josipabebic commited on
Commit
3745ebe
·
verified ·
1 Parent(s): 879bd04

Upload 8 files

Browse files
machine learning/cm_Logistic_regression_TrainCombined_Test1.png ADDED

Git LFS Details

  • SHA256: b6305c98fc7437eae8befd2850db3b3ce3bbb84e95cce7dc4d3cd62ec2b196dc
  • Pointer size: 130 Bytes
  • Size of remote file: 23.8 kB
machine learning/cm_Logistic_regression_TrainCombined_Test2.png ADDED

Git LFS Details

  • SHA256: b9f960427b8fc5e8b3eaa06c1a7bffc9c2d2b00e1d04104439bdd980e514fe77
  • Pointer size: 130 Bytes
  • Size of remote file: 23.9 kB
machine learning/cm_Logistic_regression_TrainCombined_Test3.png ADDED

Git LFS Details

  • SHA256: 4cb49ee4b42e7db0245305cbf3755c54dff30c14430f956cbe38320ab5d7ac85
  • Pointer size: 130 Bytes
  • Size of remote file: 22.8 kB
machine learning/cm_SVM_RBF_kernel_TrainCombined_Test1.png ADDED

Git LFS Details

  • SHA256: 55321325b7a59823fdbf6a7b75b4fc734bd88d9250e1247399dee2830e99d142
  • Pointer size: 130 Bytes
  • Size of remote file: 23.2 kB
machine learning/cm_SVM_RBF_kernel_TrainCombined_Test2.png ADDED

Git LFS Details

  • SHA256: 501911b063d679c3644f4518af0e92aee978481539e66a36d08195529a6cfad5
  • Pointer size: 130 Bytes
  • Size of remote file: 23.8 kB
machine learning/cm_SVM_RBF_kernel_TrainCombined_Test3.png ADDED

Git LFS Details

  • SHA256: 878b8a4b501714a82c7c64671fc23529297f5c78826e2b061dd199dd6011c7b0
  • Pointer size: 130 Bytes
  • Size of remote file: 22.4 kB
machine learning/corrected version.ipynb ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "ca825e7e",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stdout",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "\n",
14
+ "Treniranje modela: Logistic regression...\n",
15
+ "Predikcija na Test 1...\n",
16
+ "Predikcija na Test 2...\n",
17
+ "Predikcija na Test 3...\n",
18
+ "\n",
19
+ "Treniranje modela: SVM RBF kernel...\n",
20
+ "Predikcija na Test 1...\n",
21
+ "Predikcija na Test 2...\n",
22
+ "Predikcija na Test 3...\n",
23
+ "\n",
24
+ "| # | method | algorithm | skup | Test 1 | Test 2 | Test 3 |\n",
25
+ "|--------|------------------|--------------------------|--------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|\n",
26
+ "| 1.a.i | Machine learning | Logistic regression | Train combined | Precision=0.640, Recall=0.614, F1=0.625, Accuracy=0.614 | Precision=0.632, Recall=0.630, F1=0.626, Accuracy=0.630 | Precision=0.717, Recall=0.691, F1=0.686, Accuracy=0.691 |\n",
27
+ "| 1.b.i | Machine learning | SVM RBF kernel | Train combined | Precision=0.652, Recall=0.632, F1=0.640, Accuracy=0.632 | Precision=0.621, Recall=0.626, F1=0.620, Accuracy=0.626 | Precision=0.764, Recall=0.741, F1=0.735, Accuracy=0.741 |\n"
28
+ ]
29
+ }
30
+ ],
31
+ "source": [
32
+ "import pandas as pd\n",
33
+ "from sklearn.linear_model import LogisticRegression\n",
34
+ "from sklearn.svm import SVC\n",
35
+ "from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score, confusion_matrix, ConfusionMatrixDisplay\n",
36
+ "from sklearn.feature_extraction.text import TfidfVectorizer\n",
37
+ "import matplotlib.pyplot as plt\n",
38
+ "import os\n",
39
+ "\n",
40
+ "# Folder za spremanje confusion matrica\n",
41
+ "os.makedirs('confusion_matrices', exist_ok=True)\n",
42
+ "\n",
43
+ "# Definicije datoteka\n",
44
+ "train_files = ['train-1.csv', 'train-2.csv', 'train-3.csv']\n",
45
+ "test_files = ['test-1.csv', 'test-2.csv', 'test-3.csv']\n",
46
+ "test_names = ['Test 1', 'Test 2', 'Test 3']\n",
47
+ "\n",
48
+ "text_column = 'Sentence'\n",
49
+ "target_column = 'Label'\n",
50
+ "\n",
51
+ "# Funkcija za učitavanje podataka\n",
52
+ "def load_data(file):\n",
53
+ " df = pd.read_csv(file)\n",
54
+ " X_text = df[text_column].astype(str)\n",
55
+ " y = df[target_column]\n",
56
+ " return X_text, y\n",
57
+ "\n",
58
+ "# Funkcija za učitavanje i spajanje više train setova\n",
59
+ "def load_data_combined(files):\n",
60
+ " X_all = []\n",
61
+ " y_all = []\n",
62
+ " for file in files:\n",
63
+ " X_text, y = load_data(file)\n",
64
+ " X_all.extend(X_text)\n",
65
+ " y_all.extend(y)\n",
66
+ " return X_all, y_all\n",
67
+ "\n",
68
+ "# Ažurirani modeli\n",
69
+ "models = [\n",
70
+ " ('1.a', 'Machine learning', 'Logistic regression', LogisticRegression(max_iter=5000, solver='liblinear', class_weight='balanced')),\n",
71
+ " ('1.b', 'Machine learning', 'SVM RBF kernel', SVC(class_weight='balanced', kernel='rbf', random_state=42))\n",
72
+ "]\n",
73
+ "\n",
74
+ "# Priprema tablice za rezultate\n",
75
+ "table = []\n",
76
+ "\n",
77
+ "# Učitavanje kombiniranih trening podataka\n",
78
+ "X_train_text, y_train = load_data_combined(train_files)\n",
79
+ "\n",
80
+ "# TF-IDF vektorizacija s proširenim parametrima\n",
81
+ "vectorizer = TfidfVectorizer(max_features=5000, ngram_range=(1, 3))\n",
82
+ "X_train = vectorizer.fit_transform(X_train_text)\n",
83
+ "\n",
84
+ "# Treniranje i evaluacija\n",
85
+ "for code, method, algorithm, model in models:\n",
86
+ " print(f\"\\nTreniranje modela: {algorithm}...\")\n",
87
+ " model.fit(X_train, y_train)\n",
88
+ " \n",
89
+ " row_train = [f\"{code}.i\", method, algorithm, \"Train combined\"]\n",
90
+ " for idx, test_file in enumerate(test_files):\n",
91
+ " print(f\"Predikcija na {test_names[idx]}...\")\n",
92
+ " X_test_text, y_test = load_data(test_file)\n",
93
+ " X_test = vectorizer.transform(X_test_text)\n",
94
+ " \n",
95
+ " y_pred = model.predict(X_test)\n",
96
+ " precision = precision_score(y_test, y_pred, average='weighted', zero_division=0)\n",
97
+ " recall = recall_score(y_test, y_pred, average='weighted', zero_division=0)\n",
98
+ " f1 = f1_score(y_test, y_pred, average='weighted', zero_division=0)\n",
99
+ " accuracy = accuracy_score(y_test, y_pred)\n",
100
+ " metric_str = f\"Precision={precision:.3f}, Recall={recall:.3f}, F1={f1:.3f}, Accuracy={accuracy:.3f}\"\n",
101
+ " row_train.append(metric_str)\n",
102
+ " \n",
103
+ " # Confusion matrix\n",
104
+ " cm = confusion_matrix(y_test, y_pred)\n",
105
+ " disp = ConfusionMatrixDisplay(confusion_matrix=cm)\n",
106
+ " disp.plot(cmap=plt.cm.Blues)\n",
107
+ " plt.title(f'Confusion Matrix: {algorithm}\\nTrain: Combined Train Test: {test_names[idx]}')\n",
108
+ " plt.savefig(f'confusion_matrices/cm_{algorithm.replace(\" \", \"_\")}_TrainCombined_{test_names[idx].replace(\" \", \"\")}.png')\n",
109
+ " plt.close()\n",
110
+ " table.append(row_train)\n",
111
+ "\n",
112
+ "# Ispis tablice u markdown formatu\n",
113
+ "header = \"| # | method | algorithm | skup | Test 1 | Test 2 | Test 3 |\"\n",
114
+ "sep = \"|--------|------------------|--------------------------|--------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|\"\n",
115
+ "print(\"\\n\" + header)\n",
116
+ "print(sep)\n",
117
+ "for row in table:\n",
118
+ " print(f\"| {row[0]:<6} | {row[1]:<16} | {row[2]:<24} | {row[3]:<12} | {row[4]:<55} | {row[5]:<55} | {row[6]:<55} |\")\n",
119
+ "\n",
120
+ "# Spremi rezultate u .md datoteku\n",
121
+ "with open('results_group2.md', 'w', encoding='utf-8') as f:\n",
122
+ " f.write(header + \"\\n\")\n",
123
+ " f.write(sep + \"\\n\")\n",
124
+ " for row in table:\n",
125
+ " f.write(f\"| {row[0]:<6} | {row[1]:<16} | {row[2]:<24} | {row[3]:<12} | {row[4]:<55} | {row[5]:<55} | {row[6]:<55} |\\n\")\n"
126
+ ]
127
+ }
128
+ ],
129
+ "metadata": {
130
+ "kernelspec": {
131
+ "display_name": "Python 3",
132
+ "language": "python",
133
+ "name": "python3"
134
+ },
135
+ "language_info": {
136
+ "codemirror_mode": {
137
+ "name": "ipython",
138
+ "version": 3
139
+ },
140
+ "file_extension": ".py",
141
+ "mimetype": "text/x-python",
142
+ "name": "python",
143
+ "nbconvert_exporter": "python",
144
+ "pygments_lexer": "ipython3",
145
+ "version": "3.9.6"
146
+ }
147
+ },
148
+ "nbformat": 4,
149
+ "nbformat_minor": 5
150
+ }
machine learning/results(corrected).md ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ | # | method | algorithm | skup | Test 1 | Test 2 | Test 3 |
2
+ |--------|------------------|--------------------------|--------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
3
+ | 1.a.i | Machine learning | Logistic regression | Train combined | Precision=0.640, Recall=0.614, F1=0.625, Accuracy=0.614 | Precision=0.632, Recall=0.630, F1=0.626, Accuracy=0.630 | Precision=0.717, Recall=0.691, F1=0.686, Accuracy=0.691 |
4
+ | 1.b.i | Machine learning | SVM RBF kernel | Train combined | Precision=0.652, Recall=0.632, F1=0.640, Accuracy=0.632 | Precision=0.621, Recall=0.626, F1=0.620, Accuracy=0.626 | Precision=0.764, Recall=0.741, F1=0.735, Accuracy=0.741 |