metadata
license: cc-by-nc-sa-4.0
language:
- en
tags:
- iros 2025
- navigation challenge
- visual-language navigation (vln)
- robotics dataset
- matterport3d
- interiornav
- r2r dataset

IROS-2025-Challenge-Nav Dataset
Dataset Summary 📖
This dataset includes the R2R dataset and the InteriorNav dataset, constructed from Matterport3D scanned environments and InteriorNav(kujiale) high-quality modeled environments, respectively, with corresponding navigation trajectories and language instructions.
Trajectory Statistics by Subset
Dataset | Train | Val Seen | Val Unseen | Test Unseen |
---|---|---|---|---|
VLN-PE-R2R | 8,679 (stair-filtered) | 778 | 1,839 | 3,408 |
InteriorNav | 649 | 44 | 99 | 165 |
Total | 9,328 | 822 | 1,938 | 3,573 |
Get started 🔥
Download the Dataset
# Make sure git-lfs is installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/datasets/InternRobotics/IROS-2025-Challenge-Nav
# If you want to clone without large files - just their pointers
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/datasets/InternRobotics/IROS-2025-Challenge-Nav
Dataset Structure 📁
vln_pe
├── raw_data/ # JSON files defining tasks, navigation goals, and dataset splits
│ └── r2r/
│ ├── mini/
│ │ └── mini.json.gz # For quick Model and Environments validation
│ ├── train/
│ ├── val_seen/
│ │ └── val_seen.json.gz
│ ├── val_unseen/
│ │ └── val_unseen.json.gz
│ └── embeddings.json.gz
└── traj_data # training sample data for two types of scenes
├── interiornav/
│ ├── kujiale_xxxx.tar.gz
│ └── ...
└── r2r/
├── traj_index/
│ ├── data/
│ ├── meta/
│ └── videos/
└── ...
License and Citation
All the data and code within this repo are under CC BY-NC-SA 4.0. Please consider citing our project if it helps your research.
@misc{contributors2025internroboticsrepo,
title={IROS-2025-Challenge-Nav Colosseum},
author={IROS-2025-Challenge-Nav Colosseum contributors},
howpublished={\url{https://github.com/InternRobotics/InternNav/tree/main/challenge}},
year={2025}
}