Dataset Viewer
The dataset viewer is not available for this split.
Cannot load the dataset split (in streaming mode) to extract the first rows.
Error code: StreamingRowsError
Exception: ArrowInvalid
Message: JSON parse error: Column(/file_exif_data/FileVersion) changed from string to number in row 22
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 183, in _generate_tables
df = pandas_read_json(f)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
return pd.read_json(path_or_buf, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 815, in read_json
return json_reader.read()
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1014, in read
obj = self._get_object_parser(self.data)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1040, in _get_object_parser
obj = FrameParser(json, **kwargs).parse()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1176, in parse
self._parse()
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1392, in _parse
ujson_loads(json, precise_float=self.precise_float), dtype=None
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ValueError: Trailing data
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
return get_rows(
^^^^^^^^^
File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/src/worker/utils.py", line 77, in get_rows
rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2543, in __iter__
for key, example in ex_iterable:
^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 362, in __iter__
for key, pa_table in self.generate_tables_fn(**gen_kwags):
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 186, in _generate_tables
raise e
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 160, in _generate_tables
pa_table = paj.read_json(
^^^^^^^^^^^^^^
File "pyarrow/_json.pyx", line 342, in pyarrow._json.read_json
File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: JSON parse error: Column(/file_exif_data/FileVersion) changed from string to number in row 22Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Traceix AI Security Telemetry
Each dataset is a JSONL file where each line describes a single file analyzed by Traceix. For every file you get:
file_capabilities– high-level behaviors and capabilities (CAPA-style + mapped to ATT&CK and MBC tags likeExecution/T1129,Discovery/T1083, etc.).file_exif_data– parsed EXIF metadata (file size, type, timestamps, company/product info, subsystem, linker/OS versions, etc.).model_classification_info– Traceix model verdict (safe/malicious), classification timestamp, and inference latency in seconds.decrypted_training_data– numeric feature vector actually used for training/inference (PE header fields, section statistics, imports/resources counts, entropy stats, etc.).metadata– model version and accuracy, upload metadata (timestamp, SHA-256, license), and payment information (THRT amount, Solana transaction hash + explorer URL, price at time of payment).
All records are focused on malware analysis and are stored in JSONL format. Datasets are automatically exported by Traceix on a monthly schedule and published as-is under the CC BY 4.0 license.
You can quickly load and sanity-check any monthly corpus using:
from datasets import load_dataset
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
# Load the Traceix telemetry dataset
ds = load_dataset(
"PerkinsFund/traceix-ai-security-telemetry",
data_files="traceix-telemetry-corpus-2025-12.jsonl", # Or whatever month you want
split="train",
)
# We will need to flatten nested JSON into columns
df = ds.to_pandas()
df_flat = pd.json_normalize(df.to_dict(orient="records"))
# Define the features and label based on schema
feature_cols = [
"decrypted_training_data.SizeOfCode",
"decrypted_training_data.SectionsMeanEntropy",
"decrypted_training_data.ImportsNb",
]
label_col = "model_classification_info.identified_class"
# We don't have to but we will drop the rows with missing data
df_flat = df_flat.dropna(subset=feature_cols + [label_col])
X = df_flat[feature_cols].values
y = (df_flat[label_col] == "malicious").astype(int)
# Start the training and test split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
# Test the basic file classifier
clf = LogisticRegression(max_iter=1000)
clf.fit(X_train, y_train)
print("Test accuracy:", clf.score(X_test, y_test))
- Downloads last month
- 40