Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -145,30 +145,62 @@ For detailed information, please read our paper and code.
|
|
| 145 |
|
| 146 |
## How to Use
|
| 147 |
|
| 148 |
-
|
| 149 |
|
| 150 |
This task is a binary classification problem aimed at predicting whether a given annual report is fraudulent.
|
| 151 |
The label is either fraud (1) or non-fraud (0).
|
| 152 |
|
| 153 |
```python
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
```
|
| 156 |
|
| 157 |
-
|
| 158 |
|
| 159 |
This task is a binary classification problem that predicts whether a company's earnings will increase or decrease in the next fiscal year based on its current annual report.
|
| 160 |
The label is either increase (1) or not (0).
|
| 161 |
```python
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
```
|
| 164 |
|
| 165 |
-
|
| 166 |
|
| 167 |
This task is a multi-class classification problem that predicts a company's industry type (e.g., Banking) based on its current annual report.
|
| 168 |
-
Each label represents one of 16 possible industry types.
|
| 169 |
|
| 170 |
```python
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
```
|
| 173 |
|
| 174 |
## LICENSE
|
|
|
|
| 145 |
|
| 146 |
## How to Use
|
| 147 |
|
| 148 |
+
**Acounting fraud detection**
|
| 149 |
|
| 150 |
This task is a binary classification problem aimed at predicting whether a given annual report is fraudulent.
|
| 151 |
The label is either fraud (1) or non-fraud (0).
|
| 152 |
|
| 153 |
```python
|
| 154 |
+
>>> from datasets import load_dataset
|
| 155 |
+
>>> ds = load_dataset("SakanaAI/EDINET-Bench", "fraud_detection")
|
| 156 |
+
>>> ds
|
| 157 |
+
DatasetDict({
|
| 158 |
+
train: Dataset({
|
| 159 |
+
features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'explanation', 'edinet_code', 'ammended_doc_id', 'doc_id', 'file_path'],
|
| 160 |
+
num_rows: 865
|
| 161 |
+
})
|
| 162 |
+
test: Dataset({
|
| 163 |
+
features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'explanation', 'edinet_code', 'ammended_doc_id', 'doc_id', 'file_path'],
|
| 164 |
+
num_rows: 224
|
| 165 |
+
})
|
| 166 |
+
})
|
| 167 |
```
|
| 168 |
|
| 169 |
+
**Earnings forecast**
|
| 170 |
|
| 171 |
This task is a binary classification problem that predicts whether a company's earnings will increase or decrease in the next fiscal year based on its current annual report.
|
| 172 |
The label is either increase (1) or not (0).
|
| 173 |
```python
|
| 174 |
+
>>> from datasets import load_dataset
|
| 175 |
+
>>> ds = load_dataset("SakanaAI/EDINET-Bench", "earnings_forecast")
|
| 176 |
+
>>> ds
|
| 177 |
+
DatasetDict({
|
| 178 |
+
train: Dataset({
|
| 179 |
+
features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'naive_prediction', 'edinet_code', 'doc_id', 'previous_year_file_path', 'current_year_file_path'],
|
| 180 |
+
num_rows: 549
|
| 181 |
+
})
|
| 182 |
+
test: Dataset({
|
| 183 |
+
features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'label', 'naive_prediction', 'edinet_code', 'doc_id', 'previous_year_file_path', 'current_year_file_path'],
|
| 184 |
+
num_rows: 451
|
| 185 |
+
})
|
| 186 |
+
})
|
| 187 |
```
|
| 188 |
|
| 189 |
+
**Industry prediction**
|
| 190 |
|
| 191 |
This task is a multi-class classification problem that predicts a company's industry type (e.g., Banking) based on its current annual report.
|
| 192 |
+
Each label (in this case, the industry column) represents one of 16 possible industry types.
|
| 193 |
|
| 194 |
```python
|
| 195 |
+
>>> from datasets import load_dataset
|
| 196 |
+
>>> ds = load_dataset("SakanaAI/EDINET-Bench", "industry_prediction")
|
| 197 |
+
>>> ds
|
| 198 |
+
DatasetDict({
|
| 199 |
+
train: Dataset({
|
| 200 |
+
features: ['meta', 'summary', 'bs', 'pl', 'cf', 'text', 'industry', 'edinet_code', 'doc_id', 'file_path'],
|
| 201 |
+
num_rows: 496
|
| 202 |
+
})
|
| 203 |
+
})
|
| 204 |
```
|
| 205 |
|
| 206 |
## LICENSE
|