ARKitScenes-SpatialLM Dataset
ARkitScenes dataset preprocessed in SpatialLM format for oriented object bouding boxes detection with LLMs.
Overview
This dataset is derived from ARKitScenes 5,047 real-world indoor scenes captured using Apple's ARKit framework, preprocessed and formatted specifically for SpatialLM training.
Data Extraction
Point clouds and layouts are compressed in zip files. To extract the files, run the following script:
cd arkitscenes-spatiallm
chmod +x extract.sh
./extract.sh
Dataset Strucutre
arkitscenes-spatiallm/
├── arkitscenes_train.json # Training conversations
├── arkitscenes_val.json # Validation conversations
├── dataset_info.json # Dataset metadata
├── split.csv # Train/val split mapping
├── pcd/ # Point cloud data
│ └── .ply
├── layout/ # Scene layout annotations
│ └── .txt
└── extract.sh # Extraction script
The arkitscenes_train.json
and arkitscenes_val.json
dataset follows the SpatialLM format with ShareGPT-style conversations:
{
"conversations": [
{
"from": "human",
"value": "<point_cloud>Detect boxes. The reference code is as followed: ..."
},
{
"from": "gpt",
"value": "<|layout_s|>bbox_0=...<|layout_e|>"
}
],
"point_clouds": ["pcd/scene_id.ply"]
}
License
This dataset is derived from Apple's ARKitScenes dataset. Please refer to the original dataset's license terms for usage restrictions.
Citation
If you use this dataset in your research, please cite the original ARKitScenes paper:
@inproceedings{ARKitScenes,
author = {Gilad Baruch and Zhuoyuan Chen and Afshin Dehghan and Tal Dimry and Yuri Feigin and Peter Fu and Thomas Gebauer and Brandon Joffe and Daniel Kurz and Arik Schwartz and Elad Shulman},
title = {{ARKitScenes}: A Diverse Real-World Dataset for {3D} Indoor Scene Understanding using Mobile {RGB-D} Data},
booktitle = {NeurIPS Datasets and Benchmarks},
year = {2021}
}
- Downloads last month
- 202
Collection including Gen3DF/Arkitscenes-Spatiallm
Collection
4 items
•
Updated