metadata
license: apache-2.0
task_categories:
- text-classification
language:
- en
tags:
- data-preprocessing
- automl
- benchmarks
size_categories:
- n<1K
- 1K<n<10K
- 10K<n<100K
- 100K<n<1M
configs:
- config_name: twenty_newsgroups
data_files:
- split: train
path: twenty_newsgroups/train.csv
- split: test
path: twenty_newsgroups/test.csv
- split: validation
path: twenty_newsgroups/validation.csv
- config_name: banking77
data_files:
- split: train
path: banking77/train-*.parquet
- split: test
path: banking77/test-*.parquet
- split: validation
path: banking77/validation-*.parquet
- config_name: trec
data_files:
- split: train
path: trec/train-*.parquet
- split: test
path: trec/test-*.parquet
- split: validation
path: trec/validation-*.parquet
- config_name: financial_phrasebank
data_files:
- split: train
path: financial_phrasebank/train-*.parquet
- split: test
path: financial_phrasebank/test-*.parquet
- split: validation
path: financial_phrasebank/validation-*.parquet
- config_name: MASSIVE
data_files:
- split: train
path: MASSIVE/train-*.parquet
- split: test
path: MASSIVE/test-*.parquet
- split: validation
path: MASSIVE/validation-*.parquet
Data Preprocessing AutoML Benchmarks
This repository contains text classification datasets with known data quality issues for preprocessing research in AutoML.
Usage
Load a specific dataset configuration like this:
from datasets import load_dataset
# Example for loading the TREC dataset
dataset = load_dataset("MothMalone/data-preprocessing-automl-benchmarks", "trec")
Available Datasets
Below are the details for each dataset configuration available in this repository.
banking77
- Description: Dataset of online banking queries annotated with their corresponding intents.
- Data Quality Issue: N/A
- Classes: 77
trec
- Description: The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set.
- Data Quality Issue: N/A
- Classes: 6
financial_phrasebank
- Description: Financial sentiment analysis dataset with phrases from financial news.
- Data Quality Issue: N/A
- Classes: 3
MASSIVE
- Description: Multilingual Amazon Slurp Synthetic Intent and Voice Evaluation dataset.
- Data Quality Issue: N/A
- Classes: 60
twenty_newsgroups
- Description: The 20 Newsgroups dataset is a collection of approximately 20,000 newsgroup documents, partitioned across 20 different newsgroups.
- Data Quality Issue: N/A
- Classes: 20