File size: 10,269 Bytes
68628b6
 
8ee1824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fff8d7c
68628b6
 
 
f96a61a
 
68628b6
 
 
 
 
 
 
 
 
 
 
 
 
 
f96a61a
68628b6
 
 
f96a61a
 
68628b6
 
f96a61a
68628b6
 
f96a61a
68628b6
f96a61a
 
fff8d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68628b6
8ee1824
 
 
 
 
 
68628b6
 
 
 
 
 
fff8d7c
 
 
 
cf0bc74
 
 
 
 
 
cfa4946
48d03f5
 
d2c712b
68628b6
2a1fb34
 
dcb683b
1b03414
072af77
 
2a1fb34
2f3d8fb
 
 
072af77
dcb683b
48d03f5
16797b7
a8d5936
072af77
a8d5936
 
 
002d1ee
072af77
a8d5936
 
072af77
a8d5936
cc895df
4d97d10
072af77
038973c
 
 
 
 
 
 
 
2a1fb34
2f9c039
cc895df
 
 
 
 
 
 
 
 
 
 
 
 
2a1fb34
 
1ddfc02
cc895df
4d97d10
072af77
a8d5936
2f9c039
cc895df
 
 
 
 
 
 
 
 
 
 
 
 
2a1fb34
 
cc895df
4d97d10
48d03f5
cc895df
2a1fb34
2f9c039
cc895df
 
 
 
 
 
 
 
 
00b856d
 
cfa4946
 
 
bb3508f
cfa4946
 
 
 
 
a8d5936
 
2f3d8fb
00b856d
cfa4946
 
 
 
 
072af77
 
 
d9c980f
dcb683b
 
 
 
 
 
 
d9c980f
48d03f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
---
dataset_info:
- config_name: earnings_forecast
  features:
  - name: meta
    dtype: string
  - name: summary
    dtype: string
  - name: bs
    dtype: string
  - name: pl
    dtype: string
  - name: cf
    dtype: string
  - name: text
    dtype: string
  - name: label
    dtype: int64
  - name: naive_prediction
    dtype: int64
  - name: edinet_code
    dtype: string
  - name: doc_id
    dtype: string
  - name: previous_year_file_path
    dtype: string
  - name: current_year_file_path
    dtype: string
  splits:
  - name: train
    num_bytes: 59126713
    num_examples: 549
  - name: test
    num_bytes: 43577804
    num_examples: 451
  download_size: 42722742
  dataset_size: 102704517
- config_name: fraud_detection
  features:
  - name: meta
    dtype: string
  - name: summary
    dtype: string
  - name: bs
    dtype: string
  - name: pl
    dtype: string
  - name: cf
    dtype: string
  - name: text
    dtype: string
  - name: label
    dtype: int64
  - name: explanation
    dtype: string
  - name: edinet_code
    dtype: string
  - name: ammended_doc_id
    dtype: string
  - name: doc_id
    dtype: string
  - name: file_path
    dtype: string
  splits:
  - name: train
    num_bytes: 91248130
    num_examples: 865
  - name: test
    num_bytes: 24178157
    num_examples: 224
  download_size: 47624977
  dataset_size: 115426287
- config_name: industry_prediction
  features:
  - name: meta
    dtype: string
  - name: summary
    dtype: string
  - name: bs
    dtype: string
  - name: pl
    dtype: string
  - name: cf
    dtype: string
  - name: text
    dtype: string
  - name: industry
    dtype: string
  - name: edinet_code
    dtype: string
  - name: doc_id
    dtype: string
  - name: file_path
    dtype: string
  splits:
  - name: train
    num_bytes: 52393541
    num_examples: 496
  download_size: 21997966
  dataset_size: 52393541
configs:
- config_name: earnings_forecast
  data_files:
  - split: train
    path: earnings_forecast/train-*
  - split: test
    path: earnings_forecast/test-*
- config_name: fraud_detection
  data_files:
  - split: train
    path: fraud_detection/train-*
  - split: test
    path: fraud_detection/test-*
- config_name: industry_prediction
  data_files:
  - split: train
    path: industry_prediction/train-*
task_categories:
- text-classification
language:
- ja
tags:
- finance
- accounting
size_categories:
- 1K<n<10K
license: other
---

# EDINET-Bench
📚 [Paper](https://arxiv.org/abs/2506.08762) | 📝 [Blog](https://sakana.ai/edinet-bench/) | 🧑‍💻 [Code](https://github.com/SakanaAI/EDINET-Bench)

EDINET-Bench is a Japanese financial benchmark designed to evaluate the performance of LLMs on challenging financial tasks including accounting fraud detection, earnings forecasting, and industry prediction.
This dataset is built leveraging [EDINET](https://disclosure2.edinet-fsa.go.jp), a platform managed by the Financial Services Agency (FSA) of Japan that provides access to disclosure documents such as securities reports.

## Notice
- **June 9, 2025**: This dataset was originally released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Although section 1.7.3 of the Public Domain License (PDL) 1.0 states that it is compatible with CC BY 4.0, we have relicensed the dataset under PDL 1.0 to ensure strict consistency with the original licensing terms of the source data.

## Resources
- 📃**Paper**: Read our paper for detailed dataset construction pipeline and evaluation results at https://arxiv.org/abs/2506.08762
- 🏗️**Counstruction Code**: Create a new benchmark dataset at https://github.com/SakanaAI/edinet2dataset
- 📊**Evaluation Code**: Evaluate the performance of models on EDINET-Bench at https://github.com/SakanaAI/EDINET-Bench

## Dataset Construction Pipeline

<img src="EDINET-Bench.png" alt="Overview of EDINET-Bench" width="50%"/>

EDINET-Bench is built by downloading the past 10 years of annual reports of Japanese listed companies via EDINET-API and automatically annotating labels for each task. 
For detailed information, please read our paper and code.


## How to Use

**Acounting fraud detection**

This task is a binary classification problem aimed at predicting whether a given annual report is fraudulent.
The label is either fraud (1) or non-fraud (0). 
The explanation includes the reasons why the LLM determined that the contents of the amended report are related to accounting fraud.

Sample Explanation:
```
この訂正有価証券報告書は明らかに会計不正に関連しています。提出理由の部分に「当社の元従業員が、複数年度に亘って、商品の不正持ち出し転売するなどの行為を行っていた事実が判明」と記載されており、「第三者委員会」を設置して調査を行ったことが明記されています。さらに「不適切な会計処理を訂正」という表現も使用されています。この不正行為により、連結財務諸表および財務諸表の数値に変更が生じており、訂正箇所として貸借対照表、損益計算書、連結キャッシュ・フロー計算書など財務諸表の主要部分が挙げられています。これは単なる記載ミスではなく、元従業員による不正行為に起因する重大な会計上の問題であることが明確です。
(The amended securities report is clearly related to accounting fraud. In the section stating the reason for the amendment, it is noted that "it was discovered that a former employee of the company had, over multiple fiscal years, engaged in misconduct such as unlawfully removing and reselling products." It is also clearly stated that a "third-party committee" was established to investigate the matter. Furthermore, the report uses expressions such as "correction of inappropriate accounting treatment." As a result of this misconduct, changes have been made to figures in both the consolidated financial statements and the individual financial statements. The corrected sections include major parts of the financial statements, such as the balance sheet, income statement, and consolidated cash flow statement. This is not merely a clerical error, but rather a serious accounting issue stemming from fraudulent actions by a former employee.)
```

```python
>>> from datasets import load_dataset
>>> ds = load_dataset("SakanaAI/EDINET-Bench", "fraud_detection")
>>> ds
DatasetDict({
    train: Dataset({
        features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'explanation', 'edinet_code', 'ammended_doc_id', 'doc_id', 'file_path'],
        num_rows: 865
    })
    test: Dataset({
        features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'explanation', 'edinet_code', 'ammended_doc_id', 'doc_id', 'file_path'],
        num_rows: 224
    })
})
```


**Earnings forecast**

This task is a binary classification problem that predicts whether a company's earnings will increase or decrease in the next fiscal year based on its current annual report.
The label is either increase (1) or not (0).
```python
>>> from datasets import load_dataset
>>> ds = load_dataset("SakanaAI/EDINET-Bench", "earnings_forecast")
>>> ds
DatasetDict({
    train: Dataset({
        features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'naive_prediction', 'edinet_code', 'doc_id', 'previous_year_file_path', 'current_year_file_path'],
        num_rows: 549
    })
    test: Dataset({
        features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'naive_prediction', 'edinet_code', 'doc_id', 'previous_year_file_path', 'current_year_file_path'],
        num_rows: 451
    })
})
```

**Industry prediction**

This task is a multi-class classification problem that predicts a company's industry type (e.g., Banking) based on its current annual report.
Each label (in this case, the industry column) represents one of 16 possible industry types.

```python
>>> from datasets import load_dataset
>>> ds = load_dataset("SakanaAI/EDINET-Bench", "industry_prediction")
>>> ds
DatasetDict({
    train: Dataset({
        features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'industry', 'edinet_code', 'doc_id', 'file_path'],
        num_rows: 496
    })
})
```

## Limitation

- **Mislabeling**: When constructing the benchmark dataset for the accounting fraud detection task, we assume that only cases explicitly reported as fraudulent are labeled as such, while all others are considered non-fraudulent. However, there may be undiscovered fraud cases that remain unreported, introducing potential label noise into the dataset. 
Additionally, our fraud examples are constructed by having the LLM read the contents of the amended reports and determine whether they are related to fraudulent activities. Due to the hallucination problem inherent in LLMs and lack of instruction following abilities, there is a risk that some cases may be incorrectly identified as fraudulent.

- **Intrinsic difficulty**: Among the tasks in our benchmark, the fraud detection and earnings forecasting tasks may be intrinsically challenging with a performance upper bound, as the LLM relies solely on information from a single annual report for its predictions. 
Future research directions could explore the development of benchmark task designs that enable the model to utilize information beyond the annual report with novel agentic pipelines.


## LICENSE

EDINET-Bench is licensed under the [PDL 1.0](https://www.digital.go.jp/resources/open_data/public_data_license_v1.0) in accordance with [EDINET's Terms of Use](https://disclosure2dl.edinet-fsa.go.jp/guide/static/disclosure/WZEK0030.html).


## ⚠️ Warnings
EDINET-Bench is intended solely for advancing LLM applications in finance and must not be used to target or harm any real companies included in the dataset.


## Citation

```
@misc{sugiura2025edinet,
  author={Issa Sugiura and Takashi Ishida and Taro Makino and Chieko Tazuke and Takanori Nakagawa and Kosuke Nakago and David Ha},
  title={{EDINET-Bench: Evaluating LLMs on Complex Financial Tasks using Japanese Financial Statements}},
  year={2025},
  eprint={2506.08762},
  archivePrefix={arXiv},
  primaryClass={q-fin.ST},
  url={https://arxiv.org/abs/2506.08762}, 
}
```