Datasets:
File size: 10,269 Bytes
68628b6 8ee1824 fff8d7c 68628b6 f96a61a 68628b6 f96a61a 68628b6 f96a61a 68628b6 f96a61a 68628b6 f96a61a 68628b6 f96a61a fff8d7c 68628b6 8ee1824 68628b6 fff8d7c cf0bc74 cfa4946 48d03f5 d2c712b 68628b6 2a1fb34 dcb683b 1b03414 072af77 2a1fb34 2f3d8fb 072af77 dcb683b 48d03f5 16797b7 a8d5936 072af77 a8d5936 002d1ee 072af77 a8d5936 072af77 a8d5936 cc895df 4d97d10 072af77 038973c 2a1fb34 2f9c039 cc895df 2a1fb34 1ddfc02 cc895df 4d97d10 072af77 a8d5936 2f9c039 cc895df 2a1fb34 cc895df 4d97d10 48d03f5 cc895df 2a1fb34 2f9c039 cc895df 00b856d cfa4946 bb3508f cfa4946 a8d5936 2f3d8fb 00b856d cfa4946 072af77 d9c980f dcb683b d9c980f 48d03f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
---
dataset_info:
- config_name: earnings_forecast
features:
- name: meta
dtype: string
- name: summary
dtype: string
- name: bs
dtype: string
- name: pl
dtype: string
- name: cf
dtype: string
- name: text
dtype: string
- name: label
dtype: int64
- name: naive_prediction
dtype: int64
- name: edinet_code
dtype: string
- name: doc_id
dtype: string
- name: previous_year_file_path
dtype: string
- name: current_year_file_path
dtype: string
splits:
- name: train
num_bytes: 59126713
num_examples: 549
- name: test
num_bytes: 43577804
num_examples: 451
download_size: 42722742
dataset_size: 102704517
- config_name: fraud_detection
features:
- name: meta
dtype: string
- name: summary
dtype: string
- name: bs
dtype: string
- name: pl
dtype: string
- name: cf
dtype: string
- name: text
dtype: string
- name: label
dtype: int64
- name: explanation
dtype: string
- name: edinet_code
dtype: string
- name: ammended_doc_id
dtype: string
- name: doc_id
dtype: string
- name: file_path
dtype: string
splits:
- name: train
num_bytes: 91248130
num_examples: 865
- name: test
num_bytes: 24178157
num_examples: 224
download_size: 47624977
dataset_size: 115426287
- config_name: industry_prediction
features:
- name: meta
dtype: string
- name: summary
dtype: string
- name: bs
dtype: string
- name: pl
dtype: string
- name: cf
dtype: string
- name: text
dtype: string
- name: industry
dtype: string
- name: edinet_code
dtype: string
- name: doc_id
dtype: string
- name: file_path
dtype: string
splits:
- name: train
num_bytes: 52393541
num_examples: 496
download_size: 21997966
dataset_size: 52393541
configs:
- config_name: earnings_forecast
data_files:
- split: train
path: earnings_forecast/train-*
- split: test
path: earnings_forecast/test-*
- config_name: fraud_detection
data_files:
- split: train
path: fraud_detection/train-*
- split: test
path: fraud_detection/test-*
- config_name: industry_prediction
data_files:
- split: train
path: industry_prediction/train-*
task_categories:
- text-classification
language:
- ja
tags:
- finance
- accounting
size_categories:
- 1K<n<10K
license: other
---
# EDINET-Bench
📚 [Paper](https://arxiv.org/abs/2506.08762) | 📝 [Blog](https://sakana.ai/edinet-bench/) | 🧑💻 [Code](https://github.com/SakanaAI/EDINET-Bench)
EDINET-Bench is a Japanese financial benchmark designed to evaluate the performance of LLMs on challenging financial tasks including accounting fraud detection, earnings forecasting, and industry prediction.
This dataset is built leveraging [EDINET](https://disclosure2.edinet-fsa.go.jp), a platform managed by the Financial Services Agency (FSA) of Japan that provides access to disclosure documents such as securities reports.
## Notice
- **June 9, 2025**: This dataset was originally released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Although section 1.7.3 of the Public Domain License (PDL) 1.0 states that it is compatible with CC BY 4.0, we have relicensed the dataset under PDL 1.0 to ensure strict consistency with the original licensing terms of the source data.
## Resources
- 📃**Paper**: Read our paper for detailed dataset construction pipeline and evaluation results at https://arxiv.org/abs/2506.08762
- 🏗️**Counstruction Code**: Create a new benchmark dataset at https://github.com/SakanaAI/edinet2dataset
- 📊**Evaluation Code**: Evaluate the performance of models on EDINET-Bench at https://github.com/SakanaAI/EDINET-Bench
## Dataset Construction Pipeline
<img src="EDINET-Bench.png" alt="Overview of EDINET-Bench" width="50%"/>
EDINET-Bench is built by downloading the past 10 years of annual reports of Japanese listed companies via EDINET-API and automatically annotating labels for each task.
For detailed information, please read our paper and code.
## How to Use
**Acounting fraud detection**
This task is a binary classification problem aimed at predicting whether a given annual report is fraudulent.
The label is either fraud (1) or non-fraud (0).
The explanation includes the reasons why the LLM determined that the contents of the amended report are related to accounting fraud.
Sample Explanation:
```
この訂正有価証券報告書は明らかに会計不正に関連しています。提出理由の部分に「当社の元従業員が、複数年度に亘って、商品の不正持ち出し転売するなどの行為を行っていた事実が判明」と記載されており、「第三者委員会」を設置して調査を行ったことが明記されています。さらに「不適切な会計処理を訂正」という表現も使用されています。この不正行為により、連結財務諸表および財務諸表の数値に変更が生じており、訂正箇所として貸借対照表、損益計算書、連結キャッシュ・フロー計算書など財務諸表の主要部分が挙げられています。これは単なる記載ミスではなく、元従業員による不正行為に起因する重大な会計上の問題であることが明確です。
(The amended securities report is clearly related to accounting fraud. In the section stating the reason for the amendment, it is noted that "it was discovered that a former employee of the company had, over multiple fiscal years, engaged in misconduct such as unlawfully removing and reselling products." It is also clearly stated that a "third-party committee" was established to investigate the matter. Furthermore, the report uses expressions such as "correction of inappropriate accounting treatment." As a result of this misconduct, changes have been made to figures in both the consolidated financial statements and the individual financial statements. The corrected sections include major parts of the financial statements, such as the balance sheet, income statement, and consolidated cash flow statement. This is not merely a clerical error, but rather a serious accounting issue stemming from fraudulent actions by a former employee.)
```
```python
>>> from datasets import load_dataset
>>> ds = load_dataset("SakanaAI/EDINET-Bench", "fraud_detection")
>>> ds
DatasetDict({
train: Dataset({
features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'explanation', 'edinet_code', 'ammended_doc_id', 'doc_id', 'file_path'],
num_rows: 865
})
test: Dataset({
features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'explanation', 'edinet_code', 'ammended_doc_id', 'doc_id', 'file_path'],
num_rows: 224
})
})
```
**Earnings forecast**
This task is a binary classification problem that predicts whether a company's earnings will increase or decrease in the next fiscal year based on its current annual report.
The label is either increase (1) or not (0).
```python
>>> from datasets import load_dataset
>>> ds = load_dataset("SakanaAI/EDINET-Bench", "earnings_forecast")
>>> ds
DatasetDict({
train: Dataset({
features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'naive_prediction', 'edinet_code', 'doc_id', 'previous_year_file_path', 'current_year_file_path'],
num_rows: 549
})
test: Dataset({
features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'naive_prediction', 'edinet_code', 'doc_id', 'previous_year_file_path', 'current_year_file_path'],
num_rows: 451
})
})
```
**Industry prediction**
This task is a multi-class classification problem that predicts a company's industry type (e.g., Banking) based on its current annual report.
Each label (in this case, the industry column) represents one of 16 possible industry types.
```python
>>> from datasets import load_dataset
>>> ds = load_dataset("SakanaAI/EDINET-Bench", "industry_prediction")
>>> ds
DatasetDict({
train: Dataset({
features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'industry', 'edinet_code', 'doc_id', 'file_path'],
num_rows: 496
})
})
```
## Limitation
- **Mislabeling**: When constructing the benchmark dataset for the accounting fraud detection task, we assume that only cases explicitly reported as fraudulent are labeled as such, while all others are considered non-fraudulent. However, there may be undiscovered fraud cases that remain unreported, introducing potential label noise into the dataset.
Additionally, our fraud examples are constructed by having the LLM read the contents of the amended reports and determine whether they are related to fraudulent activities. Due to the hallucination problem inherent in LLMs and lack of instruction following abilities, there is a risk that some cases may be incorrectly identified as fraudulent.
- **Intrinsic difficulty**: Among the tasks in our benchmark, the fraud detection and earnings forecasting tasks may be intrinsically challenging with a performance upper bound, as the LLM relies solely on information from a single annual report for its predictions.
Future research directions could explore the development of benchmark task designs that enable the model to utilize information beyond the annual report with novel agentic pipelines.
## LICENSE
EDINET-Bench is licensed under the [PDL 1.0](https://www.digital.go.jp/resources/open_data/public_data_license_v1.0) in accordance with [EDINET's Terms of Use](https://disclosure2dl.edinet-fsa.go.jp/guide/static/disclosure/WZEK0030.html).
## ⚠️ Warnings
EDINET-Bench is intended solely for advancing LLM applications in finance and must not be used to target or harm any real companies included in the dataset.
## Citation
```
@misc{sugiura2025edinet,
author={Issa Sugiura and Takashi Ishida and Taro Makino and Chieko Tazuke and Takanori Nakagawa and Kosuke Nakago and David Ha},
title={{EDINET-Bench: Evaluating LLMs on Complex Financial Tasks using Japanese Financial Statements}},
year={2025},
eprint={2506.08762},
archivePrefix={arXiv},
primaryClass={q-fin.ST},
url={https://arxiv.org/abs/2506.08762},
}
``` |