LSTM
- Precision: 0.8627
- Recall: 0.3557
- F1: 0.2897
- Accuracy: 0.5924
- Confusion matrix: [[3, 213, 0], [0, 431, 0], [0, 89, 5]]
Full classification report: precision recall f1-score support
positive 1.0000 0.0139 0.0274 216
neutral 0.5880 1.0000 0.7405 431
negative 1.0000 0.0532 0.1010 94
accuracy 0.5924 741
macro avg 0.8627 0.3557 0.2897 741 weighted avg 0.7604 0.5924 0.4515 741
GRU
- Precision: 0.8623
- Recall: 0.8200
- F1: 0.8387
- Accuracy: 0.8758
- Confusion matrix: [[179, 32, 5], [17, 405, 9], [7, 22, 65]]
Full classification report: precision recall f1-score support
positive 0.8818 0.8287 0.8544 216
neutral 0.8824 0.9397 0.9101 431
negative 0.8228 0.6915 0.7514 94
accuracy 0.8758 741
macro avg 0.8623 0.8200 0.8387 741 weighted avg 0.8746 0.8758 0.8737 741
CNN
- Precision: 0.9147
- Recall: 0.8296
- F1: 0.8632
- Accuracy: 0.8961
- Confusion matrix: [[180, 35, 1], [9, 420, 2], [10, 20, 64]]
Full classification report: precision recall f1-score support
positive 0.9045 0.8333 0.8675 216
neutral 0.8842 0.9745 0.9272 431
negative 0.9552 0.6809 0.7950 94
accuracy 0.8961 741
macro avg 0.9147 0.8296 0.8632 741 weighted avg 0.8991 0.8961 0.8930 741