Upload 8 files
Browse files- machine learning/cm_Logistic_regression_TrainCombined_Test1.png +3 -0
- machine learning/cm_Logistic_regression_TrainCombined_Test2.png +3 -0
- machine learning/cm_Logistic_regression_TrainCombined_Test3.png +3 -0
- machine learning/cm_SVM_RBF_kernel_TrainCombined_Test1.png +3 -0
- machine learning/cm_SVM_RBF_kernel_TrainCombined_Test2.png +3 -0
- machine learning/cm_SVM_RBF_kernel_TrainCombined_Test3.png +3 -0
- machine learning/corrected version.ipynb +150 -0
- machine learning/results(corrected).md +4 -0
machine learning/cm_Logistic_regression_TrainCombined_Test1.png
ADDED
![]() |
Git LFS Details
|
machine learning/cm_Logistic_regression_TrainCombined_Test2.png
ADDED
![]() |
Git LFS Details
|
machine learning/cm_Logistic_regression_TrainCombined_Test3.png
ADDED
![]() |
Git LFS Details
|
machine learning/cm_SVM_RBF_kernel_TrainCombined_Test1.png
ADDED
![]() |
Git LFS Details
|
machine learning/cm_SVM_RBF_kernel_TrainCombined_Test2.png
ADDED
![]() |
Git LFS Details
|
machine learning/cm_SVM_RBF_kernel_TrainCombined_Test3.png
ADDED
![]() |
Git LFS Details
|
machine learning/corrected version.ipynb
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "ca825e7e",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"\n",
|
14 |
+
"Treniranje modela: Logistic regression...\n",
|
15 |
+
"Predikcija na Test 1...\n",
|
16 |
+
"Predikcija na Test 2...\n",
|
17 |
+
"Predikcija na Test 3...\n",
|
18 |
+
"\n",
|
19 |
+
"Treniranje modela: SVM RBF kernel...\n",
|
20 |
+
"Predikcija na Test 1...\n",
|
21 |
+
"Predikcija na Test 2...\n",
|
22 |
+
"Predikcija na Test 3...\n",
|
23 |
+
"\n",
|
24 |
+
"| # | method | algorithm | skup | Test 1 | Test 2 | Test 3 |\n",
|
25 |
+
"|--------|------------------|--------------------------|--------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|\n",
|
26 |
+
"| 1.a.i | Machine learning | Logistic regression | Train combined | Precision=0.640, Recall=0.614, F1=0.625, Accuracy=0.614 | Precision=0.632, Recall=0.630, F1=0.626, Accuracy=0.630 | Precision=0.717, Recall=0.691, F1=0.686, Accuracy=0.691 |\n",
|
27 |
+
"| 1.b.i | Machine learning | SVM RBF kernel | Train combined | Precision=0.652, Recall=0.632, F1=0.640, Accuracy=0.632 | Precision=0.621, Recall=0.626, F1=0.620, Accuracy=0.626 | Precision=0.764, Recall=0.741, F1=0.735, Accuracy=0.741 |\n"
|
28 |
+
]
|
29 |
+
}
|
30 |
+
],
|
31 |
+
"source": [
|
32 |
+
"import pandas as pd\n",
|
33 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
34 |
+
"from sklearn.svm import SVC\n",
|
35 |
+
"from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score, confusion_matrix, ConfusionMatrixDisplay\n",
|
36 |
+
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
37 |
+
"import matplotlib.pyplot as plt\n",
|
38 |
+
"import os\n",
|
39 |
+
"\n",
|
40 |
+
"# Folder za spremanje confusion matrica\n",
|
41 |
+
"os.makedirs('confusion_matrices', exist_ok=True)\n",
|
42 |
+
"\n",
|
43 |
+
"# Definicije datoteka\n",
|
44 |
+
"train_files = ['train-1.csv', 'train-2.csv', 'train-3.csv']\n",
|
45 |
+
"test_files = ['test-1.csv', 'test-2.csv', 'test-3.csv']\n",
|
46 |
+
"test_names = ['Test 1', 'Test 2', 'Test 3']\n",
|
47 |
+
"\n",
|
48 |
+
"text_column = 'Sentence'\n",
|
49 |
+
"target_column = 'Label'\n",
|
50 |
+
"\n",
|
51 |
+
"# Funkcija za učitavanje podataka\n",
|
52 |
+
"def load_data(file):\n",
|
53 |
+
" df = pd.read_csv(file)\n",
|
54 |
+
" X_text = df[text_column].astype(str)\n",
|
55 |
+
" y = df[target_column]\n",
|
56 |
+
" return X_text, y\n",
|
57 |
+
"\n",
|
58 |
+
"# Funkcija za učitavanje i spajanje više train setova\n",
|
59 |
+
"def load_data_combined(files):\n",
|
60 |
+
" X_all = []\n",
|
61 |
+
" y_all = []\n",
|
62 |
+
" for file in files:\n",
|
63 |
+
" X_text, y = load_data(file)\n",
|
64 |
+
" X_all.extend(X_text)\n",
|
65 |
+
" y_all.extend(y)\n",
|
66 |
+
" return X_all, y_all\n",
|
67 |
+
"\n",
|
68 |
+
"# Ažurirani modeli\n",
|
69 |
+
"models = [\n",
|
70 |
+
" ('1.a', 'Machine learning', 'Logistic regression', LogisticRegression(max_iter=5000, solver='liblinear', class_weight='balanced')),\n",
|
71 |
+
" ('1.b', 'Machine learning', 'SVM RBF kernel', SVC(class_weight='balanced', kernel='rbf', random_state=42))\n",
|
72 |
+
"]\n",
|
73 |
+
"\n",
|
74 |
+
"# Priprema tablice za rezultate\n",
|
75 |
+
"table = []\n",
|
76 |
+
"\n",
|
77 |
+
"# Učitavanje kombiniranih trening podataka\n",
|
78 |
+
"X_train_text, y_train = load_data_combined(train_files)\n",
|
79 |
+
"\n",
|
80 |
+
"# TF-IDF vektorizacija s proširenim parametrima\n",
|
81 |
+
"vectorizer = TfidfVectorizer(max_features=5000, ngram_range=(1, 3))\n",
|
82 |
+
"X_train = vectorizer.fit_transform(X_train_text)\n",
|
83 |
+
"\n",
|
84 |
+
"# Treniranje i evaluacija\n",
|
85 |
+
"for code, method, algorithm, model in models:\n",
|
86 |
+
" print(f\"\\nTreniranje modela: {algorithm}...\")\n",
|
87 |
+
" model.fit(X_train, y_train)\n",
|
88 |
+
" \n",
|
89 |
+
" row_train = [f\"{code}.i\", method, algorithm, \"Train combined\"]\n",
|
90 |
+
" for idx, test_file in enumerate(test_files):\n",
|
91 |
+
" print(f\"Predikcija na {test_names[idx]}...\")\n",
|
92 |
+
" X_test_text, y_test = load_data(test_file)\n",
|
93 |
+
" X_test = vectorizer.transform(X_test_text)\n",
|
94 |
+
" \n",
|
95 |
+
" y_pred = model.predict(X_test)\n",
|
96 |
+
" precision = precision_score(y_test, y_pred, average='weighted', zero_division=0)\n",
|
97 |
+
" recall = recall_score(y_test, y_pred, average='weighted', zero_division=0)\n",
|
98 |
+
" f1 = f1_score(y_test, y_pred, average='weighted', zero_division=0)\n",
|
99 |
+
" accuracy = accuracy_score(y_test, y_pred)\n",
|
100 |
+
" metric_str = f\"Precision={precision:.3f}, Recall={recall:.3f}, F1={f1:.3f}, Accuracy={accuracy:.3f}\"\n",
|
101 |
+
" row_train.append(metric_str)\n",
|
102 |
+
" \n",
|
103 |
+
" # Confusion matrix\n",
|
104 |
+
" cm = confusion_matrix(y_test, y_pred)\n",
|
105 |
+
" disp = ConfusionMatrixDisplay(confusion_matrix=cm)\n",
|
106 |
+
" disp.plot(cmap=plt.cm.Blues)\n",
|
107 |
+
" plt.title(f'Confusion Matrix: {algorithm}\\nTrain: Combined Train Test: {test_names[idx]}')\n",
|
108 |
+
" plt.savefig(f'confusion_matrices/cm_{algorithm.replace(\" \", \"_\")}_TrainCombined_{test_names[idx].replace(\" \", \"\")}.png')\n",
|
109 |
+
" plt.close()\n",
|
110 |
+
" table.append(row_train)\n",
|
111 |
+
"\n",
|
112 |
+
"# Ispis tablice u markdown formatu\n",
|
113 |
+
"header = \"| # | method | algorithm | skup | Test 1 | Test 2 | Test 3 |\"\n",
|
114 |
+
"sep = \"|--------|------------------|--------------------------|--------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|\"\n",
|
115 |
+
"print(\"\\n\" + header)\n",
|
116 |
+
"print(sep)\n",
|
117 |
+
"for row in table:\n",
|
118 |
+
" print(f\"| {row[0]:<6} | {row[1]:<16} | {row[2]:<24} | {row[3]:<12} | {row[4]:<55} | {row[5]:<55} | {row[6]:<55} |\")\n",
|
119 |
+
"\n",
|
120 |
+
"# Spremi rezultate u .md datoteku\n",
|
121 |
+
"with open('results_group2.md', 'w', encoding='utf-8') as f:\n",
|
122 |
+
" f.write(header + \"\\n\")\n",
|
123 |
+
" f.write(sep + \"\\n\")\n",
|
124 |
+
" for row in table:\n",
|
125 |
+
" f.write(f\"| {row[0]:<6} | {row[1]:<16} | {row[2]:<24} | {row[3]:<12} | {row[4]:<55} | {row[5]:<55} | {row[6]:<55} |\\n\")\n"
|
126 |
+
]
|
127 |
+
}
|
128 |
+
],
|
129 |
+
"metadata": {
|
130 |
+
"kernelspec": {
|
131 |
+
"display_name": "Python 3",
|
132 |
+
"language": "python",
|
133 |
+
"name": "python3"
|
134 |
+
},
|
135 |
+
"language_info": {
|
136 |
+
"codemirror_mode": {
|
137 |
+
"name": "ipython",
|
138 |
+
"version": 3
|
139 |
+
},
|
140 |
+
"file_extension": ".py",
|
141 |
+
"mimetype": "text/x-python",
|
142 |
+
"name": "python",
|
143 |
+
"nbconvert_exporter": "python",
|
144 |
+
"pygments_lexer": "ipython3",
|
145 |
+
"version": "3.9.6"
|
146 |
+
}
|
147 |
+
},
|
148 |
+
"nbformat": 4,
|
149 |
+
"nbformat_minor": 5
|
150 |
+
}
|
machine learning/results(corrected).md
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
| # | method | algorithm | skup | Test 1 | Test 2 | Test 3 |
|
2 |
+
|--------|------------------|--------------------------|--------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
|
3 |
+
| 1.a.i | Machine learning | Logistic regression | Train combined | Precision=0.640, Recall=0.614, F1=0.625, Accuracy=0.614 | Precision=0.632, Recall=0.630, F1=0.626, Accuracy=0.630 | Precision=0.717, Recall=0.691, F1=0.686, Accuracy=0.691 |
|
4 |
+
| 1.b.i | Machine learning | SVM RBF kernel | Train combined | Precision=0.652, Recall=0.632, F1=0.640, Accuracy=0.632 | Precision=0.621, Recall=0.626, F1=0.620, Accuracy=0.626 | Precision=0.764, Recall=0.741, F1=0.735, Accuracy=0.741 |
|