text
stringlengths 0
4.99k
|
---|
)
|
)
|
Found 6 files belonging to 2 directories
|
Resample all noise samples to 16000 Hz
|
command = (
|
\"for dir in `ls -1 \" + DATASET_NOISE_PATH + \"`; do \"
|
\"for file in `ls -1 \" + DATASET_NOISE_PATH + \"/$dir/*.wav`; do \"
|
\"sample_rate=`ffprobe -hide_banner -loglevel panic -show_streams \"
|
\"$file | grep sample_rate | cut -f2 -d=`; \"
|
\"if [ $sample_rate -ne 16000 ]; then \"
|
\"ffmpeg -hide_banner -loglevel panic -y \"
|
\"-i $file -ar 16000 temp.wav; \"
|
\"mv temp.wav $file; \"
|
\"fi; done; done\"
|
)
|
os.system(command)
|
# Split noise into chunks of 16000 each
|
def load_noise_sample(path):
|
sample, sampling_rate = tf.audio.decode_wav(
|
tf.io.read_file(path), desired_channels=1
|
)
|
if sampling_rate == SAMPLING_RATE:
|
# Number of slices of 16000 each that can be generated from the noise sample
|
slices = int(sample.shape[0] / SAMPLING_RATE)
|
sample = tf.split(sample[: slices * SAMPLING_RATE], slices)
|
return sample
|
else:
|
print(\"Sampling rate for {} is incorrect. Ignoring it\".format(path))
|
return None
|
noises = []
|
for path in noise_paths:
|
sample = load_noise_sample(path)
|
if sample:
|
noises.extend(sample)
|
noises = tf.stack(noises)
|
print(
|
\"{} noise files were split into {} noise samples where each is {} sec. long\".format(
|
len(noise_paths), noises.shape[0], noises.shape[1] // SAMPLING_RATE
|
)
|
)
|
6 noise files were split into 354 noise samples where each is 1 sec. long
|
Dataset generation
|
def paths_and_labels_to_dataset(audio_paths, labels):
|
\"\"\"Constructs a dataset of audios and labels.\"\"\"
|
path_ds = tf.data.Dataset.from_tensor_slices(audio_paths)
|
audio_ds = path_ds.map(lambda x: path_to_audio(x))
|
label_ds = tf.data.Dataset.from_tensor_slices(labels)
|
return tf.data.Dataset.zip((audio_ds, label_ds))
|
def path_to_audio(path):
|
\"\"\"Reads and decodes an audio file.\"\"\"
|
audio = tf.io.read_file(path)
|
audio, _ = tf.audio.decode_wav(audio, 1, SAMPLING_RATE)
|
return audio
|
def add_noise(audio, noises=None, scale=0.5):
|
if noises is not None:
|
# Create a random tensor of the same size as audio ranging from
|
# 0 to the number of noise stream samples that we have.
|
tf_rnd = tf.random.uniform(
|
(tf.shape(audio)[0],), 0, noises.shape[0], dtype=tf.int32
|
)
|
noise = tf.gather(noises, tf_rnd, axis=0)
|
# Get the amplitude proportion between the audio and the noise
|
prop = tf.math.reduce_max(audio, axis=1) / tf.math.reduce_max(noise, axis=1)
|
prop = tf.repeat(tf.expand_dims(prop, axis=1), tf.shape(audio)[1], axis=1)
|
# Adding the rescaled noise to audio
|
audio = audio + noise * prop * scale
|
return audio
|
def audio_to_fft(audio):
|
# Since tf.signal.fft applies FFT on the innermost dimension,
|
# we need to squeeze the dimensions and then expand them again
|
# after FFT
|
audio = tf.squeeze(audio, axis=-1)
|
fft = tf.signal.fft(
|
tf.cast(tf.complex(real=audio, imag=tf.zeros_like(audio)), tf.complex64)
|
)
|
fft = tf.expand_dims(fft, axis=-1)
|
# Return the absolute value of the first half of the FFT
|
# which represents the positive frequencies
|
return tf.math.abs(fft[:, : (audio.shape[1] // 2), :])
|
# Get the list of audio file paths along with their corresponding labels
|
class_names = os.listdir(DATASET_AUDIO_PATH)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.