, num_heads, C_key) - prev_multi_value Shape (batch_size, prev_seq_length, num_heads, C_value) 2. layout = 'TN' - prev_multi_key Shape (prev_seq_length, batch_size, num_heads, C_key) - prev_multi_value Shape (prev_seq_length, batch_size, num_heads, C_value) mem The memory 1. layout = 'NT' Shape (batch_size, mem_length, C_mem) 2. layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Valid length of the memory Shape (batch_size,) Returns ------- out Shape (batch_size, C_out) new_states The updated states, contain a list of 1. layout = 'NT' - new_key Shape (batch_size, prev_seq_length + 1, num_heads, C_key) - new_value Shape (prev_seq_length + 1, batch_size, num_heads, C_value) 2. layout = 'TN' - new_key Shape (prev_seq_length + 1, batch_size, num_heads, C_key) - new_value Shape (prev_seq_length + 1, batch_size, num_heads, C_value) """ # 1. Embed the data out = self.dropout_layer(data) if self._data_norm: out = self.ln_data(out) time_axis = 0 if self.layout == 'TN' else 1 # Generate the mem_attn_mask time_steps = npx.arange_like(mem, axis=time_axis) # (mem_length,) mem_attn_mask = np.reshape(time_steps, (1, 1, -1))\ < np.reshape(mem_valid_length, (-1, 1, 1)) # TODO(sxjscience) Try with boolean masking mem_attn_mask = mem_attn_mask.astype(self._dtype) new_states = [] for i in range(self.num_layers): if self.recurrent: layer = self.layers[0] else: layer = self.layers[i] out, new_state = layer.incremental_decode(out, states[i], mem, mem_valid_length, mem_attn_mask) new_states.append(new_state) if self._pre_norm: out = self.ln_final(out) return out, new_states
Incrementally generate the output given the decoder input. Parameters ---------- data Shape (batch_size, C_in) states The previous states, contain a list of 1. layout = 'NT' - prev_multi_key Shape (batch_size, prev_seq_length, num_heads, C_key) - prev_multi_value Shape (batch_size, prev_seq_length, num_heads, C_value) 2. layout = 'TN' - prev_multi_key Shape (prev_seq_length, batch_size, num_heads, C_key) - prev_multi_value Shape (prev_seq_length, batch_size, num_heads, C_value) mem The memory 1. layout = 'NT' Shape (batch_size, mem_length, C_mem) 2. layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Valid length of the memory Shape (batch_size,) Returns ------- out Shape (batch_size, C_out) new_states The updated states, contain a list of 1. layout = 'NT' - new_key Shape (batch_size, prev_seq_length + 1, num_heads, C_key) - new_value Shape (prev_seq_length + 1, batch_size, num_heads, C_value) 2. layout = 'TN' - new_key Shape (prev_seq_length + 1, batch_size, num_heads, C_key) - new_value Shape (prev_seq_length + 1, batch_size, num_heads, C_value)
incremental_decode
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def __init__(self, src_vocab_size: int, tgt_vocab_size: int, max_src_length: Optional[int] = None, max_tgt_length: Optional[int] = None, scale_embed: bool = True, pos_embed_type="sinusoidal", shared_embed: bool = True, tie_weights: bool = True, activation_dropout: float = 0.0, dropout: float = 0.1, attention_dropout: float = 0.1, layer_norm_eps: float = 1E-5, data_norm: bool = False, enc_units: int = 512, enc_hidden_size: int = 2048, enc_num_heads: int = 8, enc_num_layers: int = 6, enc_recurrent: bool = False, enc_activation='relu', enc_pre_norm: bool = False, enc_use_qkv_bias: bool = True, dec_units: int = 512, dec_hidden_size: int = 2048, dec_num_heads: int = 8, dec_num_layers: int = 6, dec_recurrent: bool = False, dec_activation='relu', dec_pre_norm: bool = False, dec_use_qkv_bias: bool = True, embed_initializer=mx.init.Xavier('gaussian', 'in', 1), weight_initializer=mx.init.Xavier('uniform', 'avg', 3), bias_initializer='zeros', dtype='float32', layout='NT'): """ Parameters ---------- src_vocab_size The vocabulary size of the source language tgt_vocab_size The vocabulary size of the target language max_src_length The maximal length of the source sequence. If it's negative, we will use treat it as not set. max_tgt_length The maximal length of the target sequence. If it's negative, we will use treat it as not set. scale_embed Whether to multiply the src and dst embeddings by sqrt(units) pos_embed_type Type of the positional embedding shared_embed Whether to share the embedding of the src and tgt language tie_weights Whether to tie the weights of input + output. activation_dropout The ratio of the activation dropout in FFN dropout The default dropout ratio attention_dropout The ratio of the attention dropout layer_norm_eps The epsilon of the layer normalization data_norm Whether to add layer normalization layer after the input. enc_units Units of the encoder enc_hidden_size Hidden size of the encoder enc_num_heads Number of heads of the encoder enc_num_layers Number of layers of the encoder enc_recurrent Whether to use recurrent encoder (share weights) enc_activation Activation of the encoder layer enc_pre_norm Whether to add layer_norm before self-attention in the encoder enc_use_qkv_bias Wether to use bias for attention layer in the encoder dec_units Units of the decoder dec_hidden_size Hidden size of the decoder dec_num_heads Number of heads of the decoder dec_num_layers Number of layers of the decoder dec_recurrent Whether to use recurrent decoder (share weights) dec_activation Activation of the decoder layer dec_pre_norm Whether to add layer_norm before self-attention in the decoder dec_use_qkv_bias Wether to use bias for attention layer in the decoder embed_initializer Initializer of the embedding layer weight_initializer Initializer of the weight bias_initializer Initializer of the bias dtype Data type of the weights layout The layout of the input + target """ super().__init__() assert src_vocab_size > 0 and tgt_vocab_size > 0,\ 'Cannot set "src_vocab_size" and "tgt_vocab_size" to negative numbers. ' \ 'Are you creating ' \ 'the model with the config from TransformerModel.get_cfg()? If that is ' \ 'the case, you will need to set the cfg.MODEL.src_vocab_size and ' \ 'cfg.MODEL.tgt_vocab_size manually before passing to ' \ 'TransformerModel.from_cfg().' self._dtype = dtype self._src_vocab_size = src_vocab_size self._tgt_vocab_size = tgt_vocab_size self.tie_weights = tie_weights self.pos_embed_type = pos_embed_type self.scaled_embed = scale_embed self.enc_units = enc_units self.dec_units = dec_units self.weight_initializer = weight_initializer self.bias_initializer = bias_initializer self._layout = layout assert layout in ['TN', 'NT'], 'Invalid layout received = {}. ' \ 'Only "TN" and "NT" are accepted!'.format(layout) if max_src_length is not None and max_src_length < 0: max_src_length = None if max_tgt_length is not None and max_tgt_length < 0: max_tgt_length = None if enc_units != dec_units: assert shared_embed is False, 'Cannot share embedding when the enc_units and dec_units ' \ 'are different! enc_units={},' \ ' dec_units={}'.format(enc_units, dec_units) self.src_embed_layer = nn.Embedding(input_dim=src_vocab_size, output_dim=enc_units, weight_initializer=embed_initializer, dtype=self._dtype) self.tgt_embed_layer = nn.Embedding(input_dim=tgt_vocab_size, output_dim=dec_units, weight_initializer=embed_initializer, dtype=self._dtype) if shared_embed: self.tgt_embed_layer.weight = self.src_embed_layer.weight if pos_embed_type is not None: self.src_pos_embed_layer = PositionalEmbedding(units=enc_units, max_length=max_src_length, dtype=self._dtype, method=pos_embed_type) self.tgt_pos_embed_layer = PositionalEmbedding(units=dec_units, max_length=max_tgt_length, dtype=self._dtype, method=pos_embed_type) self.encoder = TransformerEncoder(num_layers=enc_num_layers, recurrent=enc_recurrent, units=enc_units, hidden_size=enc_hidden_size, num_heads=enc_num_heads, activation_dropout=activation_dropout, use_qkv_bias=enc_use_qkv_bias, dropout=dropout, attention_dropout=attention_dropout, layer_norm_eps=layer_norm_eps, weight_initializer=weight_initializer, bias_initializer=bias_initializer, activation=enc_activation, data_norm=data_norm, pre_norm=enc_pre_norm, dtype=self._dtype, layout=layout) self.decoder = TransformerDecoder(num_layers=dec_num_layers, recurrent=dec_recurrent, units=dec_units, mem_units=enc_units, hidden_size=dec_hidden_size, num_heads=dec_num_heads, activation_dropout=activation_dropout, use_qkv_bias=dec_use_qkv_bias, dropout=dropout, attention_dropout=attention_dropout, layer_norm_eps=layer_norm_eps, weight_initializer=weight_initializer, bias_initializer=bias_initializer, activation=dec_activation, data_norm=data_norm, pre_norm=dec_pre_norm, dtype=self._dtype, layout=layout) if tie_weights: self.tgt_final_layer = \ nn.Dense(units=tgt_vocab_size, flatten=False, in_units=self.dec_units, bias_initializer=bias_initializer, use_bias=False, dtype=self._dtype) self.tgt_final_layer.weight = self.tgt_embed_layer.weight else: self.tgt_final_layer = \ nn.Dense(tgt_vocab_size, flatten=False, in_units=self.dec_units, weight_initializer=weight_initializer, bias_initializer=bias_initializer, use_bias=False, dtype=self._dtype)
Parameters ---------- src_vocab_size The vocabulary size of the source language tgt_vocab_size The vocabulary size of the target language max_src_length The maximal length of the source sequence. If it's negative, we will use treat it as not set. max_tgt_length The maximal length of the target sequence. If it's negative, we will use treat it as not set. scale_embed Whether to multiply the src and dst embeddings by sqrt(units) pos_embed_type Type of the positional embedding shared_embed Whether to share the embedding of the src and tgt language tie_weights Whether to tie the weights of input + output. activation_dropout The ratio of the activation dropout in FFN dropout The default dropout ratio attention_dropout The ratio of the attention dropout layer_norm_eps The epsilon of the layer normalization data_norm Whether to add layer normalization layer after the input. enc_units Units of the encoder enc_hidden_size Hidden size of the encoder enc_num_heads Number of heads of the encoder enc_num_layers Number of layers of the encoder enc_recurrent Whether to use recurrent encoder (share weights) enc_activation Activation of the encoder layer enc_pre_norm Whether to add layer_norm before self-attention in the encoder enc_use_qkv_bias Wether to use bias for attention layer in the encoder dec_units Units of the decoder dec_hidden_size Hidden size of the decoder dec_num_heads Number of heads of the decoder dec_num_layers Number of layers of the decoder dec_recurrent Whether to use recurrent decoder (share weights) dec_activation Activation of the decoder layer dec_pre_norm Whether to add layer_norm before self-attention in the decoder dec_use_qkv_bias Wether to use bias for attention layer in the decoder embed_initializer Initializer of the embedding layer weight_initializer Initializer of the weight bias_initializer Initializer of the bias dtype Data type of the weights layout The layout of the input + target
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def encode(self, src_data, src_valid_length): """Encode the source data to memory Parameters ---------- src_data - layout = 'NT' Shape (batch_size, src_length) - layout = 'TN' Shape (src_length, batch_size) src_valid_length Shape (batch_size,) Returns ------- enc_out - layout = 'NT' Shape (batch_size, src_length, C_out) - layout = 'TN' Shape (src_length, batch_size, C_out) """ src_data = self.src_embed_layer(src_data) if self.scaled_embed: src_data = src_data * _np.sqrt(self.enc_units) if self.pos_embed_type is not None: if self.layout == 'NT': src_data = src_data + self.src_pos_embed_layer(npx.arange_like(src_data, axis=1)) else: src_data = src_data + np.expand_dims(self.src_pos_embed_layer( npx.arange_like(src_data, axis=0)), axis=1) enc_out = self.encoder(src_data, src_valid_length) return enc_out
Encode the source data to memory Parameters ---------- src_data - layout = 'NT' Shape (batch_size, src_length) - layout = 'TN' Shape (src_length, batch_size) src_valid_length Shape (batch_size,) Returns ------- enc_out - layout = 'NT' Shape (batch_size, src_length, C_out) - layout = 'TN' Shape (src_length, batch_size, C_out)
encode
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def decode_seq(self, tgt_data, tgt_valid_length, mem_data, mem_valid_length): """Decode a sequence of inputs Parameters ---------- tgt_data - layout = 'NT' Shape (batch_size, tgt_length) - layout = 'TN' Shape (tgt_length, batch_size) tgt_valid_length Shape (batch_size,) mem_data - layout = 'NT' Shape (batch_size, src_length, C_out) - layout = 'TN' Shape (src_length, batch_size, C_out) mem_valid_length : Shape (batch_size,) Returns ------- dec_out - layout = 'NT' Shape (batch_size, tgt_length, tgt_vocab_size) - layout = 'TN' Shape (tgt_length, batch_size, tgt_vocab_size) """ tgt_data = self.tgt_embed_layer(tgt_data) if self.scaled_embed: tgt_data = tgt_data * _np.sqrt(self.dec_units) if self.pos_embed_type is not None: if self.layout == 'NT': tgt_data = tgt_data + self.tgt_pos_embed_layer( npx.arange_like(tgt_data, axis=1)) else: tgt_data = tgt_data + np.expand_dims(self.tgt_pos_embed_layer( npx.arange_like(tgt_data, axis=0)), axis=1) dec_out = self.decoder(tgt_data, tgt_valid_length, mem_data, mem_valid_length) return dec_out
Decode a sequence of inputs Parameters ---------- tgt_data - layout = 'NT' Shape (batch_size, tgt_length) - layout = 'TN' Shape (tgt_length, batch_size) tgt_valid_length Shape (batch_size,) mem_data - layout = 'NT' Shape (batch_size, src_length, C_out) - layout = 'TN' Shape (src_length, batch_size, C_out) mem_valid_length : Shape (batch_size,) Returns ------- dec_out - layout = 'NT' Shape (batch_size, tgt_length, tgt_vocab_size) - layout = 'TN' Shape (tgt_length, batch_size, tgt_vocab_size)
decode_seq
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def forward(self, src_data, src_valid_length, tgt_data, tgt_valid_length): """ Parameters ---------- src_data - layout = 'NT' Shape (batch_size, src_length) - layout = 'TN' Shape (src_length, batch_size) src_valid_length Shape (batch_size,) tgt_data - layout = 'NT' Shape (batch_size, tgt_length) - layout = 'TN' Shape (tgt_length, batch_size) tgt_valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, tgt_length, tgt_vocab_size) - layout = 'TN' Shape (tgt_length, batch_size, tgt_vocab_size) """ enc_out = self.encode(src_data, src_valid_length) dec_out = self.decode_seq(tgt_data, tgt_valid_length, enc_out, src_valid_length) dec_out = self.tgt_final_layer(dec_out) return dec_out
Parameters ---------- src_data - layout = 'NT' Shape (batch_size, src_length) - layout = 'TN' Shape (src_length, batch_size) src_valid_length Shape (batch_size,) tgt_data - layout = 'NT' Shape (batch_size, tgt_length) - layout = 'TN' Shape (tgt_length, batch_size) tgt_valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, tgt_length, tgt_vocab_size) - layout = 'TN' Shape (tgt_length, batch_size, tgt_vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def state_batch_axis(self) -> Tuple[int, int, int, List]: """Return a data structure that stores the batch axis of the internal states of the inference model. Returns ------- enc_out_batch_axis src_valid_length_batch_axis position_batch_axis dec_layer_batch_axis """ if self.model.layout == 'NT': return 0, 0, 0, self.model.decoder.state_batch_axis else: return 1, 0, 0, self.model.decoder.state_batch_axis
Return a data structure that stores the batch axis of the internal states of the inference model. Returns ------- enc_out_batch_axis src_valid_length_batch_axis position_batch_axis dec_layer_batch_axis
state_batch_axis
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def init_states(self, src_data, src_valid_length): # TODO(sxjscience) Revisit here, support auxiliary states? """Initialize the states required for incremental decoding Parameters ---------- src_data - layout = 'NT' Shape (batch_size, src_length) - layout = 'TN' Shape (src_length, batch_size) src_valid_length Shape (batch_size,) Returns ------- enc_out - layout = 'NT' Shape (batch_size, src_length, C_mem) - layout = 'TN' Shape (src_length, batch_size, C_mem) src_valid_length Shape (batch_size,) position Shape (batch_size,) dec_states: list The states of the decoder """ if self.model.layout == 'NT': batch_size = src_data.shape[0] else: batch_size = src_data.shape[1] ctx = src_data.ctx enc_out = self.model.encode(src_data, src_valid_length) position = mx.np.zeros((batch_size,), dtype=np.int32, ctx=ctx) dtype = enc_out.dtype dec_states = self.model.decoder.init_states(batch_size, ctx, dtype) return enc_out, src_valid_length, position, dec_states
Initialize the states required for incremental decoding Parameters ---------- src_data - layout = 'NT' Shape (batch_size, src_length) - layout = 'TN' Shape (src_length, batch_size) src_valid_length Shape (batch_size,) Returns ------- enc_out - layout = 'NT' Shape (batch_size, src_length, C_mem) - layout = 'TN' Shape (src_length, batch_size, C_mem) src_valid_length Shape (batch_size,) position Shape (batch_size,) dec_states: list The states of the decoder
init_states
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def forward(self, step_data, states): """ Parameters ---------- step_data Shape (batch_size,) states It includes : - layout = 'NT' - mem_data : (batch_size, src_length, C_mem) - mem_valid_length : (batch_size,) - position : (batch_size,) - dec_states : list - layout = 'TN' - mem_data : (src_length, batch_size, C_mem) - mem_valid_length : (batch_size,) - position : (batch_size,) - dec_states : list Returns ------- out Shape (batch_size, C) new_states Has the same structure as the states """ mem_data, mem_valid_length, position, dec_states = states # 1. Get the embedding step_data = self.model.tgt_embed_layer(step_data) if self.model.scaled_embed: step_data = step_data * _np.sqrt(self.model.dec_units) if self.model.pos_embed_type is not None: step_data = step_data + self.model.tgt_pos_embed_layer(position) out, new_states =\ self.model.decoder.incremental_decode(step_data, dec_states, mem_data, mem_valid_length) out = self.model.tgt_final_layer(out) return out, (mem_data, mem_valid_length, position + 1, new_states)
Parameters ---------- step_data Shape (batch_size,) states It includes : - layout = 'NT' - mem_data : (batch_size, src_length, C_mem) - mem_valid_length : (batch_size,) - position : (batch_size,) - dec_states : list - layout = 'TN' - mem_data : (src_length, batch_size, C_mem) - mem_valid_length : (batch_size,) - position : (batch_size,) - dec_states : list Returns ------- out Shape (batch_size, C) new_states Has the same structure as the states
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def forward(self, data, mem, rel_positions, mask, query_r_bias, query_k_bias): """ Parameters ---------- data The input data. - layout = 'NT' Shape (batch_size, query_length, units) - layout = 'TN' Shape (query_length, batch_size, units) mem The memory. - layout = 'NT' Shape (batch_size, mem_length, units) - layout = 'TN' Shape (mem_length, batch_size, units) rel_positions The relative positions between data and concat(mem, data). Shape is (query_length, mem_length + query_length). A positive value means that query is after the memory, i.e., query_location - mem_location. mask Mask between the query and the memory + query. 1--> will be used, 0 --> won't be used Shape (batch_size, query_length, mem_length + query_length) query_r_bias The query bias for calculating the relative scores Shape (num_heads, query_head_units) query_k_bias The key bias for calculating the relative scores. Shape (num_heads, query_head_units) Returns ------- out - layout = 'NT' Shape (batch_size, query_length, units) - layout = 'TN' Shape (query_length, batch_size, units) """ if self._layout == 'NT': context = np.concatenate([mem, data], axis=1) elif self._layout == 'TN': context = np.concatenate([mem, data], axis=0) else: raise NotImplementedError if self._pre_norm: query = self.attn_query(self.layer_norm(data)) key_value = self.attn_kv(self.layer_norm(context)) key, value = np.split(key_value, 2, axis=-1) else: query = self.attn_query(data) key_value = self.attn_kv(context) key, value = np.split(key_value, 2, axis=-1) query = npx.reshape(query, (-2, -2, self._num_heads, -1)) key = npx.reshape(key, (-2, -2, self._num_heads, -1)) value = npx.reshape(value, (-2, -2, self._num_heads, -1)) # Compute attention rel_score = self.rel_pos_score_cell(rel_positions, query + query_r_bias) out, _ = self.attn_cell(query + query_k_bias, key, value, mask, rel_score) out = self.dropout_layer(out) if self._pre_norm: out = data + out else: out = self.layer_norm(data + out) out = self.ffn(out) return out
Parameters ---------- data The input data. - layout = 'NT' Shape (batch_size, query_length, units) - layout = 'TN' Shape (query_length, batch_size, units) mem The memory. - layout = 'NT' Shape (batch_size, mem_length, units) - layout = 'TN' Shape (mem_length, batch_size, units) rel_positions The relative positions between data and concat(mem, data). Shape is (query_length, mem_length + query_length). A positive value means that query is after the memory, i.e., query_location - mem_location. mask Mask between the query and the memory + query. 1--> will be used, 0 --> won't be used Shape (batch_size, query_length, mem_length + query_length) query_r_bias The query bias for calculating the relative scores Shape (num_heads, query_head_units) query_k_bias The key bias for calculating the relative scores. Shape (num_heads, query_head_units) Returns ------- out - layout = 'NT' Shape (batch_size, query_length, units) - layout = 'TN' Shape (query_length, batch_size, units)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer_xl.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer_xl.py
Apache-2.0
def forward(self, data, mem_l, rel_positions, mask): """ Parameters ---------- data - layout = 'NT' Shape (batch_size, query_length) - layout = 'TN' Shape (query_length, batch_size) mem_l Contains a list of memory objects, each one will contain: - layout = 'NT' Shape (batch_size, mem_length, C_i) - layout = 'TN' Shape (mem_length, batch_size, C_i) rel_positions The relative positions. Shape (query_length, mem_length + query_length) mask Mask between the query and the memory + query. Shape (batch_size, query_length, mem_length + query_length) Returns ------- out_l Contains a list of hidden states, each will contain: - layout = 'NT' Shape (batch_size, query_length, C_o) - layout = 'TN' Shape (query_length, batch_size, C_o) """ query_k_bias = self.query_k_bias.data() query_r_bias = self.query_r_bias.data() out_l = [] out = data for i, layer in enumerate(self.decoder_layers): out = layer(out, mem_l[i], rel_positions, mask, query_r_bias, query_k_bias) out_l.append(out) return out_l
Parameters ---------- data - layout = 'NT' Shape (batch_size, query_length) - layout = 'TN' Shape (query_length, batch_size) mem_l Contains a list of memory objects, each one will contain: - layout = 'NT' Shape (batch_size, mem_length, C_i) - layout = 'TN' Shape (mem_length, batch_size, C_i) rel_positions The relative positions. Shape (query_length, mem_length + query_length) mask Mask between the query and the memory + query. Shape (batch_size, query_length, mem_length + query_length) Returns ------- out_l Contains a list of hidden states, each will contain: - layout = 'NT' Shape (batch_size, query_length, C_o) - layout = 'TN' Shape (query_length, batch_size, C_o)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer_xl.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer_xl.py
Apache-2.0
def init_states(self, batch_size, ctx): """Initialize the states Parameters ---------- batch_size ctx ctx of the initialized Returns ------- mems A list of memory states - layout = 'NT' Shape (B, T, C) - layout = 'TN' Shape (T, B, C) """ if self._layout == 'NT': return [mx.np.zeros((batch_size, 0, self._units), ctx=ctx) for _ in range(self._num_layers)] elif self._layout == 'TN': return [mx.np.zeros((0, batch_size, self._units), ctx=ctx) for _ in range(self._num_layers)] else: raise NotImplementedError
Initialize the states Parameters ---------- batch_size ctx ctx of the initialized Returns ------- mems A list of memory states - layout = 'NT' Shape (B, T, C) - layout = 'TN' Shape (T, B, C)
init_states
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer_xl.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer_xl.py
Apache-2.0