import pandas as pd import os impact_columns = [ "Infrastructural impact", "Political impact", "Economic impact", "Ecological impact", "Agricultural impact", "Human health impact" ] groupby=["Date","Time_Period"] gold_data = pd.read_csv("the_path_to_gold_data.csv") gold_data.columns = [x.capitalize() for x in gold_data.columns] def eval_row_wise_acc(data, output_file): data.columns = [x.capitalize() for x in data.columns] models = data['Model_type'].unique() gold_grouped = gold_data.groupby(groupby)[impact_columns].max() results = [] for model in models: model_data = data[data['Model_type'] == model] grouped = model_data.groupby(groupby)[impact_columns].max() merged = grouped.join(gold_grouped, how='inner', lsuffix='_model', rsuffix='_gold') all_correct = (merged[[f"{col}_model" for col in impact_columns]].values == merged[[f"{col}_gold" for col in impact_columns]].values).all(axis=1) accuracy = all_correct.sum() / len(all_correct) if len(all_correct) > 0 else 0 results.append({ "Model_Type": model, "Row-Wise-Accuracy": round(accuracy, 4) }) df_result = pd.DataFrame(results) if not os.path.isfile(output_file): df_result.to_csv(output_file, index=False) else: df_result.to_csv(output_file, mode='a', header=False, index=False) def eval_metrics(data, output_file): data.columns = [x.capitalize() for x in data.columns] models = data["Model_type"].unique() gold_grouped = gold_data.groupby(groupby)[impact_columns].max() results = [] for model in models: model_data = data[data["Model_type"] == model] grouped = model_data.groupby(groupby)[impact_columns].max() merged = grouped.join(gold_grouped, how="inner", lsuffix="_model", rsuffix="_gold") for metric_name in ["Precision", "Recall", "F1", "Accuracy"]: metrics = {"Model_Type": model, "Metric": metric_name} for col in impact_columns: tp = ((merged[f"{col}_model"] == 1) & (merged[f"{col}_gold"] == 1)).sum() tn = ((merged[f"{col}_model"] == 0) & (merged[f"{col}_gold"] == 0)).sum() fp = ((merged[f"{col}_model"] == 1) & (merged[f"{col}_gold"] == 0)).sum() fn = ((merged[f"{col}_model"] == 0) & (merged[f"{col}_gold"] == 1)).sum() if metric_name == "Precision": value = tp / (tp + fp) if (tp + fp) > 0 else 0 elif metric_name == "Recall": value = tp / (tp + fn) if (tp + fn) > 0 else 0 elif metric_name == "F1": precision = tp / (tp + fp) if (tp + fp) > 0 else 0 recall = tp / (tp + fn) if (tp + fn) > 0 else 0 value = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 elif metric_name == "Accuracy": value = (tp + tn) / (tp + tn + fp + fn) if (tp + tn + fp + fn) > 0 else 0 metrics[col] = round(value, 4) results.append(metrics) df_result = pd.DataFrame(results) print(df_result) if not os.path.isfile(output_file): df_result.to_csv(output_file, index=False) else: df_result.to_csv(output_file, mode="a", header=False, index=False) data = pd.read_csv("/content/output_gpt.csv") eval_metrics(data, "accuracy_results.csv")