|
import pandas as pd |
|
import os |
|
|
|
impact_columns = [ |
|
"Infrastructural impact", |
|
"Political impact", |
|
"Economic impact", |
|
"Ecological impact", |
|
"Agricultural impact", |
|
"Human health impact" |
|
] |
|
groupby=["Date","Time_Period"] |
|
gold_data = pd.read_csv("the_path_to_gold_data.csv") |
|
gold_data.columns = [x.capitalize() for x in gold_data.columns] |
|
|
|
def eval_row_wise_acc(data, output_file): |
|
data.columns = [x.capitalize() for x in data.columns] |
|
models = data['Model_type'].unique() |
|
|
|
gold_grouped = gold_data.groupby(groupby)[impact_columns].max() |
|
results = [] |
|
|
|
for model in models: |
|
model_data = data[data['Model_type'] == model] |
|
grouped = model_data.groupby(groupby)[impact_columns].max() |
|
merged = grouped.join(gold_grouped, how='inner', lsuffix='_model', rsuffix='_gold') |
|
|
|
all_correct = (merged[[f"{col}_model" for col in impact_columns]].values == |
|
merged[[f"{col}_gold" for col in impact_columns]].values).all(axis=1) |
|
|
|
accuracy = all_correct.sum() / len(all_correct) if len(all_correct) > 0 else 0 |
|
results.append({ |
|
"Model_Type": model, |
|
"Row-Wise-Accuracy": round(accuracy, 4) |
|
}) |
|
|
|
df_result = pd.DataFrame(results) |
|
if not os.path.isfile(output_file): |
|
df_result.to_csv(output_file, index=False) |
|
else: |
|
df_result.to_csv(output_file, mode='a', header=False, index=False) |
|
|
|
def eval_metrics(data, output_file): |
|
data.columns = [x.capitalize() for x in data.columns] |
|
models = data["Model_type"].unique() |
|
gold_grouped = gold_data.groupby(groupby)[impact_columns].max() |
|
results = [] |
|
|
|
for model in models: |
|
model_data = data[data["Model_type"] == model] |
|
grouped = model_data.groupby(groupby)[impact_columns].max() |
|
merged = grouped.join(gold_grouped, how="inner", lsuffix="_model", rsuffix="_gold") |
|
|
|
for metric_name in ["Precision", "Recall", "F1", "Accuracy"]: |
|
metrics = {"Model_Type": model, "Metric": metric_name} |
|
for col in impact_columns: |
|
tp = ((merged[f"{col}_model"] == 1) & (merged[f"{col}_gold"] == 1)).sum() |
|
tn = ((merged[f"{col}_model"] == 0) & (merged[f"{col}_gold"] == 0)).sum() |
|
fp = ((merged[f"{col}_model"] == 1) & (merged[f"{col}_gold"] == 0)).sum() |
|
fn = ((merged[f"{col}_model"] == 0) & (merged[f"{col}_gold"] == 1)).sum() |
|
|
|
if metric_name == "Precision": |
|
value = tp / (tp + fp) if (tp + fp) > 0 else 0 |
|
elif metric_name == "Recall": |
|
value = tp / (tp + fn) if (tp + fn) > 0 else 0 |
|
elif metric_name == "F1": |
|
precision = tp / (tp + fp) if (tp + fp) > 0 else 0 |
|
recall = tp / (tp + fn) if (tp + fn) > 0 else 0 |
|
value = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 |
|
elif metric_name == "Accuracy": |
|
value = (tp + tn) / (tp + tn + fp + fn) if (tp + tn + fp + fn) > 0 else 0 |
|
|
|
metrics[col] = round(value, 4) |
|
results.append(metrics) |
|
|
|
df_result = pd.DataFrame(results) |
|
print(df_result) |
|
|
|
if not os.path.isfile(output_file): |
|
df_result.to_csv(output_file, index=False) |
|
else: |
|
df_result.to_csv(output_file, mode="a", header=False, index=False) |
|
|
|
data = pd.read_csv("/content/output_gpt.csv") |
|
eval_metrics(data, "accuracy_results.csv") |