josipabebic commited on
Commit
b158161
·
verified ·
1 Parent(s): 3745ebe

Upload 9 files

Browse files
transformers/BERTić code.ipynb ADDED
@@ -0,0 +1,877 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "ac15a924",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stdout",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "\n",
14
+ "\n",
15
+ "=== Treniranje i evaluacija za trening skup: train_combined ===\n",
16
+ "\n",
17
+ "--- Fine-tuning model: classla/bcms-bertic ---\n"
18
+ ]
19
+ },
20
+ {
21
+ "name": "stderr",
22
+ "output_type": "stream",
23
+ "text": [
24
+ "Some weights of ElectraForSequenceClassification were not initialized from the model checkpoint at classla/bcms-bertic and are newly initialized: ['classifier.dense.bias', 'classifier.dense.weight', 'classifier.out_proj.bias', 'classifier.out_proj.weight']\n",
25
+ "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
26
+ ]
27
+ },
28
+ {
29
+ "data": {
30
+ "application/vnd.jupyter.widget-view+json": {
31
+ "model_id": "aed062bba63e49b5a657521638acc86c",
32
+ "version_major": 2,
33
+ "version_minor": 0
34
+ },
35
+ "text/plain": [
36
+ "Map: 0%| | 0/7577 [00:00<?, ? examples/s]"
37
+ ]
38
+ },
39
+ "metadata": {},
40
+ "output_type": "display_data"
41
+ },
42
+ {
43
+ "name": "stderr",
44
+ "output_type": "stream",
45
+ "text": [
46
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
47
+ " warnings.warn(warn_msg)\n"
48
+ ]
49
+ },
50
+ {
51
+ "data": {
52
+ "text/html": [
53
+ "\n",
54
+ " <div>\n",
55
+ " \n",
56
+ " <progress value='1422' max='1422' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
57
+ " [1422/1422 45:18, Epoch 3/3]\n",
58
+ " </div>\n",
59
+ " <table border=\"1\" class=\"dataframe\">\n",
60
+ " <thead>\n",
61
+ " <tr style=\"text-align: left;\">\n",
62
+ " <th>Step</th>\n",
63
+ " <th>Training Loss</th>\n",
64
+ " </tr>\n",
65
+ " </thead>\n",
66
+ " <tbody>\n",
67
+ " <tr>\n",
68
+ " <td>50</td>\n",
69
+ " <td>0.929600</td>\n",
70
+ " </tr>\n",
71
+ " <tr>\n",
72
+ " <td>100</td>\n",
73
+ " <td>0.843100</td>\n",
74
+ " </tr>\n",
75
+ " <tr>\n",
76
+ " <td>150</td>\n",
77
+ " <td>0.744100</td>\n",
78
+ " </tr>\n",
79
+ " <tr>\n",
80
+ " <td>200</td>\n",
81
+ " <td>0.645000</td>\n",
82
+ " </tr>\n",
83
+ " <tr>\n",
84
+ " <td>250</td>\n",
85
+ " <td>0.633000</td>\n",
86
+ " </tr>\n",
87
+ " <tr>\n",
88
+ " <td>300</td>\n",
89
+ " <td>0.641400</td>\n",
90
+ " </tr>\n",
91
+ " <tr>\n",
92
+ " <td>350</td>\n",
93
+ " <td>0.618200</td>\n",
94
+ " </tr>\n",
95
+ " <tr>\n",
96
+ " <td>400</td>\n",
97
+ " <td>0.594200</td>\n",
98
+ " </tr>\n",
99
+ " <tr>\n",
100
+ " <td>450</td>\n",
101
+ " <td>0.578800</td>\n",
102
+ " </tr>\n",
103
+ " <tr>\n",
104
+ " <td>500</td>\n",
105
+ " <td>0.484900</td>\n",
106
+ " </tr>\n",
107
+ " <tr>\n",
108
+ " <td>550</td>\n",
109
+ " <td>0.436400</td>\n",
110
+ " </tr>\n",
111
+ " <tr>\n",
112
+ " <td>600</td>\n",
113
+ " <td>0.485900</td>\n",
114
+ " </tr>\n",
115
+ " <tr>\n",
116
+ " <td>650</td>\n",
117
+ " <td>0.484800</td>\n",
118
+ " </tr>\n",
119
+ " <tr>\n",
120
+ " <td>700</td>\n",
121
+ " <td>0.509100</td>\n",
122
+ " </tr>\n",
123
+ " <tr>\n",
124
+ " <td>750</td>\n",
125
+ " <td>0.437300</td>\n",
126
+ " </tr>\n",
127
+ " <tr>\n",
128
+ " <td>800</td>\n",
129
+ " <td>0.518500</td>\n",
130
+ " </tr>\n",
131
+ " <tr>\n",
132
+ " <td>850</td>\n",
133
+ " <td>0.512200</td>\n",
134
+ " </tr>\n",
135
+ " <tr>\n",
136
+ " <td>900</td>\n",
137
+ " <td>0.410600</td>\n",
138
+ " </tr>\n",
139
+ " <tr>\n",
140
+ " <td>950</td>\n",
141
+ " <td>0.471700</td>\n",
142
+ " </tr>\n",
143
+ " <tr>\n",
144
+ " <td>1000</td>\n",
145
+ " <td>0.401200</td>\n",
146
+ " </tr>\n",
147
+ " <tr>\n",
148
+ " <td>1050</td>\n",
149
+ " <td>0.374100</td>\n",
150
+ " </tr>\n",
151
+ " <tr>\n",
152
+ " <td>1100</td>\n",
153
+ " <td>0.397300</td>\n",
154
+ " </tr>\n",
155
+ " <tr>\n",
156
+ " <td>1150</td>\n",
157
+ " <td>0.363700</td>\n",
158
+ " </tr>\n",
159
+ " <tr>\n",
160
+ " <td>1200</td>\n",
161
+ " <td>0.325300</td>\n",
162
+ " </tr>\n",
163
+ " <tr>\n",
164
+ " <td>1250</td>\n",
165
+ " <td>0.291000</td>\n",
166
+ " </tr>\n",
167
+ " <tr>\n",
168
+ " <td>1300</td>\n",
169
+ " <td>0.335900</td>\n",
170
+ " </tr>\n",
171
+ " <tr>\n",
172
+ " <td>1350</td>\n",
173
+ " <td>0.395900</td>\n",
174
+ " </tr>\n",
175
+ " <tr>\n",
176
+ " <td>1400</td>\n",
177
+ " <td>0.331800</td>\n",
178
+ " </tr>\n",
179
+ " </tbody>\n",
180
+ "</table><p>"
181
+ ],
182
+ "text/plain": [
183
+ "<IPython.core.display.HTML object>"
184
+ ]
185
+ },
186
+ "metadata": {},
187
+ "output_type": "display_data"
188
+ },
189
+ {
190
+ "name": "stderr",
191
+ "output_type": "stream",
192
+ "text": [
193
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
194
+ " warnings.warn(warn_msg)\n"
195
+ ]
196
+ },
197
+ {
198
+ "name": "stdout",
199
+ "output_type": "stream",
200
+ "text": [
201
+ "\n",
202
+ "Evaluacija na test skupu test-1\n"
203
+ ]
204
+ },
205
+ {
206
+ "data": {
207
+ "application/vnd.jupyter.widget-view+json": {
208
+ "model_id": "fb87532e026a4d0b8aa72d5cbfc4fb2a",
209
+ "version_major": 2,
210
+ "version_minor": 0
211
+ },
212
+ "text/plain": [
213
+ "Map: 0%| | 0/653 [00:00<?, ? examples/s]"
214
+ ]
215
+ },
216
+ "metadata": {},
217
+ "output_type": "display_data"
218
+ },
219
+ {
220
+ "name": "stderr",
221
+ "output_type": "stream",
222
+ "text": [
223
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
224
+ " warnings.warn(warn_msg)\n"
225
+ ]
226
+ },
227
+ {
228
+ "data": {
229
+ "text/html": [],
230
+ "text/plain": [
231
+ "<IPython.core.display.HTML object>"
232
+ ]
233
+ },
234
+ "metadata": {},
235
+ "output_type": "display_data"
236
+ },
237
+ {
238
+ "name": "stdout",
239
+ "output_type": "stream",
240
+ "text": [
241
+ "Evaluacija: {'eval_loss': 0.8313503265380859, 'eval_accuracy': 0.7136294027565084, 'eval_f1_macro': 0.624180014657386, 'eval_runtime': 16.74, 'eval_samples_per_second': 39.008, 'eval_steps_per_second': 1.254, 'epoch': 3.0}\n"
242
+ ]
243
+ },
244
+ {
245
+ "name": "stderr",
246
+ "output_type": "stream",
247
+ "text": [
248
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
249
+ " warnings.warn(warn_msg)\n"
250
+ ]
251
+ },
252
+ {
253
+ "name": "stdout",
254
+ "output_type": "stream",
255
+ "text": [
256
+ "Confusion Matrix:\n",
257
+ "[[109 48 8]\n",
258
+ " [ 70 328 32]\n",
259
+ " [ 4 25 29]]\n",
260
+ "\n",
261
+ "Classification Report:\n",
262
+ " precision recall f1-score support\n",
263
+ "\n",
264
+ " negative 0.60 0.66 0.63 165\n",
265
+ " neutral 0.82 0.76 0.79 430\n",
266
+ " positive 0.42 0.50 0.46 58\n",
267
+ "\n",
268
+ " accuracy 0.71 653\n",
269
+ " macro avg 0.61 0.64 0.62 653\n",
270
+ "weighted avg 0.73 0.71 0.72 653\n",
271
+ "\n",
272
+ "Predikcije spremljene u results_train_combined/predictions_test_1.csv\n",
273
+ "\n",
274
+ "Evaluacija na test skupu test-2\n"
275
+ ]
276
+ },
277
+ {
278
+ "data": {
279
+ "application/vnd.jupyter.widget-view+json": {
280
+ "model_id": "109da4be6d1d4c0d826f1320e481d4e1",
281
+ "version_major": 2,
282
+ "version_minor": 0
283
+ },
284
+ "text/plain": [
285
+ "Map: 0%| | 0/741 [00:00<?, ? examples/s]"
286
+ ]
287
+ },
288
+ "metadata": {},
289
+ "output_type": "display_data"
290
+ },
291
+ {
292
+ "name": "stderr",
293
+ "output_type": "stream",
294
+ "text": [
295
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
296
+ " warnings.warn(warn_msg)\n"
297
+ ]
298
+ },
299
+ {
300
+ "data": {
301
+ "text/html": [],
302
+ "text/plain": [
303
+ "<IPython.core.display.HTML object>"
304
+ ]
305
+ },
306
+ "metadata": {},
307
+ "output_type": "display_data"
308
+ },
309
+ {
310
+ "name": "stdout",
311
+ "output_type": "stream",
312
+ "text": [
313
+ "Evaluacija: {'eval_loss': 0.23835134506225586, 'eval_accuracy': 0.9257759784075573, 'eval_f1_macro': 0.907760132195386, 'eval_runtime': 19.6933, 'eval_samples_per_second': 37.627, 'eval_steps_per_second': 1.219, 'epoch': 3.0}\n"
314
+ ]
315
+ },
316
+ {
317
+ "name": "stderr",
318
+ "output_type": "stream",
319
+ "text": [
320
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
321
+ " warnings.warn(warn_msg)\n"
322
+ ]
323
+ },
324
+ {
325
+ "name": "stdout",
326
+ "output_type": "stream",
327
+ "text": [
328
+ "Confusion Matrix:\n",
329
+ "[[197 16 3]\n",
330
+ " [ 14 410 7]\n",
331
+ " [ 3 12 79]]\n",
332
+ "\n",
333
+ "Classification Report:\n",
334
+ " precision recall f1-score support\n",
335
+ "\n",
336
+ " negative 0.92 0.91 0.92 216\n",
337
+ " neutral 0.94 0.95 0.94 431\n",
338
+ " positive 0.89 0.84 0.86 94\n",
339
+ "\n",
340
+ " accuracy 0.93 741\n",
341
+ " macro avg 0.91 0.90 0.91 741\n",
342
+ "weighted avg 0.93 0.93 0.93 741\n",
343
+ "\n",
344
+ "Predikcije spremljene u results_train_combined/predictions_test_2.csv\n",
345
+ "\n",
346
+ "Evaluacija na test skupu test-3\n"
347
+ ]
348
+ },
349
+ {
350
+ "data": {
351
+ "application/vnd.jupyter.widget-view+json": {
352
+ "model_id": "3b91d6b9cfde4469a865dd69c79b4f34",
353
+ "version_major": 2,
354
+ "version_minor": 0
355
+ },
356
+ "text/plain": [
357
+ "Map: 0%| | 0/793 [00:00<?, ? examples/s]"
358
+ ]
359
+ },
360
+ "metadata": {},
361
+ "output_type": "display_data"
362
+ },
363
+ {
364
+ "name": "stderr",
365
+ "output_type": "stream",
366
+ "text": [
367
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
368
+ " warnings.warn(warn_msg)\n"
369
+ ]
370
+ },
371
+ {
372
+ "data": {
373
+ "text/html": [],
374
+ "text/plain": [
375
+ "<IPython.core.display.HTML object>"
376
+ ]
377
+ },
378
+ "metadata": {},
379
+ "output_type": "display_data"
380
+ },
381
+ {
382
+ "name": "stdout",
383
+ "output_type": "stream",
384
+ "text": [
385
+ "Evaluacija: {'eval_loss': 0.8141497373580933, 'eval_accuracy': 0.7679697351828499, 'eval_f1_macro': 0.7678761268324849, 'eval_runtime': 20.857, 'eval_samples_per_second': 38.021, 'eval_steps_per_second': 1.199, 'epoch': 3.0}\n"
386
+ ]
387
+ },
388
+ {
389
+ "name": "stderr",
390
+ "output_type": "stream",
391
+ "text": [
392
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
393
+ " warnings.warn(warn_msg)\n"
394
+ ]
395
+ },
396
+ {
397
+ "name": "stdout",
398
+ "output_type": "stream",
399
+ "text": [
400
+ "Confusion Matrix:\n",
401
+ "[[212 51 4]\n",
402
+ " [ 7 250 6]\n",
403
+ " [ 6 110 147]]\n",
404
+ "\n",
405
+ "Classification Report:\n",
406
+ " precision recall f1-score support\n",
407
+ "\n",
408
+ " negative 0.94 0.79 0.86 267\n",
409
+ " neutral 0.61 0.95 0.74 263\n",
410
+ " positive 0.94 0.56 0.70 263\n",
411
+ "\n",
412
+ " accuracy 0.77 793\n",
413
+ " macro avg 0.83 0.77 0.77 793\n",
414
+ "weighted avg 0.83 0.77 0.77 793\n",
415
+ "\n",
416
+ "Predikcije spremljene u results_train_combined/predictions_test_3.csv\n",
417
+ "\n",
418
+ "\n",
419
+ "=== Treniranje i evaluacija za trening skup: train_2 ===\n",
420
+ "\n",
421
+ "--- Fine-tuning model: classla/bcms-bertic ---\n"
422
+ ]
423
+ },
424
+ {
425
+ "name": "stderr",
426
+ "output_type": "stream",
427
+ "text": [
428
+ "Some weights of ElectraForSequenceClassification were not initialized from the model checkpoint at classla/bcms-bertic and are newly initialized: ['classifier.dense.bias', 'classifier.dense.weight', 'classifier.out_proj.bias', 'classifier.out_proj.weight']\n",
429
+ "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
430
+ ]
431
+ },
432
+ {
433
+ "data": {
434
+ "application/vnd.jupyter.widget-view+json": {
435
+ "model_id": "a7f4d6a07e7544b38dc869d92f60dbf0",
436
+ "version_major": 2,
437
+ "version_minor": 0
438
+ },
439
+ "text/plain": [
440
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
441
+ ]
442
+ },
443
+ "metadata": {},
444
+ "output_type": "display_data"
445
+ },
446
+ {
447
+ "name": "stderr",
448
+ "output_type": "stream",
449
+ "text": [
450
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
451
+ " warnings.warn(warn_msg)\n"
452
+ ]
453
+ },
454
+ {
455
+ "data": {
456
+ "text/html": [
457
+ "\n",
458
+ " <div>\n",
459
+ " \n",
460
+ " <progress value='417' max='417' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
461
+ " [417/417 09:50, Epoch 3/3]\n",
462
+ " </div>\n",
463
+ " <table border=\"1\" class=\"dataframe\">\n",
464
+ " <thead>\n",
465
+ " <tr style=\"text-align: left;\">\n",
466
+ " <th>Step</th>\n",
467
+ " <th>Training Loss</th>\n",
468
+ " </tr>\n",
469
+ " </thead>\n",
470
+ " <tbody>\n",
471
+ " <tr>\n",
472
+ " <td>50</td>\n",
473
+ " <td>0.998700</td>\n",
474
+ " </tr>\n",
475
+ " <tr>\n",
476
+ " <td>100</td>\n",
477
+ " <td>0.815300</td>\n",
478
+ " </tr>\n",
479
+ " <tr>\n",
480
+ " <td>150</td>\n",
481
+ " <td>0.685500</td>\n",
482
+ " </tr>\n",
483
+ " <tr>\n",
484
+ " <td>200</td>\n",
485
+ " <td>0.542600</td>\n",
486
+ " </tr>\n",
487
+ " <tr>\n",
488
+ " <td>250</td>\n",
489
+ " <td>0.520300</td>\n",
490
+ " </tr>\n",
491
+ " <tr>\n",
492
+ " <td>300</td>\n",
493
+ " <td>0.464000</td>\n",
494
+ " </tr>\n",
495
+ " <tr>\n",
496
+ " <td>350</td>\n",
497
+ " <td>0.380800</td>\n",
498
+ " </tr>\n",
499
+ " <tr>\n",
500
+ " <td>400</td>\n",
501
+ " <td>0.328300</td>\n",
502
+ " </tr>\n",
503
+ " </tbody>\n",
504
+ "</table><p>"
505
+ ],
506
+ "text/plain": [
507
+ "<IPython.core.display.HTML object>"
508
+ ]
509
+ },
510
+ "metadata": {},
511
+ "output_type": "display_data"
512
+ },
513
+ {
514
+ "name": "stdout",
515
+ "output_type": "stream",
516
+ "text": [
517
+ "\n",
518
+ "Evaluacija na test skupu test-1\n"
519
+ ]
520
+ },
521
+ {
522
+ "data": {
523
+ "application/vnd.jupyter.widget-view+json": {
524
+ "model_id": "4816fe0de415465ca0d982ff0ddc9f1b",
525
+ "version_major": 2,
526
+ "version_minor": 0
527
+ },
528
+ "text/plain": [
529
+ "Map: 0%| | 0/653 [00:00<?, ? examples/s]"
530
+ ]
531
+ },
532
+ "metadata": {},
533
+ "output_type": "display_data"
534
+ },
535
+ {
536
+ "name": "stderr",
537
+ "output_type": "stream",
538
+ "text": [
539
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
540
+ " warnings.warn(warn_msg)\n"
541
+ ]
542
+ },
543
+ {
544
+ "data": {
545
+ "text/html": [],
546
+ "text/plain": [
547
+ "<IPython.core.display.HTML object>"
548
+ ]
549
+ },
550
+ "metadata": {},
551
+ "output_type": "display_data"
552
+ },
553
+ {
554
+ "name": "stdout",
555
+ "output_type": "stream",
556
+ "text": [
557
+ "Evaluacija: {'eval_loss': 0.8404552340507507, 'eval_accuracy': 0.6906584992343032, 'eval_f1_macro': 0.5999228826553304, 'eval_runtime': 15.1161, 'eval_samples_per_second': 43.199, 'eval_steps_per_second': 1.389, 'epoch': 3.0}\n"
558
+ ]
559
+ },
560
+ {
561
+ "name": "stderr",
562
+ "output_type": "stream",
563
+ "text": [
564
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
565
+ " warnings.warn(warn_msg)\n"
566
+ ]
567
+ },
568
+ {
569
+ "name": "stdout",
570
+ "output_type": "stream",
571
+ "text": [
572
+ "Confusion Matrix:\n",
573
+ "[[116 42 7]\n",
574
+ " [ 86 309 35]\n",
575
+ " [ 7 25 26]]\n",
576
+ "\n",
577
+ "Classification Report:\n",
578
+ " precision recall f1-score support\n",
579
+ "\n",
580
+ " negative 0.56 0.70 0.62 165\n",
581
+ " neutral 0.82 0.72 0.77 430\n",
582
+ " positive 0.38 0.45 0.41 58\n",
583
+ "\n",
584
+ " accuracy 0.69 653\n",
585
+ " macro avg 0.59 0.62 0.60 653\n",
586
+ "weighted avg 0.72 0.69 0.70 653\n",
587
+ "\n",
588
+ "Predikcije spremljene u results_train_2/predictions_test_1.csv\n",
589
+ "\n",
590
+ "Evaluacija na test skupu test-2\n"
591
+ ]
592
+ },
593
+ {
594
+ "data": {
595
+ "application/vnd.jupyter.widget-view+json": {
596
+ "model_id": "6459394251ff4731938cb87fdba6c9bd",
597
+ "version_major": 2,
598
+ "version_minor": 0
599
+ },
600
+ "text/plain": [
601
+ "Map: 0%| | 0/741 [00:00<?, ? examples/s]"
602
+ ]
603
+ },
604
+ "metadata": {},
605
+ "output_type": "display_data"
606
+ },
607
+ {
608
+ "name": "stderr",
609
+ "output_type": "stream",
610
+ "text": [
611
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
612
+ " warnings.warn(warn_msg)\n"
613
+ ]
614
+ },
615
+ {
616
+ "data": {
617
+ "text/html": [],
618
+ "text/plain": [
619
+ "<IPython.core.display.HTML object>"
620
+ ]
621
+ },
622
+ "metadata": {},
623
+ "output_type": "display_data"
624
+ },
625
+ {
626
+ "name": "stdout",
627
+ "output_type": "stream",
628
+ "text": [
629
+ "Evaluacija: {'eval_loss': 0.5182289481163025, 'eval_accuracy': 0.8083670715249662, 'eval_f1_macro': 0.7534545808339037, 'eval_runtime': 17.475, 'eval_samples_per_second': 42.403, 'eval_steps_per_second': 1.373, 'epoch': 3.0}\n"
630
+ ]
631
+ },
632
+ {
633
+ "name": "stderr",
634
+ "output_type": "stream",
635
+ "text": [
636
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
637
+ " warnings.warn(warn_msg)\n"
638
+ ]
639
+ },
640
+ {
641
+ "name": "stdout",
642
+ "output_type": "stream",
643
+ "text": [
644
+ "Confusion Matrix:\n",
645
+ "[[163 44 9]\n",
646
+ " [ 32 381 18]\n",
647
+ " [ 10 29 55]]\n",
648
+ "\n",
649
+ "Classification Report:\n",
650
+ " precision recall f1-score support\n",
651
+ "\n",
652
+ " negative 0.80 0.75 0.77 216\n",
653
+ " neutral 0.84 0.88 0.86 431\n",
654
+ " positive 0.67 0.59 0.62 94\n",
655
+ "\n",
656
+ " accuracy 0.81 741\n",
657
+ " macro avg 0.77 0.74 0.75 741\n",
658
+ "weighted avg 0.80 0.81 0.81 741\n",
659
+ "\n",
660
+ "Predikcije spremljene u results_train_2/predictions_test_2.csv\n",
661
+ "\n",
662
+ "Evaluacija na test skupu test-3\n"
663
+ ]
664
+ },
665
+ {
666
+ "data": {
667
+ "application/vnd.jupyter.widget-view+json": {
668
+ "model_id": "aed4ce93c6614d97abd44fe642c0b3fa",
669
+ "version_major": 2,
670
+ "version_minor": 0
671
+ },
672
+ "text/plain": [
673
+ "Map: 0%| | 0/793 [00:00<?, ? examples/s]"
674
+ ]
675
+ },
676
+ "metadata": {},
677
+ "output_type": "display_data"
678
+ },
679
+ {
680
+ "name": "stderr",
681
+ "output_type": "stream",
682
+ "text": [
683
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
684
+ " warnings.warn(warn_msg)\n"
685
+ ]
686
+ },
687
+ {
688
+ "data": {
689
+ "text/html": [],
690
+ "text/plain": [
691
+ "<IPython.core.display.HTML object>"
692
+ ]
693
+ },
694
+ "metadata": {},
695
+ "output_type": "display_data"
696
+ },
697
+ {
698
+ "name": "stdout",
699
+ "output_type": "stream",
700
+ "text": [
701
+ "Evaluacija: {'eval_loss': 0.9036539793014526, 'eval_accuracy': 0.7112232030264817, 'eval_f1_macro': 0.7055643128874013, 'eval_runtime': 18.7008, 'eval_samples_per_second': 42.405, 'eval_steps_per_second': 1.337, 'epoch': 3.0}\n"
702
+ ]
703
+ },
704
+ {
705
+ "name": "stderr",
706
+ "output_type": "stream",
707
+ "text": [
708
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
709
+ " warnings.warn(warn_msg)\n"
710
+ ]
711
+ },
712
+ {
713
+ "name": "stdout",
714
+ "output_type": "stream",
715
+ "text": [
716
+ "Confusion Matrix:\n",
717
+ "[[204 53 10]\n",
718
+ " [ 17 239 7]\n",
719
+ " [ 13 129 121]]\n",
720
+ "\n",
721
+ "Classification Report:\n",
722
+ " precision recall f1-score support\n",
723
+ "\n",
724
+ " negative 0.87 0.76 0.81 267\n",
725
+ " neutral 0.57 0.91 0.70 263\n",
726
+ " positive 0.88 0.46 0.60 263\n",
727
+ "\n",
728
+ " accuracy 0.71 793\n",
729
+ " macro avg 0.77 0.71 0.71 793\n",
730
+ "weighted avg 0.77 0.71 0.71 793\n",
731
+ "\n",
732
+ "Predikcije spremljene u results_train_2/predictions_test_3.csv\n"
733
+ ]
734
+ }
735
+ ],
736
+ "source": [
737
+ "import pandas as pd\n",
738
+ "import torch\n",
739
+ "from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments\n",
740
+ "from datasets import Dataset\n",
741
+ "from sklearn.metrics import classification_report, confusion_matrix\n",
742
+ "\n",
743
+ "def load_and_prepare_data(train_path):\n",
744
+ " df = pd.read_csv(train_path)\n",
745
+ " df = df.rename(columns={\"Label\": \"label\"})\n",
746
+ " return Dataset.from_pandas(df)\n",
747
+ "\n",
748
+ "def load_and_prepare_test_data(test_path):\n",
749
+ " df = pd.read_csv(test_path)\n",
750
+ " df = df.rename(columns={\"Label\": \"label\"})\n",
751
+ " return Dataset.from_pandas(df), df\n",
752
+ "\n",
753
+ "def tokenize_dataset(dataset, tokenizer):\n",
754
+ " def tokenize_function(examples):\n",
755
+ " return tokenizer(examples['Sentence'], padding='max_length', truncation=True, max_length=128)\n",
756
+ " tokenized = dataset.map(tokenize_function, batched=True)\n",
757
+ " tokenized.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])\n",
758
+ " return tokenized\n",
759
+ "\n",
760
+ "def compute_metrics(eval_pred):\n",
761
+ " logits, labels = eval_pred\n",
762
+ " preds = torch.argmax(torch.tensor(logits), axis=1).numpy()\n",
763
+ " report = classification_report(labels, preds, output_dict=True)\n",
764
+ " acc = report['accuracy']\n",
765
+ " f1 = report['macro avg']['f1-score']\n",
766
+ " return {'accuracy': acc, 'f1_macro': f1}\n",
767
+ "\n",
768
+ "def train_and_evaluate(model_name, train_dataset, test_datasets, raw_test_dfs, output_base_dir):\n",
769
+ " print(f\"\\n--- Fine-tuning model: {model_name} ---\")\n",
770
+ "\n",
771
+ " tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
772
+ " model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)\n",
773
+ "\n",
774
+ " tokenized_train = tokenize_dataset(train_dataset, tokenizer)\n",
775
+ "\n",
776
+ " training_args = TrainingArguments(\n",
777
+ " output_dir=f\"{output_base_dir}/model\",\n",
778
+ " learning_rate=2e-5,\n",
779
+ " per_device_train_batch_size=16,\n",
780
+ " per_device_eval_batch_size=32,\n",
781
+ " num_train_epochs=3,\n",
782
+ " weight_decay=0.01,\n",
783
+ " load_best_model_at_end=False,\n",
784
+ " logging_dir=f\"{output_base_dir}/logs\",\n",
785
+ " logging_steps=50,\n",
786
+ " save_total_limit=2,\n",
787
+ " seed=42,\n",
788
+ " )\n",
789
+ "\n",
790
+ " trainer = Trainer(\n",
791
+ " model=model,\n",
792
+ " args=training_args,\n",
793
+ " train_dataset=tokenized_train,\n",
794
+ " compute_metrics=compute_metrics,\n",
795
+ " )\n",
796
+ "\n",
797
+ " # Treniraj model\n",
798
+ " trainer.train()\n",
799
+ "\n",
800
+ " # Spremi model nakon treninga\n",
801
+ " trainer.save_model()\n",
802
+ "\n",
803
+ " # Evaluiraj i predvidi na svakom test skupu\n",
804
+ " for i, (test_dataset, raw_test_df) in enumerate(zip(test_datasets, raw_test_dfs), start=1):\n",
805
+ " print(f\"\\nEvaluacija na test skupu test-{i}\")\n",
806
+ "\n",
807
+ " tokenized_test = tokenize_dataset(test_dataset, tokenizer)\n",
808
+ " eval_results = trainer.evaluate(eval_dataset=tokenized_test)\n",
809
+ " print(f\"Evaluacija: {eval_results}\")\n",
810
+ "\n",
811
+ " predictions_output = trainer.predict(tokenized_test)\n",
812
+ " preds = torch.argmax(torch.tensor(predictions_output.predictions), axis=1).numpy()\n",
813
+ " labels = predictions_output.label_ids\n",
814
+ "\n",
815
+ " print(\"Confusion Matrix:\")\n",
816
+ " print(confusion_matrix(labels, preds))\n",
817
+ "\n",
818
+ " print(\"\\nClassification Report:\")\n",
819
+ " print(classification_report(labels, preds, target_names=['negative', 'neutral', 'positive']))\n",
820
+ "\n",
821
+ " # Spremi predikcije u CSV\n",
822
+ " output_df = raw_test_df.copy()\n",
823
+ " output_df['predicted_label'] = preds\n",
824
+ " output_df['correct'] = output_df['label'] == output_df['predicted_label']\n",
825
+ " output_csv = f\"{output_base_dir}/predictions_test_{i}.csv\"\n",
826
+ " output_df.to_csv(output_csv, index=False)\n",
827
+ " print(f\"Predikcije spremljene u {output_csv}\")\n",
828
+ "\n",
829
+ "if __name__ == \"__main__\":\n",
830
+ " # Učitaj trening skupove zasebno\n",
831
+ " train_files = {\n",
832
+ " \"train_combined\": \"TRAIN.csv\",\n",
833
+ " \"train_2\": \"train-2.csv\"\n",
834
+ " }\n",
835
+ "\n",
836
+ " # Učitaj test skupove\n",
837
+ " test_files = [\"test-1.csv\", \"test-2.csv\", \"test-3.csv\"]\n",
838
+ " test_datasets = []\n",
839
+ " raw_test_dfs = []\n",
840
+ " for f in test_files:\n",
841
+ " ds, df = load_and_prepare_test_data(f)\n",
842
+ " test_datasets.append(ds)\n",
843
+ " raw_test_dfs.append(df)\n",
844
+ "\n",
845
+ " model_name = \"classla/bcms-bertic\"\n",
846
+ "\n",
847
+ " # Za svaki trening skup treniraj i evaluiraj model na sva tri testa\n",
848
+ " for train_name, train_path in train_files.items():\n",
849
+ " print(f\"\\n\\n=== Treniranje i evaluacija za trening skup: {train_name} ===\")\n",
850
+ " train_dataset = load_and_prepare_data(train_path)\n",
851
+ " output_dir = f\"results_{train_name}\"\n",
852
+ " train_and_evaluate(model_name, train_dataset, test_datasets, raw_test_dfs, output_dir)\n"
853
+ ]
854
+ }
855
+ ],
856
+ "metadata": {
857
+ "kernelspec": {
858
+ "display_name": "Python 3",
859
+ "language": "python",
860
+ "name": "python3"
861
+ },
862
+ "language_info": {
863
+ "codemirror_mode": {
864
+ "name": "ipython",
865
+ "version": 3
866
+ },
867
+ "file_extension": ".py",
868
+ "mimetype": "text/x-python",
869
+ "name": "python",
870
+ "nbconvert_exporter": "python",
871
+ "pygments_lexer": "ipython3",
872
+ "version": "3.13.3"
873
+ }
874
+ },
875
+ "nbformat": 4,
876
+ "nbformat_minor": 5
877
+ }
transformers/CroSlo code.ipynb ADDED
@@ -0,0 +1,825 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "36ee7edb",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stdout",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "\n",
14
+ "\n",
15
+ "=== Treniranje i evaluacija za trening skup: train_combined ===\n",
16
+ "\n",
17
+ "--- Fine-tuning model: EMBEDDIA/crosloengual-bert ---\n"
18
+ ]
19
+ },
20
+ {
21
+ "name": "stderr",
22
+ "output_type": "stream",
23
+ "text": [
24
+ "Some weights of BertForSequenceClassification were not initialized from the model checkpoint at EMBEDDIA/crosloengual-bert and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
25
+ "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
26
+ ]
27
+ },
28
+ {
29
+ "data": {
30
+ "application/vnd.jupyter.widget-view+json": {
31
+ "model_id": "8c4ee5202c46457ab2c37d2f8e6a67ae",
32
+ "version_major": 2,
33
+ "version_minor": 0
34
+ },
35
+ "text/plain": [
36
+ "Map: 0%| | 0/7577 [00:00<?, ? examples/s]"
37
+ ]
38
+ },
39
+ "metadata": {},
40
+ "output_type": "display_data"
41
+ },
42
+ {
43
+ "name": "stderr",
44
+ "output_type": "stream",
45
+ "text": [
46
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
47
+ " warnings.warn(warn_msg)\n"
48
+ ]
49
+ },
50
+ {
51
+ "data": {
52
+ "text/html": [
53
+ "\n",
54
+ " <div>\n",
55
+ " \n",
56
+ " <progress value='1422' max='1422' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
57
+ " [1422/1422 1:27:47, Epoch 3/3]\n",
58
+ " </div>\n",
59
+ " <table border=\"1\" class=\"dataframe\">\n",
60
+ " <thead>\n",
61
+ " <tr style=\"text-align: left;\">\n",
62
+ " <th>Step</th>\n",
63
+ " <th>Training Loss</th>\n",
64
+ " </tr>\n",
65
+ " </thead>\n",
66
+ " <tbody>\n",
67
+ " <tr>\n",
68
+ " <td>50</td>\n",
69
+ " <td>0.855500</td>\n",
70
+ " </tr>\n",
71
+ " <tr>\n",
72
+ " <td>100</td>\n",
73
+ " <td>0.748700</td>\n",
74
+ " </tr>\n",
75
+ " <tr>\n",
76
+ " <td>150</td>\n",
77
+ " <td>0.619600</td>\n",
78
+ " </tr>\n",
79
+ " <tr>\n",
80
+ " <td>200</td>\n",
81
+ " <td>0.618300</td>\n",
82
+ " </tr>\n",
83
+ " <tr>\n",
84
+ " <td>250</td>\n",
85
+ " <td>0.630800</td>\n",
86
+ " </tr>\n",
87
+ " <tr>\n",
88
+ " <td>300</td>\n",
89
+ " <td>0.639400</td>\n",
90
+ " </tr>\n",
91
+ " <tr>\n",
92
+ " <td>350</td>\n",
93
+ " <td>0.636500</td>\n",
94
+ " </tr>\n",
95
+ " <tr>\n",
96
+ " <td>400</td>\n",
97
+ " <td>0.595900</td>\n",
98
+ " </tr>\n",
99
+ " <tr>\n",
100
+ " <td>450</td>\n",
101
+ " <td>0.598500</td>\n",
102
+ " </tr>\n",
103
+ " <tr>\n",
104
+ " <td>500</td>\n",
105
+ " <td>0.464200</td>\n",
106
+ " </tr>\n",
107
+ " <tr>\n",
108
+ " <td>550</td>\n",
109
+ " <td>0.430400</td>\n",
110
+ " </tr>\n",
111
+ " <tr>\n",
112
+ " <td>600</td>\n",
113
+ " <td>0.456200</td>\n",
114
+ " </tr>\n",
115
+ " <tr>\n",
116
+ " <td>650</td>\n",
117
+ " <td>0.461900</td>\n",
118
+ " </tr>\n",
119
+ " <tr>\n",
120
+ " <td>700</td>\n",
121
+ " <td>0.459500</td>\n",
122
+ " </tr>\n",
123
+ " <tr>\n",
124
+ " <td>750</td>\n",
125
+ " <td>0.419300</td>\n",
126
+ " </tr>\n",
127
+ " <tr>\n",
128
+ " <td>800</td>\n",
129
+ " <td>0.469700</td>\n",
130
+ " </tr>\n",
131
+ " <tr>\n",
132
+ " <td>850</td>\n",
133
+ " <td>0.463700</td>\n",
134
+ " </tr>\n",
135
+ " <tr>\n",
136
+ " <td>900</td>\n",
137
+ " <td>0.411900</td>\n",
138
+ " </tr>\n",
139
+ " <tr>\n",
140
+ " <td>950</td>\n",
141
+ " <td>0.461800</td>\n",
142
+ " </tr>\n",
143
+ " <tr>\n",
144
+ " <td>1000</td>\n",
145
+ " <td>0.364100</td>\n",
146
+ " </tr>\n",
147
+ " <tr>\n",
148
+ " <td>1050</td>\n",
149
+ " <td>0.329400</td>\n",
150
+ " </tr>\n",
151
+ " <tr>\n",
152
+ " <td>1100</td>\n",
153
+ " <td>0.346800</td>\n",
154
+ " </tr>\n",
155
+ " <tr>\n",
156
+ " <td>1150</td>\n",
157
+ " <td>0.262100</td>\n",
158
+ " </tr>\n",
159
+ " <tr>\n",
160
+ " <td>1200</td>\n",
161
+ " <td>0.290200</td>\n",
162
+ " </tr>\n",
163
+ " <tr>\n",
164
+ " <td>1250</td>\n",
165
+ " <td>0.223900</td>\n",
166
+ " </tr>\n",
167
+ " <tr>\n",
168
+ " <td>1300</td>\n",
169
+ " <td>0.330000</td>\n",
170
+ " </tr>\n",
171
+ " <tr>\n",
172
+ " <td>1350</td>\n",
173
+ " <td>0.307000</td>\n",
174
+ " </tr>\n",
175
+ " <tr>\n",
176
+ " <td>1400</td>\n",
177
+ " <td>0.236200</td>\n",
178
+ " </tr>\n",
179
+ " </tbody>\n",
180
+ "</table><p>"
181
+ ],
182
+ "text/plain": [
183
+ "<IPython.core.display.HTML object>"
184
+ ]
185
+ },
186
+ "metadata": {},
187
+ "output_type": "display_data"
188
+ },
189
+ {
190
+ "name": "stderr",
191
+ "output_type": "stream",
192
+ "text": [
193
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
194
+ " warnings.warn(warn_msg)\n"
195
+ ]
196
+ },
197
+ {
198
+ "name": "stdout",
199
+ "output_type": "stream",
200
+ "text": [
201
+ "\n",
202
+ "Evaluacija na test skupu test-1\n"
203
+ ]
204
+ },
205
+ {
206
+ "data": {
207
+ "application/vnd.jupyter.widget-view+json": {
208
+ "model_id": "23e05a0258f045b4901a9fa9bfc7c151",
209
+ "version_major": 2,
210
+ "version_minor": 0
211
+ },
212
+ "text/plain": [
213
+ "Map: 0%| | 0/653 [00:00<?, ? examples/s]"
214
+ ]
215
+ },
216
+ "metadata": {},
217
+ "output_type": "display_data"
218
+ },
219
+ {
220
+ "name": "stderr",
221
+ "output_type": "stream",
222
+ "text": [
223
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
224
+ " warnings.warn(warn_msg)\n"
225
+ ]
226
+ },
227
+ {
228
+ "data": {
229
+ "text/html": [],
230
+ "text/plain": [
231
+ "<IPython.core.display.HTML object>"
232
+ ]
233
+ },
234
+ "metadata": {},
235
+ "output_type": "display_data"
236
+ },
237
+ {
238
+ "name": "stdout",
239
+ "output_type": "stream",
240
+ "text": [
241
+ "Confusion Matrix:\n",
242
+ "[[111 47 7]\n",
243
+ " [ 77 328 25]\n",
244
+ " [ 3 28 27]]\n",
245
+ "\n",
246
+ "Classification Report:\n",
247
+ " precision recall f1-score support\n",
248
+ "\n",
249
+ " negative 0.58 0.67 0.62 165\n",
250
+ " neutral 0.81 0.76 0.79 430\n",
251
+ " positive 0.46 0.47 0.46 58\n",
252
+ "\n",
253
+ " accuracy 0.71 653\n",
254
+ " macro avg 0.62 0.63 0.62 653\n",
255
+ "weighted avg 0.72 0.71 0.72 653\n",
256
+ "\n",
257
+ "Predikcije spremljene u results_train_combined_croslo/predictions_test_1.csv\n",
258
+ "\n",
259
+ "Evaluacija na test skupu test-2\n"
260
+ ]
261
+ },
262
+ {
263
+ "data": {
264
+ "application/vnd.jupyter.widget-view+json": {
265
+ "model_id": "e3c39ebf0f60449880c3d03a8c00e518",
266
+ "version_major": 2,
267
+ "version_minor": 0
268
+ },
269
+ "text/plain": [
270
+ "Map: 0%| | 0/741 [00:00<?, ? examples/s]"
271
+ ]
272
+ },
273
+ "metadata": {},
274
+ "output_type": "display_data"
275
+ },
276
+ {
277
+ "name": "stderr",
278
+ "output_type": "stream",
279
+ "text": [
280
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
281
+ " warnings.warn(warn_msg)\n"
282
+ ]
283
+ },
284
+ {
285
+ "data": {
286
+ "text/html": [],
287
+ "text/plain": [
288
+ "<IPython.core.display.HTML object>"
289
+ ]
290
+ },
291
+ "metadata": {},
292
+ "output_type": "display_data"
293
+ },
294
+ {
295
+ "name": "stdout",
296
+ "output_type": "stream",
297
+ "text": [
298
+ "Confusion Matrix:\n",
299
+ "[[198 15 3]\n",
300
+ " [ 16 411 4]\n",
301
+ " [ 5 11 78]]\n",
302
+ "\n",
303
+ "Classification Report:\n",
304
+ " precision recall f1-score support\n",
305
+ "\n",
306
+ " negative 0.90 0.92 0.91 216\n",
307
+ " neutral 0.94 0.95 0.95 431\n",
308
+ " positive 0.92 0.83 0.87 94\n",
309
+ "\n",
310
+ " accuracy 0.93 741\n",
311
+ " macro avg 0.92 0.90 0.91 741\n",
312
+ "weighted avg 0.93 0.93 0.93 741\n",
313
+ "\n",
314
+ "Predikcije spremljene u results_train_combined_croslo/predictions_test_2.csv\n",
315
+ "\n",
316
+ "Evaluacija na test skupu test-3\n"
317
+ ]
318
+ },
319
+ {
320
+ "data": {
321
+ "application/vnd.jupyter.widget-view+json": {
322
+ "model_id": "0bbd241f299b482b991116e930c1355a",
323
+ "version_major": 2,
324
+ "version_minor": 0
325
+ },
326
+ "text/plain": [
327
+ "Map: 0%| | 0/793 [00:00<?, ? examples/s]"
328
+ ]
329
+ },
330
+ "metadata": {},
331
+ "output_type": "display_data"
332
+ },
333
+ {
334
+ "name": "stderr",
335
+ "output_type": "stream",
336
+ "text": [
337
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
338
+ " warnings.warn(warn_msg)\n"
339
+ ]
340
+ },
341
+ {
342
+ "data": {
343
+ "text/html": [],
344
+ "text/plain": [
345
+ "<IPython.core.display.HTML object>"
346
+ ]
347
+ },
348
+ "metadata": {},
349
+ "output_type": "display_data"
350
+ },
351
+ {
352
+ "name": "stdout",
353
+ "output_type": "stream",
354
+ "text": [
355
+ "Confusion Matrix:\n",
356
+ "[[204 56 7]\n",
357
+ " [ 7 254 2]\n",
358
+ " [ 9 116 138]]\n",
359
+ "\n",
360
+ "Classification Report:\n",
361
+ " precision recall f1-score support\n",
362
+ "\n",
363
+ " negative 0.93 0.76 0.84 267\n",
364
+ " neutral 0.60 0.97 0.74 263\n",
365
+ " positive 0.94 0.52 0.67 263\n",
366
+ "\n",
367
+ " accuracy 0.75 793\n",
368
+ " macro avg 0.82 0.75 0.75 793\n",
369
+ "weighted avg 0.82 0.75 0.75 793\n",
370
+ "\n",
371
+ "Predikcije spremljene u results_train_combined_croslo/predictions_test_3.csv\n",
372
+ "\n",
373
+ "Sažetak metrika po test skupovima s prosjekom:\n",
374
+ " Test Set Accuracy F1 Macro Precision Macro Recall Macro\n",
375
+ "0 test-1 0.713629 0.624216 0.617558 0.633678\n",
376
+ "1 test-2 0.927126 0.909619 0.920753 0.900017\n",
377
+ "2 test-3 0.751576 0.749418 0.820764 0.751513\n",
378
+ "Average NaN 0.797444 0.761084 0.786359 0.761736\n",
379
+ "Sažetak metrika spremljen u results_train_combined_croslo/summary_metrics_with_average.csv\n",
380
+ "\n",
381
+ "\n",
382
+ "=== Treniranje i evaluacija za trening skup: train_2 ===\n",
383
+ "\n",
384
+ "--- Fine-tuning model: EMBEDDIA/crosloengual-bert ---\n"
385
+ ]
386
+ },
387
+ {
388
+ "name": "stderr",
389
+ "output_type": "stream",
390
+ "text": [
391
+ "Some weights of BertForSequenceClassification were not initialized from the model checkpoint at EMBEDDIA/crosloengual-bert and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
392
+ "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
393
+ ]
394
+ },
395
+ {
396
+ "data": {
397
+ "application/vnd.jupyter.widget-view+json": {
398
+ "model_id": "d55bf912626244ecaf1dcf7ba9334726",
399
+ "version_major": 2,
400
+ "version_minor": 0
401
+ },
402
+ "text/plain": [
403
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
404
+ ]
405
+ },
406
+ "metadata": {},
407
+ "output_type": "display_data"
408
+ },
409
+ {
410
+ "name": "stderr",
411
+ "output_type": "stream",
412
+ "text": [
413
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
414
+ " warnings.warn(warn_msg)\n"
415
+ ]
416
+ },
417
+ {
418
+ "data": {
419
+ "text/html": [
420
+ "\n",
421
+ " <div>\n",
422
+ " \n",
423
+ " <progress value='417' max='417' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
424
+ " [417/417 22:04, Epoch 3/3]\n",
425
+ " </div>\n",
426
+ " <table border=\"1\" class=\"dataframe\">\n",
427
+ " <thead>\n",
428
+ " <tr style=\"text-align: left;\">\n",
429
+ " <th>Step</th>\n",
430
+ " <th>Training Loss</th>\n",
431
+ " </tr>\n",
432
+ " </thead>\n",
433
+ " <tbody>\n",
434
+ " <tr>\n",
435
+ " <td>50</td>\n",
436
+ " <td>0.848800</td>\n",
437
+ " </tr>\n",
438
+ " <tr>\n",
439
+ " <td>100</td>\n",
440
+ " <td>0.610900</td>\n",
441
+ " </tr>\n",
442
+ " <tr>\n",
443
+ " <td>150</td>\n",
444
+ " <td>0.549600</td>\n",
445
+ " </tr>\n",
446
+ " <tr>\n",
447
+ " <td>200</td>\n",
448
+ " <td>0.381800</td>\n",
449
+ " </tr>\n",
450
+ " <tr>\n",
451
+ " <td>250</td>\n",
452
+ " <td>0.401700</td>\n",
453
+ " </tr>\n",
454
+ " <tr>\n",
455
+ " <td>300</td>\n",
456
+ " <td>0.326100</td>\n",
457
+ " </tr>\n",
458
+ " <tr>\n",
459
+ " <td>350</td>\n",
460
+ " <td>0.233100</td>\n",
461
+ " </tr>\n",
462
+ " <tr>\n",
463
+ " <td>400</td>\n",
464
+ " <td>0.218200</td>\n",
465
+ " </tr>\n",
466
+ " </tbody>\n",
467
+ "</table><p>"
468
+ ],
469
+ "text/plain": [
470
+ "<IPython.core.display.HTML object>"
471
+ ]
472
+ },
473
+ "metadata": {},
474
+ "output_type": "display_data"
475
+ },
476
+ {
477
+ "name": "stdout",
478
+ "output_type": "stream",
479
+ "text": [
480
+ "\n",
481
+ "Evaluacija na test skupu test-1\n"
482
+ ]
483
+ },
484
+ {
485
+ "data": {
486
+ "application/vnd.jupyter.widget-view+json": {
487
+ "model_id": "b0d528152cdd4bfcb2c1892d4a79faca",
488
+ "version_major": 2,
489
+ "version_minor": 0
490
+ },
491
+ "text/plain": [
492
+ "Map: 0%| | 0/653 [00:00<?, ? examples/s]"
493
+ ]
494
+ },
495
+ "metadata": {},
496
+ "output_type": "display_data"
497
+ },
498
+ {
499
+ "name": "stderr",
500
+ "output_type": "stream",
501
+ "text": [
502
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
503
+ " warnings.warn(warn_msg)\n"
504
+ ]
505
+ },
506
+ {
507
+ "data": {
508
+ "text/html": [],
509
+ "text/plain": [
510
+ "<IPython.core.display.HTML object>"
511
+ ]
512
+ },
513
+ "metadata": {},
514
+ "output_type": "display_data"
515
+ },
516
+ {
517
+ "name": "stdout",
518
+ "output_type": "stream",
519
+ "text": [
520
+ "Confusion Matrix:\n",
521
+ "[[114 36 15]\n",
522
+ " [ 85 302 43]\n",
523
+ " [ 7 22 29]]\n",
524
+ "\n",
525
+ "Classification Report:\n",
526
+ " precision recall f1-score support\n",
527
+ "\n",
528
+ " negative 0.55 0.69 0.61 165\n",
529
+ " neutral 0.84 0.70 0.76 430\n",
530
+ " positive 0.33 0.50 0.40 58\n",
531
+ "\n",
532
+ " accuracy 0.68 653\n",
533
+ " macro avg 0.58 0.63 0.59 653\n",
534
+ "weighted avg 0.72 0.68 0.69 653\n",
535
+ "\n",
536
+ "Predikcije spremljene u results_train_2_croslo/predictions_test_1.csv\n",
537
+ "\n",
538
+ "Evaluacija na test skupu test-2\n"
539
+ ]
540
+ },
541
+ {
542
+ "data": {
543
+ "application/vnd.jupyter.widget-view+json": {
544
+ "model_id": "06d0e128fb81415da0396d033248ac89",
545
+ "version_major": 2,
546
+ "version_minor": 0
547
+ },
548
+ "text/plain": [
549
+ "Map: 0%| | 0/741 [00:00<?, ? examples/s]"
550
+ ]
551
+ },
552
+ "metadata": {},
553
+ "output_type": "display_data"
554
+ },
555
+ {
556
+ "name": "stderr",
557
+ "output_type": "stream",
558
+ "text": [
559
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
560
+ " warnings.warn(warn_msg)\n"
561
+ ]
562
+ },
563
+ {
564
+ "data": {
565
+ "text/html": [],
566
+ "text/plain": [
567
+ "<IPython.core.display.HTML object>"
568
+ ]
569
+ },
570
+ "metadata": {},
571
+ "output_type": "display_data"
572
+ },
573
+ {
574
+ "name": "stdout",
575
+ "output_type": "stream",
576
+ "text": [
577
+ "Confusion Matrix:\n",
578
+ "[[170 36 10]\n",
579
+ " [ 45 366 20]\n",
580
+ " [ 15 24 55]]\n",
581
+ "\n",
582
+ "Classification Report:\n",
583
+ " precision recall f1-score support\n",
584
+ "\n",
585
+ " negative 0.74 0.79 0.76 216\n",
586
+ " neutral 0.86 0.85 0.85 431\n",
587
+ " positive 0.65 0.59 0.61 94\n",
588
+ "\n",
589
+ " accuracy 0.80 741\n",
590
+ " macro avg 0.75 0.74 0.74 741\n",
591
+ "weighted avg 0.80 0.80 0.80 741\n",
592
+ "\n",
593
+ "Predikcije spremljene u results_train_2_croslo/predictions_test_2.csv\n",
594
+ "\n",
595
+ "Evaluacija na test skupu test-3\n"
596
+ ]
597
+ },
598
+ {
599
+ "data": {
600
+ "application/vnd.jupyter.widget-view+json": {
601
+ "model_id": "8d10a2ad3b5c4cad9e15f9a863c14653",
602
+ "version_major": 2,
603
+ "version_minor": 0
604
+ },
605
+ "text/plain": [
606
+ "Map: 0%| | 0/793 [00:00<?, ? examples/s]"
607
+ ]
608
+ },
609
+ "metadata": {},
610
+ "output_type": "display_data"
611
+ },
612
+ {
613
+ "name": "stderr",
614
+ "output_type": "stream",
615
+ "text": [
616
+ "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/site-packages/torch/utils/data/dataloader.py:683: UserWarning: 'pin_memory' argument is set as true but not supported on MPS now, then device pinned memory won't be used.\n",
617
+ " warnings.warn(warn_msg)\n"
618
+ ]
619
+ },
620
+ {
621
+ "data": {
622
+ "text/html": [],
623
+ "text/plain": [
624
+ "<IPython.core.display.HTML object>"
625
+ ]
626
+ },
627
+ "metadata": {},
628
+ "output_type": "display_data"
629
+ },
630
+ {
631
+ "name": "stdout",
632
+ "output_type": "stream",
633
+ "text": [
634
+ "Confusion Matrix:\n",
635
+ "[[193 59 15]\n",
636
+ " [ 20 234 9]\n",
637
+ " [ 19 116 128]]\n",
638
+ "\n",
639
+ "Classification Report:\n",
640
+ " precision recall f1-score support\n",
641
+ "\n",
642
+ " negative 0.83 0.72 0.77 267\n",
643
+ " neutral 0.57 0.89 0.70 263\n",
644
+ " positive 0.84 0.49 0.62 263\n",
645
+ "\n",
646
+ " accuracy 0.70 793\n",
647
+ " macro avg 0.75 0.70 0.70 793\n",
648
+ "weighted avg 0.75 0.70 0.70 793\n",
649
+ "\n",
650
+ "Predikcije spremljene u results_train_2_croslo/predictions_test_3.csv\n",
651
+ "\n",
652
+ "Sažetak metrika po test skupovima s prosjekom:\n",
653
+ " Test Set Accuracy F1 Macro Precision Macro Recall Macro\n",
654
+ "0 test-1 0.681470 0.593037 0.575207 0.631078\n",
655
+ "1 test-2 0.797571 0.743666 0.748448 0.740444\n",
656
+ "2 test-3 0.699874 0.695614 0.748710 0.699757\n",
657
+ "Average NaN 0.726305 0.677439 0.690788 0.690426\n",
658
+ "Sažetak metrika spremljen u results_train_2_croslo/summary_metrics_with_average.csv\n"
659
+ ]
660
+ }
661
+ ],
662
+ "source": [
663
+ "import pandas as pd\n",
664
+ "import torch\n",
665
+ "from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments\n",
666
+ "from datasets import Dataset\n",
667
+ "from sklearn.metrics import classification_report, confusion_matrix\n",
668
+ "\n",
669
+ "def load_and_prepare_data(train_path):\n",
670
+ " df = pd.read_csv(train_path)\n",
671
+ " df = df.rename(columns={\"Label\": \"label\"})\n",
672
+ " return Dataset.from_pandas(df)\n",
673
+ "\n",
674
+ "def load_and_prepare_test_data(test_path):\n",
675
+ " df = pd.read_csv(test_path)\n",
676
+ " df = df.rename(columns={\"Label\": \"label\"})\n",
677
+ " return Dataset.from_pandas(df), df\n",
678
+ "\n",
679
+ "def tokenize_dataset(dataset, tokenizer):\n",
680
+ " def tokenize_function(examples):\n",
681
+ " return tokenizer(examples['Sentence'], padding='max_length', truncation=True, max_length=128)\n",
682
+ " tokenized = dataset.map(tokenize_function, batched=True)\n",
683
+ " tokenized.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])\n",
684
+ " return tokenized\n",
685
+ "\n",
686
+ "def compute_metrics(eval_pred):\n",
687
+ " logits, labels = eval_pred\n",
688
+ " preds = torch.argmax(torch.tensor(logits), axis=1).numpy()\n",
689
+ " report = classification_report(labels, preds, output_dict=True)\n",
690
+ " acc = report['accuracy']\n",
691
+ " f1 = report['macro avg']['f1-score']\n",
692
+ " precision = report['macro avg']['precision']\n",
693
+ " recall = report['macro avg']['recall']\n",
694
+ " return {\n",
695
+ " 'accuracy': acc,\n",
696
+ " 'f1_macro': f1,\n",
697
+ " 'precision_macro': precision,\n",
698
+ " 'recall_macro': recall\n",
699
+ " }\n",
700
+ "\n",
701
+ "def train_and_evaluate(model_name, train_dataset, test_datasets, raw_test_dfs, output_base_dir):\n",
702
+ " print(f\"\\n--- Fine-tuning model: {model_name} ---\")\n",
703
+ "\n",
704
+ " tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
705
+ " model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)\n",
706
+ "\n",
707
+ " tokenized_train = tokenize_dataset(train_dataset, tokenizer)\n",
708
+ "\n",
709
+ " training_args = TrainingArguments(\n",
710
+ " output_dir=f\"{output_base_dir}/model\",\n",
711
+ " learning_rate=2e-5,\n",
712
+ " per_device_train_batch_size=16,\n",
713
+ " per_device_eval_batch_size=32,\n",
714
+ " num_train_epochs=3,\n",
715
+ " weight_decay=0.01,\n",
716
+ " load_best_model_at_end=False,\n",
717
+ " logging_dir=f\"{output_base_dir}/logs\",\n",
718
+ " logging_steps=50,\n",
719
+ " save_total_limit=2,\n",
720
+ " seed=42,\n",
721
+ " )\n",
722
+ "\n",
723
+ " trainer = Trainer(\n",
724
+ " model=model,\n",
725
+ " args=training_args,\n",
726
+ " train_dataset=tokenized_train,\n",
727
+ " compute_metrics=compute_metrics,\n",
728
+ " )\n",
729
+ "\n",
730
+ " trainer.train()\n",
731
+ " trainer.save_model()\n",
732
+ "\n",
733
+ " results_list = []\n",
734
+ "\n",
735
+ " for i, (test_dataset, raw_test_df) in enumerate(zip(test_datasets, raw_test_dfs), start=1):\n",
736
+ " print(f\"\\nEvaluacija na test skupu test-{i}\")\n",
737
+ " tokenized_test = tokenize_dataset(test_dataset, tokenizer)\n",
738
+ " predictions_output = trainer.predict(tokenized_test)\n",
739
+ "\n",
740
+ " preds = torch.argmax(torch.tensor(predictions_output.predictions), axis=1).numpy()\n",
741
+ " labels = predictions_output.label_ids\n",
742
+ "\n",
743
+ " report = classification_report(labels, preds, target_names=['negative', 'neutral', 'positive'], output_dict=True)\n",
744
+ "\n",
745
+ " accuracy = report['accuracy']\n",
746
+ " f1_macro = report['macro avg']['f1-score']\n",
747
+ " precision_macro = report['macro avg']['precision']\n",
748
+ " recall_macro = report['macro avg']['recall']\n",
749
+ "\n",
750
+ " results_list.append({\n",
751
+ " 'Test Set': f'test-{i}',\n",
752
+ " 'Accuracy': accuracy,\n",
753
+ " 'F1 Macro': f1_macro,\n",
754
+ " 'Precision Macro': precision_macro,\n",
755
+ " 'Recall Macro': recall_macro\n",
756
+ " })\n",
757
+ "\n",
758
+ " print(\"Confusion Matrix:\")\n",
759
+ " print(confusion_matrix(labels, preds))\n",
760
+ " print(\"\\nClassification Report:\")\n",
761
+ " print(classification_report(labels, preds, target_names=['negative', 'neutral', 'positive']))\n",
762
+ "\n",
763
+ " output_df = raw_test_df.copy()\n",
764
+ " output_df['predicted_label'] = preds\n",
765
+ " output_df['correct'] = output_df['label'] == output_df['predicted_label']\n",
766
+ " output_csv = f\"{output_base_dir}/predictions_test_{i}.csv\"\n",
767
+ " output_df.to_csv(output_csv, index=False)\n",
768
+ " print(f\"Predikcije spremljene u {output_csv}\")\n",
769
+ "\n",
770
+ " # Izračun prosjeka za sve metrike\n",
771
+ " df_results = pd.DataFrame(results_list)\n",
772
+ " df_results.loc['Average'] = df_results.mean(numeric_only=True)\n",
773
+ "\n",
774
+ " print(\"\\nSažetak metrika po test skupovima s prosjekom:\")\n",
775
+ " print(df_results)\n",
776
+ "\n",
777
+ " df_results.to_csv(f\"{output_base_dir}/summary_metrics_with_average.csv\", index=True)\n",
778
+ " print(f\"Sažetak metrika spremljen u {output_base_dir}/summary_metrics_with_average.csv\")\n",
779
+ "\n",
780
+ "if __name__ == \"__main__\":\n",
781
+ " train_files = {\n",
782
+ " \"train_combined\": \"TRAIN.csv\",\n",
783
+ " \"train_2\": \"train-2.csv\"\n",
784
+ " }\n",
785
+ "\n",
786
+ " test_files = [\"test-1.csv\", \"test-2.csv\", \"test-3.csv\"]\n",
787
+ " test_datasets = []\n",
788
+ " raw_test_dfs = []\n",
789
+ " for f in test_files:\n",
790
+ " ds, df = load_and_prepare_test_data(f)\n",
791
+ " test_datasets.append(ds)\n",
792
+ " raw_test_dfs.append(df)\n",
793
+ "\n",
794
+ " model_name = \"EMBEDDIA/crosloengual-bert\"\n",
795
+ "\n",
796
+ " for train_name, train_path in train_files.items():\n",
797
+ " print(f\"\\n\\n=== Treniranje i evaluacija za trening skup: {train_name} ===\")\n",
798
+ " train_dataset = load_and_prepare_data(train_path)\n",
799
+ " output_dir = f\"results_{train_name}_croslo\"\n",
800
+ " train_and_evaluate(model_name, train_dataset, test_datasets, raw_test_dfs, output_dir)\n"
801
+ ]
802
+ }
803
+ ],
804
+ "metadata": {
805
+ "kernelspec": {
806
+ "display_name": "Python 3",
807
+ "language": "python",
808
+ "name": "python3"
809
+ },
810
+ "language_info": {
811
+ "codemirror_mode": {
812
+ "name": "ipython",
813
+ "version": 3
814
+ },
815
+ "file_extension": ".py",
816
+ "mimetype": "text/x-python",
817
+ "name": "python",
818
+ "nbconvert_exporter": "python",
819
+ "pygments_lexer": "ipython3",
820
+ "version": "3.13.3"
821
+ }
822
+ },
823
+ "nbformat": 4,
824
+ "nbformat_minor": 5
825
+ }
transformers/cm_bertic_train_test1.png ADDED

Git LFS Details

  • SHA256: 4e5f94754466ec32a6f10df5281b59bc28fd28349b4a645a6fd85f2aa5ca96fd
  • Pointer size: 130 Bytes
  • Size of remote file: 25 kB
transformers/cm_bertic_train_test2.png ADDED

Git LFS Details

  • SHA256: c39d34db8c1171742b627aeeb17d32c2c45c5754adb5e932bf356017877de83d
  • Pointer size: 130 Bytes
  • Size of remote file: 25.3 kB
transformers/cm_bertic_train_test3.png ADDED

Git LFS Details

  • SHA256: ea51c42acbd5013f969ba24ad66d90732cedfd6ba15ad5a13411534783e61ac7
  • Pointer size: 130 Bytes
  • Size of remote file: 23.3 kB
transformers/cm_croslo_train_test1.png ADDED

Git LFS Details

  • SHA256: f504f362d0b15154fcd1626b3e2c76787e3206faac4c327c3d7423bb043cb2c1
  • Pointer size: 130 Bytes
  • Size of remote file: 24.5 kB
transformers/cm_croslo_train_test2.png ADDED

Git LFS Details

  • SHA256: 504be18736d92829bad6d49a7198a33d572af4297253366b8bae06fdae922c45
  • Pointer size: 130 Bytes
  • Size of remote file: 25.4 kB
transformers/cm_croslo_train_test3.png ADDED

Git LFS Details

  • SHA256: 7f77bec1b37f475680f8e6aa288c3531c5e5393b47c452a90216761b168f9191
  • Pointer size: 130 Bytes
  • Size of remote file: 24 kB
transformers/results.md ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ | # | method | algoritm | train | test 1 | test 2 (ours) | test 3 |
2
+ |--------|:------------:|:--------:|:---------:|:------------------------------------------------------------------:|:--------------------------------------------------------------------:|:-----------------------------------------------------------------:|
3
+ | 1.a.i | transformers | BERT | train2 | accuracy: 0,69<br>f1:0,60<br>precision:0,59<br>recall:0,62 | accuracy:0,81<br>f1:0,75<br>precision:0,77<br>recall:0,74 | accuracy:0,71<br>f1:0,71<br>precision:0,77<br>recall:0,71 |
4
+ | 1.a.ii | | | **TRAIN** | accuracy:0,71<br>f1: 0,62<br>precision:0,61<br>recall: 0,64 | accuracy:0,93<br>f1: 0,91<br>precision:0,91<br>recall: 0,90 | accuracy:0,77<br>f1: 0,77<br>precision:0,83<br>recall:0,77 |
5
+ | 2.a.i | transformers | CroSlo | train2 | accuracy:0.6814<br>f1:0.59303<br>precision:0.5752<br>recall:0.6310 | accuracy:0.79757<br>f1:0.7436<br>precision:0.7484<br>recall:0.7404 | accuracy:0.6998<br>f1:0.6956<br>precision:0.7487<br>recall:0.6997 |
6
+ | 2.a.ii | | | **TRAIN** | accuracy:0.7136<br>f1:0.6242<br>precision:0.6175<br>recall:0.6336 | accuracy: 0.9271<br>f1:0.9096<br>precision:0.74941<br>recall:0.82076 | accuracy:0.7515<br>f1:0.7494<br>precision:0.8207<br>recall:0.7515 |