speed commited on
Commit
cc895df
·
verified ·
1 Parent(s): 002d1ee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -7
README.md CHANGED
@@ -145,30 +145,62 @@ For detailed information, please read our paper and code.
145
 
146
  ## How to Use
147
 
148
- - Acounting fraud detection
149
 
150
  This task is a binary classification problem aimed at predicting whether a given annual report is fraudulent.
151
  The label is either fraud (1) or non-fraud (0).
152
 
153
  ```python
154
- ds = load_dataset("SakanaAI/EDINET-Bench", "fraud_detection")
 
 
 
 
 
 
 
 
 
 
 
 
155
  ```
156
 
157
- - Earnings forecast
158
 
159
  This task is a binary classification problem that predicts whether a company's earnings will increase or decrease in the next fiscal year based on its current annual report.
160
  The label is either increase (1) or not (0).
161
  ```python
162
- ds = load_dataset("SakanaAI/EDINET-Bench", "earnings_forecast")
 
 
 
 
 
 
 
 
 
 
 
 
163
  ```
164
 
165
- - Industry prediction
166
 
167
  This task is a multi-class classification problem that predicts a company's industry type (e.g., Banking) based on its current annual report.
168
- Each label represents one of 16 possible industry types.
169
 
170
  ```python
171
- ds = load_dataset("SakanaAI/EDINET-Bench", "industry_prediction")
 
 
 
 
 
 
 
 
172
  ```
173
 
174
  ## LICENSE
 
145
 
146
  ## How to Use
147
 
148
+ **Acounting fraud detection**
149
 
150
  This task is a binary classification problem aimed at predicting whether a given annual report is fraudulent.
151
  The label is either fraud (1) or non-fraud (0).
152
 
153
  ```python
154
+ >>> from datasets import load_dataset
155
+ >>> ds = load_dataset("SakanaAI/EDINET-Bench", "fraud_detection")
156
+ >>> ds
157
+ DatasetDict({
158
+ train: Dataset({
159
+ features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'explanation', 'edinet_code', 'ammended_doc_id', 'doc_id', 'file_path'],
160
+ num_rows: 865
161
+ })
162
+ test: Dataset({
163
+ features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'explanation', 'edinet_code', 'ammended_doc_id', 'doc_id', 'file_path'],
164
+ num_rows: 224
165
+ })
166
+ })
167
  ```
168
 
169
+ **Earnings forecast**
170
 
171
  This task is a binary classification problem that predicts whether a company's earnings will increase or decrease in the next fiscal year based on its current annual report.
172
  The label is either increase (1) or not (0).
173
  ```python
174
+ >>> from datasets import load_dataset
175
+ >>> ds = load_dataset("SakanaAI/EDINET-Bench", "earnings_forecast")
176
+ >>> ds
177
+ DatasetDict({
178
+ train: Dataset({
179
+ features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'naive_prediction', 'edinet_code', 'doc_id', 'previous_year_file_path', 'current_year_file_path'],
180
+ num_rows: 549
181
+ })
182
+ test: Dataset({
183
+ features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'naive_prediction', 'edinet_code', 'doc_id', 'previous_year_file_path', 'current_year_file_path'],
184
+ num_rows: 451
185
+ })
186
+ })
187
  ```
188
 
189
+ **Industry prediction**
190
 
191
  This task is a multi-class classification problem that predicts a company's industry type (e.g., Banking) based on its current annual report.
192
+ Each label (in this case, the industry column) represents one of 16 possible industry types.
193
 
194
  ```python
195
+ >>> from datasets import load_dataset
196
+ >>> ds = load_dataset("SakanaAI/EDINET-Bench", "industry_prediction")
197
+ >>> ds
198
+ DatasetDict({
199
+ train: Dataset({
200
+ features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'industry', 'edinet_code', 'doc_id', 'file_path'],
201
+ num_rows: 496
202
+ })
203
+ })
204
  ```
205
 
206
  ## LICENSE