File size: 6,993 Bytes
3745ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "ca825e7e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Treniranje modela: Logistic regression...\n",
      "Predikcija na Test 1...\n",
      "Predikcija na Test 2...\n",
      "Predikcija na Test 3...\n",
      "\n",
      "Treniranje modela: SVM RBF kernel...\n",
      "Predikcija na Test 1...\n",
      "Predikcija na Test 2...\n",
      "Predikcija na Test 3...\n",
      "\n",
      "| #      | method           | algorithm                | skup          | Test 1                                                  | Test 2                                                  | Test 3                                                  |\n",
      "|--------|------------------|--------------------------|--------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|\n",
      "| 1.a.i  | Machine learning | Logistic regression      | Train combined | Precision=0.640, Recall=0.614, F1=0.625, Accuracy=0.614 | Precision=0.632, Recall=0.630, F1=0.626, Accuracy=0.630 | Precision=0.717, Recall=0.691, F1=0.686, Accuracy=0.691 |\n",
      "| 1.b.i  | Machine learning | SVM RBF kernel           | Train combined | Precision=0.652, Recall=0.632, F1=0.640, Accuracy=0.632 | Precision=0.621, Recall=0.626, F1=0.620, Accuracy=0.626 | Precision=0.764, Recall=0.741, F1=0.735, Accuracy=0.741 |\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "from sklearn.linear_model import LogisticRegression\n",
    "from sklearn.svm import SVC\n",
    "from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score, confusion_matrix, ConfusionMatrixDisplay\n",
    "from sklearn.feature_extraction.text import TfidfVectorizer\n",
    "import matplotlib.pyplot as plt\n",
    "import os\n",
    "\n",
    "# Folder za spremanje confusion matrica\n",
    "os.makedirs('confusion_matrices', exist_ok=True)\n",
    "\n",
    "# Definicije datoteka\n",
    "train_files = ['train-1.csv', 'train-2.csv', 'train-3.csv']\n",
    "test_files = ['test-1.csv', 'test-2.csv', 'test-3.csv']\n",
    "test_names = ['Test 1', 'Test 2', 'Test 3']\n",
    "\n",
    "text_column = 'Sentence'\n",
    "target_column = 'Label'\n",
    "\n",
    "# Funkcija za učitavanje podataka\n",
    "def load_data(file):\n",
    "    df = pd.read_csv(file)\n",
    "    X_text = df[text_column].astype(str)\n",
    "    y = df[target_column]\n",
    "    return X_text, y\n",
    "\n",
    "# Funkcija za učitavanje i spajanje više train setova\n",
    "def load_data_combined(files):\n",
    "    X_all = []\n",
    "    y_all = []\n",
    "    for file in files:\n",
    "        X_text, y = load_data(file)\n",
    "        X_all.extend(X_text)\n",
    "        y_all.extend(y)\n",
    "    return X_all, y_all\n",
    "\n",
    "# Ažurirani modeli\n",
    "models = [\n",
    "    ('1.a', 'Machine learning', 'Logistic regression', LogisticRegression(max_iter=5000, solver='liblinear', class_weight='balanced')),\n",
    "    ('1.b', 'Machine learning', 'SVM RBF kernel', SVC(class_weight='balanced', kernel='rbf', random_state=42))\n",
    "]\n",
    "\n",
    "# Priprema tablice za rezultate\n",
    "table = []\n",
    "\n",
    "# Učitavanje kombiniranih trening podataka\n",
    "X_train_text, y_train = load_data_combined(train_files)\n",
    "\n",
    "# TF-IDF vektorizacija s proširenim parametrima\n",
    "vectorizer = TfidfVectorizer(max_features=5000, ngram_range=(1, 3))\n",
    "X_train = vectorizer.fit_transform(X_train_text)\n",
    "\n",
    "# Treniranje i evaluacija\n",
    "for code, method, algorithm, model in models:\n",
    "    print(f\"\\nTreniranje modela: {algorithm}...\")\n",
    "    model.fit(X_train, y_train)\n",
    "    \n",
    "    row_train = [f\"{code}.i\", method, algorithm, \"Train combined\"]\n",
    "    for idx, test_file in enumerate(test_files):\n",
    "        print(f\"Predikcija na {test_names[idx]}...\")\n",
    "        X_test_text, y_test = load_data(test_file)\n",
    "        X_test = vectorizer.transform(X_test_text)\n",
    "        \n",
    "        y_pred = model.predict(X_test)\n",
    "        precision = precision_score(y_test, y_pred, average='weighted', zero_division=0)\n",
    "        recall = recall_score(y_test, y_pred, average='weighted', zero_division=0)\n",
    "        f1 = f1_score(y_test, y_pred, average='weighted', zero_division=0)\n",
    "        accuracy = accuracy_score(y_test, y_pred)\n",
    "        metric_str = f\"Precision={precision:.3f}, Recall={recall:.3f}, F1={f1:.3f}, Accuracy={accuracy:.3f}\"\n",
    "        row_train.append(metric_str)\n",
    "        \n",
    "        # Confusion matrix\n",
    "        cm = confusion_matrix(y_test, y_pred)\n",
    "        disp = ConfusionMatrixDisplay(confusion_matrix=cm)\n",
    "        disp.plot(cmap=plt.cm.Blues)\n",
    "        plt.title(f'Confusion Matrix: {algorithm}\\nTrain: Combined Train Test: {test_names[idx]}')\n",
    "        plt.savefig(f'confusion_matrices/cm_{algorithm.replace(\" \", \"_\")}_TrainCombined_{test_names[idx].replace(\" \", \"\")}.png')\n",
    "        plt.close()\n",
    "    table.append(row_train)\n",
    "\n",
    "# Ispis tablice u markdown formatu\n",
    "header = \"| #      | method           | algorithm                | skup          | Test 1                                                  | Test 2                                                  | Test 3                                                  |\"\n",
    "sep =    \"|--------|------------------|--------------------------|--------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|\"\n",
    "print(\"\\n\" + header)\n",
    "print(sep)\n",
    "for row in table:\n",
    "    print(f\"| {row[0]:<6} | {row[1]:<16} | {row[2]:<24} | {row[3]:<12} | {row[4]:<55} | {row[5]:<55} | {row[6]:<55} |\")\n",
    "\n",
    "# Spremi rezultate u .md datoteku\n",
    "with open('results_group2.md', 'w', encoding='utf-8') as f:\n",
    "    f.write(header + \"\\n\")\n",
    "    f.write(sep + \"\\n\")\n",
    "    for row in table:\n",
    "        f.write(f\"| {row[0]:<6} | {row[1]:<16} | {row[2]:<24} | {row[3]:<12} | {row[4]:<55} | {row[5]:<55} | {row[6]:<55} |\\n\")\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}