url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
48
51
id
int64
600M
2.19B
node_id
stringlengths
18
24
number
int64
2
6.73k
title
stringlengths
1
290
user
dict
labels
listlengths
0
4
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
4
milestone
dict
comments
listlengths
0
30
created_at
timestamp[s]
updated_at
timestamp[s]
closed_at
timestamp[s]
author_association
stringclasses
3 values
active_lock_reason
null
draft
null
pull_request
null
body
stringlengths
0
228k
reactions
dict
timeline_url
stringlengths
67
70
performed_via_github_app
null
state_reason
stringclasses
3 values
https://api.github.com/repos/huggingface/datasets/issues/835
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/835/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/835/comments
https://api.github.com/repos/huggingface/datasets/issues/835/events
https://github.com/huggingface/datasets/issues/835
740,102,210
MDU6SXNzdWU3NDAxMDIyMTA=
835
Wikipedia postprocessing
{ "login": "bminixhofer", "id": 13353204, "node_id": "MDQ6VXNlcjEzMzUzMjA0", "avatar_url": "https://avatars.githubusercontent.com/u/13353204?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bminixhofer", "html_url": "https://github.com/bminixhofer", "followers_url": "https://api.github.com/users/bminixhofer/followers", "following_url": "https://api.github.com/users/bminixhofer/following{/other_user}", "gists_url": "https://api.github.com/users/bminixhofer/gists{/gist_id}", "starred_url": "https://api.github.com/users/bminixhofer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bminixhofer/subscriptions", "organizations_url": "https://api.github.com/users/bminixhofer/orgs", "repos_url": "https://api.github.com/users/bminixhofer/repos", "events_url": "https://api.github.com/users/bminixhofer/events{/privacy}", "received_events_url": "https://api.github.com/users/bminixhofer/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi @bminixhofer ! Parsing WikiMedia is notoriously difficult: this processing used [mwparserfromhell](https://github.com/earwig/mwparserfromhell) which is pretty good but not perfect.\r\n\r\nAs an alternative, you can also use the Wiki40b dataset which was pre-processed using an un-released Google internal tool", "Ok, thanks! I'll try the Wiki40b dataset.", "If anyone else is concerned about this, `wiki40b` does indeed seem very well cleaned." ]
2020-11-10T17:26:38
2020-11-10T18:23:20
2020-11-10T17:49:21
NONE
null
null
null
Hi, thanks for this library! Running this code: ```py import datasets wikipedia = datasets.load_dataset("wikipedia", "20200501.de") print(wikipedia['train']['text'][0]) ``` I get: ``` mini|Ricardo Flores Magón mini|Mexikanische Revolutionäre, Magón in der Mitte anführend, gegen die Diktatur von Porfirio Diaz, Ausschnitt des Gemälde „Tierra y Libertad“ von Idelfonso Carrara (?) von 1930. Ricardo Flores Magón (* 16. September 1874 in San Antonio Eloxochitlán im mexikanischen Bundesstaat Oaxaca; † 22. November 1922 im Bundesgefängnis Leavenworth im US-amerikanischen Bundesstaat Kansas) war als Journalist, Gewerkschafter und Literat ein führender anarchistischer Theoretiker und Aktivist, der die revolutionäre mexikanische Bewegung radikal beeinflusste. Magón war Gründer der Partido Liberal Mexicano und Mitglied der Industrial Workers of the World. Politische Biografie Journalistisch und politisch kämpfte er und sein Bruder sehr kompromisslos gegen die Diktatur Porfirio Diaz. Philosophisch und politisch orientiert an radikal anarchistischen Idealen und den Erfahrungen seiner indigenen Vorfahren bei der gemeinschaftlichen Bewirtschaftung des Gemeindelandes, machte er die Forderung „Land und Freiheit“ (Tierra y Libertad) populär. Besonders Francisco Villa und Emiliano Zapata griffen die Forderung Land und Freiheit auf. Seine Philosophie hatte großen Einfluss auf die Landarbeiter. 1904 floh er in die USA und gründete 1906 die Partido Liberal Mexicano. Im Exil lernte er u. a. Emma Goldman kennen. Er verbrachte die meiste Zeit seines Lebens in Gefängnissen und im Exil und wurde 1918 in den USA wegen „Behinderung der Kriegsanstrengungen“ zu zwanzig Jahren Gefängnis verurteilt. Zu seinem Tod gibt es drei verschiedene Theorien. Offiziell starb er an Herzversagen. Librado Rivera, der die Leiche mit eigenen Augen gesehen hat, geht davon aus, dass Magón von einem Mitgefangenen erdrosselt wurde. Die staatstreue Gewerkschaftszeitung CROM veröffentlichte 1923 einen Beitrag, nachdem Magón von einem Gefängniswärter erschlagen wurde. mini|Die Brüder Ricardo (links) und Enrique Flores Magón (rechts) vor dem Los Angeles County Jail, 1917 [...] ``` so some Markup like `mini|` is still left. Should I run another parser on this text before feeding it to an ML model or is this a known imperfection of parsing Wiki markup? Apologies if this has been asked before.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/835/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/835/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/834
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/834/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/834/comments
https://api.github.com/repos/huggingface/datasets/issues/834/events
https://github.com/huggingface/datasets/issues/834
740,082,890
MDU6SXNzdWU3NDAwODI4OTA=
834
[GEM] add WikiLingua cross-lingual abstractive summarization dataset
{ "login": "yjernite", "id": 10469459, "node_id": "MDQ6VXNlcjEwNDY5NDU5", "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yjernite", "html_url": "https://github.com/yjernite", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "organizations_url": "https://api.github.com/users/yjernite/orgs", "repos_url": "https://api.github.com/users/yjernite/repos", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "received_events_url": "https://api.github.com/users/yjernite/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[ "Hey @yjernite. This is a very interesting dataset. Would love to work on adding it but I see that the link to the data is to a gdrive folder. Can I just confirm wether dlmanager can handle gdrive urls or would this have to be a manual dl?", "Hi @KMFODA ! A version of WikiLingua is actually already accessible in the [GEM dataset](https://huggingface.co/datasets/gem)\r\n\r\nYou can use it for example to load the French to English translation with:\r\n```python\r\nfrom datasets import load_dataset\r\nwikilingua = load_dataset(\"gem\", \"wiki_lingua_french_fr\")\r\n```\r\n\r\nClosed by https://github.com/huggingface/datasets/pull/1807" ]
2020-11-10T17:00:43
2021-04-15T12:04:09
2021-04-15T12:01:38
MEMBER
null
null
null
## Adding a Dataset - **Name:** WikiLingua - **Description:** The dataset includes ~770k article and summary pairs in 18 languages from WikiHow. The gold-standard article-summary alignments across languages were extracted by aligning the images that are used to describe each how-to step in an article. - **Paper:** https://arxiv.org/pdf/2010.03093.pdf - **Data:** https://github.com/esdurmus/Wikilingua - **Motivation:** Included in the GEM shared task. Multilingual. Instructions to add a new dataset can be found [here](https://huggingface.co/docs/datasets/share_dataset.html).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/834/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/834/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/833
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/833/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/833/comments
https://api.github.com/repos/huggingface/datasets/issues/833/events
https://github.com/huggingface/datasets/issues/833
740,079,692
MDU6SXNzdWU3NDAwNzk2OTI=
833
[GEM] add ASSET text simplification dataset
{ "login": "yjernite", "id": 10469459, "node_id": "MDQ6VXNlcjEwNDY5NDU5", "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yjernite", "html_url": "https://github.com/yjernite", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "organizations_url": "https://api.github.com/users/yjernite/orgs", "repos_url": "https://api.github.com/users/yjernite/repos", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "received_events_url": "https://api.github.com/users/yjernite/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[]
2020-11-10T16:56:30
2020-12-03T13:38:15
2020-12-03T13:38:15
MEMBER
null
null
null
## Adding a Dataset - **Name:** ASSET - **Description:** ASSET is a crowdsourced multi-reference corpus for assessing sentence simplification in English where each simplification was produced by executing several rewriting transformations. - **Paper:** https://www.aclweb.org/anthology/2020.acl-main.424.pdf - **Data:** https://github.com/facebookresearch/asset - **Motivation:** Included in the GEM shared task Instructions to add a new dataset can be found [here](https://huggingface.co/docs/datasets/share_dataset.html).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/833/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/833/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/832
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/832/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/832/comments
https://api.github.com/repos/huggingface/datasets/issues/832/events
https://github.com/huggingface/datasets/issues/832
740,077,228
MDU6SXNzdWU3NDAwNzcyMjg=
832
[GEM] add WikiAuto text simplification dataset
{ "login": "yjernite", "id": 10469459, "node_id": "MDQ6VXNlcjEwNDY5NDU5", "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yjernite", "html_url": "https://github.com/yjernite", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "organizations_url": "https://api.github.com/users/yjernite/orgs", "repos_url": "https://api.github.com/users/yjernite/repos", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "received_events_url": "https://api.github.com/users/yjernite/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[]
2020-11-10T16:53:23
2020-12-03T13:38:08
2020-12-03T13:38:08
MEMBER
null
null
null
## Adding a Dataset - **Name:** WikiAuto - **Description:** Sentences in English Wikipedia and their corresponding sentences in Simple English Wikipedia that are written with simpler grammar and word choices. A lot of lexical and syntactic paraphrasing. - **Paper:** https://www.aclweb.org/anthology/2020.acl-main.709.pdf - **Data:** https://github.com/chaojiang06/wiki-auto - **Motivation:** Included in the GEM shared task Instructions to add a new dataset can be found [here](https://huggingface.co/docs/datasets/share_dataset.html).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/832/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/832/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/831
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/831/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/831/comments
https://api.github.com/repos/huggingface/datasets/issues/831/events
https://github.com/huggingface/datasets/issues/831
740,071,697
MDU6SXNzdWU3NDAwNzE2OTc=
831
[GEM] Add WebNLG dataset
{ "login": "yjernite", "id": 10469459, "node_id": "MDQ6VXNlcjEwNDY5NDU5", "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yjernite", "html_url": "https://github.com/yjernite", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "organizations_url": "https://api.github.com/users/yjernite/orgs", "repos_url": "https://api.github.com/users/yjernite/repos", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "received_events_url": "https://api.github.com/users/yjernite/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[]
2020-11-10T16:46:48
2020-12-03T13:38:01
2020-12-03T13:38:01
MEMBER
null
null
null
## Adding a Dataset - **Name:** WebNLG - **Description:** WebNLG consists of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation of these triples (16,095 data inputs and 42,873 data-text pairs). The data is available in English and Russian - **Paper:** https://www.aclweb.org/anthology/P17-1017.pdf - **Data:** https://webnlg-challenge.loria.fr/download/ - **Motivation:** Included in the GEM shared task, multilingual Instructions to add a new dataset can be found [here](https://huggingface.co/docs/datasets/share_dataset.html).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/831/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/831/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/830
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/830/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/830/comments
https://api.github.com/repos/huggingface/datasets/issues/830/events
https://github.com/huggingface/datasets/issues/830
740,065,376
MDU6SXNzdWU3NDAwNjUzNzY=
830
[GEM] add ToTTo Table-to-text dataset
{ "login": "yjernite", "id": 10469459, "node_id": "MDQ6VXNlcjEwNDY5NDU5", "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yjernite", "html_url": "https://github.com/yjernite", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "organizations_url": "https://api.github.com/users/yjernite/orgs", "repos_url": "https://api.github.com/users/yjernite/repos", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "received_events_url": "https://api.github.com/users/yjernite/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[ "closed via #1098 " ]
2020-11-10T16:38:34
2020-12-10T13:06:02
2020-12-10T13:06:01
MEMBER
null
null
null
## Adding a Dataset - **Name:** ToTTo - **Description:** ToTTo is an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description. - **Paper:** https://arxiv.org/abs/2004.14373 - **Data:** https://github.com/google-research-datasets/totto - **Motivation:** Included in the GEM shared task Instructions to add a new dataset can be found [here](https://huggingface.co/docs/datasets/share_dataset.html).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/830/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/830/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/829
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/829/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/829/comments
https://api.github.com/repos/huggingface/datasets/issues/829/events
https://github.com/huggingface/datasets/issues/829
740,061,699
MDU6SXNzdWU3NDAwNjE2OTk=
829
[GEM] add Schema-Guided Dialogue
{ "login": "yjernite", "id": 10469459, "node_id": "MDQ6VXNlcjEwNDY5NDU5", "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yjernite", "html_url": "https://github.com/yjernite", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "organizations_url": "https://api.github.com/users/yjernite/orgs", "repos_url": "https://api.github.com/users/yjernite/repos", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "received_events_url": "https://api.github.com/users/yjernite/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[]
2020-11-10T16:33:44
2020-12-03T13:37:50
2020-12-03T13:37:50
MEMBER
null
null
null
## Adding a Dataset - **Name:** The Schema-Guided Dialogue Dataset - **Description:** The Schema-Guided Dialogue (SGD) dataset consists of over 20k annotated multi-domain, task-oriented conversations between a human and a virtual assistant. These conversations involve interactions with services and APIs spanning 20 domains, ranging from banks and events to media, calendar, travel, and weather. - **Paper:** https://arxiv.org/pdf/2002.01359.pdf https://arxiv.org/pdf/2004.15006.pdf - **Data:** https://github.com/google-research-datasets/dstc8-schema-guided-dialogue - **Motivation:** Included in the GEM shared task Instructions to add a new dataset can be found [here](https://huggingface.co/docs/datasets/share_dataset.html).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/829/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/829/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/827
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/827/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/827/comments
https://api.github.com/repos/huggingface/datasets/issues/827/events
https://github.com/huggingface/datasets/issues/827
739,983,024
MDU6SXNzdWU3Mzk5ODMwMjQ=
827
[GEM] MultiWOZ dialogue dataset
{ "login": "yjernite", "id": 10469459, "node_id": "MDQ6VXNlcjEwNDY5NDU5", "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yjernite", "html_url": "https://github.com/yjernite", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "organizations_url": "https://api.github.com/users/yjernite/orgs", "repos_url": "https://api.github.com/users/yjernite/repos", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "received_events_url": "https://api.github.com/users/yjernite/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[ "Hi @yjernite can I help in adding this dataset? \r\n\r\nI am excited about this because this will be my first contribution to the datasets library as well as to hugginface.", "Resolved via https://github.com/huggingface/datasets/pull/979" ]
2020-11-10T14:57:50
2022-10-05T12:31:13
2022-10-05T12:31:13
MEMBER
null
null
null
## Adding a Dataset - **Name:** MultiWOZ (Multi-Domain Wizard-of-Oz) - **Description:** 10k annotated human-human dialogues. Each dialogue consists of a goal, multiple user and system utterances as well as a belief state. Only system utterances are annotated with dialogue acts – there are no annotations from the user side. - **Paper:** https://arxiv.org/pdf/2007.12720.pdf - **Data:** https://github.com/budzianowski/multiwoz - **Motivation:** Will likely be part of the GEM shared task Instructions to add a new dataset can be found [here](https://huggingface.co/docs/datasets/share_dataset.html).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/827/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/827/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/826
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/826/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/826/comments
https://api.github.com/repos/huggingface/datasets/issues/826/events
https://github.com/huggingface/datasets/issues/826
739,976,716
MDU6SXNzdWU3Mzk5NzY3MTY=
826
[GEM] Add E2E dataset
{ "login": "yjernite", "id": 10469459, "node_id": "MDQ6VXNlcjEwNDY5NDU5", "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yjernite", "html_url": "https://github.com/yjernite", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "organizations_url": "https://api.github.com/users/yjernite/orgs", "repos_url": "https://api.github.com/users/yjernite/repos", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "received_events_url": "https://api.github.com/users/yjernite/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[]
2020-11-10T14:50:40
2020-12-03T13:37:57
2020-12-03T13:37:57
MEMBER
null
null
null
## Adding a Dataset - **Name:** E2E NLG dataset (for End-to-end natural language generation) - **Description:**a dataset for training end-to-end, datadriven natural language generation systems in the restaurant domain, the datasets consists of 5,751 dialogue-act Meaning Representations (structured data) and 8.1 reference free-text utterances per dialogue-act on average - **Paper:** https://arxiv.org/pdf/1706.09254.pdf https://arxiv.org/abs/1901.07931 - **Data:** http://www.macs.hw.ac.uk/InteractionLab/E2E/#data - **Motivation:** This dataset will likely be included in the GEM shared task Instructions to add a new dataset can be found [here](https://huggingface.co/docs/datasets/share_dataset.html).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/826/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/826/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/824
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/824/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/824/comments
https://api.github.com/repos/huggingface/datasets/issues/824/events
https://github.com/huggingface/datasets/issues/824
739,896,526
MDU6SXNzdWU3Mzk4OTY1MjY=
824
Discussion using datasets in offline mode
{ "login": "mandubian", "id": 77193, "node_id": "MDQ6VXNlcjc3MTkz", "avatar_url": "https://avatars.githubusercontent.com/u/77193?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mandubian", "html_url": "https://github.com/mandubian", "followers_url": "https://api.github.com/users/mandubian/followers", "following_url": "https://api.github.com/users/mandubian/following{/other_user}", "gists_url": "https://api.github.com/users/mandubian/gists{/gist_id}", "starred_url": "https://api.github.com/users/mandubian/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mandubian/subscriptions", "organizations_url": "https://api.github.com/users/mandubian/orgs", "repos_url": "https://api.github.com/users/mandubian/repos", "events_url": "https://api.github.com/users/mandubian/events{/privacy}", "received_events_url": "https://api.github.com/users/mandubian/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" }, { "id": 2067400324, "node_id": "MDU6TGFiZWwyMDY3NDAwMzI0", "url": "https://api.github.com/repos/huggingface/datasets/labels/generic%20discussion", "name": "generic discussion", "color": "c5def5", "default": false, "description": "Generic discussion on the library" } ]
closed
false
null
[]
null
[ "No comments ?", "I think it would be very cool. I'm currently working on a cluster from Compute Canada, and I have internet access only when I'm not in the nodes where I run the scripts. So I was expecting to be able to use the wmt14 dataset until I realized I needed internet connection even if I downloaded the data already. I'm going to try option 2 you mention for now though! Thanks ;)", "Requiring online connection is a deal breaker in some cases unfortunately so it'd be great if offline mode is added similar to how `transformers` loads models offline fine.\r\n\r\n@mandubian's second bullet point suggests that there's a workaround allowing you to use your offline (custom?) dataset with `datasets`. Could you please elaborate on how that should look like?", "here is my way to load a dataset offline, but it **requires** an online machine\r\n1. (online machine)\r\n```\r\nimport datasets\r\ndata = datasets.load_dataset(...)\r\ndata.save_to_disk(/YOUR/DATASET/DIR)\r\n```\r\n2. copy the dir from online to the offline machine\r\n3. (offline machine)\r\n```\r\nimport datasets\r\ndata = datasets.load_from_disk(/SAVED/DATA/DIR)\r\n```\r\n\r\nHTH.", "> here is my way to load a dataset offline, but it **requires** an online machine\n> \n> 1. (online machine)\n> \n> ```\n> \n> import datasets\n> \n> data = datasets.load_dataset(...)\n> \n> data.save_to_disk(/YOUR/DATASET/DIR)\n> \n> ```\n> \n> 2. copy the dir from online to the offline machine\n> \n> 3. (offline machine)\n> \n> ```\n> \n> import datasets\n> \n> data = datasets.load_from_disk(/SAVED/DATA/DIR)\n> \n> ```\n> \n> \n> \n> HTH.\n\n", "I opened a PR that allows to reload modules that have already been loaded once even if there's no internet.\r\n\r\nLet me know if you know other ways that can make the offline mode experience better. I'd be happy to add them :) \r\n\r\nI already note the \"freeze\" modules option, to prevent local modules updates. It would be a cool feature.\r\n\r\n----------\r\n\r\n> @mandubian's second bullet point suggests that there's a workaround allowing you to use your offline (custom?) dataset with `datasets`. Could you please elaborate on how that should look like?\r\n\r\nIndeed `load_dataset` allows to load remote dataset script (squad, glue, etc.) but also you own local ones.\r\nFor example if you have a dataset script at `./my_dataset/my_dataset.py` then you can do\r\n```python\r\nload_dataset(\"./my_dataset\")\r\n```\r\nand the dataset script will generate your dataset once and for all.\r\n\r\n----------\r\n\r\nAbout I'm looking into having `csv`, `json`, `text`, `pandas` dataset builders already included in the `datasets` package, so that they are available offline by default, as opposed to the other datasets that require the script to be downloaded.\r\ncf #1724 ", "The local dataset builders (csv, text , json and pandas) are now part of the `datasets` package since #1726 :)\r\nYou can now use them offline\r\n```python\r\ndatasets = load_dataset('text', data_files=data_files)\r\n```\r\n\r\nWe'll do a new release soon", "Already fixed by:\r\n- #1726", "> \r\n\r\nreally helps", "@albertvillanova \r\ndatasets version: 2.10.1\r\nI load_dataset and save_to_disk sucessfully on windows10, and I copy the dataset dir\r\ninto a ubuntu system, and when I load_from_disk(dir), something weird happens:\r\n\r\n\r\n```\r\nload_from_disk('/LLM/data/wiki')\r\n File \"/usr/local/miniconda3/lib/python3.8/site-packages/datasets/load.py\", line 1874, in load_from_disk\r\n return DatasetDict.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options)\r\n File \"/usr/local/miniconda3/lib/python3.8/site-packages/datasets/dataset_dict.py\", line 1309, in load_from_disk\r\n dataset_dict[k] = Dataset.load_from_disk(\r\n File \"/usr/local/miniconda3/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 1543, in load_from_disk\r\n fs_token_paths = fsspec.get_fs_token_paths(dataset_path, storage_options=storage_options)\r\n File \"/usr/local/miniconda3/lib/python3.8/site-packages/fsspec/core.py\", line 610, in get_fs_token_paths\r\n chain = _un_chain(urlpath0, storage_options or {})\r\n File \"/usr/local/miniconda3/lib/python3.8/site-packages/fsspec/core.py\", line 325, in _un_chain\r\n cls = get_filesystem_class(protocol)\r\n File \"/usr/local/miniconda3/lib/python3.8/site-packages/fsspec/registry.py\", line 232, in get_filesystem_class\r\n raise ValueError(f\"Protocol not known: {protocol}\")\r\nValueError: Protocol not known: /LLM/data/wiki\r\n```\r\nIt seems that something went wrong on the arrow file?\r\nHow can I solve this , since currently I can not save_to_disk on ubuntu system", "It looks like a bug in `fsspec`, can you try updating `fsspec` (and maybe `datasets` as well) ?" ]
2020-11-10T13:10:51
2023-10-26T09:26:26
2022-02-15T10:32:36
NONE
null
null
null
`datasets.load_dataset("csv", ...)` breaks if you have no connection (There is already this issue https://github.com/huggingface/datasets/issues/761 about it). It seems to be the same for metrics too. I create this ticket to discuss a bit and gather what you have in mind or other propositions. Here are some points to open discussion: - if you want to prepare your code/datasets on your machine (having internet connexion) but run it on another offline machine (not having internet connexion), it won't work as is, even if you have all files locally on this machine. - AFAIK, you can make it work if you manually put the python files (csv.py for example) on this offline machine and change your code to `datasets.load_dataset("MY_PATH/csv.py", ...)`. But it would be much better if you could run ths same code without modification if files are available locally. - I've also been considering the requirement of downloading Python code and execute on your machine to use datasets. This can be an issue in a professional context. Downloading a CSV/H5 file is acceptable, downloading an executable script can open many security issues. We certainly need a mechanism to at least "freeze" the dataset code you retrieved once so that you can review it if you want and then be sure you use this one everywhere and not a version dowloaded from internet. WDYT? (thks)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/824/reactions", "total_count": 10, "+1": 10, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/824/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/823
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/823/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/823/comments
https://api.github.com/repos/huggingface/datasets/issues/823/events
https://github.com/huggingface/datasets/issues/823
739,815,763
MDU6SXNzdWU3Mzk4MTU3NjM=
823
how processing in batch works in datasets
{ "login": "rabeehkarimimahabadi", "id": 73364383, "node_id": "MDQ6VXNlcjczMzY0Mzgz", "avatar_url": "https://avatars.githubusercontent.com/u/73364383?v=4", "gravatar_id": "", "url": "https://api.github.com/users/rabeehkarimimahabadi", "html_url": "https://github.com/rabeehkarimimahabadi", "followers_url": "https://api.github.com/users/rabeehkarimimahabadi/followers", "following_url": "https://api.github.com/users/rabeehkarimimahabadi/following{/other_user}", "gists_url": "https://api.github.com/users/rabeehkarimimahabadi/gists{/gist_id}", "starred_url": "https://api.github.com/users/rabeehkarimimahabadi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rabeehkarimimahabadi/subscriptions", "organizations_url": "https://api.github.com/users/rabeehkarimimahabadi/orgs", "repos_url": "https://api.github.com/users/rabeehkarimimahabadi/repos", "events_url": "https://api.github.com/users/rabeehkarimimahabadi/events{/privacy}", "received_events_url": "https://api.github.com/users/rabeehkarimimahabadi/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[ "Hi I don’t think this is a request for a dataset like you labeled it.\r\n\r\nI also think this would be better suited for the forum at https://discuss.huggingface.co. we try to keep the issue for the repo for bug reports and new features/dataset requests and have usage questions discussed on the forum. Thanks.", "Hi Thomas,\nwhat I do not get from documentation is that why when you set batched=True,\nthis is processed in batch, while data is not divided to batched\nbeforehand, basically this is a question on the documentation and I do not\nget the batched=True, but sure, if you think this is more appropriate in\nforum I will post it there.\nthanks\nBest\nRabeeh\n\nOn Tue, Nov 10, 2020 at 12:21 PM Thomas Wolf <[email protected]>\nwrote:\n\n> Hi I don’t think this is a request for a dataset like you labeled it.\n>\n> I also think this would be better suited for the forum at\n> https://discuss.huggingface.co. we try to keep the issue for the repo for\n> bug reports and new features/dataset requests and have usage questions\n> discussed on the forum. Thanks.\n>\n> —\n> You are receiving this because you authored the thread.\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/823#issuecomment-724639476>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/ARPXHH4FIPFHVVUHANAE4F3SPEO2JANCNFSM4TQQVEXQ>\n> .\n>\n", "Yes the forum is perfect for that. You can post in the `datasets` section.\r\nThanks a lot!" ]
2020-11-10T11:11:17
2020-11-10T13:11:10
2020-11-10T13:11:09
NONE
null
null
null
Hi, I need to process my datasets before it is passed to dataloader in batch, here is my codes ``` class AbstractTask(ABC): task_name: str = NotImplemented preprocessor: Callable = NotImplemented split_to_data_split: Mapping[str, str] = NotImplemented tokenizer: Callable = NotImplemented max_source_length: str = NotImplemented max_target_length: str = NotImplemented # TODO: should not be a task item, but cannot see other ways. tpu_num_cores: int = None # The arguments set are for all tasks and needs to be kept common. def __init__(self, config): self.max_source_length = config['max_source_length'] self.max_target_length = config['max_target_length'] self.tokenizer = config['tokenizer'] self.tpu_num_cores = config['tpu_num_cores'] def _encode(self, batch) -> Dict[str, torch.Tensor]: batch_encoding = self.tokenizer.prepare_seq2seq_batch( [x["src_texts"] for x in batch], tgt_texts=[x["tgt_texts"] for x in batch], max_length=self.max_source_length, max_target_length=self.max_target_length, padding="max_length" if self.tpu_num_cores is not None else "longest", # TPU hack return_tensors="pt" ) return batch_encoding.data def data_split(self, split): return self.split_to_data_split[split] def get_dataset(self, split, n_obs=None): split = self.data_split(split) if n_obs is not None: split = split+"[:{}]".format(n_obs) dataset = load_dataset(self.task_name, split=split) dataset = dataset.map(self.preprocessor, remove_columns=dataset.column_names) dataset = dataset.map(lambda batch: self._encode(batch), batched=True) dataset.set_format(type="torch", columns=['input_ids', 'token_type_ids', 'attention_mask', 'label']) return dataset ``` I call it like `AutoTask.get(task, train_dataset_config).get_dataset(split="train", n_obs=data_args.n_train) ` This gives the following error, to me because the data inside the dataset = dataset.map(lambda batch: self._encode(batch), batched=True) is not processed in batch, could you tell me how I can process dataset in batch inside my function? thanks File "finetune_multitask_trainer.py", line 192, in main if training_args.do_train else None File "finetune_multitask_trainer.py", line 191, in <dictcomp> split="train", n_obs=data_args.n_train) for task in data_args.task} File "/remote/idiap.svm/user.active/rkarimi/dev/internship/seq2seq/tasks.py", line 56, in get_dataset dataset = dataset.map(lambda batch: self._encode(batch), batched=True) File "/idiap/user/rkarimi/libs/anaconda3/envs/internship/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 1236, in map update_data = does_function_return_dict(test_inputs, test_indices) File "/idiap/user/rkarimi/libs/anaconda3/envs/internship/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 1207, in does_function_return_dict function(*fn_args, indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs) File "/remote/idiap.svm/user.active/rkarimi/dev/internship/seq2seq/tasks.py", line 56, in <lambda> dataset = dataset.map(lambda batch: self._encode(batch), batched=True) File "/remote/idiap.svm/user.active/rkarimi/dev/internship/seq2seq/tasks.py", line 37, in _encode [x["src_texts"] for x in batch], File "/remote/idiap.svm/user.active/rkarimi/dev/internship/seq2seq/tasks.py", line 37, in <listcomp> [x["src_texts"] for x in batch], TypeError: string indices must be integers
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/823/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/823/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/822
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/822/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/822/comments
https://api.github.com/repos/huggingface/datasets/issues/822/events
https://github.com/huggingface/datasets/issues/822
739,579,314
MDU6SXNzdWU3Mzk1NzkzMTQ=
822
datasets freezes
{ "login": "rabeehkarimimahabadi", "id": 73364383, "node_id": "MDQ6VXNlcjczMzY0Mzgz", "avatar_url": "https://avatars.githubusercontent.com/u/73364383?v=4", "gravatar_id": "", "url": "https://api.github.com/users/rabeehkarimimahabadi", "html_url": "https://github.com/rabeehkarimimahabadi", "followers_url": "https://api.github.com/users/rabeehkarimimahabadi/followers", "following_url": "https://api.github.com/users/rabeehkarimimahabadi/following{/other_user}", "gists_url": "https://api.github.com/users/rabeehkarimimahabadi/gists{/gist_id}", "starred_url": "https://api.github.com/users/rabeehkarimimahabadi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rabeehkarimimahabadi/subscriptions", "organizations_url": "https://api.github.com/users/rabeehkarimimahabadi/orgs", "repos_url": "https://api.github.com/users/rabeehkarimimahabadi/repos", "events_url": "https://api.github.com/users/rabeehkarimimahabadi/events{/privacy}", "received_events_url": "https://api.github.com/users/rabeehkarimimahabadi/received_events", "type": "User", "site_admin": false }
[ { "id": 2067388877, "node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug", "name": "dataset bug", "color": "2edb81", "default": false, "description": "A bug in a dataset script provided in the library" } ]
closed
false
null
[]
null
[ "Pytorch is unable to convert strings to tensors unfortunately.\r\nYou can use `set_format(type=\"torch\")` on columns that can be converted to tensors, such as token ids.\r\n\r\nThis makes me think that we should probably raise an error or at least a warning when one tries to create pytorch tensors out of text columns", "Ultimately, we decided to return a list instead of an error when formatting a string column with the format type `\"torch\"`.\r\n\r\nIf you think an error would be more appropriate, please open a new issue." ]
2020-11-10T05:10:19
2023-07-20T16:08:14
2023-07-20T16:08:13
NONE
null
null
null
Hi, I want to load these two datasets and convert them to Dataset format in torch and the code freezes for me, could you have a look please? thanks dataset1 = load_dataset("squad", split="train[:10]") dataset1 = dataset1.set_format(type='torch', columns=['context', 'answers', 'question']) dataset2 = load_dataset("imdb", split="train[:10]") dataset2 = dataset2.set_format(type="torch", columns=["text", "label"]) print(len(dataset1))
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/822/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/822/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/821
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/821/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/821/comments
https://api.github.com/repos/huggingface/datasets/issues/821/events
https://github.com/huggingface/datasets/issues/821
739,506,859
MDU6SXNzdWU3Mzk1MDY4NTk=
821
`kor_nli` dataset doesn't being loaded properly
{ "login": "sackoh", "id": 30492059, "node_id": "MDQ6VXNlcjMwNDkyMDU5", "avatar_url": "https://avatars.githubusercontent.com/u/30492059?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sackoh", "html_url": "https://github.com/sackoh", "followers_url": "https://api.github.com/users/sackoh/followers", "following_url": "https://api.github.com/users/sackoh/following{/other_user}", "gists_url": "https://api.github.com/users/sackoh/gists{/gist_id}", "starred_url": "https://api.github.com/users/sackoh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sackoh/subscriptions", "organizations_url": "https://api.github.com/users/sackoh/orgs", "repos_url": "https://api.github.com/users/sackoh/repos", "events_url": "https://api.github.com/users/sackoh/events{/privacy}", "received_events_url": "https://api.github.com/users/sackoh/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2020-11-10T02:04:12
2020-11-16T13:59:12
2020-11-16T13:59:12
NONE
null
null
null
There are two issues from `kor_nli` dataset 1. csv.DictReader failed to split features by tab - Should not exist `None` value in label feature, but there it is. ```python kor_nli_train['train'].unique('gold_label') # ['neutral', 'entailment', 'contradiction', None] ``` - I found a reason why there is `None` values in label feature as following code ```python from datasets import load_dataset kor_nli_train = load_dataset('kor_nli', 'multi_nli') for idx, example in enumerate(kor_nli_train['train']): if example['gold_label'] is None: print(idx, example) break # 16835 {'gold_label': None, 'sentence1': '그는 전쟁 전에 가벼운 벅스킨 암말을 가지고 달리기 위해 우유처럼 하얀 스터드를 넣었다.\t전쟁 전에 다인종 여성들과 함께 있는 백인 남자가 있었다.\tentailment\n슬림은 재빨리 옷을 입었고, 순간적으로 미지근한 물을 뿌릴 수 있는 아침 세탁물을 기꺼이 가두었다.\t슬림은 직장에 늦었다.\tneutral\n뉴욕에서 그 식사를 해봤는데, 거기서 소고기의 멋진 소고기 부분을 요리하고 바베큐로 만든 널빤지 같은 걸 가져왔는데, 정말 대단해.\t그들이 거기서 요리하는 쇠고기는 역겹다. 거기서 절대 먹지 마라.\tcontradiction\n판매원의 죽음에서 브라이언 데네히... 크리스 켈리\t크리스 켈리는 세일즈맨의 죽음을 언급하지 않는다.\tcontradiction\n그러는 동안 요리사는 그냥 화가 났어.\t스튜가 끓는 동안 요리사는 화가 났다.\tneutral\n마지막 로마의 맹공격 전날 밤, 900명 이상의 유대인 수비수들이 로마인들에게 그들을 사로잡는 승리를 주기 보다는 대량 자살을 저질렀다.\t로마인들이 그들의 포획에 승리하도록 내버려두기 보다는 900명의 유대인 수비수들이 자살했다.\tentailment\n앞으로 발사하라.\t발사.\tneutral\n그리고 당신은 우리 땅이 에이커에 있다는 것을 알고 있다. 우리 사람들은 어떤 것이 얼마나 많은지 이해하지 못할 것이다.\t모든 사람들은 우리의 측정 시스템이 어떻게 작동하는지 알고 이해합니다.\tcontradiction\n주미게스\tJumiyges는 도시의 이름이다.\tneutral\n사람은 자기 민족을 돌봐야 한다...\t사람은 조국에 공감해야 한다.\tentailment\n또한 PDD 63은 정부와 업계가 컴퓨터 기반 공격에 대해 경고하고 방어할 준비를 더 잘할 수 있도록 시스템 취약성, 위협, 침입 및 이상에 대한 정보를 공유하는 메커니즘을 수립하는 것이 중요하다는 것을 인식했습니다.\t정보 전송 프로토콜을 만드는 것은 중요하다.\tentailment\n카페 링 피아자 델라 레퓌블리카 바로 남쪽에는 피렌체가 알려진 짚 제품 때문에 한때 스트로 마켓이라고 불렸던 16세기 로지아인 메르카토 누오보(Mercato Nuovo)가 있다.\t피아자 델라 레퓌블리카에는 카페가 많이 있다.\tentailment\n우리가 여기 있는 한 트린판이 뭘 주웠는지 살펴봐야겠어\t우리는 트린판이 무엇을 주웠는지 보는 데 시간을 낭비하지 않을 것이다.\tcontradiction\n그러나 켈트족의 문화적 기반을 가진 아일랜드 교회는 유럽의 신흥 기독교 세계와는 다르게 발전했고 결국 로마와 중앙집권적 행정으로 대체되었다.\t아일랜드 교회에는 켈트족의 기지가 있었다.\tentailment\n글쎄, 넌 선택의 여지가 없어\t글쎄, 너에겐 많은 선택권이 있어.\tcontradiction\n사실, 공식적인 보장은 없다.\t내가 산 물건에 대한 보증이 없었다.\tneutral\n덜 활기차긴 하지만, 안시와 르 부르젯의 사랑스러운 호수에서도 삶은 똑같이 상쾌하다.\t안시와 르 부르겟에서는 호수에서의 활동이 서두르고 바쁜 분위기를 연출한다.\tcontradiction\n그의 여행 소식이 이미 퍼졌다면 공격 소식도 퍼졌을 테지만 마을에서는 전혀 공황의 기미가 보이지 않았다.\t그는 왜 마을이 당황하지 않았는지 알 수 없었다.\tneutral\n과거에는 죽음의 위협이 토지의 판매를 막는 데 거의 도움이 되지 않았다.\t토지 판매는 어떠한 위협도 교환하지 않고 이루어진다.\tcontradiction\n어느 시점에 이르러 나는 지금 다가오는 새로운 것들과 나오는 많은 새로운 것들이 내가 늙어가고 있다고 말하는 시대로 접어들고 있다.\t나는 여전히 내가 보는 모든 새로운 것을 사랑한다.\tcontradiction\n뉴스위크는 물리학자들이 경기장 행사에서 고속도로의 자동차 교통과 보행자 교통을 개선하기 위해 새떼의 움직임을 연구하고 있다고 말한다.\t고속도로의 자동차 교통 흐름을 개선하는 것은 물리학자들이 새떼를 연구하는 이유 중 하나이다.\tentailment\n얼마나 다른가? 그는 잠시 말을 멈추었다가 말을 이었다.\t그는 그 소녀가 어디에 있는지 알고 싶었다.\tentailment\n글쎄, 그에게 너무 많은 것을 주지마.\t그는 훨씬 더 많은 것을 요구할 것이다.\tneutral\n아무리 그의 창작물이 완벽해 보인다고 해도, 그들을 믿는 것은 아마도 좋은 생각이 아닐 것이다.\'\t도자기를 잘 만든다고 해서 누군가를 믿는 것은 아마 좋지 않을 것이다.\tneutral\n버스틀링 그란 비아(Bustling Gran Via)는 호텔, 상점, 극장, 나이트클럽, 카페 등이 어우러져 산책과 창가를 볼 수 있다.\tGran Via는 호텔, 상점, 극장, 나이트클럽, 카페의 번화한 조합이다.\tentailment\n정부 인쇄소\t그 사무실은 워싱턴에 위치해 있다.\tneutral\n실제 문화 전쟁이 어디 있는지 알고 싶다면 학원을 잊어버리고 실리콘 밸리와 레드몬드를 생각해 보라.\t실제 문화 전쟁은 레드몬드에서 일어난다.\tentailment\n그리고 페니실린을 주지 않기 위해 침대 위에 올려놨어\t그녀의 방에는 페니실린이 없다는 징후가 전혀 없었다.\tcontradiction\nL.A.의 야외 시장을 활보하는 것은 맛있고 저렴한 그루브를 잡고, 끝이 없는 햇빛을 즐기고, 신선한 농산물, 꽃, 향, 그리고 가젯 갈로어를 구입하면서 현지인들과 어울릴 수 있는 훌륭한 방법이다.\tLA의 야외 시장을 돌아다니는 것은 시간 낭비다.\tcontradiction\n안나는 밖으로 나와 안도의 한숨을 내쉬었다. 단 한 번, 그리고 마리후아쉬 맛의 술로 끝내자는 결심이 뒤섞여 있었다.\t안나는 안심하고 마리후아쉬 맛의 술을 다 마시기로 결심했다.\tentailment\n5 월에 Vajpayee는 핵 실험의 성공적인 완료를 발표했는데, 인도인들은 주권의 표시로 선전했지만 이웃 국가와 서구와의 인도 관계를 복잡하게 만들 수 있습니다.\t인도는 성공적인 핵실험을 한 적이 없다.\tcontradiction\n플라노 원에서 보통 얼마나 많은 것을 가지고 있는가?\t저 사람들 중에 플라노 원에 가본 사람 있어?\tcontradiction\n그것의 전체적인 형태의 우아함은 운하 건너편에서 가장 잘 볼 수 있다. 왜냐하면, 로마에 있는 성 베드로처럼, 돔은 길쭉한 본당 뒤로 더 가까운 곳에 사라지기 때문이다.\t성 베드로의 길쭉한 본당은 돔을 가린다.\tentailment\n당신은 수틴이 살에 강박적인 기쁨을 가지고 누드를 그릴 것이라고 생각하겠지만, 아니오; 그는 그의 모든 경력에서 단 한 점만을 그렸고, 그것은 사소한 그림이다.\t그는 그것이 그를 불편하게 만들었기 때문에 하나만 그렸다.\tneutral\n이 인상적인 풍경은 원래 나포 레온이 루브르 박물관의 침실에서 볼 수 있도록 계획되었는데, 그 당시 궁전이었습니다.\t나폴레옹은 그의 모든 궁전에 있는 그의 침실에서 보는 경치에 많은 관심을 가졌다.\tneutral\n그는 우리에게 문 열쇠를 건네주고는 급히 떠났다.\t그는 긴장해서 우리에게 열쇠를 빨리 주었다.\tneutral\n위원회는 또한 최종 규칙을 OMB에 제출했다.\t위원회는 또한 이 규칙을 다른 그룹에 제출했지만 최종 규칙은 OMB가 평가하기 위한 것이 었습니다.\tneutral\n정원가게에 가보면 올리비아의 복제 화합물 같은 유쾌한 이름을 가진 제품들을 찾을 수 있을 겁니다.이 제품이 뿌리를 내리도록 돕기 위해 촬영의 절단된 끝에 덩크슛을 하는 호르몬의 혼합물이죠.\t정원 가꾸기 가게의 제품들은 종종 그들의 목적을 설명하기 위해 기술적으로나 과학적으로 파생된 이름(올리비아의 복제 화합물처럼)을 부여받는다.\tneutral\n스타는 스틸 자신이나 왜 그녀의 이야기를 바꾸었는지에 훨씬 더 관심이 있을 것이다.\t스틸의 이야기는 조금도 변하지 않았다.\tcontradiction\n남편과의 마지막 대결로 맥티어는 노라의 변신을 너무나 능숙하게 예고해 왔기 때문에, 그녀에게는 당황스러울 정도로 갑작스러운 것처럼 보이지만, 우리에게는 감정적으로 불가피해 보인다.\t노라의 변신은 분명하고 필연적이었다.\tcontradiction\n이집트 최남단 도시인 아스완은 오랜 역사를 통해 중요한 역할을 해왔다.\t아스완은 이집트 국경 바로 위에 위치해 있습니다.\tneutral\n그러나 훨씬 더 우아한 건축적 터치는 신성한 춤인 Bharatanatyam에서 수행된 108 가지 기본 포즈를 시바 패널에서 볼 수 있습니다.\t패널에 대한 시바의 묘사는 일반적인 모티브다.\tneutral\n호화롭게 심어진 계단식 정원은 이탈리아 형식의 가장 훌륭한 앙상블 중 하나입니다.\t아름다운 정원과 희귀한 꽃꽂이 모두 이탈리아의 형식적인 스타일을 보여준다.\tneutral\n음, 그랬으면 좋았을 텐데\t나는 그것을 다르게 할 기회를 몹시 갈망한다.\tentailment\n폐허가 된 성의 기슭에 자리잡고 있는 예쁜 중세 도시 케이서스버그는 노벨 평화상 수상자 알버트 슈바이처(1875년)의 출생지로 널리 알려져 있다.\t알버트 슈바이처는 둘 다 케이서스버그 마을에 있었다.\tentailment\n고감도는 문제가 있는 대부분의 환자들이 발견될 것을 보장한다.\t장비 민감도는 문제 탐지와 관련이 없습니다.\tcontradiction\n오늘은 확실히 반바지 같은 날이었어\t오늘 사무실에 있는 모든 사람들은 반바지를 입었다.\tneutral\n못생긴 턱시도를 입고.\t그것은 분홍색과 주황색입니다.\tneutral\n이주 노동 수용소 오 마이 갓 그들은 판지 상자에 산다.\t노동 수용소에는 판지 상자에 사는 이주 노동자들의 사진이 있다.\tneutral\n그래, 그가 전 세계를 여행한 후에 그런 거야\t그것은 사람들의 세계 여행을 따른다.\tentailment\n건너편에 크고 큰 참나무 몇 그루가 있다.\t우리는 여기 오크나 어떤 종류의 미국 나무도 없다.\tcontradiction\nFort-de-France에서 출발하는 자동차나 여객선으로, 당신은 안세 ? 바다 포도가 그늘을 제공하는 쾌적한 갈색 모래 해변과 피크닉 테이블, 어린이 미끄럼틀, 식당이 있는 안느에 도착할 수 있다.\t프랑스 요새에서 자동차나 페리를 타고 안세로 갈 수 있다.\tentailment\n그리고 그것은 앨라배마주가 예상했던 대로 예산에서 50만 달러를 삭감하지 않을 것이라는 것을 의미한다.\t앨라배마 주는 예산 삭감을 하지 않았다. 왜냐하면 그렇게 하는 것에 대한 초기 정당성이 정밀 조사에 맞서지 않았기 때문이다.\tneutral\n알았어 먼저 어 .. 어 .. 노인이나 가족을 요양원에 보내는 것에 대해 어떻게 생각하니?\t가족을 요양원에 보내서 사는 것에 대해 어떻게 생각하는지 알 필요가 없다.\tcontradiction\n나머지는 너에게 달렸어.\t나머지는 너에게 달렸지만 시간이 많지 않다.\tneutral\n음-흠, 3월에 햇볕에 타는 것에 대해 걱정하면 안 된다는 것을 알고 있는 3월이야.\t3월은 그렇게 덥지 않다.\tneutral\n그리고 어, 그런 작은 것들로 다시 시작해봐. 아직 훨씬 싸. 어, 그 특별한 모델 차는 150달러야.\t그 모형차는 4천 달러가 든다.\tcontradiction\n내일 돌아가야 한다면, 칼이 말했다.\t돌아갈 수 없어. 오늘은 안 돼. 내일은 안 돼. 절대 안 돼." 칼이 말했다.', 'sentence2': 'contradiction'} ``` 2. (Optional) Preferred to change the name of the features for the compatibility with `run_glue.py` in 🤗 Transformers - `kor_nli` dataset has same data structure of multi_nli, xnli - Changing the name of features and the feature type of 'gold_label' to ClassLabel might be helpful ```python def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "premise": datasets.Value("string"), "hypothesis": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]), } ), ``` If you don't mind, I would like to fix this. Thanks!
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/821/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/821/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/817
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/817/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/817/comments
https://api.github.com/repos/huggingface/datasets/issues/817/events
https://github.com/huggingface/datasets/issues/817
739,145,369
MDU6SXNzdWU3MzkxNDUzNjk=
817
Add MRQA dataset
{ "login": "VictorSanh", "id": 16107619, "node_id": "MDQ6VXNlcjE2MTA3NjE5", "avatar_url": "https://avatars.githubusercontent.com/u/16107619?v=4", "gravatar_id": "", "url": "https://api.github.com/users/VictorSanh", "html_url": "https://github.com/VictorSanh", "followers_url": "https://api.github.com/users/VictorSanh/followers", "following_url": "https://api.github.com/users/VictorSanh/following{/other_user}", "gists_url": "https://api.github.com/users/VictorSanh/gists{/gist_id}", "starred_url": "https://api.github.com/users/VictorSanh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/VictorSanh/subscriptions", "organizations_url": "https://api.github.com/users/VictorSanh/orgs", "repos_url": "https://api.github.com/users/VictorSanh/repos", "events_url": "https://api.github.com/users/VictorSanh/events{/privacy}", "received_events_url": "https://api.github.com/users/VictorSanh/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[ "Done! cf #1117 and #1022" ]
2020-11-09T15:52:19
2020-12-04T15:44:42
2020-12-04T15:44:41
MEMBER
null
null
null
## Adding a Dataset - **Name:** MRQA - **Description:** Collection of different (subsets of) QA datasets all converted to the same format to evaluate out-of-domain generalization (the datasets come from different domains, distributions, etc.). Some datasets are used for training and others are used for evaluation. This dataset was collected as part of MRQA 2019's shared task - **Paper:** https://arxiv.org/abs/1910.09753 - **Data:** https://github.com/mrqa/MRQA-Shared-Task-2019 - **Motivation:** Out-of-domain generalization is becoming (has become) a de-factor evaluation for NLU systems Instructions to add a new dataset can be found [here](https://huggingface.co/docs/datasets/share_dataset.html).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/817/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/817/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/816
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/816/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/816/comments
https://api.github.com/repos/huggingface/datasets/issues/816/events
https://github.com/huggingface/datasets/issues/816
739,102,686
MDU6SXNzdWU3MzkxMDI2ODY=
816
[Caching] Dill globalvars() output order is not deterministic and can cause cache issues.
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "To show the issue:\r\n```\r\npython -c \"from datasets.fingerprint import Hasher; a=[]; func = lambda : len(a); print(Hasher.hash(func))\"\r\n```\r\ndoesn't always return the same ouput since `globs` is a dictionary with \"a\" and \"len\" as keys but sometimes not in the same order" ]
2020-11-09T15:01:20
2020-11-11T15:20:50
2020-11-11T15:20:50
MEMBER
null
null
null
Dill uses `dill.detect.globalvars` to get the globals used by a function in a recursive dump. `globalvars` returns a dictionary of all the globals that a dumped function needs. However the order of the keys in this dict is not deterministic and can cause caching issues. To fix that one could register an implementation of dill's `save_function` in the `datasets` pickler that sorts the globals keys before dumping a function.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/816/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/816/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/815
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/815/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/815/comments
https://api.github.com/repos/huggingface/datasets/issues/815/events
https://github.com/huggingface/datasets/issues/815
738,842,092
MDU6SXNzdWU3Mzg4NDIwOTI=
815
Is dataset iterative or not?
{ "login": "rabeehkarimimahabadi", "id": 73364383, "node_id": "MDQ6VXNlcjczMzY0Mzgz", "avatar_url": "https://avatars.githubusercontent.com/u/73364383?v=4", "gravatar_id": "", "url": "https://api.github.com/users/rabeehkarimimahabadi", "html_url": "https://github.com/rabeehkarimimahabadi", "followers_url": "https://api.github.com/users/rabeehkarimimahabadi/followers", "following_url": "https://api.github.com/users/rabeehkarimimahabadi/following{/other_user}", "gists_url": "https://api.github.com/users/rabeehkarimimahabadi/gists{/gist_id}", "starred_url": "https://api.github.com/users/rabeehkarimimahabadi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rabeehkarimimahabadi/subscriptions", "organizations_url": "https://api.github.com/users/rabeehkarimimahabadi/orgs", "repos_url": "https://api.github.com/users/rabeehkarimimahabadi/repos", "events_url": "https://api.github.com/users/rabeehkarimimahabadi/events{/privacy}", "received_events_url": "https://api.github.com/users/rabeehkarimimahabadi/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[ "Hello !\r\nCould you give more details ?\r\n\r\nIf you mean iter through one dataset then yes, `Dataset` object does implement the `__iter__` method so you can use \r\n```python\r\nfor example in dataset:\r\n # do something\r\n```\r\n\r\nIf you want to iter through several datasets you can first concatenate them\r\n```python\r\nfrom datasets import concatenate_datasets\r\n\r\nnew_dataset = concatenate_datasets([dataset1, dataset2])\r\n```\r\nLet me know if this helps !", "Hi Huggingface/Datasets team,\nI want to use the datasets inside Seq2SeqDataset here\nhttps://github.com/huggingface/transformers/blob/master/examples/seq2seq/utils.py\nand there I need to return back each line from the datasets and I am not\nsure how to access each line and implement this?\nIt seems it also has get_item attribute? so I was not sure if this is\niterative dataset? or if this is non-iterable datasets?\nthanks.\n\n\n\nOn Mon, Nov 9, 2020 at 10:18 AM Quentin Lhoest <[email protected]>\nwrote:\n\n> Hello !\n> Could you give more details ?\n>\n> If you mean iter through one dataset then yes, Dataset object does\n> implement the __iter__ method so you can use\n>\n> for example in dataset:\n> # do something\n>\n> If you want to iter through several datasets you can first concatenate them\n>\n> from datasets import concatenate_datasets\n> new_dataset = concatenate_datasets([dataset1, dataset2])\n>\n> Let me know if this helps !\n>\n> —\n> You are receiving this because you authored the thread.\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/815#issuecomment-723881199>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/ARPXHHYRLSSYW6NZN2HYDBTSO6XV5ANCNFSM4TPB7OWA>\n> .\n>\n", "could you tell me please if datasets also has __getitem__ any idea on how\nto integrate it with Seq2SeqDataset is appreciated thanks\n\nOn Mon, Nov 9, 2020 at 10:22 AM Rabeeh Karimi Mahabadi <[email protected]>\nwrote:\n\n> Hi Huggingface/Datasets team,\n> I want to use the datasets inside Seq2SeqDataset here\n> https://github.com/huggingface/transformers/blob/master/examples/seq2seq/utils.py\n> and there I need to return back each line from the datasets and I am not\n> sure how to access each line and implement this?\n> It seems it also has get_item attribute? so I was not sure if this is\n> iterative dataset? or if this is non-iterable datasets?\n> thanks.\n>\n>\n>\n> On Mon, Nov 9, 2020 at 10:18 AM Quentin Lhoest <[email protected]>\n> wrote:\n>\n>> Hello !\n>> Could you give more details ?\n>>\n>> If you mean iter through one dataset then yes, Dataset object does\n>> implement the __iter__ method so you can use\n>>\n>> for example in dataset:\n>> # do something\n>>\n>> If you want to iter through several datasets you can first concatenate\n>> them\n>>\n>> from datasets import concatenate_datasets\n>> new_dataset = concatenate_datasets([dataset1, dataset2])\n>>\n>> Let me know if this helps !\n>>\n>> —\n>> You are receiving this because you authored the thread.\n>> Reply to this email directly, view it on GitHub\n>> <https://github.com/huggingface/datasets/issues/815#issuecomment-723881199>,\n>> or unsubscribe\n>> <https://github.com/notifications/unsubscribe-auth/ARPXHHYRLSSYW6NZN2HYDBTSO6XV5ANCNFSM4TPB7OWA>\n>> .\n>>\n>\n", "`datasets.Dataset` objects implement indeed `__getitem__`. It returns a dictionary with one field per column.\r\n\r\nWe've not added the integration of the datasets library for the seq2seq utilities yet. The current seq2seq utilities are based on text files.\r\n\r\nHowever as soon as you have a `datasets.Dataset` with columns \"tgt_texts\" (str), \"src_texts\" (str), and \"id\" (int) you should be able to implement your own Seq2SeqDataset class that wraps your dataset object. Does that make sense to you ?", "Hi\nI am sorry for asking it multiple times but I am not getting the dataloader\ntype, could you confirm if the dataset library returns back an iterable\ntype dataloader or a mapping type one where one has access to __getitem__,\nin the former case, one can iterate with __iter__, and how I can configure\nit to return the data back as the iterative type? I am dealing with\nlarge-scale datasets and I do not want to bring all in memory\nthanks for your help\nBest regards\nRabeeh\n\nOn Mon, Nov 9, 2020 at 11:17 AM Quentin Lhoest <[email protected]>\nwrote:\n\n> datasets.Dataset objects implement indeed __getitem__. It returns a\n> dictionary with one field per column.\n>\n> We've not added the integration of the datasets library for the seq2seq\n> utilities yet. The current seq2seq utilities are based on text files.\n>\n> However as soon as you have a datasets.Dataset with columns \"tgt_texts\"\n> (str), \"src_texts\" (str), and \"id\" (int) you should be able to implement\n> your own Seq2SeqDataset class that wraps your dataset object. Does that\n> make sense ?\n>\n> —\n> You are receiving this because you authored the thread.\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/815#issuecomment-723915556>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/ARPXHHYOC22EM7F666BZSOTSO66R3ANCNFSM4TPB7OWA>\n> .\n>\n", "`datasets.Dataset` objects are both iterative and mapping types: it has both `__iter__` and `__getitem__`\r\nFor example you can do\r\n```python\r\nfor example in dataset:\r\n # do something\r\n```\r\nor\r\n```python\r\nfor i in range(len(dataset)):\r\n example = dataset[i]\r\n # do something\r\n```\r\nWhen you do that, one and only one example is loaded into memory at a time.", "Hi there, \r\nHere is what I am trying, this is not working for me in map-style datasets, could you please tell me how to use datasets with being able to access ___getitem__ ? could you assist me please correcting this example? I need map-style datasets which is formed from concatenation of two datasets from your library. thanks \r\n\r\n\r\n```\r\nimport datasets\r\ndataset1 = load_dataset(\"squad\", split=\"train[:10]\")\r\ndataset1 = dataset1.map(lambda example: {\"src_texts\": \"question: {0} context: {1} \".format(\r\n example[\"question\"], example[\"context\"]),\r\n \"tgt_texts\": example[\"answers\"][\"text\"][0]}, remove_columns=dataset1.column_names)\r\ndataset2 = load_dataset(\"imdb\", split=\"train[:10]\")\r\ndataset2 = dataset2.map(lambda example: {\"src_texts\": \"imdb: \" + example[\"text\"],\r\n \"tgt_texts\": str(example[\"label\"])}, remove_columns=dataset2.column_names)\r\ntrain_dataset = datasets.concatenate_datasets([dataset1, dataset2])\r\ntrain_dataset.set_format(type='torch', columns=['src_texts', 'tgt_texts'])\r\ndataloader = torch.utils.data.DataLoader(train_dataset, batch_size=32)\r\nfor id, batch in enumerate(dataloader):\r\n print(batch)\r\n\r\n```", "closed since I found this response on the issue https://github.com/huggingface/datasets/issues/469" ]
2020-11-09T09:11:48
2020-11-10T10:50:03
2020-11-10T10:50:03
NONE
null
null
null
Hi I want to use your library for large-scale training, I am not sure if this is implemented as iterative datasets or not? could you provide me with example how I can use datasets as iterative datasets? thanks
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/815/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/815/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/814
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/814/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/814/comments
https://api.github.com/repos/huggingface/datasets/issues/814/events
https://github.com/huggingface/datasets/issues/814
738,500,443
MDU6SXNzdWU3Mzg1MDA0NDM=
814
Joining multiple datasets
{ "login": "rabeehkarimimahabadi", "id": 73364383, "node_id": "MDQ6VXNlcjczMzY0Mzgz", "avatar_url": "https://avatars.githubusercontent.com/u/73364383?v=4", "gravatar_id": "", "url": "https://api.github.com/users/rabeehkarimimahabadi", "html_url": "https://github.com/rabeehkarimimahabadi", "followers_url": "https://api.github.com/users/rabeehkarimimahabadi/followers", "following_url": "https://api.github.com/users/rabeehkarimimahabadi/following{/other_user}", "gists_url": "https://api.github.com/users/rabeehkarimimahabadi/gists{/gist_id}", "starred_url": "https://api.github.com/users/rabeehkarimimahabadi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rabeehkarimimahabadi/subscriptions", "organizations_url": "https://api.github.com/users/rabeehkarimimahabadi/orgs", "repos_url": "https://api.github.com/users/rabeehkarimimahabadi/repos", "events_url": "https://api.github.com/users/rabeehkarimimahabadi/events{/privacy}", "received_events_url": "https://api.github.com/users/rabeehkarimimahabadi/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[ "found a solution here https://discuss.pytorch.org/t/train-simultaneously-on-two-datasets/649/35, closed for now, thanks " ]
2020-11-08T16:19:30
2020-11-08T19:38:48
2020-11-08T19:38:48
NONE
null
null
null
Hi I have multiple iterative datasets from your library with different size and I want to join them in a way that each datasets is sampled equally, so smaller datasets more, larger one less, could you tell me how to implement this in pytorch? thanks
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/814/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/814/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/813
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/813/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/813/comments
https://api.github.com/repos/huggingface/datasets/issues/813/events
https://github.com/huggingface/datasets/issues/813
738,489,852
MDU6SXNzdWU3Mzg0ODk4NTI=
813
How to implement DistributedSampler with datasets
{ "login": "rabeehkarimimahabadi", "id": 73364383, "node_id": "MDQ6VXNlcjczMzY0Mzgz", "avatar_url": "https://avatars.githubusercontent.com/u/73364383?v=4", "gravatar_id": "", "url": "https://api.github.com/users/rabeehkarimimahabadi", "html_url": "https://github.com/rabeehkarimimahabadi", "followers_url": "https://api.github.com/users/rabeehkarimimahabadi/followers", "following_url": "https://api.github.com/users/rabeehkarimimahabadi/following{/other_user}", "gists_url": "https://api.github.com/users/rabeehkarimimahabadi/gists{/gist_id}", "starred_url": "https://api.github.com/users/rabeehkarimimahabadi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rabeehkarimimahabadi/subscriptions", "organizations_url": "https://api.github.com/users/rabeehkarimimahabadi/orgs", "repos_url": "https://api.github.com/users/rabeehkarimimahabadi/repos", "events_url": "https://api.github.com/users/rabeehkarimimahabadi/events{/privacy}", "received_events_url": "https://api.github.com/users/rabeehkarimimahabadi/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[ "Hi Apparently I need to shard the data and give one host a chunk, could you provide me please with examples on how to do it? I want to use it jointly with finetune_trainer.py in huggingface repo seq2seq examples. thanks. ", "Hey @rabeehkarimimahabadi I'm actually looking for the same feature. Did you manage to get somewhere?", "@rabeehkarimimahabadi need the same feature", "Hi! I think you can use the `accelerate` library for that, which implements distributed sampling." ]
2020-11-08T15:27:11
2022-10-05T12:54:23
2022-10-05T12:54:23
NONE
null
null
null
Hi, I am using your datasets to define my dataloaders, and I am training finetune_trainer.py in huggingface repo on them. I need a distributedSampler to be able to train the models on TPUs being able to distribute the load across the TPU cores. Could you tell me how I can implement the distribued sampler when using datasets in which datasets are iterative? To give you more context, I have multiple of datasets and I need to write sampler for this case. thanks.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/813/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/813/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/812
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/812/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/812/comments
https://api.github.com/repos/huggingface/datasets/issues/812/events
https://github.com/huggingface/datasets/issues/812
738,340,217
MDU6SXNzdWU3MzgzNDAyMTc=
812
Too much logging
{ "login": "dspoka", "id": 6183050, "node_id": "MDQ6VXNlcjYxODMwNTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6183050?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dspoka", "html_url": "https://github.com/dspoka", "followers_url": "https://api.github.com/users/dspoka/followers", "following_url": "https://api.github.com/users/dspoka/following{/other_user}", "gists_url": "https://api.github.com/users/dspoka/gists{/gist_id}", "starred_url": "https://api.github.com/users/dspoka/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dspoka/subscriptions", "organizations_url": "https://api.github.com/users/dspoka/orgs", "repos_url": "https://api.github.com/users/dspoka/repos", "events_url": "https://api.github.com/users/dspoka/events{/privacy}", "received_events_url": "https://api.github.com/users/dspoka/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi ! Thanks for reporting :) \r\nI agree these one should be hidden when the logging level is warning, we'll fix that", "+1, the amount of logging is excessive.\r\n\r\nMost of it indeed comes from `filelock.py`, though there are occasionally messages from other sources too. Below is an example (all of these messages were logged after I already called `datasets.logging.set_verbosity_error()`)\r\n\r\n```\r\nI1109 21:26:01.742688 139785006901056 filelock.py:318] Lock 139778216292192 released on /home/kitaev/.cache/huggingface/datasets/9ed4f2e133395826175a892c70611f68522c7bc61a35476e8b51a31afb76e4bf.e6f3e3f3e3875a07469d1cfd32e16e1d06b149616b11eef2d081c43d515b492d.py.lock\r\nI1109 21:26:01.747898 139785006901056 filelock.py:274] Lock 139778216290176 acquired on /home/kitaev/.cache/huggingface/datasets/_home_kitaev_.cache_huggingface_datasets_glue_mnli_1.0.0_7c99657241149a24692c402a5c3f34d4c9f1df5ac2e4c3759fadea38f6cb29c4.lock\r\nI1109 21:26:01.748258 139785006901056 filelock.py:318] Lock 139778216290176 released on /home/kitaev/.cache/huggingface/datasets/_home_kitaev_.cache_huggingface_datasets_glue_mnli_1.0.0_7c99657241149a24692c402a5c3f34d4c9f1df5ac2e4c3759fadea38f6cb29c4.lock\r\nI1109 21:26:01.748412 139785006901056 filelock.py:274] Lock 139778215853024 acquired on /home/kitaev/.cache/huggingface/datasets/_home_kitaev_.cache_huggingface_datasets_glue_mnli_1.0.0_7c99657241149a24692c402a5c3f34d4c9f1df5ac2e4c3759fadea38f6cb29c4.lock\r\nI1109 21:26:01.748497 139785006901056 filelock.py:318] Lock 139778215853024 released on /home/kitaev/.cache/huggingface/datasets/_home_kitaev_.cache_huggingface_datasets_glue_mnli_1.0.0_7c99657241149a24692c402a5c3f34d4c9f1df5ac2e4c3759fadea38f6cb29c4.lock\r\nI1109 21:07:17.029001 140301730502464 filelock.py:274] Lock 140289479304360 acquired on /home/kitaev/.cache/huggingface/datasets/b16d3a04bf2cad1346896852bf120ba846ea1bebb1cd60255bb3a1a2bbcc3a67.ec871b06a00118091ec63eff0a641fddcb8d3c7cd52e855bbb2be28944df4b82.py.lock\r\nI1109 21:07:17.029341 140301730502464 filelock.py:318] Lock 140289479304360 released on /home/kitaev/.cache/huggingface/datasets/b16d3a04bf2cad1346896852bf120ba846ea1bebb1cd60255bb3a1a2bbcc3a67.ec871b06a00118091ec63eff0a641fddcb8d3c7cd52e855bbb2be28944df4b82.py.lock\r\nI1109 21:07:17.058964 140301730502464 filelock.py:274] Lock 140251889388120 acquired on /home/kitaev/.cache/huggingface/metrics/glue/mnli/default_experiment-1-0.arrow.lock\r\nI1109 21:07:17.060933 140301730502464 filelock.py:318] Lock 140251889388120 released on /home/kitaev/.cache/huggingface/metrics/glue/mnli/default_experiment-1-0.arrow.lock\r\nI1109 21:07:17.061067 140301730502464 filelock.py:274] Lock 140296072521488 acquired on /home/kitaev/.cache/huggingface/metrics/glue/mnli/default_experiment-1-0.arrow.lock\r\nI1109 21:07:17.069736 140301730502464 metric.py:400] Removing /home/kitaev/.cache/huggingface/metrics/glue/mnli/default_experiment-1-0.arrow\r\nI1109 21:07:17.069949 140301730502464 filelock.py:318] Lock 140296072521488 released on /home/kitaev/.cache/huggingface/metrics/glue/mnli/default_experiment-1-0.arrow.lock\r\n```", "So how to solve this problem?", "In the latest version of the lib the logs about locks are at the DEBUG level so you won't see them by default.\r\nAlso `set_verbosity_warning` does take into account these logs now.\r\nCan you try to update the lib ?\r\n```\r\npip install --upgrade datasets\r\n```", "Thanks. For some reason I have to use the older version. Is that possible I can fix this by some surface-level trick?\r\n\r\nI'm still using 1.13 version datasets.", "On older versions you can use\r\n```python\r\nimport logging\r\n\r\nlogging.getLogger(\"filelock\").setLevel(logging.WARNING)\r\n```", "Whoa Thank you! It works!" ]
2020-11-07T23:56:30
2021-01-26T14:31:34
2020-11-16T17:06:42
NONE
null
null
null
I'm doing this in the beginning of my script: from datasets.utils import logging as datasets_logging datasets_logging.set_verbosity_warning() but I'm still getting these logs: [2020-11-07 15:45:41,908][filelock][INFO] - Lock 139958278886176 acquired on /home/username/.cache/huggingface/datasets/cfe20ffaa80ef1c145a0a210d5b9cdce2b60002831e6ed0edc7ab9275d6f0d48.1bd4ccbce9de3dad0698d84674a19d6cc66a84db736a6398110bd196795dde7e.py.lock [2020-11-07 15:45:41,909][filelock][INFO] - Lock 139958278886176 released on /home/username/.cache/huggingface/datasets/cfe20ffaa80ef1c145a0a210d5b9cdce2b60002831e6ed0edc7ab9275d6f0d48.1bd4ccbce9de3dad0698d84674a19d6cc66a84db736a6398110bd196795dde7e.py.lock using datasets version = 1.1.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/812/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/812/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/811
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/811/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/811/comments
https://api.github.com/repos/huggingface/datasets/issues/811/events
https://github.com/huggingface/datasets/issues/811
738,280,132
MDU6SXNzdWU3MzgyODAxMzI=
811
nlp viewer error
{ "login": "jc-hou", "id": 30210529, "node_id": "MDQ6VXNlcjMwMjEwNTI5", "avatar_url": "https://avatars.githubusercontent.com/u/30210529?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jc-hou", "html_url": "https://github.com/jc-hou", "followers_url": "https://api.github.com/users/jc-hou/followers", "following_url": "https://api.github.com/users/jc-hou/following{/other_user}", "gists_url": "https://api.github.com/users/jc-hou/gists{/gist_id}", "starred_url": "https://api.github.com/users/jc-hou/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jc-hou/subscriptions", "organizations_url": "https://api.github.com/users/jc-hou/orgs", "repos_url": "https://api.github.com/users/jc-hou/repos", "events_url": "https://api.github.com/users/jc-hou/events{/privacy}", "received_events_url": "https://api.github.com/users/jc-hou/received_events", "type": "User", "site_admin": false }
[ { "id": 2107841032, "node_id": "MDU6TGFiZWwyMTA3ODQxMDMy", "url": "https://api.github.com/repos/huggingface/datasets/labels/nlp-viewer", "name": "nlp-viewer", "color": "94203D", "default": false, "description": "" } ]
closed
false
null
[]
null
[ "and also for 'blog_authorship_corpus'\r\nhttps://huggingface.co/nlp/viewer/?dataset=blog_authorship_corpus\r\n![image](https://user-images.githubusercontent.com/30210529/98557329-5c182800-22a4-11eb-9b01-5b910fb8fcd4.png)\r\n", "Is this the problem of my local computer or ??", "Related to:\r\n- #673" ]
2020-11-07T17:08:58
2022-02-15T10:51:44
2022-02-14T15:24:20
NONE
null
null
null
Hello, when I select amazon_us_reviews in nlp viewer, it shows error. https://huggingface.co/nlp/viewer/?dataset=amazon_us_reviews ![image](https://user-images.githubusercontent.com/30210529/98447334-4aa81200-2124-11eb-9dca-82c3ab34ccc2.png)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/811/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/811/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/809
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/809/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/809/comments
https://api.github.com/repos/huggingface/datasets/issues/809/events
https://github.com/huggingface/datasets/issues/809
737,832,701
MDU6SXNzdWU3Mzc4MzI3MDE=
809
Add Google Taskmaster dataset
{ "login": "yjernite", "id": 10469459, "node_id": "MDQ6VXNlcjEwNDY5NDU5", "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yjernite", "html_url": "https://github.com/yjernite", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "organizations_url": "https://api.github.com/users/yjernite/orgs", "repos_url": "https://api.github.com/users/yjernite/repos", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "received_events_url": "https://api.github.com/users/yjernite/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[ "Hey @yjernite. Was going to start working on this but found taskmaster 1,2 & 3 in the datasets library already so think this can be closed now?", "You are absolutely right :) \r\n\r\nClosed by https://github.com/huggingface/datasets/pull/1193 https://github.com/huggingface/datasets/pull/1197 https://github.com/huggingface/datasets/pull/1213" ]
2020-11-06T15:10:41
2021-04-20T13:09:26
2021-04-20T13:09:26
MEMBER
null
null
null
## Adding a Dataset - **Name:** Taskmaster - **Description:** A large dataset of task-oriented dialogue with annotated goals (55K dialogues covering entertainment and travel reservations) - **Paper:** https://arxiv.org/abs/1909.05358 - **Data:** https://github.com/google-research-datasets/Taskmaster - **Motivation:** One of few annotated datasets of this size for goal-oriented dialogue Instructions to add a new dataset can be found [here](https://huggingface.co/docs/datasets/share_dataset.html).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/809/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/809/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/807
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/807/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/807/comments
https://api.github.com/repos/huggingface/datasets/issues/807/events
https://github.com/huggingface/datasets/issues/807
737,509,954
MDU6SXNzdWU3Mzc1MDk5NTQ=
807
load_dataset for LOCAL CSV files report CONNECTION ERROR
{ "login": "shexuan", "id": 25664170, "node_id": "MDQ6VXNlcjI1NjY0MTcw", "avatar_url": "https://avatars.githubusercontent.com/u/25664170?v=4", "gravatar_id": "", "url": "https://api.github.com/users/shexuan", "html_url": "https://github.com/shexuan", "followers_url": "https://api.github.com/users/shexuan/followers", "following_url": "https://api.github.com/users/shexuan/following{/other_user}", "gists_url": "https://api.github.com/users/shexuan/gists{/gist_id}", "starred_url": "https://api.github.com/users/shexuan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shexuan/subscriptions", "organizations_url": "https://api.github.com/users/shexuan/orgs", "repos_url": "https://api.github.com/users/shexuan/repos", "events_url": "https://api.github.com/users/shexuan/events{/privacy}", "received_events_url": "https://api.github.com/users/shexuan/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi !\r\nThe url works on my side.\r\n\r\nIs the url working in your navigator ?\r\nAre you connected to internet ? Does your network block access to `raw.githubusercontent.com` ?", "> Hi !\r\n> The url works on my side.\r\n> \r\n> Is the url working in your navigator ?\r\n> Are you connected to internet ? Does your network block access to `raw.githubusercontent.com` ?\r\n\r\nI tried another server, it's working now. Thanks a lot.\r\n\r\nAnd I'm curious about why download things from \"github\" when I load dataset from local files ? Dose datasets work if my network crashed?", "It seems my network frequently crashed so most time it cannot work.", "\r\n\r\n\r\n> > Hi !\r\n> > The url works on my side.\r\n> > Is the url working in your navigator ?\r\n> > Are you connected to internet ? Does your network block access to `raw.githubusercontent.com` ?\r\n> \r\n> I tried another server, it's working now. Thanks a lot.\r\n> \r\n> And I'm curious about why download things from \"github\" when I load dataset from local files ? Dose datasets work if my network crashed?\r\n\r\nI download the scripts `https://raw.githubusercontent.com/huggingface/datasets/1.1.2/datasets/csv/csv.py` and move it to the package dir `*/datasets/` solved the problem. Could you please put the file `datasets/datasets/csv/csv.py` to `datasets/src/datasets/`? \r\n\r\nThanks :D", "hello, how did you solve this problems?\r\n\r\n> > > Hi !\r\n> > > The url works on my side.\r\n> > > Is the url working in your navigator ?\r\n> > > Are you connected to internet ? Does your network block access to `raw.githubusercontent.com` ?\r\n> > \r\n> > \r\n> > I tried another server, it's working now. Thanks a lot.\r\n> > And I'm curious about why download things from \"github\" when I load dataset from local files ? Dose datasets work if my network crashed?\r\n> \r\n> I download the scripts `https://raw.githubusercontent.com/huggingface/datasets/1.1.2/datasets/csv/csv.py` and move it to the package dir `*/datasets/` solved the problem. Could you please put the file `datasets/datasets/csv/csv.py` to `datasets/src/datasets/`?\r\n> \r\n> Thanks :D\r\n\r\nhello, I tried this. but it still failed. how do you fix this error?", "> hello, how did you solve this problems?\r\n> \r\n> > > > Hi !\r\n> > > > The url works on my side.\r\n> > > > Is the url working in your navigator ?\r\n> > > > Are you connected to internet ? Does your network block access to `raw.githubusercontent.com` ?\r\n> > > \r\n> > > \r\n> > > I tried another server, it's working now. Thanks a lot.\r\n> > > And I'm curious about why download things from \"github\" when I load dataset from local files ? Dose datasets work if my network crashed?\r\n> > \r\n> > \r\n> > I download the scripts `https://raw.githubusercontent.com/huggingface/datasets/1.1.2/datasets/csv/csv.py` and move it to the package dir `*/datasets/` solved the problem. Could you please put the file `datasets/datasets/csv/csv.py` to `datasets/src/datasets/`?\r\n> > Thanks :D\r\n> \r\n> hello, I tried this. but it still failed. how do you fix this error?\r\n\r\n你把那个脚本下载到你本地安装目录下,然后 `load_dataset(csv_script_path, data_fiels)`\r\n\r\n", "> > hello, how did you solve this problems?\r\n> > > > > Hi !\r\n> > > > > The url works on my side.\r\n> > > > > Is the url working in your navigator ?\r\n> > > > > Are you connected to internet ? Does your network block access to `raw.githubusercontent.com` ?\r\n> > > > \r\n> > > > \r\n> > > > I tried another server, it's working now. Thanks a lot.\r\n> > > > And I'm curious about why download things from \"github\" when I load dataset from local files ? Dose datasets work if my network crashed?\r\n> > > \r\n> > > \r\n> > > I download the scripts `https://raw.githubusercontent.com/huggingface/datasets/1.1.2/datasets/csv/csv.py` and move it to the package dir `*/datasets/` solved the problem. Could you please put the file `datasets/datasets/csv/csv.py` to `datasets/src/datasets/`?\r\n> > > Thanks :D\r\n> > \r\n> > \r\n> > hello, I tried this. but it still failed. how do you fix this error?\r\n> \r\n> 你把那个脚本下载到你本地安装目录下,然后 `load_dataset(csv_script_path, data_fiels)`\r\n\r\n好的好的!解决了,感谢感谢!!!", "> \r\n> \r\n> > hello, how did you solve this problems?\r\n> > > > > Hi !\r\n> > > > > The url works on my side.\r\n> > > > > Is the url working in your navigator ?\r\n> > > > > Are you connected to internet ? Does your network block access to `raw.githubusercontent.com` ?\r\n> > > > \r\n> > > > \r\n> > > > I tried another server, it's working now. Thanks a lot.\r\n> > > > And I'm curious about why download things from \"github\" when I load dataset from local files ? Dose datasets work if my network crashed?\r\n> > > \r\n> > > \r\n> > > I download the scripts `https://raw.githubusercontent.com/huggingface/datasets/1.1.2/datasets/csv/csv.py` and move it to the package dir `*/datasets/` solved the problem. Could you please put the file `datasets/datasets/csv/csv.py` to `datasets/src/datasets/`?\r\n> > > Thanks :D\r\n> > \r\n> > \r\n> > hello, I tried this. but it still failed. how do you fix this error?\r\n> \r\n> 你把那个脚本下载到你本地安装目录下,然后 `load_dataset(csv_script_path, data_fiels)`\r\n\r\n我照着做了,然后报错。\r\nValueError: unable to parse C:/Software/Anaconda/envs/ptk_gpu2/Lib/site-packages/datasets\\dataset_infos.json as a URL or as a local path\r\n\r\n`---------------------------------------------------------------------------\r\nValueError Traceback (most recent call last)\r\n<ipython-input-5-fd2106a3f053> in <module>\r\n----> 1 dataset = load_dataset('C:/Software/Anaconda/envs/ptk_gpu2/Lib/site-packages/datasets/csv.py', data_files='./test.csv', delimiter=',', autogenerate_column_names=False)\r\n\r\nC:\\Software\\Anaconda\\envs\\ptk_gpu2\\lib\\site-packages\\datasets\\load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, save_infos, script_version, **config_kwargs)\r\n 588 # Download/copy dataset processing script\r\n 589 module_path, hash = prepare_module(\r\n--> 590 path, script_version=script_version, download_config=download_config, download_mode=download_mode, dataset=True\r\n 591 )\r\n 592 \r\n\r\nC:\\Software\\Anaconda\\envs\\ptk_gpu2\\lib\\site-packages\\datasets\\load.py in prepare_module(path, script_version, download_config, download_mode, dataset, force_local_path, **download_kwargs)\r\n 296 local_dataset_infos_path = cached_path(\r\n 297 dataset_infos,\r\n--> 298 download_config=download_config,\r\n 299 )\r\n 300 except (FileNotFoundError, ConnectionError):\r\n\r\nC:\\Software\\Anaconda\\envs\\ptk_gpu2\\lib\\site-packages\\datasets\\utils\\file_utils.py in cached_path(url_or_filename, download_config, **download_kwargs)\r\n 316 else:\r\n 317 # Something unknown\r\n--> 318 raise ValueError(\"unable to parse {} as a URL or as a local path\".format(url_or_filename))\r\n 319 \r\n 320 if download_config.extract_compressed_file and output_path is not None:\r\n\r\nValueError: unable to parse C:/Software/Anaconda/envs/ptk_gpu2/Lib/site-packages/datasets\\dataset_infos.json as a URL or as a local path\r\n\r\n`", "I also experienced this issue this morning. Looks like something specific to windows.\r\nI'm working on a fix", "I opened a PR @wn1652400018", "> \r\n> \r\n> I opened a PR @wn1652400018\r\n\r\nThanks you!, It works very well." ]
2020-11-06T06:33:04
2021-01-11T01:30:27
2020-11-14T05:30:34
NONE
null
null
null
## load_dataset for LOCAL CSV files report CONNECTION ERROR - **Description:** A local demo csv file: ``` import pandas as pd import numpy as np from datasets import load_dataset import torch import transformers df = pd.DataFrame(np.arange(1200).reshape(300,4)) df.to_csv('test.csv', header=False, index=False) print('datasets version: ', datasets.__version__) print('pytorch version: ', torch.__version__) print('transformers version: ', transformers.__version__) # output: datasets version: 1.1.2 pytorch version: 1.5.0 transformers version: 3.2.0 ``` when I load data through `dataset`: ``` dataset = load_dataset('csv', data_files='./test.csv', delimiter=',', autogenerate_column_names=False) ``` Error infos: ``` ConnectionError Traceback (most recent call last) <ipython-input-17-bbdadb9a0c78> in <module> ----> 1 dataset = load_dataset('csv', data_files='./test.csv', delimiter=',', autogenerate_column_names=False) ~/.conda/envs/py36/lib/python3.6/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, save_infos, script_version, **config_kwargs) 588 # Download/copy dataset processing script 589 module_path, hash = prepare_module( --> 590 path, script_version=script_version, download_config=download_config, download_mode=download_mode, dataset=True 591 ) 592 ~/.conda/envs/py36/lib/python3.6/site-packages/datasets/load.py in prepare_module(path, script_version, download_config, download_mode, dataset, force_local_path, **download_kwargs) 266 file_path = hf_github_url(path=path, name=name, dataset=dataset, version=script_version) 267 try: --> 268 local_path = cached_path(file_path, download_config=download_config) 269 except FileNotFoundError: 270 if script_version is not None: ~/.conda/envs/py36/lib/python3.6/site-packages/datasets/utils/file_utils.py in cached_path(url_or_filename, download_config, **download_kwargs) 306 user_agent=download_config.user_agent, 307 local_files_only=download_config.local_files_only, --> 308 use_etag=download_config.use_etag, 309 ) 310 elif os.path.exists(url_or_filename): ~/.conda/envs/py36/lib/python3.6/site-packages/datasets/utils/file_utils.py in get_from_cache(url, cache_dir, force_download, proxies, etag_timeout, resume_download, user_agent, local_files_only, use_etag) 473 elif response is not None and response.status_code == 404: 474 raise FileNotFoundError("Couldn't find file at {}".format(url)) --> 475 raise ConnectionError("Couldn't reach {}".format(url)) 476 477 # Try a second time ConnectionError: Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/1.1.2/datasets/csv/csv.py ``` And I try to connect to the site with requests: ``` import requests requests.head("https://raw.githubusercontent.com/huggingface/datasets/1.1.2/datasets/csv/csv.py") ``` Similarly Error occurs: ``` --------------------------------------------------------------------------- ConnectionRefusedError Traceback (most recent call last) ~/.conda/envs/py36/lib/python3.6/site-packages/urllib3/connection.py in _new_conn(self) 159 conn = connection.create_connection( --> 160 (self._dns_host, self.port), self.timeout, **extra_kw 161 ) ~/.conda/envs/py36/lib/python3.6/site-packages/urllib3/util/connection.py in create_connection(address, timeout, source_address, socket_options) 83 if err is not None: ---> 84 raise err 85 ~/.conda/envs/py36/lib/python3.6/site-packages/urllib3/util/connection.py in create_connection(address, timeout, source_address, socket_options) 73 sock.bind(source_address) ---> 74 sock.connect(sa) 75 return sock ConnectionRefusedError: [Errno 111] Connection refused During handling of the above exception, another exception occurred: NewConnectionError Traceback (most recent call last) ~/.conda/envs/py36/lib/python3.6/site-packages/urllib3/connectionpool.py in urlopen(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, **response_kw) 676 headers=headers, --> 677 chunked=chunked, 678 ) ~/.conda/envs/py36/lib/python3.6/site-packages/urllib3/connectionpool.py in _make_request(self, conn, method, url, timeout, chunked, **httplib_request_kw) 380 try: --> 381 self._validate_conn(conn) 382 except (SocketTimeout, BaseSSLError) as e: ~/.conda/envs/py36/lib/python3.6/site-packages/urllib3/connectionpool.py in _validate_conn(self, conn) 975 if not getattr(conn, "sock", None): # AppEngine might not have `.sock` --> 976 conn.connect() 977 ~/.conda/envs/py36/lib/python3.6/site-packages/urllib3/connection.py in connect(self) 307 # Add certificate verification --> 308 conn = self._new_conn() 309 hostname = self.host ~/.conda/envs/py36/lib/python3.6/site-packages/urllib3/connection.py in _new_conn(self) 171 raise NewConnectionError( --> 172 self, "Failed to establish a new connection: %s" % e 173 ) NewConnectionError: <urllib3.connection.HTTPSConnection object at 0x7f3cceda5e48>: Failed to establish a new connection: [Errno 111] Connection refused During handling of the above exception, another exception occurred: MaxRetryError Traceback (most recent call last) ~/.conda/envs/py36/lib/python3.6/site-packages/requests/adapters.py in send(self, request, stream, timeout, verify, cert, proxies) 448 retries=self.max_retries, --> 449 timeout=timeout 450 ) ~/.conda/envs/py36/lib/python3.6/site-packages/urllib3/connectionpool.py in urlopen(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, **response_kw) 724 retries = retries.increment( --> 725 method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] 726 ) ~/.conda/envs/py36/lib/python3.6/site-packages/urllib3/util/retry.py in increment(self, method, url, response, error, _pool, _stacktrace) 438 if new_retry.is_exhausted(): --> 439 raise MaxRetryError(_pool, url, error or ResponseError(cause)) 440 MaxRetryError: HTTPSConnectionPool(host='raw.githubusercontent.com', port=443): Max retries exceeded with url: /huggingface/datasets/1.1.2/datasets/csv/csv.py (Caused by NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7f3cceda5e48>: Failed to establish a new connection: [Errno 111] Connection refused',)) During handling of the above exception, another exception occurred: ConnectionError Traceback (most recent call last) <ipython-input-20-18cc3eb4a049> in <module> 1 import requests 2 ----> 3 requests.head("https://raw.githubusercontent.com/huggingface/datasets/1.1.2/datasets/csv/csv.py") ~/.conda/envs/py36/lib/python3.6/site-packages/requests/api.py in head(url, **kwargs) 102 103 kwargs.setdefault('allow_redirects', False) --> 104 return request('head', url, **kwargs) 105 106 ~/.conda/envs/py36/lib/python3.6/site-packages/requests/api.py in request(method, url, **kwargs) 59 # cases, and look like a memory leak in others. 60 with sessions.Session() as session: ---> 61 return session.request(method=method, url=url, **kwargs) 62 63 ~/.conda/envs/py36/lib/python3.6/site-packages/requests/sessions.py in request(self, method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json) 528 } 529 send_kwargs.update(settings) --> 530 resp = self.send(prep, **send_kwargs) 531 532 return resp ~/.conda/envs/py36/lib/python3.6/site-packages/requests/sessions.py in send(self, request, **kwargs) 641 642 # Send the request --> 643 r = adapter.send(request, **kwargs) 644 645 # Total elapsed time of the request (approximately) ~/.conda/envs/py36/lib/python3.6/site-packages/requests/adapters.py in send(self, request, stream, timeout, verify, cert, proxies) 514 raise SSLError(e, request=request) 515 --> 516 raise ConnectionError(e, request=request) 517 518 except ClosedPoolError as e: ConnectionError: HTTPSConnectionPool(host='raw.githubusercontent.com', port=443): Max retries exceeded with url: /huggingface/datasets/1.1.2/datasets/csv/csv.py (Caused by NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7f3cceda5e48>: Failed to establish a new connection: [Errno 111] Connection refused',)) ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/807/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/807/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/806
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/806/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/806/comments
https://api.github.com/repos/huggingface/datasets/issues/806/events
https://github.com/huggingface/datasets/issues/806
737,215,430
MDU6SXNzdWU3MzcyMTU0MzA=
806
Quail dataset urls are out of date
{ "login": "ngdodd", "id": 4889636, "node_id": "MDQ6VXNlcjQ4ODk2MzY=", "avatar_url": "https://avatars.githubusercontent.com/u/4889636?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ngdodd", "html_url": "https://github.com/ngdodd", "followers_url": "https://api.github.com/users/ngdodd/followers", "following_url": "https://api.github.com/users/ngdodd/following{/other_user}", "gists_url": "https://api.github.com/users/ngdodd/gists{/gist_id}", "starred_url": "https://api.github.com/users/ngdodd/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ngdodd/subscriptions", "organizations_url": "https://api.github.com/users/ngdodd/orgs", "repos_url": "https://api.github.com/users/ngdodd/repos", "events_url": "https://api.github.com/users/ngdodd/events{/privacy}", "received_events_url": "https://api.github.com/users/ngdodd/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi ! Thanks for reporting.\r\nWe should fix the urls and use quail 1.3.\r\nIf you want to contribute feel free to fix the urls and open a PR :) ", "Done! PR [https://github.com/huggingface/datasets/pull/820](https://github.com/huggingface/datasets/pull/820)\r\n\r\nUpdated links and also regenerated the metadata and dummy data for v1.3 in order to pass verifications as described here: [https://huggingface.co/docs/datasets/share_dataset.html#adding-tests-and-metadata-to-the-dataset](https://huggingface.co/docs/datasets/share_dataset.html#adding-tests-and-metadata-to-the-dataset). ", "Closing since #820 is merged.\r\nThanks again for fixing the urls :)" ]
2020-11-05T19:40:19
2020-11-10T14:02:51
2020-11-10T14:02:51
CONTRIBUTOR
null
null
null
<h3>Code</h3> ``` from datasets import load_dataset quail = load_dataset('quail') ``` <h3>Error</h3> ``` FileNotFoundError: Couldn't find file at https://raw.githubusercontent.com/text-machine-lab/quail/master/quail_v1.2/xml/ordered/quail_1.2_train.xml ``` As per [quail v1.3 commit](https://github.com/text-machine-lab/quail/commit/506501cfa34d9ec6c042d31026ba6fea6bcec8ff) it looks like the location and suggested ordering has changed. In [https://github.com/huggingface/datasets/blob/master/datasets/quail/quail.py#L52-L58](https://github.com/huggingface/datasets/blob/master/datasets/quail/quail.py#L52-L58) the quail v1.2 datasets are being pointed to, which don't exist anymore.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/806/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/806/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/805
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/805/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/805/comments
https://api.github.com/repos/huggingface/datasets/issues/805/events
https://github.com/huggingface/datasets/issues/805
737,019,360
MDU6SXNzdWU3MzcwMTkzNjA=
805
On loading a metric from datasets, I get the following error
{ "login": "laibamehnaz", "id": 36405283, "node_id": "MDQ6VXNlcjM2NDA1Mjgz", "avatar_url": "https://avatars.githubusercontent.com/u/36405283?v=4", "gravatar_id": "", "url": "https://api.github.com/users/laibamehnaz", "html_url": "https://github.com/laibamehnaz", "followers_url": "https://api.github.com/users/laibamehnaz/followers", "following_url": "https://api.github.com/users/laibamehnaz/following{/other_user}", "gists_url": "https://api.github.com/users/laibamehnaz/gists{/gist_id}", "starred_url": "https://api.github.com/users/laibamehnaz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/laibamehnaz/subscriptions", "organizations_url": "https://api.github.com/users/laibamehnaz/orgs", "repos_url": "https://api.github.com/users/laibamehnaz/repos", "events_url": "https://api.github.com/users/laibamehnaz/events{/privacy}", "received_events_url": "https://api.github.com/users/laibamehnaz/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi ! We support only pyarrow > 0.17.1 so that we have access to the `PyExtensionType` object.\r\nCould you update pyarrow and try again ?\r\n```\r\npip install --upgrade pyarrow\r\n```" ]
2020-11-05T15:14:38
2022-02-14T15:32:59
2022-02-14T15:32:59
NONE
null
null
null
`from datasets import load_metric` `metric = load_metric('bleurt')` Traceback: 210 class _ArrayXDExtensionType(pa.PyExtensionType): 211 212 ndims: int = None AttributeError: module 'pyarrow' has no attribute 'PyExtensionType' Any help will be appreciated. Thank you.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/805/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/805/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/804
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/804/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/804/comments
https://api.github.com/repos/huggingface/datasets/issues/804/events
https://github.com/huggingface/datasets/issues/804
736,858,507
MDU6SXNzdWU3MzY4NTg1MDc=
804
Empty output/answer in TriviaQA test set (both in 'kilt_tasks' and 'trivia_qa')
{ "login": "PaulLerner", "id": 25532159, "node_id": "MDQ6VXNlcjI1NTMyMTU5", "avatar_url": "https://avatars.githubusercontent.com/u/25532159?v=4", "gravatar_id": "", "url": "https://api.github.com/users/PaulLerner", "html_url": "https://github.com/PaulLerner", "followers_url": "https://api.github.com/users/PaulLerner/followers", "following_url": "https://api.github.com/users/PaulLerner/following{/other_user}", "gists_url": "https://api.github.com/users/PaulLerner/gists{/gist_id}", "starred_url": "https://api.github.com/users/PaulLerner/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/PaulLerner/subscriptions", "organizations_url": "https://api.github.com/users/PaulLerner/orgs", "repos_url": "https://api.github.com/users/PaulLerner/repos", "events_url": "https://api.github.com/users/PaulLerner/events{/privacy}", "received_events_url": "https://api.github.com/users/PaulLerner/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "cc @yjernite is this expected ?", "Yes: TriviaQA has a private test set for the leaderboard [here](https://competitions.codalab.org/competitions/17208)\r\n\r\nFor the KILT training and validation portions, you need to link the examples from the TriviaQA dataset as detailed here:\r\nhttps://github.com/huggingface/datasets/blob/master/datasets/kilt_tasks/README.md", "Oh ok, I guess I read the paper too fast 😅, thank you for your answer!" ]
2020-11-05T11:38:01
2020-11-09T14:14:59
2020-11-09T14:14:58
CONTRIBUTOR
null
null
null
# The issue It's all in the title, it appears to be fine on the train and validation sets. Is there some kind of mapping to do like for the questions (see https://github.com/huggingface/datasets/blob/master/datasets/kilt_tasks/README.md) ? # How to reproduce ```py from datasets import load_dataset kilt_tasks = load_dataset("kilt_tasks") trivia_qa = load_dataset('trivia_qa', 'unfiltered.nocontext') # both in "kilt_tasks" In [18]: any([output['answer'] for output in kilt_tasks['test_triviaqa']['output']]) Out[18]: False # and "trivia_qa" In [13]: all([answer['value'] == '<unk>' for answer in trivia_qa['test']['answer']]) Out[13]: True # appears to be fine on the train and validation sets. In [14]: all([answer['value'] == '<unk>' for answer in trivia_qa['train']['answer']]) Out[14]: False In [15]: all([answer['value'] == '<unk>' for answer in trivia_qa['validation']['answer']]) Out[15]: False In [16]: any([output['answer'] for output in kilt_tasks['train_triviaqa']['output']]) Out[16]: True In [17]: any([output['answer'] for output in kilt_tasks['validation_triviaqa']['output']]) Out[17]: True ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/804/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/804/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/801
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/801/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/801/comments
https://api.github.com/repos/huggingface/datasets/issues/801/events
https://github.com/huggingface/datasets/issues/801
735,790,876
MDU6SXNzdWU3MzU3OTA4NzY=
801
How to join two datasets?
{ "login": "shangw-nvidia", "id": 66387198, "node_id": "MDQ6VXNlcjY2Mzg3MTk4", "avatar_url": "https://avatars.githubusercontent.com/u/66387198?v=4", "gravatar_id": "", "url": "https://api.github.com/users/shangw-nvidia", "html_url": "https://github.com/shangw-nvidia", "followers_url": "https://api.github.com/users/shangw-nvidia/followers", "following_url": "https://api.github.com/users/shangw-nvidia/following{/other_user}", "gists_url": "https://api.github.com/users/shangw-nvidia/gists{/gist_id}", "starred_url": "https://api.github.com/users/shangw-nvidia/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shangw-nvidia/subscriptions", "organizations_url": "https://api.github.com/users/shangw-nvidia/orgs", "repos_url": "https://api.github.com/users/shangw-nvidia/repos", "events_url": "https://api.github.com/users/shangw-nvidia/events{/privacy}", "received_events_url": "https://api.github.com/users/shangw-nvidia/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi this is also my question. thanks ", "Hi ! Currently the only way to add new fields to a dataset is by using `.map` and picking items from the other dataset\r\n", "Closing this one. Feel free to re-open if you have other questions about this issue.\r\n\r\nAlso linking another discussion about joining datasets: #853 " ]
2020-11-04T03:53:11
2020-12-23T14:02:58
2020-12-23T14:02:58
NONE
null
null
null
Hi, I'm wondering if it's possible to join two (preprocessed) datasets with the same number of rows but different labels? I'm currently trying to create paired sentences for BERT from `wikipedia/'20200501.en`, and I couldn't figure out a way to create a paired sentence using `.map()` where the second sentence is **not** the next sentence (i.e., from a different article) of the first sentence. Thanks!
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/801/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/801/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/798
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/798/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/798/comments
https://api.github.com/repos/huggingface/datasets/issues/798/events
https://github.com/huggingface/datasets/issues/798
735,518,805
MDU6SXNzdWU3MzU1MTg4MDU=
798
Cannot load TREC dataset: ConnectionError
{ "login": "kaletap", "id": 25740957, "node_id": "MDQ6VXNlcjI1NzQwOTU3", "avatar_url": "https://avatars.githubusercontent.com/u/25740957?v=4", "gravatar_id": "", "url": "https://api.github.com/users/kaletap", "html_url": "https://github.com/kaletap", "followers_url": "https://api.github.com/users/kaletap/followers", "following_url": "https://api.github.com/users/kaletap/following{/other_user}", "gists_url": "https://api.github.com/users/kaletap/gists{/gist_id}", "starred_url": "https://api.github.com/users/kaletap/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kaletap/subscriptions", "organizations_url": "https://api.github.com/users/kaletap/orgs", "repos_url": "https://api.github.com/users/kaletap/repos", "events_url": "https://api.github.com/users/kaletap/events{/privacy}", "received_events_url": "https://api.github.com/users/kaletap/received_events", "type": "User", "site_admin": false }
[ { "id": 2067388877, "node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug", "name": "dataset bug", "color": "2edb81", "default": false, "description": "A bug in a dataset script provided in the library" } ]
closed
false
null
[]
null
[ "Hi ! Indeed there's an issue with those links.\r\nWe should probably use the target urls of the redirections instead", "Hi, the same issue here, could you tell me how to download it through datasets? thanks ", "Same issue. ", "Actually it's already fixed on the master branch since #740 \r\nI'll do the 1.1.3 release soon", "Hi\nthanks, but I did tried to install from the pip install git+... and it does\nnot work for me,. thanks for the help. I have the same issue with wmt16,\n\"ro-en\"\nthanks.\nBest\nRabeeh\n\nOn Mon, Nov 16, 2020 at 10:29 AM Quentin Lhoest <[email protected]>\nwrote:\n\n> Actually it's already fixed on the master branch since #740\n> <https://github.com/huggingface/datasets/pull/740>\n> I'll do the 1.1.3 release soon\n>\n> —\n> You are receiving this because you commented.\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/798#issuecomment-727854736>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/ABP4ZCEUBJKPOCLABXCKMPDSQDWH3ANCNFSM4TJBUKSA>\n> .\n>\n", "I just tested on google colab using\r\n```python\r\n!pip install git+https://github.com/huggingface/datasets.git\r\nfrom datasets import load_dataset\r\nload_dataset(\"trec\")\r\n```\r\nand it works.\r\nCan you detail how you got the issue even when using the latest version on master ?\r\n\r\nAlso about wmt we'll look into it, thanks for reporting !", "I think the new url with .edu is also broken:\r\n```\r\nConnectionError: Couldn't reach https://cogcomp.seas.upenn.edu/Data/QA/QC/train_5500.label\r\n```\r\nCant download the dataset anymore.", "Hi ! The URL seems to work fine on my side, can you try again ?", "Forgot to update, i wrote an email to the webmaster of seas.upenn.edu because i couldnt reach the url on any machine. This was the answer:\r\n```\r\nThank you for your report. The server was offline for maintenance and is now available again.\r\n```\r\nGuess all back to normal now 🙂 " ]
2020-11-03T17:45:22
2022-02-14T15:34:22
2022-02-14T15:34:22
NONE
null
null
null
## Problem I cannot load "trec" dataset, it results with ConnectionError as shown below. I've tried on both Google Colab and locally. * `requests.head('http://cogcomp.org/Data/QA/QC/train_5500.label')` returns <Response [302]>. * `requests.head('http://cogcomp.org/Data/QA/QC/train_5500.label', allow_redirects=True)` raises `requests.exceptions.TooManyRedirects: Exceeded 30 redirects.` * Opening `http://cogcomp.org/Data/QA/QC/train_5500.label' in a browser works, but opens a different address * Increasing max_redirects to 100 doesn't help Also, while debugging I've seen that requesting 'https://storage.googleapis.com/huggingface-nlp/cache/datasets/trec/default/1.1.0/dataset_info.json' returns <Response [404]> before, but it doesn't raise any errors. Not sure if that's relevant. * datasets.__version__ == '1.1.2' * requests.__version__ == '2.24.0' ## Error trace ``` >>> import datasets >>> datasets.__version__ '1.1.2' >>> dataset = load_dataset("trec", split="train") Using custom data configuration default Downloading and preparing dataset trec/default (download: 350.79 KiB, generated: 403.39 KiB, post-processed: Unknown size, total: 754.18 KiB) to /home/przemyslaw/.cache/huggingface/datasets/trec/default/1.1.0/ca4248481ad244f235f4cf277186cad2ee8769f975119a2bbfc41b8932b88bd7... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/przemyslaw/.local/lib/python3.6/site-packages/datasets/load.py", line 611, in load_dataset ignore_verifications=ignore_verifications, File "/home/przemyslaw/.local/lib/python3.6/site-packages/datasets/builder.py", line 476, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/przemyslaw/.local/lib/python3.6/site-packages/datasets/builder.py", line 531, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/home/przemyslaw/.cache/huggingface/modules/datasets_modules/datasets/trec/ca4248481ad244f235f4cf277186cad2ee8769f975119a2bbfc41b8932b88bd7/trec.py", line 140, in _split_generators dl_files = dl_manager.download_and_extract(_URLs) File "/home/przemyslaw/.local/lib/python3.6/site-packages/datasets/utils/download_manager.py", line 254, in download_and_extract return self.extract(self.download(url_or_urls)) File "/home/przemyslaw/.local/lib/python3.6/site-packages/datasets/utils/download_manager.py", line 179, in download num_proc=download_config.num_proc, File "/home/przemyslaw/.local/lib/python3.6/site-packages/datasets/utils/py_utils.py", line 225, in map_nested _single_map_nested((function, obj, types, None, True)) for obj in tqdm(iterable, disable=disable_tqdm) File "/home/przemyslaw/.local/lib/python3.6/site-packages/datasets/utils/py_utils.py", line 225, in <listcomp> _single_map_nested((function, obj, types, None, True)) for obj in tqdm(iterable, disable=disable_tqdm) File "/home/przemyslaw/.local/lib/python3.6/site-packages/datasets/utils/py_utils.py", line 163, in _single_map_nested return function(data_struct) File "/home/przemyslaw/.local/lib/python3.6/site-packages/datasets/utils/file_utils.py", line 308, in cached_path use_etag=download_config.use_etag, File "/home/przemyslaw/.local/lib/python3.6/site-packages/datasets/utils/file_utils.py", line 475, in get_from_cache raise ConnectionError("Couldn't reach {}".format(url)) ConnectionError: Couldn't reach http://cogcomp.org/Data/QA/QC/train_5500.label ``` I would appreciate some suggestions here.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/798/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/798/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/797
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/797/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/797/comments
https://api.github.com/repos/huggingface/datasets/issues/797/events
https://github.com/huggingface/datasets/issues/797
735,420,332
MDU6SXNzdWU3MzU0MjAzMzI=
797
Token classification labels are strings and we don't have the list of labels
{ "login": "sgugger", "id": 35901082, "node_id": "MDQ6VXNlcjM1OTAxMDgy", "avatar_url": "https://avatars.githubusercontent.com/u/35901082?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sgugger", "html_url": "https://github.com/sgugger", "followers_url": "https://api.github.com/users/sgugger/followers", "following_url": "https://api.github.com/users/sgugger/following{/other_user}", "gists_url": "https://api.github.com/users/sgugger/gists{/gist_id}", "starred_url": "https://api.github.com/users/sgugger/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sgugger/subscriptions", "organizations_url": "https://api.github.com/users/sgugger/orgs", "repos_url": "https://api.github.com/users/sgugger/repos", "events_url": "https://api.github.com/users/sgugger/events{/privacy}", "received_events_url": "https://api.github.com/users/sgugger/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" }, { "id": 2067401494, "node_id": "MDU6TGFiZWwyMDY3NDAxNDk0", "url": "https://api.github.com/repos/huggingface/datasets/labels/Dataset%20discussion", "name": "Dataset discussion", "color": "72f99f", "default": false, "description": "Discussions on the datasets" } ]
closed
false
null
[]
null
[ "Indeed. Pinging @stefan-it here if he want to give an expert opinion :)", "Related is https://github.com/huggingface/datasets/pull/636", "Should definitely be a ClassLabel 👍 ", "Already done." ]
2020-11-03T15:33:30
2022-02-14T15:41:54
2022-02-14T15:41:53
CONTRIBUTOR
null
null
null
Not sure if this is an issue we want to fix or not, putting it here so it's not forgotten. Right now, in token classification datasets, the labels for NER, POS and the likes are typed as `Sequence` of `strings`, which is wrong in my opinion. These should be `Sequence` of `ClassLabel` or some types that gives easy access to the underlying labels. The main problem for preprocessing those datasets is that the list of possible labels is not stored inside the `Dataset` object which makes converting the labels to IDs quite difficult (you either have to know the list of labels in advance or run a full pass through the dataset to get the list of labels, the `unique` method being useless with the type `Sequence[str]`).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/797/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/797/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/795
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/795/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/795/comments
https://api.github.com/repos/huggingface/datasets/issues/795/events
https://github.com/huggingface/datasets/issues/795
735,198,265
MDU6SXNzdWU3MzUxOTgyNjU=
795
Descriptions of raw and processed versions of wikitext are inverted
{ "login": "fraboniface", "id": 16835358, "node_id": "MDQ6VXNlcjE2ODM1MzU4", "avatar_url": "https://avatars.githubusercontent.com/u/16835358?v=4", "gravatar_id": "", "url": "https://api.github.com/users/fraboniface", "html_url": "https://github.com/fraboniface", "followers_url": "https://api.github.com/users/fraboniface/followers", "following_url": "https://api.github.com/users/fraboniface/following{/other_user}", "gists_url": "https://api.github.com/users/fraboniface/gists{/gist_id}", "starred_url": "https://api.github.com/users/fraboniface/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fraboniface/subscriptions", "organizations_url": "https://api.github.com/users/fraboniface/orgs", "repos_url": "https://api.github.com/users/fraboniface/repos", "events_url": "https://api.github.com/users/fraboniface/events{/privacy}", "received_events_url": "https://api.github.com/users/fraboniface/received_events", "type": "User", "site_admin": false }
[ { "id": 2067388877, "node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug", "name": "dataset bug", "color": "2edb81", "default": false, "description": "A bug in a dataset script provided in the library" } ]
closed
false
null
[]
null
[ "Yes indeed ! Thanks for reporting", "Fixed by:\r\n- #3241" ]
2020-11-03T10:24:51
2022-02-14T15:46:21
2022-02-14T15:46:21
NONE
null
null
null
Nothing of importance, but it looks like the descriptions of wikitext-n-v1 and wikitext-n-raw-v1 are inverted for both n=2 and n=103. I just verified by loading them and the `<unk>` tokens are present in the non-raw versions, which confirms that it's a mere inversion of the descriptions and not of the datasets themselves. Also it would be nice if those descriptions appeared in the dataset explorer. https://github.com/huggingface/datasets/blob/87bd0864845ea0a1dd7167918dc5f341bf807bd3/datasets/wikitext/wikitext.py#L52
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/795/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/795/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/794
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/794/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/794/comments
https://api.github.com/repos/huggingface/datasets/issues/794/events
https://github.com/huggingface/datasets/issues/794
735,158,725
MDU6SXNzdWU3MzUxNTg3MjU=
794
self.options cannot be converted to a Python object for pickling
{ "login": "hzqjyyx", "id": 9635713, "node_id": "MDQ6VXNlcjk2MzU3MTM=", "avatar_url": "https://avatars.githubusercontent.com/u/9635713?v=4", "gravatar_id": "", "url": "https://api.github.com/users/hzqjyyx", "html_url": "https://github.com/hzqjyyx", "followers_url": "https://api.github.com/users/hzqjyyx/followers", "following_url": "https://api.github.com/users/hzqjyyx/following{/other_user}", "gists_url": "https://api.github.com/users/hzqjyyx/gists{/gist_id}", "starred_url": "https://api.github.com/users/hzqjyyx/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hzqjyyx/subscriptions", "organizations_url": "https://api.github.com/users/hzqjyyx/orgs", "repos_url": "https://api.github.com/users/hzqjyyx/repos", "events_url": "https://api.github.com/users/hzqjyyx/events{/privacy}", "received_events_url": "https://api.github.com/users/hzqjyyx/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
closed
false
null
[]
null
[ "Hi ! Thanks for reporting that's a bug on master indeed.\r\nWe'll fix that soon" ]
2020-11-03T09:27:34
2020-11-19T17:35:38
2020-11-19T17:35:38
NONE
null
null
null
Hi, Currently I am trying to load csv file with customized read_options. And the latest master seems broken if we pass the ReadOptions object. Here is a code snippet ```python from datasets import load_dataset from pyarrow.csv import ReadOptions load_dataset("csv", data_files=["out.csv"], read_options=ReadOptions(block_size=16*1024*1024)) ``` error is `self.options cannot be converted to a Python object for pickling` Would you mind to take a look? Thanks! ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-28-ab83fec2ded4> in <module> ----> 1 load_dataset("csv", data_files=["out.csv"], read_options=ReadOptions(block_size=16*1024*1024)) /tmp/datasets/src/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, save_infos, script_version, **config_kwargs) 602 hash=hash, 603 features=features, --> 604 **config_kwargs, 605 ) 606 /tmp/datasets/src/datasets/builder.py in __init__(self, cache_dir, name, hash, features, **config_kwargs) 162 name, 163 custom_features=features, --> 164 **config_kwargs, 165 ) 166 /tmp/datasets/src/datasets/builder.py in _create_builder_config(self, name, custom_features, **config_kwargs) 281 ) 282 else: --> 283 suffix = Hasher.hash(config_kwargs_to_add_to_suffix) 284 285 if builder_config.data_files is not None: /tmp/datasets/src/datasets/fingerprint.py in hash(cls, value) 51 return cls.dispatch[type(value)](cls, value) 52 else: ---> 53 return cls.hash_default(value) 54 55 def update(self, value): /tmp/datasets/src/datasets/fingerprint.py in hash_default(cls, value) 44 @classmethod 45 def hash_default(cls, value): ---> 46 return cls.hash_bytes(dumps(value)) 47 48 @classmethod /tmp/datasets/src/datasets/utils/py_utils.py in dumps(obj) 365 file = StringIO() 366 with _no_cache_fields(obj): --> 367 dump(obj, file) 368 return file.getvalue() 369 /tmp/datasets/src/datasets/utils/py_utils.py in dump(obj, file) 337 def dump(obj, file): 338 """pickle an object to a file""" --> 339 Pickler(file, recurse=True).dump(obj) 340 return 341 ~/.local/lib/python3.6/site-packages/dill/_dill.py in dump(self, obj) 444 raise PicklingError(msg) 445 else: --> 446 StockPickler.dump(self, obj) 447 stack.clear() # clear record of 'recursion-sensitive' pickled objects 448 return /usr/lib/python3.6/pickle.py in dump(self, obj) 407 if self.proto >= 4: 408 self.framer.start_framing() --> 409 self.save(obj) 410 self.write(STOP) 411 self.framer.end_framing() /usr/lib/python3.6/pickle.py in save(self, obj, save_persistent_id) 474 f = self.dispatch.get(t) 475 if f is not None: --> 476 f(self, obj) # Call unbound method with explicit self 477 return 478 ~/.local/lib/python3.6/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 931 # we only care about session the first pass thru 932 pickler._session = False --> 933 StockPickler.save_dict(pickler, obj) 934 log.info("# D2") 935 return /usr/lib/python3.6/pickle.py in save_dict(self, obj) 819 820 self.memoize(obj) --> 821 self._batch_setitems(obj.items()) 822 823 dispatch[dict] = save_dict /usr/lib/python3.6/pickle.py in _batch_setitems(self, items) 850 k, v = tmp[0] 851 save(k) --> 852 save(v) 853 write(SETITEM) 854 # else tmp is empty, and we're done /usr/lib/python3.6/pickle.py in save(self, obj, save_persistent_id) 494 reduce = getattr(obj, "__reduce_ex__", None) 495 if reduce is not None: --> 496 rv = reduce(self.proto) 497 else: 498 reduce = getattr(obj, "__reduce__", None) ~/.local/lib/python3.6/site-packages/pyarrow/_csv.cpython-36m-x86_64-linux-gnu.so in pyarrow._csv.ReadOptions.__reduce_cython__() TypeError: self.options cannot be converted to a Python object for pickling ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/794/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/794/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/792
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/792/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/792/comments
https://api.github.com/repos/huggingface/datasets/issues/792/events
https://github.com/huggingface/datasets/issues/792
734,693,652
MDU6SXNzdWU3MzQ2OTM2NTI=
792
KILT dataset: empty string in triviaqa input field
{ "login": "PaulLerner", "id": 25532159, "node_id": "MDQ6VXNlcjI1NTMyMTU5", "avatar_url": "https://avatars.githubusercontent.com/u/25532159?v=4", "gravatar_id": "", "url": "https://api.github.com/users/PaulLerner", "html_url": "https://github.com/PaulLerner", "followers_url": "https://api.github.com/users/PaulLerner/followers", "following_url": "https://api.github.com/users/PaulLerner/following{/other_user}", "gists_url": "https://api.github.com/users/PaulLerner/gists{/gist_id}", "starred_url": "https://api.github.com/users/PaulLerner/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/PaulLerner/subscriptions", "organizations_url": "https://api.github.com/users/PaulLerner/orgs", "repos_url": "https://api.github.com/users/PaulLerner/repos", "events_url": "https://api.github.com/users/PaulLerner/events{/privacy}", "received_events_url": "https://api.github.com/users/PaulLerner/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Just found out about https://github.com/huggingface/datasets/blob/master/datasets/kilt_tasks/README.md\r\n(Not very clear in https://huggingface.co/datasets/kilt_tasks links to http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md which is dead, closing the issue though :))" ]
2020-11-02T17:33:54
2020-11-05T10:34:59
2020-11-05T10:34:59
CONTRIBUTOR
null
null
null
# What happened Both train and test splits of the triviaqa dataset (part of the KILT benchmark) seem to have empty string in their input field (unlike the natural questions dataset, part of the same benchmark) # Versions KILT version is `1.0.0` `datasets` version is `1.1.2` [more here](https://gist.github.com/PaulLerner/3768c8d25f723edbac20d99b6a4056c1) # How to reproduce ```py In [1]: from datasets import load_dataset In [4]: dataset = load_dataset("kilt_tasks") # everything works fine, removed output for a better readibility Dataset kilt_tasks downloaded and prepared to /people/lerner/.cache/huggingface/datasets/kilt_tasks/all_tasks/1.0.0/821c4295a2c35db2847585918d9c47d7f028f1a26b78825d8e77cd3aeb2621a1. Subsequent calls will reuse this data. # empty string in triviaqa input field In [36]: dataset['train_triviaqa'][0] Out[36]: {'id': 'dpql_5197', 'input': '', 'meta': {'left_context': '', 'mention': '', 'obj_surface': {'text': []}, 'partial_evidence': {'end_paragraph_id': [], 'meta': [], 'section': [], 'start_paragraph_id': [], 'title': [], 'wikipedia_id': []}, 'right_context': '', 'sub_surface': {'text': []}, 'subj_aliases': {'text': []}, 'template_questions': {'text': []}}, 'output': {'answer': ['five £', '5 £', '£5', 'five £'], 'meta': [], 'provenance': [{'bleu_score': [1.0], 'end_character': [248], 'end_paragraph_id': [30], 'meta': [], 'section': ['Section::::Question of legal tender.\n'], 'start_character': [246], 'start_paragraph_id': [30], 'title': ['Banknotes of the pound sterling'], 'wikipedia_id': ['270680']}]}} In [35]: dataset['train_triviaqa']['input'][:10] Out[35]: ['', '', '', '', '', '', '', '', '', ''] # same with test set In [37]: dataset['test_triviaqa']['input'][:10] Out[37]: ['', '', '', '', '', '', '', '', '', ''] # works fine with natural questions In [34]: dataset['train_nq']['input'][:10] Out[34]: ['how i.met your mother who is the mother', 'who had the most wins in the nfl', 'who played mantis guardians of the galaxy 2', 'what channel is the premier league on in france', "god's not dead a light in the darkness release date", 'who is the current president of un general assembly', 'when do the eclipse supposed to take place', 'what is the name of the sea surrounding dubai', 'who holds the nba record for most points in a career', 'when did the new maze runner movie come out'] ``` Stay safe :)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/792/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/792/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/790
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/790/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/790/comments
https://api.github.com/repos/huggingface/datasets/issues/790/events
https://github.com/huggingface/datasets/issues/790
734,470,197
MDU6SXNzdWU3MzQ0NzAxOTc=
790
Error running pip install -e ".[dev]" on MacOS 10.13.6: faiss/python does not exist
{ "login": "shawwn", "id": 59632, "node_id": "MDQ6VXNlcjU5NjMy", "avatar_url": "https://avatars.githubusercontent.com/u/59632?v=4", "gravatar_id": "", "url": "https://api.github.com/users/shawwn", "html_url": "https://github.com/shawwn", "followers_url": "https://api.github.com/users/shawwn/followers", "following_url": "https://api.github.com/users/shawwn/following{/other_user}", "gists_url": "https://api.github.com/users/shawwn/gists{/gist_id}", "starred_url": "https://api.github.com/users/shawwn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shawwn/subscriptions", "organizations_url": "https://api.github.com/users/shawwn/orgs", "repos_url": "https://api.github.com/users/shawwn/repos", "events_url": "https://api.github.com/users/shawwn/events{/privacy}", "received_events_url": "https://api.github.com/users/shawwn/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "I saw that `faiss-cpu` 1.6.4.post2 was released recently to fix the installation on macos. It should work now", "Closing this one.\r\nFeel free to re-open if you still have issues" ]
2020-11-02T12:36:35
2020-11-10T14:05:02
2020-11-10T14:05:02
NONE
null
null
null
I was following along with https://huggingface.co/docs/datasets/share_dataset.html#adding-tests-and-metadata-to-the-dataset when I ran into this error. ```sh git clone https://github.com/huggingface/datasets cd datasets virtualenv venv -p python3 --system-site-packages source venv/bin/activate pip install -e ".[dev]" ``` ![image](https://user-images.githubusercontent.com/59632/97868518-72871800-1cd5-11eb-9cd2-37d4e9d20b39.png) ![image](https://user-images.githubusercontent.com/59632/97868592-977b8b00-1cd5-11eb-8f3c-0c409616149c.png) Python 3.7.7
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/790/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/790/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/788
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/788/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/788/comments
https://api.github.com/repos/huggingface/datasets/issues/788/events
https://github.com/huggingface/datasets/issues/788
734,136,124
MDU6SXNzdWU3MzQxMzYxMjQ=
788
failed to reuse cache
{ "login": "WangHexie", "id": 31768052, "node_id": "MDQ6VXNlcjMxNzY4MDUy", "avatar_url": "https://avatars.githubusercontent.com/u/31768052?v=4", "gravatar_id": "", "url": "https://api.github.com/users/WangHexie", "html_url": "https://github.com/WangHexie", "followers_url": "https://api.github.com/users/WangHexie/followers", "following_url": "https://api.github.com/users/WangHexie/following{/other_user}", "gists_url": "https://api.github.com/users/WangHexie/gists{/gist_id}", "starred_url": "https://api.github.com/users/WangHexie/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/WangHexie/subscriptions", "organizations_url": "https://api.github.com/users/WangHexie/orgs", "repos_url": "https://api.github.com/users/WangHexie/repos", "events_url": "https://api.github.com/users/WangHexie/events{/privacy}", "received_events_url": "https://api.github.com/users/WangHexie/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2020-11-02T02:42:36
2020-11-02T12:26:15
2020-11-02T12:26:15
NONE
null
null
null
I packed the `load_dataset ` in a function of class, and cached data in a directory. But when I import the class and use the function, the data still have to be downloaded again. The information (Downloading and preparing dataset cnn_dailymail/3.0.0 (download: 558.32 MiB, generated: 1.28 GiB, post-processed: Unknown size, total: 1.82 GiB) to ******) which logged to terminal shows the path is right to the cache directory, but the files still have to be downloaded again.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/788/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/788/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/786
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/786/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/786/comments
https://api.github.com/repos/huggingface/datasets/issues/786/events
https://github.com/huggingface/datasets/issues/786
733,761,717
MDU6SXNzdWU3MzM3NjE3MTc=
786
feat(dataset): multiprocessing _generate_examples
{ "login": "AmitMY", "id": 5757359, "node_id": "MDQ6VXNlcjU3NTczNTk=", "avatar_url": "https://avatars.githubusercontent.com/u/5757359?v=4", "gravatar_id": "", "url": "https://api.github.com/users/AmitMY", "html_url": "https://github.com/AmitMY", "followers_url": "https://api.github.com/users/AmitMY/followers", "following_url": "https://api.github.com/users/AmitMY/following{/other_user}", "gists_url": "https://api.github.com/users/AmitMY/gists{/gist_id}", "starred_url": "https://api.github.com/users/AmitMY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AmitMY/subscriptions", "organizations_url": "https://api.github.com/users/AmitMY/orgs", "repos_url": "https://api.github.com/users/AmitMY/repos", "events_url": "https://api.github.com/users/AmitMY/events{/privacy}", "received_events_url": "https://api.github.com/users/AmitMY/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "I agree that would be cool :)\r\nRight now the only distributed dataset builder is based on Apache Beam so you can use distributed processing frameworks like Dataflow, Spark, Flink etc. to build your dataset but it's not really well suited for single-worker parallel processing afaik", "`_generate_examples` can now be run in parallel thanks to https://github.com/huggingface/datasets/pull/5107. You can find more info [here](https://huggingface.co/docs/datasets/dataset_script#sharding)." ]
2020-10-31T16:52:16
2023-01-16T10:59:13
2023-01-16T10:59:13
CONTRIBUTOR
null
null
null
forking this out of #741, this issue is only regarding multiprocessing I'd love if there was a dataset configuration parameter `workers`, where when it is `1` it behaves as it does right now, and when its `>1` maybe `_generate_examples` can also get the `pool` and return an iterable using the pool. In my use case, I would instead of: ```python for datum in data: yield self.load_datum(datum) ``` do: ```python return pool.map(self.load_datum, data) ``` As the dataset in question, as an example, has **only** 7000 rows, and takes 10 seconds to load each row on average, it takes almost 20 hours to load the entire dataset. If this was a larger dataset (and many such datasets exist), it would take multiple days to complete. Using multiprocessing, for example, 40 cores, could speed it up dramatically. For this dataset, hopefully to fully load in under an hour.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/786/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/786/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/784
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/784/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/784/comments
https://api.github.com/repos/huggingface/datasets/issues/784/events
https://github.com/huggingface/datasets/issues/784
733,700,463
MDU6SXNzdWU3MzM3MDA0NjM=
784
Issue with downloading Wikipedia data for low resource language
{ "login": "SamuelCahyawijaya", "id": 2826602, "node_id": "MDQ6VXNlcjI4MjY2MDI=", "avatar_url": "https://avatars.githubusercontent.com/u/2826602?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SamuelCahyawijaya", "html_url": "https://github.com/SamuelCahyawijaya", "followers_url": "https://api.github.com/users/SamuelCahyawijaya/followers", "following_url": "https://api.github.com/users/SamuelCahyawijaya/following{/other_user}", "gists_url": "https://api.github.com/users/SamuelCahyawijaya/gists{/gist_id}", "starred_url": "https://api.github.com/users/SamuelCahyawijaya/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SamuelCahyawijaya/subscriptions", "organizations_url": "https://api.github.com/users/SamuelCahyawijaya/orgs", "repos_url": "https://api.github.com/users/SamuelCahyawijaya/repos", "events_url": "https://api.github.com/users/SamuelCahyawijaya/events{/privacy}", "received_events_url": "https://api.github.com/users/SamuelCahyawijaya/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hello, maybe you could ty to use another date for the wikipedia dump (see the available [dates](https://dumps.wikimedia.org/jvwiki) here for `jv`) ?", "@lhoestq\r\n\r\nI've tried `load_dataset('wikipedia', '20200501.zh', beam_runner='DirectRunner')` and got the same `FileNotFoundError` as @SamuelCahyawijaya.\r\n\r\nAlso, using another date (e.g. `load_dataset('wikipedia', '20201120.zh', beam_runner='DirectRunner')`) will give the following error message.\r\n\r\n```\r\nValueError: BuilderConfig 20201120.zh not found. Available: ['20200501.aa', '20200501.ab', '20200501.ace', '20200501.ady', '20200501.af', '20200501.ak', '20200501.als', '20200501.am', '20200501.an', '20200501.ang', '20200501.ar', '20200501.arc', '20200501.arz', '20200501.as', '20200501.ast', '20200501.atj', '20200501.av', '20200501.ay', '20200501.az', '20200501.azb', '20200501.ba', '20200501.bar', '20200501.bat-smg', '20200501.bcl', '20200501.be', '20200501.be-x-old', '20200501.bg', '20200501.bh', '20200501.bi', '20200501.bjn', '20200501.bm', '20200501.bn', '20200501.bo', '20200501.bpy', '20200501.br', '20200501.bs', '20200501.bug', '20200501.bxr', '20200501.ca', '20200501.cbk-zam', '20200501.cdo', '20200501.ce', '20200501.ceb', '20200501.ch', '20200501.cho', '20200501.chr', '20200501.chy', '20200501.ckb', '20200501.co', '20200501.cr', '20200501.crh', '20200501.cs', '20200501.csb', '20200501.cu', '20200501.cv', '20200501.cy', '20200501.da', '20200501.de', '20200501.din', '20200501.diq', '20200501.dsb', '20200501.dty', '20200501.dv', '20200501.dz', '20200501.ee', '20200501.el', '20200501.eml', '20200501.en', '20200501.eo', '20200501.es', '20200501.et', '20200501.eu', '20200501.ext', '20200501.fa', '20200501.ff', '20200501.fi', '20200501.fiu-vro', '20200501.fj', '20200501.fo', '20200501.fr', '20200501.frp', '20200501.frr', '20200501.fur', '20200501.fy', '20200501.ga', '20200501.gag', '20200501.gan', '20200501.gd', '20200501.gl', '20200501.glk', '20200501.gn', '20200501.gom', '20200501.gor', '20200501.got', '20200501.gu', '20200501.gv', '20200501.ha', '20200501.hak', '20200501.haw', '20200501.he', '20200501.hi', '20200501.hif', '20200501.ho', '20200501.hr', '20200501.hsb', '20200501.ht', '20200501.hu', '20200501.hy', '20200501.ia', '20200501.id', '20200501.ie', '20200501.ig', '20200501.ii', '20200501.ik', '20200501.ilo', '20200501.inh', '20200501.io', '20200501.is', '20200501.it', '20200501.iu', '20200501.ja', '20200501.jam', '20200501.jbo', '20200501.jv', '20200501.ka', '20200501.kaa', '20200501.kab', '20200501.kbd', '20200501.kbp', '20200501.kg', '20200501.ki', '20200501.kj', '20200501.kk', '20200501.kl', '20200501.km', '20200501.kn', '20200501.ko', '20200501.koi', '20200501.krc', '20200501.ks', '20200501.ksh', '20200501.ku', '20200501.kv', '20200501.kw', '20200501.ky', '20200501.la', '20200501.lad', '20200501.lb', '20200501.lbe', '20200501.lez', '20200501.lfn', '20200501.lg', '20200501.li', '20200501.lij', '20200501.lmo', '20200501.ln', '20200501.lo', '20200501.lrc', '20200501.lt', '20200501.ltg', '20200501.lv', '20200501.mai', '20200501.map-bms', '20200501.mdf', '20200501.mg', '20200501.mh', '20200501.mhr', '20200501.mi', '20200501.min', '20200501.mk', '20200501.ml', '20200501.mn', '20200501.mr', '20200501.mrj', '20200501.ms', '20200501.mt', '20200501.mus', '20200501.mwl', '20200501.my', '20200501.myv', '20200501.mzn', '20200501.na', '20200501.nah', '20200501.nap', '20200501.nds', '20200501.nds-nl', '20200501.ne', '20200501.new', '20200501.ng', '20200501.nl', '20200501.nn', '20200501.no', '20200501.nov', '20200501.nrm', '20200501.nso', '20200501.nv', '20200501.ny', '20200501.oc', '20200501.olo', '20200501.om', '20200501.or', '20200501.os', '20200501.pa', '20200501.pag', '20200501.pam', '20200501.pap', '20200501.pcd', '20200501.pdc', '20200501.pfl', '20200501.pi', '20200501.pih', '20200501.pl', '20200501.pms', '20200501.pnb', '20200501.pnt', '20200501.ps', '20200501.pt', '20200501.qu', '20200501.rm', '20200501.rmy', '20200501.rn', '20200501.ro', '20200501.roa-rup', '20200501.roa-tara', '20200501.ru', '20200501.rue', '20200501.rw', '20200501.sa', '20200501.sah', '20200501.sat', '20200501.sc', '20200501.scn', '20200501.sco', '20200501.sd', '20200501.se', '20200501.sg', '20200501.sh', '20200501.si', '20200501.simple', '20200501.sk', '20200501.sl', '20200501.sm', '20200501.sn', '20200501.so', '20200501.sq', '20200501.sr', '20200501.srn', '20200501.ss', '20200501.st', '20200501.stq', '20200501.su', '20200501.sv', '20200501.sw', '20200501.szl', '20200501.ta', '20200501.tcy', '20200501.te', '20200501.tet', '20200501.tg', '20200501.th', '20200501.ti', '20200501.tk', '20200501.tl', '20200501.tn', '20200501.to', '20200501.tpi', '20200501.tr', '20200501.ts', '20200501.tt', '20200501.tum', '20200501.tw', '20200501.ty', '20200501.tyv', '20200501.udm', '20200501.ug', '20200501.uk', '20200501.ur', '20200501.uz', '20200501.ve', '20200501.vec', '20200501.vep', '20200501.vi', '20200501.vls', '20200501.vo', '20200501.wa', '20200501.war', '20200501.wo', '20200501.wuu', '20200501.xal', '20200501.xh', '20200501.xmf', '20200501.yi', '20200501.yo', '20200501.za', '20200501.zea', '20200501.zh', '20200501.zh-classical', '20200501.zh-min-nan', '20200501.zh-yue', '20200501.zu']\r\n```\r\n\r\nI am pretty sure that `https://dumps.wikimedia.org/enwiki/20201120/dumpstatus.json` exists.", "Thanks for reporting I created a PR to make the custom config work (language=\"zh\", date=\"20201120\").", "@lhoestq Thanks!", "For posterity, here's how I got the data I needed: I needed Bengali, so I had to check which dumps are available here: https://dumps.wikimedia.org/bnwiki/ , then I ran:\r\n```\r\nload_dataset(\"wikipedia\", language=\"bn\", date=\"20211101\",\r\n beam_runner=\"DirectRunner\")\r\n```" ]
2020-10-31T11:40:00
2022-02-09T17:50:16
2020-11-25T15:42:13
NONE
null
null
null
Hi, I tried to download Sundanese and Javanese wikipedia data with the following snippet ``` jv_wiki = datasets.load_dataset('wikipedia', '20200501.jv', beam_runner='DirectRunner') su_wiki = datasets.load_dataset('wikipedia', '20200501.su', beam_runner='DirectRunner') ``` And I get the following error for these two languages: Javanese ``` FileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/jvwiki/20200501/dumpstatus.json ``` Sundanese ``` FileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/suwiki/20200501/dumpstatus.json ``` I found from https://github.com/huggingface/datasets/issues/577#issuecomment-688435085 that for small languages, they are directly downloaded and parsed from the Wikipedia dump site, but both of `https://dumps.wikimedia.org/jvwiki/20200501/dumpstatus.json` and `https://dumps.wikimedia.org/suwiki/20200501/dumpstatus.json` are no longer valid. Any suggestions on how to handle this issue? Thanks!
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/784/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/784/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/778
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/778/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/778/comments
https://api.github.com/repos/huggingface/datasets/issues/778/events
https://github.com/huggingface/datasets/issues/778
732,449,652
MDU6SXNzdWU3MzI0NDk2NTI=
778
Unexpected behavior when loading cached csv file?
{ "login": "dcfidalgo", "id": 15979778, "node_id": "MDQ6VXNlcjE1OTc5Nzc4", "avatar_url": "https://avatars.githubusercontent.com/u/15979778?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dcfidalgo", "html_url": "https://github.com/dcfidalgo", "followers_url": "https://api.github.com/users/dcfidalgo/followers", "following_url": "https://api.github.com/users/dcfidalgo/following{/other_user}", "gists_url": "https://api.github.com/users/dcfidalgo/gists{/gist_id}", "starred_url": "https://api.github.com/users/dcfidalgo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dcfidalgo/subscriptions", "organizations_url": "https://api.github.com/users/dcfidalgo/orgs", "repos_url": "https://api.github.com/users/dcfidalgo/repos", "events_url": "https://api.github.com/users/dcfidalgo/events{/privacy}", "received_events_url": "https://api.github.com/users/dcfidalgo/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi ! Thanks for reporting.\r\nThe same issue was reported in #730 (but with the encodings instead of the delimiter). It was fixed by #770 .\r\nThe fix will be available in the next release :)", "Thanks for the prompt reply and terribly sorry for the spam! \r\nLooking forward to the new release! " ]
2020-10-29T16:06:10
2020-10-29T21:21:27
2020-10-29T21:21:27
CONTRIBUTOR
null
null
null
I read a csv file from disk and forgot so specify the right delimiter. When i read the csv file again specifying the right delimiter it had no effect since it was using the cached dataset. I am not sure if this is unwanted behavior since i can always specify `download_mode="force_redownload"`. But i think it would be nice if the information what `delimiter` or what `column_names` were used would influence the identifier of the cached dataset. Small snippet to reproduce the behavior: ```python import datasets with open("dummy_data.csv", "w") as file: file.write("test,this;text\n") print(datasets.load_dataset("csv", data_files="dummy_data.csv", split="train").column_names) # ["test", "this;text"] print(datasets.load_dataset("csv", data_files="dummy_data.csv", split="train", delimiter=";").column_names) # still ["test", "this;text"] ``` By the way, thanks a lot for this amazing library! :)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/778/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/778/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/773
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/773/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/773/comments
https://api.github.com/repos/huggingface/datasets/issues/773/events
https://github.com/huggingface/datasets/issues/773
731,684,153
MDU6SXNzdWU3MzE2ODQxNTM=
773
Adding CC-100: Monolingual Datasets from Web Crawl Data
{ "login": "yjernite", "id": 10469459, "node_id": "MDQ6VXNlcjEwNDY5NDU5", "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yjernite", "html_url": "https://github.com/yjernite", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "organizations_url": "https://api.github.com/users/yjernite/orgs", "repos_url": "https://api.github.com/users/yjernite/repos", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "received_events_url": "https://api.github.com/users/yjernite/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
{ "login": "abhishekkrthakur", "id": 1183441, "node_id": "MDQ6VXNlcjExODM0NDE=", "avatar_url": "https://avatars.githubusercontent.com/u/1183441?v=4", "gravatar_id": "", "url": "https://api.github.com/users/abhishekkrthakur", "html_url": "https://github.com/abhishekkrthakur", "followers_url": "https://api.github.com/users/abhishekkrthakur/followers", "following_url": "https://api.github.com/users/abhishekkrthakur/following{/other_user}", "gists_url": "https://api.github.com/users/abhishekkrthakur/gists{/gist_id}", "starred_url": "https://api.github.com/users/abhishekkrthakur/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/abhishekkrthakur/subscriptions", "organizations_url": "https://api.github.com/users/abhishekkrthakur/orgs", "repos_url": "https://api.github.com/users/abhishekkrthakur/repos", "events_url": "https://api.github.com/users/abhishekkrthakur/events{/privacy}", "received_events_url": "https://api.github.com/users/abhishekkrthakur/received_events", "type": "User", "site_admin": false }
[ { "login": "abhishekkrthakur", "id": 1183441, "node_id": "MDQ6VXNlcjExODM0NDE=", "avatar_url": "https://avatars.githubusercontent.com/u/1183441?v=4", "gravatar_id": "", "url": "https://api.github.com/users/abhishekkrthakur", "html_url": "https://github.com/abhishekkrthakur", "followers_url": "https://api.github.com/users/abhishekkrthakur/followers", "following_url": "https://api.github.com/users/abhishekkrthakur/following{/other_user}", "gists_url": "https://api.github.com/users/abhishekkrthakur/gists{/gist_id}", "starred_url": "https://api.github.com/users/abhishekkrthakur/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/abhishekkrthakur/subscriptions", "organizations_url": "https://api.github.com/users/abhishekkrthakur/orgs", "repos_url": "https://api.github.com/users/abhishekkrthakur/repos", "events_url": "https://api.github.com/users/abhishekkrthakur/events{/privacy}", "received_events_url": "https://api.github.com/users/abhishekkrthakur/received_events", "type": "User", "site_admin": false } ]
null
[ "cc @aconneau ;) ", "These dataset files are no longer available. https://data.statmt.org/cc-100/ files provided in this link are no longer available. Can anybody fix that issue?\r\n@abhishekkrthakur @yjernite ", "Hi ! Can you open an issue to report this problem ? This will help keep track of the fix :)", "Ok" ]
2020-10-28T18:20:41
2022-01-26T13:22:54
2020-12-14T10:20:07
MEMBER
null
null
null
## Adding a Dataset - **Name:** CC-100: Monolingual Datasets from Web Crawl Data - **Description:** https://twitter.com/alex_conneau/status/1321507120848625665 - **Paper:** https://arxiv.org/abs/1911.02116 - **Data:** http://data.statmt.org/cc-100/ - **Motivation:** A large scale multi-lingual language modeling dataset. Text is de-duplicated and filtered by how "Wikipedia-like" it is, hopefully helping avoid some of the worst parts of the common crawl. Instructions to add a new dataset can be found [here](https://huggingface.co/docs/datasets/share_dataset.html).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/773/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/773/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/771
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/771/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/771/comments
https://api.github.com/repos/huggingface/datasets/issues/771/events
https://github.com/huggingface/datasets/issues/771
731,482,213
MDU6SXNzdWU3MzE0ODIyMTM=
771
Using `Dataset.map` with `n_proc>1` print multiple progress bars
{ "login": "sgugger", "id": 35901082, "node_id": "MDQ6VXNlcjM1OTAxMDgy", "avatar_url": "https://avatars.githubusercontent.com/u/35901082?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sgugger", "html_url": "https://github.com/sgugger", "followers_url": "https://api.github.com/users/sgugger/followers", "following_url": "https://api.github.com/users/sgugger/following{/other_user}", "gists_url": "https://api.github.com/users/sgugger/gists{/gist_id}", "starred_url": "https://api.github.com/users/sgugger/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sgugger/subscriptions", "organizations_url": "https://api.github.com/users/sgugger/orgs", "repos_url": "https://api.github.com/users/sgugger/repos", "events_url": "https://api.github.com/users/sgugger/events{/privacy}", "received_events_url": "https://api.github.com/users/sgugger/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Yes it allows to monitor the speed of each process. Currently each process takes care of one shard of the dataset.\r\n\r\nAt one point we can consider using streaming batches to a pool of processes instead of sharding the dataset in `num_proc` parts. At that point it will be easy to use only one progress bar", "Hi @lhoestq, I am facing a similar issue, it is annoying when lots of progress bars are printed. Is there a way to turn off this behavior? ", "You can disable the progress bars with\r\n```python\r\nimport datasets\r\n\r\ndatasets.disable_progress_bar()\r\n```" ]
2020-10-28T14:13:27
2023-02-13T20:16:39
2023-02-13T20:16:39
CONTRIBUTOR
null
null
null
When using `Dataset.map` with `n_proc > 1`, only one of the processes should print a progress bar (to make the output readable). Right now, `n_proc` progress bars are printed.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/771/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/771/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/769
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/769/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/769/comments
https://api.github.com/repos/huggingface/datasets/issues/769/events
https://github.com/huggingface/datasets/issues/769
731,257,104
MDU6SXNzdWU3MzEyNTcxMDQ=
769
How to choose proper download_mode in function load_dataset?
{ "login": "jzq2000", "id": 48550398, "node_id": "MDQ6VXNlcjQ4NTUwMzk4", "avatar_url": "https://avatars.githubusercontent.com/u/48550398?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jzq2000", "html_url": "https://github.com/jzq2000", "followers_url": "https://api.github.com/users/jzq2000/followers", "following_url": "https://api.github.com/users/jzq2000/following{/other_user}", "gists_url": "https://api.github.com/users/jzq2000/gists{/gist_id}", "starred_url": "https://api.github.com/users/jzq2000/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jzq2000/subscriptions", "organizations_url": "https://api.github.com/users/jzq2000/orgs", "repos_url": "https://api.github.com/users/jzq2000/repos", "events_url": "https://api.github.com/users/jzq2000/events{/privacy}", "received_events_url": "https://api.github.com/users/jzq2000/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "`download_mode=datasets.GenerateMode.FORCE_REDOWNLOAD` should work.\r\nThis makes me think we we should rename this to DownloadMode.FORCE_REDOWNLOAD. Currently that's confusing", "Can we just use `features=...` in `load_dataset` for this @lhoestq?", "Indeed you should use `features` in this case. \r\n```python\r\nfeatures = Features({'text': Value('string'), 'label': Value('float32')})\r\ndataset = load_dataset('csv', data_files=['sst_test.csv'], features=features)\r\n```\r\nNote that because of an issue with the caching when you change the features (see #750 ) you still need to specify the `FORCE_REDOWNLOAD ` flag. I'm working on a fix for this one", "https://github.com/huggingface/datasets/issues/769#issuecomment-717837832\r\n> This makes me think we we should rename this to DownloadMode.FORCE_REDOWNLOAD. Currently that's confusing\r\n\r\n@lhoestq do you still think we should rename it?\r\n", "It's no big deal, but since it can be confusing to users I think it's worth renaming it, and deprecate `GenerateMode` until `datasets` 2.0 at least. IMO it's confusing to have `download_mode=GenerateMode.something`" ]
2020-10-28T09:16:19
2022-02-22T12:22:52
2022-02-22T12:22:52
NONE
null
null
null
Hi, I am a beginner to datasets and I try to use datasets to load my csv file. my csv file looks like this ``` text,label "Effective but too-tepid biopic",3 "If you sometimes like to go to the movies to have fun , Wasabi is a good place to start .",4 "Emerges as something rare , an issue movie that 's so honest and keenly observed that it does n't feel like one .",5 ``` First I try to use this command to load my csv file . ``` python dataset=load_dataset('csv', data_files=['sst_test.csv']) ``` It seems good, but when i try to overwrite the convert_options to convert 'label' columns from int64 to float32 like this. ``` python import pyarrow as pa from pyarrow import csv read_options = csv.ReadOptions(block_size=1024*1024) parse_options = csv.ParseOptions() convert_options = csv.ConvertOptions(column_types={'text': pa.string(), 'label': pa.float32()}) dataset = load_dataset('csv', data_files=['sst_test.csv'], read_options=read_options, parse_options=parse_options, convert_options=convert_options) ``` It keeps the same: ```shell Dataset(features: {'text': Value(dtype='string', id=None), 'label': Value(dtype='int64', id=None)}, num_rows: 2210) ``` I think this issue is caused by the parameter "download_mode" Default to REUSE_DATASET_IF_EXISTS because after I delete the cache_dir, it seems right. Is it a bug? How to choose proper download_mode to avoid this issue?
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/769/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/769/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/768
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/768/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/768/comments
https://api.github.com/repos/huggingface/datasets/issues/768/events
https://github.com/huggingface/datasets/issues/768
730,908,060
MDU6SXNzdWU3MzA5MDgwNjA=
768
Add a `lazy_map` method to `Dataset` and `DatasetDict`
{ "login": "sgugger", "id": 35901082, "node_id": "MDQ6VXNlcjM1OTAxMDgy", "avatar_url": "https://avatars.githubusercontent.com/u/35901082?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sgugger", "html_url": "https://github.com/sgugger", "followers_url": "https://api.github.com/users/sgugger/followers", "following_url": "https://api.github.com/users/sgugger/following{/other_user}", "gists_url": "https://api.github.com/users/sgugger/gists{/gist_id}", "starred_url": "https://api.github.com/users/sgugger/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sgugger/subscriptions", "organizations_url": "https://api.github.com/users/sgugger/orgs", "repos_url": "https://api.github.com/users/sgugger/repos", "events_url": "https://api.github.com/users/sgugger/events{/privacy}", "received_events_url": "https://api.github.com/users/sgugger/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[ "This is cool! I think some aspects to think about and decide in terms of API are:\r\n- do we allow several methods (chained i guess)\r\n- how do we inspect the currently set method(s)\r\n- how do we control/reset them" ]
2020-10-27T22:33:03
2020-10-28T08:58:13
null
CONTRIBUTOR
null
null
null
The library is great, but it would be even more awesome with a `lazy_map` method implemented on `Dataset` and `DatasetDict`. This would apply a function on a give item but when the item is requested. Two use cases: 1. load image on the fly 2. apply a random function and get different outputs at each epoch (like data augmentation or randomly masking a part of a sentence for BERT-like objectives).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/768/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/768/timeline
null
null
https://api.github.com/repos/huggingface/datasets/issues/767
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/767/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/767/comments
https://api.github.com/repos/huggingface/datasets/issues/767/events
https://github.com/huggingface/datasets/issues/767
730,771,610
MDU6SXNzdWU3MzA3NzE2MTA=
767
Add option for named splits when using ds.train_test_split
{ "login": "nateraw", "id": 32437151, "node_id": "MDQ6VXNlcjMyNDM3MTUx", "avatar_url": "https://avatars.githubusercontent.com/u/32437151?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nateraw", "html_url": "https://github.com/nateraw", "followers_url": "https://api.github.com/users/nateraw/followers", "following_url": "https://api.github.com/users/nateraw/following{/other_user}", "gists_url": "https://api.github.com/users/nateraw/gists{/gist_id}", "starred_url": "https://api.github.com/users/nateraw/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nateraw/subscriptions", "organizations_url": "https://api.github.com/users/nateraw/orgs", "repos_url": "https://api.github.com/users/nateraw/repos", "events_url": "https://api.github.com/users/nateraw/events{/privacy}", "received_events_url": "https://api.github.com/users/nateraw/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[ "Yes definitely we should give more flexibility to control the name of the splits outputted by `train_test_split`.\r\n\r\nRelated is the very interesting feedback from @bramvanroy on how we should improve this method: https://discuss.huggingface.co/t/how-to-split-main-dataset-into-train-dev-test-as-datasetdict/1090/5\r\n\r\nAnd in particular that it should advantageously be able to split in 3 splits as well instead of just 2 like we copied from sklearn." ]
2020-10-27T19:59:44
2020-11-10T14:05:21
null
CONTRIBUTOR
null
null
null
### Feature Request 🚀 Can we add a way to name your splits when using the `.train_test_split` function? In almost every use case I've come across, I have a `train` and a `test` split in my `DatasetDict`, and I want to create a `validation` split. Therefore, its kinda useless to get a `test` split back from `train_test_split`, as it'll just overwrite my real `test` split that I intended to keep. ### Workaround this is my hack for dealin with this, for now :slightly_smiling_face: ```python from datasets import load_dataset ​ ​ ds = load_dataset('imdb') ds['train'], ds['validation'] = ds['train'].train_test_split(.1).values() ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/767/reactions", "total_count": 5, "+1": 5, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/767/timeline
null
null
https://api.github.com/repos/huggingface/datasets/issues/766
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/766/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/766/comments
https://api.github.com/repos/huggingface/datasets/issues/766/events
https://github.com/huggingface/datasets/issues/766
730,669,596
MDU6SXNzdWU3MzA2Njk1OTY=
766
[GEM] add DART data-to-text generation dataset
{ "login": "yjernite", "id": 10469459, "node_id": "MDQ6VXNlcjEwNDY5NDU5", "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yjernite", "html_url": "https://github.com/yjernite", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "organizations_url": "https://api.github.com/users/yjernite/orgs", "repos_url": "https://api.github.com/users/yjernite/repos", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "received_events_url": "https://api.github.com/users/yjernite/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[ "Is this a duplicate of #924 ?", "Yup, closing! Haven't been keeping track of the solved issues during the sprint." ]
2020-10-27T17:34:04
2020-12-03T13:37:18
2020-12-03T13:37:18
MEMBER
null
null
null
## Adding a Dataset - **Name:** DART - **Description:** DART consists of 82,191 examples across different domains with each input being a semantic RDF triple set derived from data records in tables and the tree ontology of the schema, annotated with sentence descriptions that cover all facts in the triple set. - **Paper:** https://arxiv.org/abs/2007.02871v1 - **Data:** https://github.com/Yale-LILY/dart - **Motivation:** the dataset will likely be included in the GEM benchmark Instructions to add a new dataset can be found [here](https://huggingface.co/docs/datasets/share_dataset.html).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/766/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/766/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/765
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/765/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/765/comments
https://api.github.com/repos/huggingface/datasets/issues/765/events
https://github.com/huggingface/datasets/issues/765
730,668,332
MDU6SXNzdWU3MzA2NjgzMzI=
765
[GEM] Add DART data-to-text generation dataset
{ "login": "yjernite", "id": 10469459, "node_id": "MDQ6VXNlcjEwNDY5NDU5", "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yjernite", "html_url": "https://github.com/yjernite", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "organizations_url": "https://api.github.com/users/yjernite/orgs", "repos_url": "https://api.github.com/users/yjernite/repos", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "received_events_url": "https://api.github.com/users/yjernite/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[]
2020-10-27T17:32:23
2020-10-27T17:34:21
2020-10-27T17:34:21
MEMBER
null
null
null
## Adding a Dataset - **Name:** DART - **Description:** DART consists of 82,191 examples across different domains with each input being a semantic RDF triple set derived from data records in tables and the tree ontology of the schema, annotated with sentence descriptions that cover all facts in the triple set. - **Paper:** https://arxiv.org/abs/2007.02871v1 - **Data:** https://github.com/Yale-LILY/dart - **Motivation:** It will likely be included in the GEM generation evaluation benchmark Instructions to add a new dataset can be found [here](https://huggingface.co/docs/datasets/share_dataset.html).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/765/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/765/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/762
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/762/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/762/comments
https://api.github.com/repos/huggingface/datasets/issues/762/events
https://github.com/huggingface/datasets/issues/762
730,586,972
MDU6SXNzdWU3MzA1ODY5NzI=
762
[GEM] Add Czech Restaurant data-to-text generation dataset
{ "login": "yjernite", "id": 10469459, "node_id": "MDQ6VXNlcjEwNDY5NDU5", "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yjernite", "html_url": "https://github.com/yjernite", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "organizations_url": "https://api.github.com/users/yjernite/orgs", "repos_url": "https://api.github.com/users/yjernite/repos", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "received_events_url": "https://api.github.com/users/yjernite/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
null
[]
null
[]
2020-10-27T16:00:47
2020-12-03T13:37:44
2020-12-03T13:37:44
MEMBER
null
null
null
- Paper: https://www.aclweb.org/anthology/W19-8670.pdf - Data: https://github.com/UFAL-DSG/cs_restaurant_dataset - The dataset will likely be part of the GEM benchmark
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/762/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/762/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/761
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/761/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/761/comments
https://api.github.com/repos/huggingface/datasets/issues/761/events
https://github.com/huggingface/datasets/issues/761
729,898,867
MDU6SXNzdWU3Mjk4OTg4Njc=
761
Downloaded datasets are not usable offline
{ "login": "ghazi-f", "id": 25091538, "node_id": "MDQ6VXNlcjI1MDkxNTM4", "avatar_url": "https://avatars.githubusercontent.com/u/25091538?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ghazi-f", "html_url": "https://github.com/ghazi-f", "followers_url": "https://api.github.com/users/ghazi-f/followers", "following_url": "https://api.github.com/users/ghazi-f/following{/other_user}", "gists_url": "https://api.github.com/users/ghazi-f/gists{/gist_id}", "starred_url": "https://api.github.com/users/ghazi-f/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ghazi-f/subscriptions", "organizations_url": "https://api.github.com/users/ghazi-f/orgs", "repos_url": "https://api.github.com/users/ghazi-f/repos", "events_url": "https://api.github.com/users/ghazi-f/events{/privacy}", "received_events_url": "https://api.github.com/users/ghazi-f/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Yes currently you need an internet connection because the lib tries to check for the etag of the dataset script online to see if you don't have it locally already.\r\n\r\nIf we add a way to store the etag/hash locally after the first download, it would allow users to first download the dataset with an internet connection, and still have it working without an internet connection.\r\n\r\nI'll let you know when we add this feature.", "Already fixed by:\r\n- #1726" ]
2020-10-26T20:54:46
2022-02-15T10:32:28
2022-02-15T10:32:28
CONTRIBUTOR
null
null
null
I've been trying to use the IMDB dataset offline, but after downloading it and turning off the internet it still raises an error from the ```requests``` library trying to reach for the online dataset. Is this the intended behavior ? (Sorry, I wrote the the first version of this issue while still on nlp 0.3.0).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/761/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/761/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/760
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/760/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/760/comments
https://api.github.com/repos/huggingface/datasets/issues/760/events
https://github.com/huggingface/datasets/issues/760
729,637,917
MDU6SXNzdWU3Mjk2Mzc5MTc=
760
Add meta-data to the HANS dataset
{ "login": "yjernite", "id": 10469459, "node_id": "MDQ6VXNlcjEwNDY5NDU5", "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yjernite", "html_url": "https://github.com/yjernite", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "organizations_url": "https://api.github.com/users/yjernite/orgs", "repos_url": "https://api.github.com/users/yjernite/repos", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "received_events_url": "https://api.github.com/users/yjernite/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892877, "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue", "name": "good first issue", "color": "7057ff", "default": true, "description": "Good for newcomers" }, { "id": 2067388877, "node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug", "name": "dataset bug", "color": "2edb81", "default": false, "description": "A bug in a dataset script provided in the library" } ]
closed
false
{ "login": "TevenLeScao", "id": 26709476, "node_id": "MDQ6VXNlcjI2NzA5NDc2", "avatar_url": "https://avatars.githubusercontent.com/u/26709476?v=4", "gravatar_id": "", "url": "https://api.github.com/users/TevenLeScao", "html_url": "https://github.com/TevenLeScao", "followers_url": "https://api.github.com/users/TevenLeScao/followers", "following_url": "https://api.github.com/users/TevenLeScao/following{/other_user}", "gists_url": "https://api.github.com/users/TevenLeScao/gists{/gist_id}", "starred_url": "https://api.github.com/users/TevenLeScao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TevenLeScao/subscriptions", "organizations_url": "https://api.github.com/users/TevenLeScao/orgs", "repos_url": "https://api.github.com/users/TevenLeScao/repos", "events_url": "https://api.github.com/users/TevenLeScao/events{/privacy}", "received_events_url": "https://api.github.com/users/TevenLeScao/received_events", "type": "User", "site_admin": false }
[ { "login": "TevenLeScao", "id": 26709476, "node_id": "MDQ6VXNlcjI2NzA5NDc2", "avatar_url": "https://avatars.githubusercontent.com/u/26709476?v=4", "gravatar_id": "", "url": "https://api.github.com/users/TevenLeScao", "html_url": "https://github.com/TevenLeScao", "followers_url": "https://api.github.com/users/TevenLeScao/followers", "following_url": "https://api.github.com/users/TevenLeScao/following{/other_user}", "gists_url": "https://api.github.com/users/TevenLeScao/gists{/gist_id}", "starred_url": "https://api.github.com/users/TevenLeScao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TevenLeScao/subscriptions", "organizations_url": "https://api.github.com/users/TevenLeScao/orgs", "repos_url": "https://api.github.com/users/TevenLeScao/repos", "events_url": "https://api.github.com/users/TevenLeScao/events{/privacy}", "received_events_url": "https://api.github.com/users/TevenLeScao/received_events", "type": "User", "site_admin": false } ]
null
[]
2020-10-26T14:56:53
2020-12-03T13:38:34
2020-12-03T13:38:34
MEMBER
null
null
null
The current version of the [HANS dataset](https://github.com/huggingface/datasets/blob/master/datasets/hans/hans.py) is missing the additional information provided for each example, including the sentence parses, heuristic and subcase.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/760/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/760/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/759
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/759/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/759/comments
https://api.github.com/repos/huggingface/datasets/issues/759/events
https://github.com/huggingface/datasets/issues/759
729,046,916
MDU6SXNzdWU3MjkwNDY5MTY=
759
(Load dataset failure) ConnectionError: Couldn’t reach https://raw.githubusercontent.com/huggingface/datasets/1.1.2/datasets/cnn_dailymail/cnn_dailymail.py
{ "login": "AI678", "id": 63541083, "node_id": "MDQ6VXNlcjYzNTQxMDgz", "avatar_url": "https://avatars.githubusercontent.com/u/63541083?v=4", "gravatar_id": "", "url": "https://api.github.com/users/AI678", "html_url": "https://github.com/AI678", "followers_url": "https://api.github.com/users/AI678/followers", "following_url": "https://api.github.com/users/AI678/following{/other_user}", "gists_url": "https://api.github.com/users/AI678/gists{/gist_id}", "starred_url": "https://api.github.com/users/AI678/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AI678/subscriptions", "organizations_url": "https://api.github.com/users/AI678/orgs", "repos_url": "https://api.github.com/users/AI678/repos", "events_url": "https://api.github.com/users/AI678/events{/privacy}", "received_events_url": "https://api.github.com/users/AI678/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Are you running the script on a machine with an internet connection ?", "Yes , I can browse the url through Google Chrome.", "Does this HEAD request return 200 on your machine ?\r\n```python\r\nimport requests \r\nrequests.head(\"https://raw.githubusercontent.com/huggingface/datasets/1.1.2/datasets/cnn_dailymail/cnn_dailymail.py\")\r\n```\r\n\r\nIf it returns 200, could you try again to load the dataset ?", "Thank you very much for your response.\r\nWhen I run \r\n``` \r\nimport requests \r\nrequests.head(\"https://raw.githubusercontent.com/huggingface/datasets/1.1.2/datasets/cnn_dailymail/cnn_dailymail.py\")\r\n```\r\nIt returns 200.\r\n\r\nAnd I try again to load the dataset. I got the following errors again. \r\n\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\load.py\", line 608, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\builder.py\", line 475, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\builder.py\", line 531, in _download_and_prepare\r\n split_generators = self._split_generators(dl_manager, **split_generators_kwargs)\r\n File \"C:\\Users\\666666\\.cache\\huggingface\\modules\\datasets_modules\\datasets\\cnn_dailymail\\0128610a44e10f25b4af6689441c72af86205282d26399642f7db38fa7535602\\cnn_dailymail.py\", line 253, in _split_generators\r\n dl_paths = dl_manager.download_and_extract(_DL_URLS)\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\utils\\download_manager.py\", line 254, in download_and_extract\r\n return self.extract(self.download(url_or_urls))\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\utils\\download_manager.py\", line 175, in download\r\n downloaded_path_or_paths = map_nested(\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\utils\\py_utils.py\", line 224, in map_nested\r\n mapped = [\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\utils\\py_utils.py\", line 225, in <listcomp>\r\n _single_map_nested((function, obj, types, None, True)) for obj in tqdm(iterable, disable=disable_tqdm)\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\utils\\py_utils.py\", line 163, in _single_map_nested\r\n return function(data_struct)\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\utils\\file_utils.py\", line 300, in cached_path\r\n output_path = get_from_cache(\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\utils\\file_utils.py\", line 475, in get_from_cache\r\n raise ConnectionError(\"Couldn't reach {}\".format(url))\r\nConnectionError: Couldn't reach https://drive.google.com/uc?export=download&id=0BwmD_VLjROrfTHk4NFg2SndKcjQ\r\n\r\nConnection error happened but the url was different.\r\n\r\nI add the following code.\r\n```\r\nrequests.head(\"https://drive.google.com/uc?export=download&id=0BwmD_VLjROrfTHk4NFg2SndKcjQ\")\r\n```\r\nThis didn't return 200\r\nIt returned like this:\r\n\r\nTraceback (most recent call last):\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\urllib3\\connection.py\", line 159, in _new_conn\r\n conn = connection.create_connection(\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\urllib3\\util\\connection.py\", line 84, in create_connection\r\n raise err\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\urllib3\\util\\connection.py\", line 74, in create_connection\r\n sock.connect(sa)\r\nTimeoutError: [WinError 10060] \r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\urllib3\\connectionpool.py\", line 670, in urlopen\r\n httplib_response = self._make_request(\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\urllib3\\connectionpool.py\", line 381, in _make_request\r\n self._validate_conn(conn)\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\urllib3\\connectionpool.py\", line 978, in _validate_conn\r\n conn.connect()\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\urllib3\\connection.py\", line 309, in connect\r\n conn = self._new_conn()\r\n File \"C:\\Users\\666666\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\urllib3\\connection.py\", line 171, in _new_conn\r\n raise NewConnectionError(\r\nurllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPSConnection object at 0x000001F6060618E0>: Failed to establish a new connection: [WinError 10060] ", "Is google drive blocked on your network ?\r\nFor me \r\n```python\r\nrequests.head(\"https://drive.google.com/uc?export=download&id=0BwmD_VLjROrfTHk4NFg2SndKcjQ\")\r\n```\r\nreturns 200", "I can browse the google drive through google chrome. It's weird. I can download the dataset through google drive manually.", "Could you try to update `requests` maybe ?\r\nIt works with 2.23.0 on my side", "My ```requests``` is 2.24.0 . It still can't return 200.", "Is it possible I download the dataset manually from google drive and use it for further test ? How can I do this ? I want to reproduce the model in this link https://huggingface.co/patrickvonplaten/bert2bert-cnn_dailymail-fp16. But I can't download the dataset through load_dataset method . I have tried many times and the connection error always happens .\r\n", "The head request should definitely work, not sure what's going on on your side.\r\nIf you find a way to make it work, please post it here since other users might encounter the same issue.\r\n\r\nIf you don't manage to fix it you can use `load_dataset` on google colab and then save it using `dataset.save_to_disk(\"path/to/dataset\")`.\r\nThen you can download the directory on your machine and do\r\n```python\r\nfrom datasets import load_from_disk\r\ndataset = load_from_disk(\"path/to/local/dataset\")\r\n```", "Hi\r\nI want to know if this problem has been solved because I encountered a similar issue. Thanks.\r\n`train_data = datasets.load_dataset(\"xsum\", `split=\"train\")`\r\n`ConnectionError:` Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/1.1.3/datasets/xsum/xsum.py`", "Hi @smile0925 ! Do you have an internet connection ? Are you using some kind of proxy that may block the access to this file ?\r\n\r\nOtherwise you can try to update `datasets` since we introduced retries for http requests in the 1.2.0 version\r\n```\r\npip install --upgrade datasets\r\n```\r\nLet me know if that helps.", "Hi @lhoestq \r\nOh, may be you are right. I find that my server uses some kind of proxy that block the access to this file.\r\n![image](https://user-images.githubusercontent.com/46243662/106456211-2ca24180-64c8-11eb-831e-47e9b40e7da4.png)\r\n\r\n", "> Hi @lhoestq\r\n> Oh, may be you are right. I find that my server uses some kind of proxy that block the access to this file.\r\n> ![image](https://user-images.githubusercontent.com/46243662/106456211-2ca24180-64c8-11eb-831e-47e9b40e7da4.png)\r\n\r\nI have the same problem, have you solved it? Many thanks", "Hi @ZhengxiangShi \r\nYou can first try whether your network can access these files. I need to use VPN to access these files, so I download the files that cannot be accessed to the local in advance, and then use them in the code. Like this,\r\n`train_data = datasets.load_dataset(\"xsum.py\", split=\"train\")`", "For Ubuntu 20.04, there are the following feedback. \r\n\r\nGoogle Drive is ok, but raw.githubusercontent.com has a big problem. It seems that the raw github could not match the common urllib3 protocols. \r\n\r\n**1. Google Drive** \r\n\r\n```\r\nimport requests\r\n\r\nrequests.head(\"https://drive.google.com/uc?export=download&id=0BwmD_VLjROrfTHk4NFg2SndKcjQ\")\r\n<Response [200]>\r\n```\r\n\r\n**2. raw.githubusercontent.com**\r\n\r\n```\r\nimport requests\r\nrequests.head(\"https://raw.githubusercontent.com/huggingface/datasets/1.1.2/datasets/cnn_dailymail/cnn_dailymail.py\")\r\n```\r\n........\r\n\r\nraise CertificateError(\r\nurllib3.util.ssl_match_hostname.CertificateError: hostname 'raw.githubusercontent.com' doesn't match either of 'default.ssl.fastly.net', 'fastly.com', '*.a.ssl.fastly.net', '*.hosts.fastly.net', '*.global.ssl.fastly.net', '*.fastly.com', 'a.ssl.fastly.net', 'purge.fastly.net', 'mirrors.fastly.net', 'control.fastly.net', 'tools.fastly.net'\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n........\r\nraise MaxRetryError(_pool, url, error or ResponseError(cause))\r\nurllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='raw.githubusercontent.com', port=443): Max retries exceeded with url: /huggingface/datasets/1.1.2/datasets/cnn_dailymail/cnn_dailymail.py (Caused by SSLError(CertificateError(\"hostname 'raw.githubusercontent.com' doesn't match either of 'default.ssl.fastly.net', 'fastly.com', '*.a.ssl.fastly.net', '*.hosts.fastly.net', '*.global.ssl.fastly.net', '*.fastly.com', 'a.ssl.fastly.net', 'purge.fastly.net', 'mirrors.fastly.net', 'control.fastly.net', 'tools.fastly.net'\")))\r\n\r\n........\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n\r\n.......\r\n\r\nraise SSLError(e, request=request)\r\nrequests.exceptions.SSLError: HTTPSConnectionPool(host='raw.githubusercontent.com', port=443): Max retries exceeded with url: /huggingface/datasets/1.1.2/datasets/cnn_dailymail/cnn_dailymail.py (Caused by SSLError(CertificateError(\"hostname 'raw.githubusercontent.com' doesn't match either of 'default.ssl.fastly.net', 'fastly.com', '*.a.ssl.fastly.net', '*.hosts.fastly.net', '*.global.ssl.fastly.net', '*.fastly.com', 'a.ssl.fastly.net', 'purge.fastly.net', 'mirrors.fastly.net', 'control.fastly.net', 'tools.fastly.net'\")))\r\n\r\n\r\n**3. XSUM**\r\n\r\n```\r\nfrom datasets import load_dataset\r\nraw_datasets = load_dataset(\"xsum\", split=\"train\")\r\n```\r\n\r\nConnectionError: Couldn't reach https://raw.githubusercontent.com/EdinburghNLP/XSum/master/XSum-Dataset/XSum-TRAINING-DEV-TEST-SPLIT-90-5-5.json (SSLError(MaxRetryError('HTTPSConnectionPool(host=\\'raw.githubusercontent.com\\', port=443): Max retries exceeded with url: /EdinburghNLP/XSum/master/XSum-Dataset/XSum-TRAINING-DEV-TEST-SPLIT-90-5-5.json (Caused by SSLError(CertificateError(\"hostname \\'raw.githubusercontent.com\\' doesn\\'t match either of \\'default.ssl.fastly.net\\', \\'fastly.com\\', \\'*.a.ssl.fastly.net\\', \\'*.hosts.fastly.net\\', \\'*.global.ssl.fastly.net\\', \\'*.fastly.com\\', \\'a.ssl.fastly.net\\', \\'purge.fastly.net\\', \\'mirrors.fastly.net\\', \\'control.fastly.net\\', \\'tools.fastly.net\\'\")))')))\r\n\r\n\r\n### The following snippet could not solve the implicit ssl error.\r\n\r\n```\r\nimport ssl\r\n\r\ntry:\r\n _create_unverified_https_context = ssl._create_unverified_context\r\nexcept AttributeError:\r\n pass\r\nelse:\r\n ssl._create_default_https_context = _create_unverified_https_context\r\n```\r\n\r\n", "Only the oldest versions of `datasets` use raw.githubusercontent.com. Can you try updating `datasets` ?", "Thank lhoestq fo the quick response. \r\n\r\nI solve the big issue with the command line as follows. \r\n\r\n**1. Open hosts (Ubuntu 20.04)**\r\n\r\n`$ sudo gedit /etc/hosts`\r\n\r\n**2. Add the command line into the hosts**\r\n\r\n`151.101.0.133 raw.githubusercontent.com`\r\n\r\n**3. Save hosts**\r\n\r\nAnd then the jupyter notebook can access to the datasets (module) and get the datasets of XSUM with raw.githubusercontent.com. \r\n\r\nSo it is not users' fault. But most of the suggestions in the web are wrong. Anyway, I solve the problem finally. \r\n\r\nBy the way, users need to add the other github commnads such as the following. \r\n\r\n`199.232.69.194 github.global.ssl.fastly.net`\r\n\r\nCheers!!!\r\n\r\n\r\n", "I use the dataset 2.14.4 that published on Aug 8, 2023.发自我的 iPhone在 2023年9月13日,06:38,Quentin Lhoest ***@***.***> 写道:\r\nOnly the oldest versions of datasets use raw.githubusercontent.com. Can you try updating datasets ?\r\n\r\n—Reply to this email directly, view it on GitHub, or unsubscribe.You are receiving this because you commented.Message ID: ***@***.***>" ]
2020-10-25T15:34:57
2023-09-13T23:56:51
2021-08-04T18:10:09
NONE
null
null
null
Hey, I want to load the cnn-dailymail dataset for fine-tune. I write the code like this from datasets import load_dataset test_dataset = load_dataset(“cnn_dailymail”, “3.0.0”, split=“train”) And I got the following errors. Traceback (most recent call last): File “test.py”, line 7, in test_dataset = load_dataset(“cnn_dailymail”, “3.0.0”, split=“test”) File “C:\Users\666666\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\load.py”, line 589, in load_dataset module_path, hash = prepare_module( File “C:\Users\666666\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\load.py”, line 268, in prepare_module local_path = cached_path(file_path, download_config=download_config) File “C:\Users\666666\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\utils\file_utils.py”, line 300, in cached_path output_path = get_from_cache( File “C:\Users\666666\AppData\Local\Programs\Python\Python38\lib\site-packages\datasets\utils\file_utils.py”, line 475, in get_from_cache raise ConnectionError(“Couldn’t reach {}”.format(url)) ConnectionError: Couldn’t reach https://raw.githubusercontent.com/huggingface/datasets/1.1.2/datasets/cnn_dailymail/cnn_dailymail.py How can I fix this ?
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/759/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 1 }
https://api.github.com/repos/huggingface/datasets/issues/759/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/758
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/758/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/758/comments
https://api.github.com/repos/huggingface/datasets/issues/758/events
https://github.com/huggingface/datasets/issues/758
728,638,559
MDU6SXNzdWU3Mjg2Mzg1NTk=
758
Process 0 very slow when using num_procs with map to tokenizer
{ "login": "ksjae", "id": 17930170, "node_id": "MDQ6VXNlcjE3OTMwMTcw", "avatar_url": "https://avatars.githubusercontent.com/u/17930170?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ksjae", "html_url": "https://github.com/ksjae", "followers_url": "https://api.github.com/users/ksjae/followers", "following_url": "https://api.github.com/users/ksjae/following{/other_user}", "gists_url": "https://api.github.com/users/ksjae/gists{/gist_id}", "starred_url": "https://api.github.com/users/ksjae/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ksjae/subscriptions", "organizations_url": "https://api.github.com/users/ksjae/orgs", "repos_url": "https://api.github.com/users/ksjae/repos", "events_url": "https://api.github.com/users/ksjae/events{/privacy}", "received_events_url": "https://api.github.com/users/ksjae/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi ! Thanks for reporting.\r\nIs the distribution of text length of your data evenly distributed across your dataset ? I mean, could it be because the examples in the first part of your dataset are slower to process ?\r\nAlso could how many CPUs can you use for multiprocessing ?\r\n```python\r\nimport multiprocessing\r\nprint(multiprocessing.cpu_count())\r\n```\r\nWhich tokenizer are you using ?", "Using pre trained HF tokenizer. The result is the same with tokenizer multiprocessing off and on.\r\nI have (absolutely) no idea about the distribution, but since this issue occurs on all of my datasets(regardless of files), I don't think distribution is the problems.\r\n\r\nI can use up to 16 cores.", "Ok weird, I don't manage to reproduce this issue on my side.\r\nDoes it happen even with `num_proc=2` for example ?\r\nAlso could you provide more details about your OS and the versions of tokenizers/datasets/multiprocess that you're using ?", "Yes, I can confirm it also happens with ```num_proc=2```.\r\n```\r\ntokenizers 0.9.2\r\ndatasets 1.1.2\r\nmultiprocess 0.70.10\r\n```\r\n```\r\nLinux nipa2020-0629 4.4.0-178-generic #208-Ubuntu SMP Sun Apr 5 23:45:10 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux\r\n```", "I can't reproduce on my side unfortunately with the same versions.\r\n\r\nDo you have issues when doing multiprocessing with python ?\r\n```python\r\nfrom tqdm.auto import tqdm\r\nfrom multiprocess import Pool, RLock\r\n\r\ndef process_data(shard):\r\n # implement\r\n\r\nnum_proc = 8\r\nshards = [] # implement, this must be a list of size num_proc\r\n\r\nwith Pool(num_proc, initargs=(RLock(),), initializer=tqdm.set_lock) as pool:\r\n results = [pool.apply_async(process_data, shard=shard) for shard in shards]\r\n transformed_shards = [r.get() for r in results]\r\n```", "Nah, I'll just wait a few hours. Thank you for helping, though." ]
2020-10-24T02:40:20
2020-10-28T03:59:46
2020-10-28T03:59:45
NONE
null
null
null
<img width="721" alt="image" src="https://user-images.githubusercontent.com/17930170/97066109-776d0d00-15ed-11eb-8bba-bb4d2e0fcc33.png"> The code I am using is ``` dataset = load_dataset("text", data_files=[file_path], split='train') dataset = dataset.map(lambda ex: tokenizer(ex["text"], add_special_tokens=True, truncation=True, max_length=args.block_size), num_proc=8) dataset.set_format(type='torch', columns=['input_ids']) dataset.save_to_disk(file_path+'.arrow') ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/758/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/758/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/757
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/757/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/757/comments
https://api.github.com/repos/huggingface/datasets/issues/757/events
https://github.com/huggingface/datasets/issues/757
728,241,494
MDU6SXNzdWU3MjgyNDE0OTQ=
757
CUDA out of memory
{ "login": "li1117heex", "id": 47059217, "node_id": "MDQ6VXNlcjQ3MDU5MjE3", "avatar_url": "https://avatars.githubusercontent.com/u/47059217?v=4", "gravatar_id": "", "url": "https://api.github.com/users/li1117heex", "html_url": "https://github.com/li1117heex", "followers_url": "https://api.github.com/users/li1117heex/followers", "following_url": "https://api.github.com/users/li1117heex/following{/other_user}", "gists_url": "https://api.github.com/users/li1117heex/gists{/gist_id}", "starred_url": "https://api.github.com/users/li1117heex/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/li1117heex/subscriptions", "organizations_url": "https://api.github.com/users/li1117heex/orgs", "repos_url": "https://api.github.com/users/li1117heex/repos", "events_url": "https://api.github.com/users/li1117heex/events{/privacy}", "received_events_url": "https://api.github.com/users/li1117heex/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Could you provide more details ? What's the code you ran ?", "```python\r\ntokenizer = FunnelTokenizer.from_pretrained('funnel-transformer/small')\r\n\r\ndef tokenize(batch):\r\n return tokenizer(batch['text'], padding='max_length', truncation=True,max_length=512)\r\n\r\ndataset = load_dataset(\"bookcorpus\",split='train[:1000]').shuffle()\r\ndataset = dataset.map(tokenize, batched=True, batch_size=512)\r\n\r\n# dataset = LineByLineTextDataset(\r\n# tokenizer=tokenizer,\r\n# file_path=\"./wiki1000.txt\",\r\n# block_size=128\r\n# )\r\n\r\ndata_collator = DataCollatorForLanguageModeling(\r\n tokenizer=tokenizer, mlm=True, mlm_probability=0.15\r\n)\r\n\r\nconfig=FunnelConfig(\r\n return_dict=True\r\n)\r\n\r\nmodel= FunnelForMaskedLM(config=config)\r\n\r\ntraining_args = TrainingArguments(\r\n output_dir=\"./checkpoints\",\r\n overwrite_output_dir=True,\r\n do_train=True,\r\n num_train_epochs=1,\r\n per_device_train_batch_size=16,\r\n per_device_eval_batch_size=16,\r\n save_steps=10000,\r\n logging_dir='./ptlogs'\r\n)\r\n\r\ntrainer = Trainer(\r\n model=model,\r\n args=training_args,\r\n data_collator=data_collator,\r\n train_dataset=dataset,\r\n)\r\ntrainer.train()\r\n```", "`RuntimeError: CUDA out of memory. Tried to allocate 954.00 MiB (GPU 0; 15.90 GiB total capacity; 14.35 GiB already allocated; 753.75 MiB free; 14.39 GiB reserved in total by PyTorch)\r\nException raised from malloc at /pytorch/c10/cuda/CUDACachingAllocator.cpp:272 (most recent call first):`\r\n\r\npart of error output", "from funnel model to bert model : error still happened\r\n\r\nfrom your dataset to LineByLineTextDataset : error disapeared", "notice i just loaded 1000 rows of data", "the error happens when executing loss.backward()", "Since you're using a data collator you don't need to tokenizer the dataset using `map`. Could you try not to use `map` and only the data collator instead ? The data collator is supposed to pad to the longest sequence in each batch afaik, instead of padding to 512.\r\n\r\nAlso cc @sgugger ", "Closing this one.\r\nFeel free to re-open if you have other questions about this issue" ]
2020-10-23T13:57:00
2020-12-23T14:06:29
2020-12-23T14:06:29
NONE
null
null
null
In your dataset ,cuda run out of memory as long as the trainer begins: however, without changing any other element/parameter,just switch dataset to `LineByLineTextDataset`,everything becames OK.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/757/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/757/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/752
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/752/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/752/comments
https://api.github.com/repos/huggingface/datasets/issues/752/events
https://github.com/huggingface/datasets/issues/752
726,917,801
MDU6SXNzdWU3MjY5MTc4MDE=
752
Clicking on a metric in the search page points to datasets page giving "Missing dataset" warning
{ "login": "ogabrielluiz", "id": 24829397, "node_id": "MDQ6VXNlcjI0ODI5Mzk3", "avatar_url": "https://avatars.githubusercontent.com/u/24829397?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ogabrielluiz", "html_url": "https://github.com/ogabrielluiz", "followers_url": "https://api.github.com/users/ogabrielluiz/followers", "following_url": "https://api.github.com/users/ogabrielluiz/following{/other_user}", "gists_url": "https://api.github.com/users/ogabrielluiz/gists{/gist_id}", "starred_url": "https://api.github.com/users/ogabrielluiz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ogabrielluiz/subscriptions", "organizations_url": "https://api.github.com/users/ogabrielluiz/orgs", "repos_url": "https://api.github.com/users/ogabrielluiz/repos", "events_url": "https://api.github.com/users/ogabrielluiz/events{/privacy}", "received_events_url": "https://api.github.com/users/ogabrielluiz/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Thanks for the report, can reproduce. Will fix", "Fixed now @ogabrielluiz " ]
2020-10-21T22:56:23
2020-10-22T16:19:42
2020-10-22T16:19:42
NONE
null
null
null
Hi! Sorry if this isn't the right place to talk about the website, I just didn't exactly where to write this. Searching a metric in https://huggingface.co/metrics gives the right results but clicking on a metric (E.g ROUGE) points to https://huggingface.co/datasets/rouge. Clicking on a metric without searching points to the right page. Thanks for all the great work!
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/752/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/752/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/751
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/751/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/751/comments
https://api.github.com/repos/huggingface/datasets/issues/751/events
https://github.com/huggingface/datasets/issues/751
726,820,191
MDU6SXNzdWU3MjY4MjAxOTE=
751
Error loading ms_marco v2.1 using load_dataset()
{ "login": "JainSahit", "id": 30478979, "node_id": "MDQ6VXNlcjMwNDc4OTc5", "avatar_url": "https://avatars.githubusercontent.com/u/30478979?v=4", "gravatar_id": "", "url": "https://api.github.com/users/JainSahit", "html_url": "https://github.com/JainSahit", "followers_url": "https://api.github.com/users/JainSahit/followers", "following_url": "https://api.github.com/users/JainSahit/following{/other_user}", "gists_url": "https://api.github.com/users/JainSahit/gists{/gist_id}", "starred_url": "https://api.github.com/users/JainSahit/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JainSahit/subscriptions", "organizations_url": "https://api.github.com/users/JainSahit/orgs", "repos_url": "https://api.github.com/users/JainSahit/repos", "events_url": "https://api.github.com/users/JainSahit/events{/privacy}", "received_events_url": "https://api.github.com/users/JainSahit/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "There was a similar issue in #294 \r\nClearing the cache and download again the dataset did the job. Could you try to clear your cache and download the dataset again ?", "I was able to load the dataset successfully, I'm pretty sure it's just a cache issue that you have.\r\nLet me know if clearing your cache fixes the problem", "Yes, it indeed was a cache issue!\r\nThanks for reaching out!!" ]
2020-10-21T19:54:43
2020-11-05T01:31:57
2020-11-05T01:31:57
NONE
null
null
null
Code: `dataset = load_dataset('ms_marco', 'v2.1')` Error: ``` `--------------------------------------------------------------------------- JSONDecodeError Traceback (most recent call last) <ipython-input-16-34378c057212> in <module>() 9 10 # Downloading and loading a dataset ---> 11 dataset = load_dataset('ms_marco', 'v2.1') 10 frames /usr/lib/python3.6/json/decoder.py in raw_decode(self, s, idx) 353 """ 354 try: --> 355 obj, end = self.scan_once(s, idx) 356 except StopIteration as err: 357 raise JSONDecodeError("Expecting value", s, err.value) from None JSONDecodeError: Unterminated string starting at: line 1 column 388988661 (char 388988660) ` ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/751/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/751/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/750
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/750/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/750/comments
https://api.github.com/repos/huggingface/datasets/issues/750/events
https://github.com/huggingface/datasets/issues/750
726,589,446
MDU6SXNzdWU3MjY1ODk0NDY=
750
load_dataset doesn't include `features` in its hash
{ "login": "sgugger", "id": 35901082, "node_id": "MDQ6VXNlcjM1OTAxMDgy", "avatar_url": "https://avatars.githubusercontent.com/u/35901082?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sgugger", "html_url": "https://github.com/sgugger", "followers_url": "https://api.github.com/users/sgugger/followers", "following_url": "https://api.github.com/users/sgugger/following{/other_user}", "gists_url": "https://api.github.com/users/sgugger/gists{/gist_id}", "starred_url": "https://api.github.com/users/sgugger/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sgugger/subscriptions", "organizations_url": "https://api.github.com/users/sgugger/orgs", "repos_url": "https://api.github.com/users/sgugger/repos", "events_url": "https://api.github.com/users/sgugger/events{/privacy}", "received_events_url": "https://api.github.com/users/sgugger/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2020-10-21T15:16:41
2020-10-29T09:36:01
2020-10-29T09:36:01
CONTRIBUTOR
null
null
null
It looks like the function `load_dataset` does not include what's passed in the `features` argument when creating a hash for a given dataset. As a result, if a user includes new features from an already downloaded dataset, those are ignored. Example: some models on the hub have a different ordering for the labels than what `datasets` uses for MNLI so I'd like to do something along the lines of: ``` dataset = load_dataset("glue", "mnli") features = dataset["train"].features features["label"] = ClassLabel(names = ['entailment', 'contradiction', 'neutral']) # new label order dataset = load_dataset("glue", "mnli", features=features) ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/750/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/750/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/749
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/749/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/749/comments
https://api.github.com/repos/huggingface/datasets/issues/749/events
https://github.com/huggingface/datasets/issues/749
726,366,062
MDU6SXNzdWU3MjYzNjYwNjI=
749
[XGLUE] Adding new dataset
{ "login": "patrickvonplaten", "id": 23423619, "node_id": "MDQ6VXNlcjIzNDIzNjE5", "avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4", "gravatar_id": "", "url": "https://api.github.com/users/patrickvonplaten", "html_url": "https://github.com/patrickvonplaten", "followers_url": "https://api.github.com/users/patrickvonplaten/followers", "following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}", "gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}", "starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions", "organizations_url": "https://api.github.com/users/patrickvonplaten/orgs", "repos_url": "https://api.github.com/users/patrickvonplaten/repos", "events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}", "received_events_url": "https://api.github.com/users/patrickvonplaten/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
closed
false
{ "login": "patrickvonplaten", "id": 23423619, "node_id": "MDQ6VXNlcjIzNDIzNjE5", "avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4", "gravatar_id": "", "url": "https://api.github.com/users/patrickvonplaten", "html_url": "https://github.com/patrickvonplaten", "followers_url": "https://api.github.com/users/patrickvonplaten/followers", "following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}", "gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}", "starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions", "organizations_url": "https://api.github.com/users/patrickvonplaten/orgs", "repos_url": "https://api.github.com/users/patrickvonplaten/repos", "events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}", "received_events_url": "https://api.github.com/users/patrickvonplaten/received_events", "type": "User", "site_admin": false }
[ { "login": "patrickvonplaten", "id": 23423619, "node_id": "MDQ6VXNlcjIzNDIzNjE5", "avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4", "gravatar_id": "", "url": "https://api.github.com/users/patrickvonplaten", "html_url": "https://github.com/patrickvonplaten", "followers_url": "https://api.github.com/users/patrickvonplaten/followers", "following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}", "gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}", "starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions", "organizations_url": "https://api.github.com/users/patrickvonplaten/orgs", "repos_url": "https://api.github.com/users/patrickvonplaten/repos", "events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}", "received_events_url": "https://api.github.com/users/patrickvonplaten/received_events", "type": "User", "site_admin": false } ]
null
[ "Amazing! ", "Small poll @thomwolf @yjernite @lhoestq @JetRunner @qiweizhen .\r\n\r\nAs stated in the XGLUE paper: https://arxiv.org/pdf/2004.01401.pdf , for each of the 11 down-stream tasks training data is only available in English, whereas development and test data is available in multiple different language *cf.* here: \r\n\r\n![Screenshot from 2020-11-04 15-02-17](https://user-images.githubusercontent.com/23423619/98120893-d7499a80-1eae-11eb-9d0b-57dfe5d4ee68.png)\r\n\r\nSo, I'd suggest to have exactly 11 \"language-independent\" configs: \"ner\", \"pos\", ... and give the sample in each dataset in the config a \"language\" label being one of \"ar\", \"bg\", .... => To me this makes more sense than making languaga specific config, *e.g.* \"ner-de\", ...especially because training data is only available in English. Do you guys agree? ", "In this case we should have named splits, so config `ner` has splits `train`, `validation`, `test-en`, `test-ar`, `test-bg`, etc...\r\n\r\nThis is more in the spirit of the task afaiu, and will avoid making users do the filtering step themselves when testing different models or different configurations of the same model.", "I see your point! \r\n\r\nI think this would be quite feasible to do and makes sense to me as well! In the paper results are reported per language, so it seems more natural to do it this way. \r\n\r\nGood for me @yjernite ! What do the others think? @lhoestq \r\n", "I agree with Yacine on this!", "Okey actually not that easy to add things like `test-de` to `datasets` => this would be the first dataset to have this.\r\nSee: https://github.com/huggingface/datasets/pull/802", "IMO we should have one config per language. That's what we're doing for xnli, xtreme etc.\r\nHaving split names that depend on the language seems wrong. We should try to avoid split names that are not train/val/test.\r\nSorry for late response on this one", "@lhoestq agreed on having one config per language, but we also need to be able to have different split names and people are going to want to use hyphens, so we should at the very least warn them why it's failing :) E.g. for ANLI with different stages of data (currently using underscores) or https://www.tau-nlp.org/commonsenseqa with their train-sanity or dev-sanity splits", "Yes sure ! Could you open a separate issue for that ?", "Really cool dataset 👍 btw. does Transformers support all 11 tasks 🤔 would be awesome to have a xglue script (like the \"normal\" glue one)", "Just to make sure this is what we want here. If we add one config per language, \r\n\r\nthis means that this dataset ends up with well over 100 different configs most of which will have the same `train` split. The train split is always in English. Also, I'm not sure whether it's better for the user to be honest. \r\n\r\nI think it could be quite confusing for the user to have\r\n\r\n```python\r\ntrain_dataset = load_dataset(\"xglue\", \"ner-de\", split=\"train\")\r\n```\r\n\r\nin English even though it's `ner-de`.\r\n\r\nTo be honest, I'd prefer:\r\n\r\n```python\r\ntrain_dataset = load_dataset(\"xglue\", \"ner\", split=\"train\")\r\ntest_dataset_de = load_dataset(\"xglue\", \"ner\", split=\"test-de\")\r\ntest_dataset_fr = load_dataset(\"xglue\", \"ner\", split=\"test-fr\")\r\n```\r\n\r\nhere", "Oh yes right I didn't notice the train set was always in english sorry.\r\nMoreover it seems that the way this dataset is used is to pick a pretrained multilingual model, fine-tune it on the english train set and then evaluate on each test set (one per language).\r\nSo to better fit the usual usage of this dataset, I agree that it's better to have one test split per language. \r\n\r\nSomething like your latest example patrick is fine imo :\r\n```python\r\ntrain_dataset = load_dataset(\"xglue\", \"ner\", split=\"train\")\r\ntest_dataset_de = load_dataset(\"xglue\", \"ner\", split=\"test.de\")\r\n```\r\n\r\nI just replace test-de with test.de since `-` is not allowed for split names (it has to follow the `\\w+` regex), and usually we specify the language after a point. ", "Closing since XGLUE has been added in #802 , thanks patrick :) ", "I need xglue Urdu summarization dataset so how can i get it?", "According to the table in https://huggingface.co/datasets/xglue, Urdu only exists for POS and XNLI in XGLUE - not for summarization" ]
2020-10-21T10:51:36
2022-09-30T11:35:30
2021-01-06T10:02:55
CONTRIBUTOR
null
null
null
XGLUE is a multilingual GLUE like dataset propesed in this [paper](https://arxiv.org/pdf/2004.01401.pdf). I'm planning on adding the dataset to the library myself in a couple of weeks. Also tagging @JetRunner @qiweizhen in case I need some guidance
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/749/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/749/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/744
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/744/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/744/comments
https://api.github.com/repos/huggingface/datasets/issues/744/events
https://github.com/huggingface/datasets/issues/744
724,918,448
MDU6SXNzdWU3MjQ5MTg0NDg=
744
Dataset Explorer Doesn't Work for squad_es and squad_it
{ "login": "gaotongxiao", "id": 22607038, "node_id": "MDQ6VXNlcjIyNjA3MDM4", "avatar_url": "https://avatars.githubusercontent.com/u/22607038?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gaotongxiao", "html_url": "https://github.com/gaotongxiao", "followers_url": "https://api.github.com/users/gaotongxiao/followers", "following_url": "https://api.github.com/users/gaotongxiao/following{/other_user}", "gists_url": "https://api.github.com/users/gaotongxiao/gists{/gist_id}", "starred_url": "https://api.github.com/users/gaotongxiao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gaotongxiao/subscriptions", "organizations_url": "https://api.github.com/users/gaotongxiao/orgs", "repos_url": "https://api.github.com/users/gaotongxiao/repos", "events_url": "https://api.github.com/users/gaotongxiao/events{/privacy}", "received_events_url": "https://api.github.com/users/gaotongxiao/received_events", "type": "User", "site_admin": false }
[ { "id": 2107841032, "node_id": "MDU6TGFiZWwyMTA3ODQxMDMy", "url": "https://api.github.com/repos/huggingface/datasets/labels/nlp-viewer", "name": "nlp-viewer", "color": "94203D", "default": false, "description": "" } ]
closed
false
null
[]
null
[ "Oups wrong click.\r\nThis one is for you @srush" ]
2020-10-19T19:34:12
2020-10-26T16:36:17
2020-10-26T16:36:17
NONE
null
null
null
https://huggingface.co/nlp/viewer/?dataset=squad_es https://huggingface.co/nlp/viewer/?dataset=squad_it Both pages show "OSError: [Errno 28] No space left on device".
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/744/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/744/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/743
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/743/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/743/comments
https://api.github.com/repos/huggingface/datasets/issues/743/events
https://github.com/huggingface/datasets/issues/743
724,703,980
MDU6SXNzdWU3MjQ3MDM5ODA=
743
load_dataset for CSV files not working
{ "login": "iliemihai", "id": 2815308, "node_id": "MDQ6VXNlcjI4MTUzMDg=", "avatar_url": "https://avatars.githubusercontent.com/u/2815308?v=4", "gravatar_id": "", "url": "https://api.github.com/users/iliemihai", "html_url": "https://github.com/iliemihai", "followers_url": "https://api.github.com/users/iliemihai/followers", "following_url": "https://api.github.com/users/iliemihai/following{/other_user}", "gists_url": "https://api.github.com/users/iliemihai/gists{/gist_id}", "starred_url": "https://api.github.com/users/iliemihai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/iliemihai/subscriptions", "organizations_url": "https://api.github.com/users/iliemihai/orgs", "repos_url": "https://api.github.com/users/iliemihai/repos", "events_url": "https://api.github.com/users/iliemihai/events{/privacy}", "received_events_url": "https://api.github.com/users/iliemihai/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Thank you !\r\nCould you provide a csv file that reproduces the error ?\r\nIt doesn't have to be one of your dataset. As long as it reproduces the error\r\nThat would help a lot !", "I think another good example is the following:\r\n`\r\nfrom datasets import load_dataset\r\n`\r\n`\r\ndataset = load_dataset(\"csv\", data_files=[\"./sts-dev.csv\"], delimiter=\"\\t\", column_names=[\"one\", \"two\", \"three\", \"four\", \"score\", \"sentence1\", \"sentence2\"], script_version=\"master\")`\r\n`\r\n\r\nDisplayed error `CSV parse error: Expected 7 columns, got 6` even tough I put 7 columns. First four columns from the csv don't have a name, so I've named them by default. The csv file is the .dev file from STSb benchmark dataset.\r\n\r\n", "Hi, seems I also can't read csv file. I was trying with a dummy csv with only three rows.\r\n\r\n```\r\ntext,label\r\nI hate google,negative\r\nI love Microsoft,positive\r\nI don't like you,negative\r\n```\r\nI was using the HuggingFace image in Paperspace Gradient (datasets==1.1.3). The following code doesn't work:\r\n\r\n```\r\nfrom datasets import load_dataset\r\ndataset = load_dataset('csv', script_version=\"master\", data_files=['test_data.csv'], delimiter=\",\")\r\n```\r\nIt outputs the following:\r\n```\r\nUsing custom data configuration default\r\nDownloading and preparing dataset csv/default-3b6254ff4dd403e5 (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /root/.cache/huggingface/datasets/csv/default-3b6254ff4dd403e5/0.0.0/2960f95a26e85d40ca41a230ac88787f715ee3003edaacb8b1f0891e9f04dda2...\r\nDataset csv downloaded and prepared to /root/.cache/huggingface/datasets/csv/default-3b6254ff4dd403e5/0.0.0/2960f95a26e85d40ca41a230ac88787f715ee3003edaacb8b1f0891e9f04dda2. Subsequent calls will reuse this data.\r\n```\r\nBut `len(dataset)` gives `1` and I can't access rows with indexing `dataset[0]` (it gives `KeyError: 0`).\r\n\r\nHowever, loading from pandas dataframe is working.\r\n```\r\nfrom datasets import Dataset\r\nimport pandas as pd\r\ndf = pd.read_csv('test_data.csv')\r\ndataset = Dataset.from_pandas(df)\r\n```\r\n\r\n", "This is because load_dataset without `split=` returns a dictionary of split names (train/validation/test) to dataset.\r\nYou can do\r\n```python\r\nfrom datasets import load_dataset\r\ndataset = load_dataset('csv', script_version=\"master\", data_files=['test_data.csv'], delimiter=\",\")\r\nprint(dataset[\"train\"][0])\r\n```\r\n\r\nOr if you want to directly get the train split:\r\n\r\n```python\r\nfrom datasets import load_dataset\r\ndataset = load_dataset('csv', script_version=\"master\", data_files=['test_data.csv'], delimiter=\",\", split=\"train\")\r\nprint(dataset[0])\r\n```\r\n", "Good point\r\n\r\nDesign question for us, though: should `load_dataset` when no split is specified and only one split is present in the dataset (common use case with CSV/text/JSON datasets) return a `Dataset` instead of a `DatsetDict`? I feel like it's often what the user is expecting. I break a bit the paradigm of a unique return type but since this library is designed for widespread DS people more than CS people usage I would tend to think that UX should take precedence over CS reasons. What do you think?", "In this case the user expects to get only one dataset object instead of the dictionary of datasets since only one csv file was specified without any split specifications.\r\nI'm ok with returning the dataset object if no split specifications are given for text/json/csv/pandas.\r\n\r\nFor the other datasets ton the other hand the user doesn't know in advance the splits so I would keep the dictionary by default. What do you think ?", "Thanks for your quick response! I'm fine with specifying the split as @lhoestq suggested. My only concern is when I'm loading from python dict or pandas, the library returns a dataset instead of a dictionary of datasets when no split is specified. I know that they use a different function `Dataset.from_dict` or `Dataset.from_pandas` but the text/csv files use `load_dataset()`. However, to the user, they do the same task and we probably expect them to have the same behavior.", "```\r\nfrom datasets import load_dataset\r\ndataset = load_dataset('csv', data_files='./amazon_data/Video_Games_5.csv', delimiter=\",\", split=['train', 'test'])\r\n```\r\nI was running the above line, but got this error.\r\n\r\n```ValueError: Unknown split \"test\". Should be one of ['train'].```\r\n\r\nThe data is amazon product data. I load the Video_Games_5.json.gz data into pandas and save it as csv file. and then load the csv file using the above code. I thought, ```split=['train', 'test']``` would split the data into train and test. did I misunderstood?\r\n\r\nThank you!\r\n\r\n", "Hi ! the `split` argument in `load_dataset` is used to select the splits you want among the available splits.\r\nHowever when loading a csv with a single file as you did, only a `train` split is available by default.\r\n\r\nIndeed since `data_files='./amazon_data/Video_Games_5.csv'` is equivalent to `data_files={\"train\": './amazon_data/Video_Games_5.csv'}`, you can get a dataset with \r\n```python\r\nfrom datasets import load_dataset\r\ndataset = load_dataset('csv', data_files='./amazon_data/Video_Games_5.csv', delimiter=\",\", split=\"train\")\r\n```\r\n\r\nAnd then to get both a train and test split you can do\r\n```python\r\ndataset = dataset.train_test_split()\r\nprint(dataset.keys())\r\n# ['train', 'test']\r\n```\r\n\r\n\r\nAlso note that a csv dataset may have several available splits if it is defined this way:\r\n```python\r\nfrom datasets import load_dataset\r\ndataset = load_dataset('csv', data_files={\r\n \"train\": './amazon_data/Video_Games_5_train.csv',\r\n \"test\": './amazon_data/Video_Games_5_test.csv'\r\n})\r\nprint(dataset.keys())\r\n# ['train', 'test']\r\n```\r\n", "> In this case the user expects to get only one dataset object instead of the dictionary of datasets since only one csv file was specified without any split specifications.\r\n> I'm ok with returning the dataset object if no split specifications are given for text/json/csv/pandas.\r\n> \r\n> For the other datasets ton the other hand the user doesn't know in advance the splits so I would keep the dictionary by default. What do you think ?\r\n\r\nYes maybe this would be good. I think having to select 'train' from the resulting object why the user gave no split information is a confusing and not intuitive behavior.", "> Similar to #622, I've noticed there is a problem when trying to load a CSV file with datasets.\r\n> \r\n> `from datasets import load_dataset`\r\n> `dataset = load_dataset(\"csv\", data_files=[\"./sample_data.csv\"], delimiter=\"\\t\", column_names=[\"title\", \"text\"], script_version=\"master\")`\r\n> \r\n> Displayed error:\r\n> `... ArrowInvalid: CSV parse error: Expected 2 columns, got 1`\r\n\r\nI'm also facing the same issue when trying to load from a csv file locally:\r\n\r\n```python\r\nfrom nlp import load_dataset\r\ndataset = load_dataset('csv', data_files='sample_data.csv')\r\n```\r\n\r\nError when executed from Google Colab:\r\n```python\r\nArrowInvalid Traceback (most recent call last)\r\n<ipython-input-34-79a8d4f65ed6> in <module>()\r\n 1 from nlp import load_dataset\r\n----> 2 dataset = load_dataset('csv', data_files='sample_data.csv')\r\n\r\n9 frames\r\n/usr/local/lib/python3.7/dist-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs)\r\n 547 # Download and prepare data\r\n 548 builder_instance.download_and_prepare(\r\n--> 549 download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications,\r\n 550 )\r\n 551 \r\n\r\n/usr/local/lib/python3.7/dist-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)\r\n 461 if not downloaded_from_gcs:\r\n 462 self._download_and_prepare(\r\n--> 463 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs\r\n 464 )\r\n 465 # Sync info\r\n\r\n/usr/local/lib/python3.7/dist-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)\r\n 535 try:\r\n 536 # Prepare split will record examples associated to the split\r\n--> 537 self._prepare_split(split_generator, **prepare_split_kwargs)\r\n 538 except OSError:\r\n 539 raise OSError(\"Cannot find data file. \" + (self.manual_download_instructions or \"\"))\r\n\r\n/usr/local/lib/python3.7/dist-packages/nlp/builder.py in _prepare_split(self, split_generator)\r\n 863 \r\n 864 generator = self._generate_tables(**split_generator.gen_kwargs)\r\n--> 865 for key, table in utils.tqdm(generator, unit=\" tables\", leave=False):\r\n 866 writer.write_table(table)\r\n 867 num_examples, num_bytes = writer.finalize()\r\n\r\n/usr/local/lib/python3.7/dist-packages/tqdm/notebook.py in __iter__(self, *args, **kwargs)\r\n 213 def __iter__(self, *args, **kwargs):\r\n 214 try:\r\n--> 215 for obj in super(tqdm_notebook, self).__iter__(*args, **kwargs):\r\n 216 # return super(tqdm...) will not catch exception\r\n 217 yield obj\r\n\r\n/usr/local/lib/python3.7/dist-packages/tqdm/std.py in __iter__(self)\r\n 1102 fp_write=getattr(self.fp, 'write', sys.stderr.write))\r\n 1103 \r\n-> 1104 for obj in iterable:\r\n 1105 yield obj\r\n 1106 # Update and possibly print the progressbar.\r\n\r\n/usr/local/lib/python3.7/dist-packages/nlp/datasets/csv/ede98314803c971fef04bcee45d660c62f3332e8a74491e0b876106f3d99bd9b/csv.py in _generate_tables(self, files)\r\n 78 read_options=self.config.pa_read_options,\r\n 79 parse_options=self.config.pa_parse_options,\r\n---> 80 convert_options=self.config.convert_options,\r\n 81 )\r\n 82 yield i, pa_table\r\n\r\n/usr/local/lib/python3.7/dist-packages/pyarrow/_csv.pyx in pyarrow._csv.read_csv()\r\n\r\n/usr/local/lib/python3.7/dist-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status()\r\n\r\n/usr/local/lib/python3.7/dist-packages/pyarrow/error.pxi in pyarrow.lib.check_status()\r\n\r\nArrowInvalid: CSV parse error: Expected 1 columns, got 8\r\n```\r\n\r\nVersion:\r\n```\r\nnlp==0.4.0\r\n```", "Hi @kauvinlucas\r\n\r\nYou can use the latest versions of `datasets` to do this.\r\nTo do so, just `pip install datasets` instead of `nlp` (the library was renamed) and then\r\n```python\r\nfrom datasets import load_dataset\r\ndataset = load_dataset('csv', data_files='sample_data.csv')", "Hi \r\nI'm having a different problem with loading local csv. \r\n```Python\r\nfrom datasets import load_dataset \r\ndataset = load_dataset('csv', data_files='sample.csv') \r\n``` \r\n\r\ngives `ValueError: Specified named and prefix; you can only specify one.` error \r\n\r\nversions: \r\n- datasets: 1.1.3 \r\n- python: 3.9.6 \r\n- pyarrow: 2.0.0 ", "Oh.. I figured it out. According to issue #[42387](https://github.com/pandas-dev/pandas/issues/42387) from pandas, this new version does not accept None for both parameters (which was being done by the repo I'm testing). Dowgrading Pandas==1.0.4 and Python==3.8 worked", "Hi, \r\nI got an `OSError: Cannot find data file. ` when I tried to use load_dataset with tsv files. I have checked the paths, and they are correct. \r\n\r\nversions\r\n- python: 3.7.9\r\n- datasets: 1.1.3\r\n- pyarrow: 2.0.0\r\n- transformers: 4.2.2\r\n\r\n~~~\r\ndata_files = {\"train\": \"train.tsv\", \"test\",: \"test.tsv\"}\r\ndatasets = load_dataset(\"csv\", data_files=data_files, delimiter=\"\\t\")\r\n~~~\r\n\r\nThe entire Error message is on below:\r\n\r\n```08/14/2021 16:55:44 - INFO - __main__ - load a local file for train: /project/media-framing/transformer4/data/0/val/label1.tsv\r\n08/14/2021 16:55:44 - INFO - __main__ - load a local file for test: /project/media-framing/transformer4/data/unlabel/test.tsv\r\nUsing custom data configuration default\r\nDownloading and preparing dataset csv/default-00a4200ae8507533 (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /usr4/cs542sp/hey1/.cache/huggingface/datasets/csv/default-00a4200ae8507533/0.0.0/2960f95a26e85d40ca41a230ac88787f715ee3003edaacb8b1f0891e9f04dda2...\r\nTraceback (most recent call last):\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/builder.py\", line 592, in _download_and_prepare\r\n self._prepare_split(split_generator, **prepare_split_kwargs)\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/builder.py\", line 944, in _prepare_split\r\n num_examples, num_bytes = writer.finalize()\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/arrow_writer.py\", line 307, in finalize\r\n self.stream.close()\r\n File \"pyarrow/io.pxi\", line 132, in pyarrow.lib.NativeFile.close\r\n File \"pyarrow/error.pxi\", line 99, in pyarrow.lib.check_status\r\nOSError: error closing file\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File \"run_glue.py\", line 484, in <module>\r\n main()\r\n File \"run_glue.py\", line 243, in main\r\n datasets = load_dataset(\"csv\", data_files=data_files, delimiter=\"\\t\")\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/load.py\", line 610, in load_dataset\r\n ignore_verifications=ignore_verifications,\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/builder.py\", line 515, in download_and_prepare\r\n dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/builder.py\", line 594, in _download_and_prepare\r\n raise OSError(\"Cannot find data file. \" + (self.manual_download_instructions or \"\"))\r\nOSError: Cannot find data file. ```", "Hi ! It looks like the error stacktrace doesn't match with your code snippet.\r\n\r\nWhat error do you get when running this ?\r\n```\r\ndata_files = {\"train\": \"train.tsv\", \"test\",: \"test.tsv\"}\r\ndatasets = load_dataset(\"csv\", data_files=data_files, delimiter=\"\\t\")\r\n```\r\ncan you check that both tsv files are in the same folder as the current working directory of your shell ?", "Hi @lhoestq, Below is the entire error message after I move both tsv files to the same directory. It's the same with I got before.\r\n```\r\n/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/torch/cuda/__init__.py:52: UserWarning: CUDA initialization: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx (Triggered internally at /pytorch/c10/cuda/CUDAFunctions.cpp:100.)\r\n return torch._C._cuda_getDeviceCount() > 0\r\n08/29/2021 22:56:43 - WARNING - __main__ - Process rank: -1, device: cpu, n_gpu: 0distributed training: False, 16-bits training: False\r\n08/29/2021 22:56:43 - INFO - __main__ - Training/evaluation parameters TrainingArguments(output_dir=/projectnb/media-framing/pred_result/label1/, overwrite_output_dir=True, do_train=True, do_eval=False, do_predict=True, evaluation_strategy=EvaluationStrategy.NO, prediction_loss_only=False, per_device_train_batch_size=8, per_device_eval_batch_size=8, gradient_accumulation_steps=1, eval_accumulation_steps=None, learning_rate=5e-05, weight_decay=0.0, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=8.0, max_steps=-1, lr_scheduler_type=SchedulerType.LINEAR, warmup_steps=0, logging_dir=runs/Aug29_22-56-43_scc1, logging_first_step=False, logging_steps=500, save_steps=3000, save_total_limit=None, no_cuda=False, seed=42, fp16=False, fp16_opt_level=O1, fp16_backend=auto, local_rank=-1, tpu_num_cores=None, tpu_metrics_debug=False, debug=False, dataloader_drop_last=False, eval_steps=500, dataloader_num_workers=0, past_index=-1, run_name=/projectnb/media-framing/pred_result/label1/, disable_tqdm=False, remove_unused_columns=True, label_names=None, load_best_model_at_end=False, metric_for_best_model=None, greater_is_better=None, ignore_data_skip=False, sharded_ddp=False, deepspeed=None, label_smoothing_factor=0.0, adafactor=False, _n_gpu=0)\r\n08/29/2021 22:56:43 - INFO - __main__ - load a local file for train: /project/media-framing/transformer4/temp_train.tsv\r\n08/29/2021 22:56:43 - INFO - __main__ - load a local file for test: /project/media-framing/transformer4/temp_test.tsv\r\n08/29/2021 22:56:43 - WARNING - datasets.builder - Using custom data configuration default-df627c23ac0e98ec\r\nDownloading and preparing dataset csv/default (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /usr4/cs542sp/hey1/.cache/huggingface/datasets/csv/default-df627c23ac0e98ec/0.0.0/9144e0a4e8435090117cea53e6c7537173ef2304525df4a077c435d8ee7828ff...\r\nTraceback (most recent call last):\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/builder.py\", line 693, in _download_and_prepare\r\n self._prepare_split(split_generator, **prepare_split_kwargs)\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/builder.py\", line 1166, in _prepare_split\r\n num_examples, num_bytes = writer.finalize()\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/arrow_writer.py\", line 428, in finalize\r\n self.stream.close()\r\n File \"pyarrow/io.pxi\", line 132, in pyarrow.lib.NativeFile.close\r\n File \"pyarrow/error.pxi\", line 99, in pyarrow.lib.check_status\r\nOSError: error closing file\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File \"run_glue.py\", line 487, in <module>\r\n main()\r\n File \"run_glue.py\", line 244, in main\r\n datasets = load_dataset(\"csv\", data_files=data_files, delimiter=\"\\t\")\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/load.py\", line 852, in load_dataset\r\n use_auth_token=use_auth_token,\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/builder.py\", line 616, in download_and_prepare\r\n dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/builder.py\", line 699, in _download_and_prepare\r\n + str(e)\r\nOSError: Cannot find data file. \r\nOriginal error:\r\nerror closing file\r\n```", "Hi !\r\nCan you try running this into a python shell directly ?\r\n\r\n```python\r\nimport os\r\nfrom datasets import load_dataset\r\n\r\ndata_files = {\"train\": \"train.tsv\", \"test\": \"test.tsv\"}\r\nassert all(os.path.isfile(data_file) for data_file in data_files.values()), \"Couln't find files\"\r\n\r\ndatasets = load_dataset(\"csv\", data_files=data_files, delimiter=\"\\t\")\r\nprint(\"success !\")\r\n```\r\n\r\nThis way all the code from `run_glue.py` doesn't interfere with our tests :)", "Hi @lhoestq, \r\n\r\nBelow is what I got from terminal after I copied and run your code. I think the files themselves are good since there is no assertion error. \r\n\r\n```\r\nUsing custom data configuration default-df627c23ac0e98ec\r\nDownloading and preparing dataset csv/default (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /usr4/cs542sp/hey1/.cache/huggingface/datasets/csv/default-df627c23ac0e98ec/0.0.0/9144e0a4e8435090117cea53e6c7537173ef2304525df4a077c435d8ee7828ff...\r\nTraceback (most recent call last):\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/builder.py\", line 693, in _download_and_prepare\r\n self._prepare_split(split_generator, **prepare_split_kwargs)\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/builder.py\", line 1166, in _prepare_split\r\n num_examples, num_bytes = writer.finalize()\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/arrow_writer.py\", line 428, in finalize\r\n self.stream.close()\r\n File \"pyarrow/io.pxi\", line 132, in pyarrow.lib.NativeFile.close\r\n File \"pyarrow/error.pxi\", line 99, in pyarrow.lib.check_status\r\nOSError: error closing file\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File \"test.py\", line 7, in <module>\r\n datasets = load_dataset(\"csv\", data_files=data_files, delimiter=\"\\t\")\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/load.py\", line 852, in load_dataset\r\n use_auth_token=use_auth_token,\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/builder.py\", line 616, in download_and_prepare\r\n dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs\r\n File \"/projectnb2/media-framing/env-trans4/lib/python3.7/site-packages/datasets/builder.py\", line 699, in _download_and_prepare\r\n + str(e)\r\nOSError: Cannot find data file. \r\nOriginal error:\r\nerror closing file\r\n```", "Hi, could this be a permission error ? I think it fails to close the arrow file that contains the data from your CSVs in the cache.\r\n\r\nBy default datasets are cached in `~/.cache/huggingface/datasets`, could you check that you have the right permissions ?\r\nYou can also try to change the cache directory by passing `cache_dir=\"path/to/my/cache/dir\"` to `load_dataset`.", "Thank you!! @lhoestq\r\n\r\nFor some reason, I don't have the default path for datasets to cache, maybe because I work from a remote system. The issue solved after I pass the `cache_dir` argument to the function. Thank you very much!!", "> Hi, could this be a permission error ? I think it fails to close the arrow file that contains the data from your CSVs in the cache.\r\n> \r\n> By default datasets are cached in `~/.cache/huggingface/datasets`, could you check that you have the right permissions ? You can also try to change the cache directory by passing `cache_dir=\"path/to/my/cache/dir\"` to `load_dataset`.\r\n\r\nThis is the exact solution I have been finding for the whole afternoon. Thanks a lot!\r\nI tried to do a training on a cluster computing system. The user's home directory is shared between nodes.\r\nIt always gets **stuck** at dataset loading...\r\nThe reason might be, the node (with GPU) can't read/write data in the default cache folder (in my home directory).\r\nAfter using an intermediate cache folder, this issue is resolved for me." ]
2020-10-19T14:53:51
2022-11-28T16:59:36
null
CONTRIBUTOR
null
null
null
Similar to #622, I've noticed there is a problem when trying to load a CSV file with datasets. ` from datasets import load_dataset ` ` dataset = load_dataset("csv", data_files=["./sample_data.csv"], delimiter="\t", column_names=["title", "text"], script_version="master") ` Displayed error: ` ... ArrowInvalid: CSV parse error: Expected 2 columns, got 1 ` I should mention that when I've tried to read data from `https://github.com/lhoestq/transformers/tree/custom-dataset-in-rag-retriever/examples/rag/test_data/my_knowledge_dataset.csv` it worked without a problem. I've read that there might be some problems with /r character, so I've removed them from the custom dataset, but the problem still remains. I've added a colab reproducing the bug, but unfortunately I cannot provide the dataset. https://colab.research.google.com/drive/1Qzu7sC-frZVeniiWOwzoCe_UHZsrlxu8?usp=sharing Are there any work around for it ? Thank you
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/743/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/743/timeline
null
null
https://api.github.com/repos/huggingface/datasets/issues/741
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/741/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/741/comments
https://api.github.com/repos/huggingface/datasets/issues/741/events
https://github.com/huggingface/datasets/issues/741
723,924,275
MDU6SXNzdWU3MjM5MjQyNzU=
741
Creating dataset consumes too much memory
{ "login": "AmitMY", "id": 5757359, "node_id": "MDQ6VXNlcjU3NTczNTk=", "avatar_url": "https://avatars.githubusercontent.com/u/5757359?v=4", "gravatar_id": "", "url": "https://api.github.com/users/AmitMY", "html_url": "https://github.com/AmitMY", "followers_url": "https://api.github.com/users/AmitMY/followers", "following_url": "https://api.github.com/users/AmitMY/following{/other_user}", "gists_url": "https://api.github.com/users/AmitMY/gists{/gist_id}", "starred_url": "https://api.github.com/users/AmitMY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AmitMY/subscriptions", "organizations_url": "https://api.github.com/users/AmitMY/orgs", "repos_url": "https://api.github.com/users/AmitMY/repos", "events_url": "https://api.github.com/users/AmitMY/events{/privacy}", "received_events_url": "https://api.github.com/users/AmitMY/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Thanks for reporting.\r\nIn theory since the dataset script is just made to yield examples to write them into an arrow file, it's not supposed to create memory issues.\r\n\r\nCould you please try to run this exact same loop in a separate script to see if it's not an issue with `PIL` ?\r\nYou can just copy paste what's inside `_generate_examples` and remove all the code for `datasets` (remove yield).\r\n\r\nIf the RAM usage stays low after 600 examples it means that it comes from some sort of memory leak in the library, or with pyarrow.", "Here's an equivalent loading code:\r\n```python\r\nimages_path = \"PHOENIX-2014-T-release-v3/PHOENIX-2014-T/features/fullFrame-210x260px/train\"\r\n\r\nfor dir_path in tqdm(os.listdir(images_path)):\r\n frames_path = os.path.join(images_path, dir_path)\r\n np_frames = []\r\n for frame_name in os.listdir(frames_path):\r\n frame_path = os.path.join(frames_path, frame_name)\r\n im = Image.open(frame_path)\r\n np_frames.append(np.asarray(im))\r\n im.close()\r\n```\r\n\r\nThe process takes 0.3% of memory, even after 1000 examples on the small machine with 120GB RAM.\r\n\r\nI guess something in the datasets library doesn't release the reference to the objects I'm yielding, but no idea how to test for this", "I've had similar issues with Arrow once. I'll investigate...\r\n\r\nFor now maybe we can simply use the images paths in the dataset you want to add. I don't expect to fix this memory issue until 1-2 weeks unfortunately. Then we can just update the dataset with the images. What do you think ?", "If it's just 1-2 weeks, I think it's best if we wait. I don't think it is very urgent to add it, and it will be much more useful with the images loaded rather than not (the images are low resolution, and thus papers using this dataset actually fit the entire video into memory anyway)\r\n\r\nI'll keep working on other datasets in the meanwhile :) ", "Ok found the issue. This is because the batch size used by the writer is set to 10 000 elements by default so it would load your full dataset in memory (the writer has a buffer that flushes only after each batch). Moreover to write in Apache Arrow we have to use python objects so what's stored inside the ArrowWriter's buffer is actually python integers (32 bits).\r\n\r\nLowering the batch size to 10 should do the job.\r\n\r\nI will add a flag to the DatasetBuilder class of dataset scripts, so that we can customize the batch size.", "Thanks, that's awesome you managed to find the problem.\r\n\r\nAbout the 32 bits - really? there isn't a way to serialize the numpy array somehow? 32 bits would take 4 times the memory / disk space needed to store these videos.\r\n\r\nPlease let me know when the batch size is customizable and I'll try again!", "The 32 bit integrers are only used in the writer's buffer because Arrow doesn't take numpy arrays correctly as input. On disk it's stored as uint8 in arrow format ;)", "> I don't expect to fix this memory issue until 1-2 weeks unfortunately.\r\n\r\nHi @lhoestq \r\nnot to rush of course, but I was wondering if you have a new timeline so I know how to plan my work around this :) ", "Hi ! Next week for sure :) ", "Alright it should be good now.\r\nYou just have to specify `_writer_batch_size = 10` for example as a class attribute of the dataset builder class.", "I added it, but still it consumes as much memory\r\n\r\nhttps://github.com/huggingface/datasets/pull/722/files#diff-2e0d865dd4a60dedd1861d6f8c5ed281ded71508467908e1e0b1dbe7d2d420b1R66\r\n\r\nDid I not do it correctly?", "Yes you did it right.\r\nDid you rebase to include the changes of #828 ?\r\n\r\nEDIT: looks like you merged from master in the PR. Not sure why you still have an issue then, I will investigate", "Hi @lhoestq, any update on this?\r\nPerhaps even a direction I could try myself?", "Sorry for the delay, I was busy with the dataset sprint and the incredible amount of contributions to the library ^^'\r\n\r\nWhat you can try to do to find what's wrong is check at which frequency the arrow writer writes all the examples from its in-memory buffer on disk. This happens [here](https://github.com/huggingface/datasets/blob/master/src/datasets/arrow_writer.py#L257-L258) in the code.\r\n\r\nThe idea is that `write_on_file` writes the examples every `writer_batch_size` examples and clear the buffer `self. current_rows`. As soon as `writer_batch_size` is small enough you shouldn't have memory issues in theory.\r\n\r\nLet me know if you have questions or if I can help.\r\n\r\nSince the dataset sprint is over and I will also be done with all the PRs soon I will be able to go back at it and take a look.", "Thanks. I gave it a try and no success. I'm not sure what's happening there", "I had the same issue. It works for me by setting `DEFAULT_WRITER_BATCH_SIZE = 10` of my dataset builder class. (And not `_writer_batch_size` as previously mentioned). I guess this is because `_writer_batch_size` is overwritten in `__init__` (see [here](https://github.com/huggingface/datasets/blob/0e2563e5d5c2fc193ea27d7c24607bb35607f2d5/src/datasets/builder.py#L934))", "Yes the class attribute you can change is `DEFAULT_WRITER_BATCH_SIZE`.\r\nOtherwise in `load_dataset` you can specify `writer_batch_size=`", "Ok thanks for the tips. Maybe the documentation should be updated accordingly https://huggingface.co/docs/datasets/add_dataset.html.", "Thanks for reporting this mistake in the docs.\r\nI just fixed it at https://github.com/huggingface/datasets/commit/85cf7ff920c90ca2e12bedca12b36d2a043c3da2", "May I close this issue, @AmitMY?" ]
2020-10-18T06:07:06
2022-02-15T17:03:10
2022-02-15T17:03:10
CONTRIBUTOR
null
null
null
Moving this issue from https://github.com/huggingface/datasets/pull/722 here, because it seems like a general issue. Given the following dataset example, where each example saves a sequence of 260x210x3 images (max length 400): ```python def _generate_examples(self, base_path, split): """ Yields examples. """ filepath = os.path.join(base_path, "annotations", "manual", "PHOENIX-2014-T." + split + ".corpus.csv") images_path = os.path.join(base_path, "features", "fullFrame-210x260px", split) with open(filepath, "r", encoding="utf-8") as f: data = csv.DictReader(f, delimiter="|", quoting=csv.QUOTE_NONE) for row in data: frames_path = os.path.join(images_path, row["video"])[:-7] np_frames = [] for frame_name in os.listdir(frames_path): frame_path = os.path.join(frames_path, frame_name) im = Image.open(frame_path) np_frames.append(np.asarray(im)) im.close() yield row["name"], {"video": np_frames} ``` The dataset creation process goes out of memory on a machine with 500GB RAM. I was under the impression that the "generator" here is exactly for that, to avoid memory constraints. However, even if you want the entire dataset in memory, it would be in the worst case `260x210x3 x 400 max length x 7000 samples` in bytes (uint8) = 458.64 gigabytes So I'm not sure why it's taking more than 500GB. And the dataset creation fails after 170 examples on a machine with 120gb RAM, and after 672 examples on a machine with 500GB RAM. --- ## Info that might help: Iterating over examples is extremely slow. ![image](https://user-images.githubusercontent.com/5757359/96359590-3c666780-111d-11eb-9347-1f833ad982a9.png) If I perform this iteration in my own, custom loop (Without saving to file), it runs at 8-9 examples/sec And you can see at this state it is using 94% of the memory: ![image](https://user-images.githubusercontent.com/5757359/96359606-7afc2200-111d-11eb-8c11-0afbdba1a6a3.png) And it is only using one CPU core, which is probably why it's so slow: ![image](https://user-images.githubusercontent.com/5757359/96359630-a3841c00-111d-11eb-9ba0-7fd3cdf51d26.png)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/741/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/741/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/737
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/737/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/737/comments
https://api.github.com/repos/huggingface/datasets/issues/737/events
https://github.com/huggingface/datasets/issues/737
722,463,923
MDU6SXNzdWU3MjI0NjM5MjM=
737
Trec Dataset Connection Error
{ "login": "aychang95", "id": 10554495, "node_id": "MDQ6VXNlcjEwNTU0NDk1", "avatar_url": "https://avatars.githubusercontent.com/u/10554495?v=4", "gravatar_id": "", "url": "https://api.github.com/users/aychang95", "html_url": "https://github.com/aychang95", "followers_url": "https://api.github.com/users/aychang95/followers", "following_url": "https://api.github.com/users/aychang95/following{/other_user}", "gists_url": "https://api.github.com/users/aychang95/gists{/gist_id}", "starred_url": "https://api.github.com/users/aychang95/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/aychang95/subscriptions", "organizations_url": "https://api.github.com/users/aychang95/orgs", "repos_url": "https://api.github.com/users/aychang95/repos", "events_url": "https://api.github.com/users/aychang95/events{/privacy}", "received_events_url": "https://api.github.com/users/aychang95/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Thanks for reporting.\r\nThat's because the download url has changed. The old url now redirects to the new one but we don't support redirection for downloads.\r\n\r\nI'm opening a PR to update the url" ]
2020-10-15T15:57:53
2020-10-19T08:54:36
2020-10-19T08:54:36
NONE
null
null
null
**Datasets Version:** 1.1.2 **Python Version:** 3.6/3.7 **Code:** ```python from datasets import load_dataset load_dataset("trec") ``` **Expected behavior:** Download Trec dataset and load Dataset object **Current Behavior:** Get a connection error saying it couldn't reach http://cogcomp.org/Data/QA/QC/train_5500.label (but the link doesn't seem broken) <details> <summary>Error Logs</summary> Using custom data configuration default Downloading and preparing dataset trec/default (download: 350.79 KiB, generated: 403.39 KiB, post-processed: Unknown size, total: 754.18 KiB) to /root/.cache/huggingface/datasets/trec/default/1.1.0/ca4248481ad244f235f4cf277186cad2ee8769f975119a2bbfc41b8932b88bd7... --------------------------------------------------------------------------- ConnectionError Traceback (most recent call last) <ipython-input-8-66bf1242096e> in <module>() ----> 1 load_dataset("trec") 10 frames /usr/local/lib/python3.6/dist-packages/datasets/utils/file_utils.py in get_from_cache(url, cache_dir, force_download, proxies, etag_timeout, resume_download, user_agent, local_files_only, use_etag) 473 elif response is not None and response.status_code == 404: 474 raise FileNotFoundError("Couldn't find file at {}".format(url)) --> 475 raise ConnectionError("Couldn't reach {}".format(url)) 476 477 # Try a second time ConnectionError: Couldn't reach http://cogcomp.org/Data/QA/QC/train_5500.label </details>
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/737/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/737/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/735
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/735/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/735/comments
https://api.github.com/repos/huggingface/datasets/issues/735/events
https://github.com/huggingface/datasets/issues/735
722,225,270
MDU6SXNzdWU3MjIyMjUyNzA=
735
Throw error when an unexpected key is used in data_files
{ "login": "BramVanroy", "id": 2779410, "node_id": "MDQ6VXNlcjI3Nzk0MTA=", "avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BramVanroy", "html_url": "https://github.com/BramVanroy", "followers_url": "https://api.github.com/users/BramVanroy/followers", "following_url": "https://api.github.com/users/BramVanroy/following{/other_user}", "gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}", "starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions", "organizations_url": "https://api.github.com/users/BramVanroy/orgs", "repos_url": "https://api.github.com/users/BramVanroy/repos", "events_url": "https://api.github.com/users/BramVanroy/events{/privacy}", "received_events_url": "https://api.github.com/users/BramVanroy/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Thanks for reporting !\r\nWe'll add support for other keys" ]
2020-10-15T10:55:27
2020-10-30T13:23:52
2020-10-30T13:23:52
CONTRIBUTOR
null
null
null
I have found that only "train", "validation" and "test" are valid keys in the `data_files` argument. When you use any other ones, those attached files are silently ignored - leading to unexpected behaviour for the users. So the following, unintuitively, returns only one key (namely `train`). ```python datasets = load_dataset("text", data_files={"train": train_f, "valid": valid_f}) print(datasets.keys()) # dict_keys(['train']) ``` whereas using `validation` instead, does return the expected result: ```python datasets = load_dataset("text", data_files={"train": train_f, "validation": valid_f}) print(datasets.keys()) # dict_keys(['train', 'validation']) ``` I would like to see more freedom in which keys one can use, but if that is not possible at least an error should be thrown when using an unexpected key.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/735/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/735/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/730
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/730/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/730/comments
https://api.github.com/repos/huggingface/datasets/issues/730/events
https://github.com/huggingface/datasets/issues/730
721,073,812
MDU6SXNzdWU3MjEwNzM4MTI=
730
Possible caching bug
{ "login": "ArneBinder", "id": 3375489, "node_id": "MDQ6VXNlcjMzNzU0ODk=", "avatar_url": "https://avatars.githubusercontent.com/u/3375489?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ArneBinder", "html_url": "https://github.com/ArneBinder", "followers_url": "https://api.github.com/users/ArneBinder/followers", "following_url": "https://api.github.com/users/ArneBinder/following{/other_user}", "gists_url": "https://api.github.com/users/ArneBinder/gists{/gist_id}", "starred_url": "https://api.github.com/users/ArneBinder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ArneBinder/subscriptions", "organizations_url": "https://api.github.com/users/ArneBinder/orgs", "repos_url": "https://api.github.com/users/ArneBinder/repos", "events_url": "https://api.github.com/users/ArneBinder/events{/privacy}", "received_events_url": "https://api.github.com/users/ArneBinder/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
closed
false
null
[]
null
[ "Thanks for reporting. That's a bug indeed.\r\nApparently only the `data_files` parameter is taken into account right now in `DatasetBuilder._create_builder_config` but it should also be the case for `config_kwargs` (or at least the instantiated `builder_config`)", "Hi, does this bug be fixed? when I load JSON files, I get the same errors by the command \r\n`!python3 run.py --do_train --task qa --dataset squad-retrain-data/train-v2.0.json --output_dir ./re_trained_model/`\r\n\r\nchange the dateset to load json by refering to https://huggingface.co/docs/datasets/loading.html\r\n`dataset = datasets.load_dataset('json', data_files=args.dataset)`\r\n\r\nErrors:\r\n`Downloading and preparing dataset json/default (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /root/.cache/huggingface/datasets/json/default-c1e124ad488911b8/0.0.0/45636811569ec4a6630521c18235dfbbab83b7ab572e3393c5ba68ccabe98264...\r\n`", "```ds = load_dataset(\"csv\", data_files={'train': 'train.csv', 'test': 'test.csv'})```\r\n\r\nGives the output\r\n```Using custom data configuration default-5c8ae7c208631aca```\r\n\r\nand the code hangs there.", "> `ds = load_dataset(\"csv\", data_files={'train': 'train.csv', 'test': 'test.csv'})`\r\n> \r\n> Gives the output `Using custom data configuration default-5c8ae7c208631aca`\r\n> \r\n> and the code hangs there.\r\n\r\nHave you solved it? I met this problem too!", "Can you Ctrl+C to kill the process and share the stacktrace here ? It should show at which location in the code it was hanging", "I had the same issue and solved it by downgrading the datasets version from 2.7.0 -> 2.6.1\r\npip install -q datasets==2.6.1", "> I had the same issue and solved it by downgrading the datasets version from 2.7.0 -> 2.6.1 pip install -q datasets==2.6.1\r\n\r\nThanks, it works for me" ]
2020-10-14T02:02:34
2022-11-22T01:45:54
2020-10-29T09:36:01
NONE
null
null
null
The following code with `test1.txt` containing just "🤗🤗🤗": ``` dataset = datasets.load_dataset('text', data_files=['test1.txt'], split="train", encoding="latin_1") print(dataset[0]) dataset = datasets.load_dataset('text', data_files=['test1.txt'], split="train", encoding="utf-8") print(dataset[0]) ``` produces this output: ``` Downloading and preparing dataset text/default-15600e4d83254059 (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/arne/.cache/huggingface/datasets/text/default-15600e4d83254059/0.0.0/52cefbb2b82b015d4253f1aeb1e6ee5591124a6491e834acfe1751f765925155... Dataset text downloaded and prepared to /home/arne/.cache/huggingface/datasets/text/default-15600e4d83254059/0.0.0/52cefbb2b82b015d4253f1aeb1e6ee5591124a6491e834acfe1751f765925155. Subsequent calls will reuse this data. {'text': 'ð\x9f¤\x97ð\x9f¤\x97ð\x9f¤\x97'} Using custom data configuration default Reusing dataset text (/home/arne/.cache/huggingface/datasets/text/default-15600e4d83254059/0.0.0/52cefbb2b82b015d4253f1aeb1e6ee5591124a6491e834acfe1751f765925155) {'text': 'ð\x9f¤\x97ð\x9f¤\x97ð\x9f¤\x97'} ``` Just changing the order (and deleting the temp files): ``` dataset = datasets.load_dataset('text', data_files=['test1.txt'], split="train", encoding="utf-8") print(dataset[0]) dataset = datasets.load_dataset('text', data_files=['test1.txt'], split="train", encoding="latin_1") print(dataset[0]) ``` produces this: ``` Using custom data configuration default Downloading and preparing dataset text/default-15600e4d83254059 (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/arne/.cache/huggingface/datasets/text/default-15600e4d83254059/0.0.0/52cefbb2b82b015d4253f1aeb1e6ee5591124a6491e834acfe1751f765925155... Dataset text downloaded and prepared to /home/arne/.cache/huggingface/datasets/text/default-15600e4d83254059/0.0.0/52cefbb2b82b015d4253f1aeb1e6ee5591124a6491e834acfe1751f765925155. Subsequent calls will reuse this data. {'text': '🤗🤗🤗'} Using custom data configuration default Reusing dataset text (/home/arne/.cache/huggingface/datasets/text/default-15600e4d83254059/0.0.0/52cefbb2b82b015d4253f1aeb1e6ee5591124a6491e834acfe1751f765925155) {'text': '🤗🤗🤗'} ``` Is it intended that the cache path does not depend on the config entries? tested with datasets==1.1.2 and python==3.8.5
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/730/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/730/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/729
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/729/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/729/comments
https://api.github.com/repos/huggingface/datasets/issues/729/events
https://github.com/huggingface/datasets/issues/729
719,558,876
MDU6SXNzdWU3MTk1NTg4NzY=
729
Better error message when one forgets to call `add_batch` before `compute`
{ "login": "sgugger", "id": 35901082, "node_id": "MDQ6VXNlcjM1OTAxMDgy", "avatar_url": "https://avatars.githubusercontent.com/u/35901082?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sgugger", "html_url": "https://github.com/sgugger", "followers_url": "https://api.github.com/users/sgugger/followers", "following_url": "https://api.github.com/users/sgugger/following{/other_user}", "gists_url": "https://api.github.com/users/sgugger/gists{/gist_id}", "starred_url": "https://api.github.com/users/sgugger/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sgugger/subscriptions", "organizations_url": "https://api.github.com/users/sgugger/orgs", "repos_url": "https://api.github.com/users/sgugger/repos", "events_url": "https://api.github.com/users/sgugger/events{/privacy}", "received_events_url": "https://api.github.com/users/sgugger/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2020-10-12T17:59:22
2020-10-29T15:18:24
2020-10-29T15:18:24
CONTRIBUTOR
null
null
null
When using metrics, if for some reason a user forgets to call `add_batch` to a metric before `compute` (with no arguments), the error message is a bit cryptic and could probably be made clearer. ## Reproducer ```python import datasets import torch from datasets import Metric class GatherMetric(Metric): def _info(self): return datasets.MetricInfo( description="description", citation="citation", inputs_description="kwargs", features=datasets.Features({ 'predictions': datasets.Value('int64'), 'references': datasets.Value('int64'), }), codebase_urls=[], reference_urls=[], format='numpy' ) def _compute(self, predictions, references): return {"predictions": predictions, "labels": references} metric = GatherMetric(cache_dir="test-metric") inputs = torch.randint(0, 2, (1024,)) targets = torch.randint(0, 2, (1024,)) batch_size = 8 for i in range(0, 1024, batch_size): pass # User forgets to call `add_batch` result = metric.compute() ``` ## Stack trace: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-13-267729d187fa> in <module> 3 pass 4 # metric.add_batch(predictions=inputs[i:i+batch_size], references=targets[i:i+batch_size]) ----> 5 result = metric.compute() ~/git/datasets/src/datasets/metric.py in compute(self, *args, **kwargs) 380 if predictions is not None: 381 self.add_batch(predictions=predictions, references=references) --> 382 self._finalize() 383 384 self.cache_file_name = None ~/git/datasets/src/datasets/metric.py in _finalize(self) 343 elif self.process_id == 0: 344 # Let's acquire a lock on each node files to be sure they are finished writing --> 345 file_paths, filelocks = self._get_all_cache_files() 346 347 # Read the predictions and references ~/git/datasets/src/datasets/metric.py in _get_all_cache_files(self) 280 filelocks = [] 281 for process_id, file_path in enumerate(file_paths): --> 282 filelock = FileLock(file_path + ".lock") 283 try: 284 filelock.acquire(timeout=self.timeout) TypeError: unsupported operand type(s) for +: 'NoneType' and 'str' ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/729/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/729/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/728
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/728/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/728/comments
https://api.github.com/repos/huggingface/datasets/issues/728/events
https://github.com/huggingface/datasets/issues/728
719,555,780
MDU6SXNzdWU3MTk1NTU3ODA=
728
Passing `cache_dir` to a metric does not work
{ "login": "sgugger", "id": 35901082, "node_id": "MDQ6VXNlcjM1OTAxMDgy", "avatar_url": "https://avatars.githubusercontent.com/u/35901082?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sgugger", "html_url": "https://github.com/sgugger", "followers_url": "https://api.github.com/users/sgugger/followers", "following_url": "https://api.github.com/users/sgugger/following{/other_user}", "gists_url": "https://api.github.com/users/sgugger/gists{/gist_id}", "starred_url": "https://api.github.com/users/sgugger/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sgugger/subscriptions", "organizations_url": "https://api.github.com/users/sgugger/orgs", "repos_url": "https://api.github.com/users/sgugger/repos", "events_url": "https://api.github.com/users/sgugger/events{/privacy}", "received_events_url": "https://api.github.com/users/sgugger/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2020-10-12T17:55:14
2020-10-29T09:34:42
2020-10-29T09:34:42
CONTRIBUTOR
null
null
null
When passing `cache_dir` to a custom metric, the folder is concatenated to itself at some point and this results in a FileNotFoundError: ## Reproducer ```python import datasets import torch from datasets import Metric class GatherMetric(Metric): def _info(self): return datasets.MetricInfo( description="description", citation="citation", inputs_description="kwargs", features=datasets.Features({ 'predictions': datasets.Value('int64'), 'references': datasets.Value('int64'), }), codebase_urls=[], reference_urls=[], format='numpy' ) def _compute(self, predictions, references): return {"predictions": predictions, "labels": references} metric = GatherMetric(cache_dir="test-metric") inputs = torch.randint(0, 2, (1024,)) targets = torch.randint(0, 2, (1024,)) batch_size = 8 for i in range(0, 1024, batch_size): metric.add_batch(predictions=inputs[i:i+batch_size], references=targets[i:i+batch_size]) result = metric.compute() ``` ## Stack trace: ``` --------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) ~/git/datasets/src/datasets/metric.py in _finalize(self) 349 reader = ArrowReader(path=self.data_dir, info=DatasetInfo(features=self.features)) --> 350 self.data = Dataset(**reader.read_files([{"filename": f} for f in file_paths])) 351 except FileNotFoundError: ~/git/datasets/src/datasets/arrow_reader.py in read_files(self, files, original_instructions) 227 # Prepend path to filename --> 228 pa_table = self._read_files(files) 229 files = copy.deepcopy(files) ~/git/datasets/src/datasets/arrow_reader.py in _read_files(self, files) 166 for f_dict in files: --> 167 pa_table: pa.Table = self._get_dataset_from_filename(f_dict) 168 pa_tables.append(pa_table) ~/git/datasets/src/datasets/arrow_reader.py in _get_dataset_from_filename(self, filename_skip_take) 291 ) --> 292 mmap = pa.memory_map(filename) 293 f = pa.ipc.open_stream(mmap) ~/.pyenv/versions/3.7.9/envs/base/lib/python3.7/site-packages/pyarrow/io.pxi in pyarrow.lib.memory_map() ~/.pyenv/versions/3.7.9/envs/base/lib/python3.7/site-packages/pyarrow/io.pxi in pyarrow.lib.MemoryMappedFile._open() ~/.pyenv/versions/3.7.9/envs/base/lib/python3.7/site-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status() ~/.pyenv/versions/3.7.9/envs/base/lib/python3.7/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status() FileNotFoundError: [Errno 2] Failed to open local file 'test-metric/gather_metric/default/test-metric/gather_metric/default/default_experiment-1-0.arrow'. Detail: [errno 2] No such file or directory During handling of the above exception, another exception occurred: ValueError Traceback (most recent call last) <ipython-input-17-e42d43cc981f> in <module> 2 for i in range(0, 1024, batch_size): 3 metric.add_batch(predictions=inputs[i:i+batch_size], references=targets[i:i+batch_size]) ----> 4 result = metric.compute() ~/git/datasets/src/datasets/metric.py in compute(self, *args, **kwargs) 380 if predictions is not None: 381 self.add_batch(predictions=predictions, references=references) --> 382 self._finalize() 383 384 self.cache_file_name = None ~/git/datasets/src/datasets/metric.py in _finalize(self) 351 except FileNotFoundError: 352 raise ValueError( --> 353 "Error in finalize: another metric instance is already using the local cache file. " 354 "Please specify an experiment_id to avoid colision between distributed metric instances." 355 ) ValueError: Error in finalize: another metric instance is already using the local cache file. Please specify an experiment_id to avoid colision between distributed metric instances. ``` The code works when we remove the `cache_dir=...` from the metric.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/728/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/728/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/727
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/727/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/727/comments
https://api.github.com/repos/huggingface/datasets/issues/727/events
https://github.com/huggingface/datasets/issues/727
719,386,366
MDU6SXNzdWU3MTkzODYzNjY=
727
Parallel downloads progress bar flickers
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2020-10-12T13:36:05
2020-10-12T13:36:05
null
MEMBER
null
null
null
When there are parallel downloads using the download manager, the tqdm progress bar flickers since all the progress bars are on the same line. To fix that we could simply specify `position=i` for i=0 to n the number of files to download when instantiating the tqdm progress bar. Another way would be to have one "master" progress bar that tracks the number of finished downloads, and then one progress bar per process that show the current downloads.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/727/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/727/timeline
null
null
https://api.github.com/repos/huggingface/datasets/issues/726
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/726/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/726/comments
https://api.github.com/repos/huggingface/datasets/issues/726/events
https://github.com/huggingface/datasets/issues/726
719,313,754
MDU6SXNzdWU3MTkzMTM3NTQ=
726
"Checksums didn't match for dataset source files" error while loading openwebtext dataset
{ "login": "SparkJiao", "id": 16469472, "node_id": "MDQ6VXNlcjE2NDY5NDcy", "avatar_url": "https://avatars.githubusercontent.com/u/16469472?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SparkJiao", "html_url": "https://github.com/SparkJiao", "followers_url": "https://api.github.com/users/SparkJiao/followers", "following_url": "https://api.github.com/users/SparkJiao/following{/other_user}", "gists_url": "https://api.github.com/users/SparkJiao/gists{/gist_id}", "starred_url": "https://api.github.com/users/SparkJiao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SparkJiao/subscriptions", "organizations_url": "https://api.github.com/users/SparkJiao/orgs", "repos_url": "https://api.github.com/users/SparkJiao/repos", "events_url": "https://api.github.com/users/SparkJiao/events{/privacy}", "received_events_url": "https://api.github.com/users/SparkJiao/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi try, to provide more information please.\r\n\r\nExample code in a colab to reproduce the error, details on what you are trying to do and what you were expected and details on your environment (OS, PyPi packages version).", "> Hi try, to provide more information please.\r\n> \r\n> Example code in a colab to reproduce the error, details on what you are trying to do and what you were expected and details on your environment (OS, PyPi packages version).\r\n\r\nI have update the description, sorry for the incomplete issue by mistake.", "Hi, I have manually downloaded the compressed dataset `openwebtext.tar.xz' and use the following command to preprocess the examples:\r\n```\r\n>>> dataset = load_dataset('/home/admin/workspace/datasets/datasets-master/datasets-master/datasets/openwebtext', data_dir='/home/admin/workspace/datasets')\r\nUsing custom data configuration default\r\nDownloading and preparing dataset openwebtext/default (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/admin/.cache/huggingface/datasets/openwebtext/default/0.0.0/5c636399c7155da97c982d0d70ecdce30fbca66a4eb4fc768ad91f8331edac02...\r\nDataset openwebtext downloaded and prepared to /home/admin/.cache/huggingface/datasets/openwebtext/default/0.0.0/5c636399c7155da97c982d0d70ecdce30fbca66a4eb4fc768ad91f8331edac02. Subsequent calls will reuse this data.\r\n>>> len(dataset['train'])\r\n74571\r\n>>>\r\n```\r\nThe size of the pre-processed example file is only 354MB, however the processed bookcorpus dataset is 4.6g. Are there any problems?", "NonMatchingChecksumError: Checksums didn't match for dataset source files:\r\n\r\ni got this issue when i try to work on my own datasets kindly tell me, from where i can get checksums of train and dev file in my github repo", "Hi, I got the similar issue for xnli dataset while working on colab with python3.7. \r\n\r\n`nlp.load_dataset(path = 'xnli')`\r\n\r\nThe above command resulted in following issue : \r\n```\r\nNonMatchingChecksumError: Checksums didn't match for dataset source files:\r\n['https://www.nyu.edu/projects/bowman/xnli/XNLI-1.0.zip']\r\n```\r\n\r\nAny idea how to fix this ?", "Did anyone figure out how to fix this error?", "Fixed by:\r\n- #2857", "Says fixed but I'm still getting it. \r\n\r\ncommand:\r\n\r\n dataset = load_dataset(\"ted_talks_iwslt\", language_pair=(\"en\", \"es\"), year=\"2014\",download_mode=\"force_redownload\")\r\n\r\ngot:\r\n\r\nUsing custom data configuration en_es_2014-35a2d3350a0f9823\r\nDownloading and preparing dataset ted_talks_iwslt/en_es_2014 (download: 2.15 KiB, generated: Unknown size, post-processed: Unknown size, total: 2.15 KiB) to /home/ken/.cache/huggingface/datasets/ted_talks_iwslt/en_es_2014-35a2d3350a0f9823/1.1.0/43935b3fe470c753a023642e1f54b068c590847f9928bd3f2ec99f15702ad6a6...\r\nDownloading:\r\n2.21k/? [00:00<00:00, 141kB/s]\r\n\r\nNonMatchingChecksumError: Checksums didn't match for dataset source files:\r\n['https://drive.google.com/u/0/uc?id=1Cz1Un9p8Xn9IpEMMrg2kXSDt0dnjxc4z&export=download']" ]
2020-10-12T11:45:10
2022-02-17T17:53:54
2022-02-15T10:38:57
NONE
null
null
null
Hi, I have encountered this problem during loading the openwebtext dataset: ``` >>> dataset = load_dataset('openwebtext') Downloading and preparing dataset openwebtext/plain_text (download: 12.00 GiB, generated: 37.04 GiB, post-processed: Unknown size, total: 49.03 GiB) to /home/admin/.cache/huggingface/datasets/openwebtext/plain_text/1.0.0/5c636399c7155da97c982d0d70ecdce30fbca66a4eb4fc768ad91f8331edac02... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/admin/workspace/anaconda3/envs/torch1.6-py3.7/lib/python3.7/site-packages/datasets/load.py", line 611, in load_dataset ignore_verifications=ignore_verifications, File "/home/admin/workspace/anaconda3/envs/torch1.6-py3.7/lib/python3.7/site-packages/datasets/builder.py", line 476, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/admin/workspace/anaconda3/envs/torch1.6-py3.7/lib/python3.7/site-packages/datasets/builder.py", line 536, in _download_and_prepare self.info.download_checksums, dl_manager.get_recorded_sizes_checksums(), "dataset source files" File "/home/admin/workspace/anaconda3/envs/torch1.6-py3.7/lib/python3.7/site-packages/datasets/utils/info_utils.py", line 39, in verify_checksums raise NonMatchingChecksumError(error_msg + str(bad_urls)) datasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://zenodo.org/record/3834942/files/openwebtext.tar.xz'] ``` I think this problem is caused because the released dataset has changed. Or I should download the dataset manually? Sorry for release the unfinised issue by mistake.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/726/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 2 }
https://api.github.com/repos/huggingface/datasets/issues/726/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/724
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/724/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/724/comments
https://api.github.com/repos/huggingface/datasets/issues/724/events
https://github.com/huggingface/datasets/issues/724
718,947,700
MDU6SXNzdWU3MTg5NDc3MDA=
724
need to redirect /nlp to /datasets and remove outdated info
{ "login": "stas00", "id": 10676103, "node_id": "MDQ6VXNlcjEwNjc2MTAz", "avatar_url": "https://avatars.githubusercontent.com/u/10676103?v=4", "gravatar_id": "", "url": "https://api.github.com/users/stas00", "html_url": "https://github.com/stas00", "followers_url": "https://api.github.com/users/stas00/followers", "following_url": "https://api.github.com/users/stas00/following{/other_user}", "gists_url": "https://api.github.com/users/stas00/gists{/gist_id}", "starred_url": "https://api.github.com/users/stas00/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stas00/subscriptions", "organizations_url": "https://api.github.com/users/stas00/orgs", "repos_url": "https://api.github.com/users/stas00/repos", "events_url": "https://api.github.com/users/stas00/events{/privacy}", "received_events_url": "https://api.github.com/users/stas00/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Should be fixed now: \r\n\r\n![image](https://user-images.githubusercontent.com/35882/95917301-040b0600-0d78-11eb-9655-c4ac0e788089.png)\r\n\r\nNot sure I understand what you mean by the second part?\r\n", "Thank you!\r\n\r\n> Not sure I understand what you mean by the second part?\r\n\r\nCompare the 2:\r\n* https://huggingface.co/datasets/wikihow\r\n* https://huggingface.co/nlp/viewer/?dataset=wikihow&config=all\r\nCan you see the difference? 2nd has formatting, 1st doesn't.\r\n", "For context, those are two different pages (not an old vs new one), one is from the dataset viewer (you can browse data inside the datasets) while the other is just a basic reference page displayed some metadata about the dataset.\r\n\r\nFor the second one, we'll move to markdown parsing soon, so it'll be formatted better.", "I understand. I was just flagging the lack of markup issue." ]
2020-10-11T23:12:12
2020-10-14T17:00:12
2020-10-14T17:00:12
CONTRIBUTOR
null
null
null
It looks like the website still has all the `nlp` data, e.g.: https://huggingface.co/nlp/viewer/?dataset=wikihow&config=all should probably redirect to: https://huggingface.co/datasets/wikihow also for some reason the new information is slightly borked. If you look at the old one it was nicely formatted and had the links marked up, the new one is just a jumble of text in one chunk and no markup for links (i.e. not clickable).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/724/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/724/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/723
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/723/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/723/comments
https://api.github.com/repos/huggingface/datasets/issues/723/events
https://github.com/huggingface/datasets/issues/723
718,926,723
MDU6SXNzdWU3MTg5MjY3MjM=
723
Adding pseudo-labels to datasets
{ "login": "sshleifer", "id": 6045025, "node_id": "MDQ6VXNlcjYwNDUwMjU=", "avatar_url": "https://avatars.githubusercontent.com/u/6045025?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sshleifer", "html_url": "https://github.com/sshleifer", "followers_url": "https://api.github.com/users/sshleifer/followers", "following_url": "https://api.github.com/users/sshleifer/following{/other_user}", "gists_url": "https://api.github.com/users/sshleifer/gists{/gist_id}", "starred_url": "https://api.github.com/users/sshleifer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sshleifer/subscriptions", "organizations_url": "https://api.github.com/users/sshleifer/orgs", "repos_url": "https://api.github.com/users/sshleifer/repos", "events_url": "https://api.github.com/users/sshleifer/events{/privacy}", "received_events_url": "https://api.github.com/users/sshleifer/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "sshleifer", "id": 6045025, "node_id": "MDQ6VXNlcjYwNDUwMjU=", "avatar_url": "https://avatars.githubusercontent.com/u/6045025?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sshleifer", "html_url": "https://github.com/sshleifer", "followers_url": "https://api.github.com/users/sshleifer/followers", "following_url": "https://api.github.com/users/sshleifer/following{/other_user}", "gists_url": "https://api.github.com/users/sshleifer/gists{/gist_id}", "starred_url": "https://api.github.com/users/sshleifer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sshleifer/subscriptions", "organizations_url": "https://api.github.com/users/sshleifer/orgs", "repos_url": "https://api.github.com/users/sshleifer/repos", "events_url": "https://api.github.com/users/sshleifer/events{/privacy}", "received_events_url": "https://api.github.com/users/sshleifer/received_events", "type": "User", "site_admin": false }
[ { "login": "sshleifer", "id": 6045025, "node_id": "MDQ6VXNlcjYwNDUwMjU=", "avatar_url": "https://avatars.githubusercontent.com/u/6045025?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sshleifer", "html_url": "https://github.com/sshleifer", "followers_url": "https://api.github.com/users/sshleifer/followers", "following_url": "https://api.github.com/users/sshleifer/following{/other_user}", "gists_url": "https://api.github.com/users/sshleifer/gists{/gist_id}", "starred_url": "https://api.github.com/users/sshleifer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sshleifer/subscriptions", "organizations_url": "https://api.github.com/users/sshleifer/orgs", "repos_url": "https://api.github.com/users/sshleifer/repos", "events_url": "https://api.github.com/users/sshleifer/events{/privacy}", "received_events_url": "https://api.github.com/users/sshleifer/received_events", "type": "User", "site_admin": false } ]
null
[ "Nice ! :)\r\nIt's indeed the first time we have such contributions so we'll have to figure out the appropriate way to integrate them.\r\nCould you add details on what they could be used for ?\r\n", "They can be used as training data for a smaller model.", "Sounds just like a regular dataset to me then, no?", "A new configuration for those datasets should do the job then.\r\nNote that until now datasets like xsum only had one configuration. It means that users didn't have to specify the configuration name when loading the dataset. If we add new configs, users that update the lib will have to update their code to specify the default/standard configuration name (not the one with pseudo labels).", "Could also be a `user-namespace` dataset maybe?", "Oh yes why not. I'm more in favor of this actually since pseudo labels are things that users (not dataset authors in general) can compute by themselves and share with the community", "![image](https://user-images.githubusercontent.com/6045025/96045248-b528a380-0e3f-11eb-9124-bd55afa031bb.png)\r\n\r\nI assume I should (for example) rename the xsum dir, change the URL, and put the modified dir somewhere in S3?", "You can use the `datasets-cli` to upload the folder with your version of xsum with the pseudo labels.\r\n\r\n```\r\ndatasets-cli upload_dataset path/to/xsum\r\n```" ]
2020-10-11T21:05:45
2021-08-03T05:11:51
2021-08-03T05:11:51
CONTRIBUTOR
null
null
null
I recently [uploaded pseudo-labels](https://github.com/huggingface/transformers/blob/master/examples/seq2seq/precomputed_pseudo_labels.md) for CNN/DM, XSUM and WMT16-en-ro to s3, and thom mentioned I should add them to this repo. Since pseudo-labels are just a large model's generations on an existing dataset, what is the right way to structure this contribution. I read https://huggingface.co/docs/datasets/add_dataset.html, but it doesn't really cover this type of contribution. I could, for example, make a new directory, `xsum_bart_pseudolabels` for each set of pseudolabels or add some sort of parametrization to `xsum.py`: https://github.com/huggingface/datasets/blob/5f4c6e830f603830117877b8990a0e65a2386aa6/datasets/xsum/xsum.py What do you think @lhoestq ?
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/723/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/723/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/721
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/721/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/721/comments
https://api.github.com/repos/huggingface/datasets/issues/721/events
https://github.com/huggingface/datasets/issues/721
718,647,147
MDU6SXNzdWU3MTg2NDcxNDc=
721
feat(dl_manager): add support for ftp downloads
{ "login": "AmitMY", "id": 5757359, "node_id": "MDQ6VXNlcjU3NTczNTk=", "avatar_url": "https://avatars.githubusercontent.com/u/5757359?v=4", "gravatar_id": "", "url": "https://api.github.com/users/AmitMY", "html_url": "https://github.com/AmitMY", "followers_url": "https://api.github.com/users/AmitMY/followers", "following_url": "https://api.github.com/users/AmitMY/following{/other_user}", "gists_url": "https://api.github.com/users/AmitMY/gists{/gist_id}", "starred_url": "https://api.github.com/users/AmitMY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AmitMY/subscriptions", "organizations_url": "https://api.github.com/users/AmitMY/orgs", "repos_url": "https://api.github.com/users/AmitMY/repos", "events_url": "https://api.github.com/users/AmitMY/events{/privacy}", "received_events_url": "https://api.github.com/users/AmitMY/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "We only support http by default for downloading.\r\nIf you really need to use ftp, then feel free to use a library that allows to download through ftp in your dataset script (I see that you've started working on #722 , that's awesome !). The users will get a message to install the extra library when they load the dataset.\r\n\r\nTo make the download_manager work with a custom downloader, you can call `download_manager.download_custom` instead of `download_manager.download_and_extract`. The expected arguments are the following:\r\n```\r\nurl_or_urls: url or `list`/`dict` of urls to download and extract. Each\r\n url is a `str`.\r\ncustom_download: Callable with signature (src_url: str, dst_path: str) -> Any\r\n as for example `tf.io.gfile.copy`, that lets you download from google storage\r\n```\r\n", "Also maybe it coud be interesting to have a direct support of ftp inside the `datasets` library. Do you know any good libraries that we might consider adding as a (optional ?) dependency ?", "Downloading an `ftp` file is as simple as:\r\n```python\r\nimport urllib \r\nurllib.urlretrieve('ftp://server/path/to/file', 'file')\r\n```\r\n\r\nI believe this should be supported by the library, as its not using any dependency and is trivial amount of code.", "I know its unorthodox, but I added `ftp` download support to `file_utils` in the same PR https://github.com/huggingface/datasets/pull/722\r\nSo its possible to understand the interaction of the download component with the ftp download ability", "Awesome ! I'll take a look :)", "@AmitMY Can you now download the Phoenix2014 Dataset?", "@hoanganhpham1006 yes.\r\nSee pull request https://github.com/huggingface/datasets/pull/722 , it has a loader for this dataset, mostly ready.\r\nThere's one issue that delays it being merged - https://github.com/huggingface/datasets/issues/741 - regarding memory consumption.", "The problem which I have now is that this dataset seems does not allow to download? Can you share it with me pls", "The dataset loader is not yet ready, because of that issue.\r\nIf you want to just download the dataset the old-fashioned way, just go to: https://www-i6.informatik.rwth-aachen.de/ftp/pub/rwth-phoenix/2016/phoenix-2014-T.v3.tar.gz (the ftp link is now broken, and its available over https)", "Got it, thank you so much!", "FTP downloads are supported." ]
2020-10-10T15:50:20
2022-02-15T10:44:44
2022-02-15T10:44:43
CONTRIBUTOR
null
null
null
I am working on a new dataset (#302) and encounter a problem downloading it. ```python # This is the official download link from https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX-2014-T/ _URL = "ftp://wasserstoff.informatik.rwth-aachen.de/pub/rwth-phoenix/2016/phoenix-2014-T.v3.tar.gz" dl_manager.download_and_extract(_URL) ``` I get an error: > ValueError: unable to parse ftp://wasserstoff.informatik.rwth-aachen.de/pub/rwth-phoenix/2016/phoenix-2014-T.v3.tar.gz as a URL or as a local path I checked, and indeed you don't consider `ftp` as a remote file. https://github.com/huggingface/datasets/blob/4c2af707a6955cf4b45f83ac67990395327c5725/src/datasets/utils/file_utils.py#L188 Adding `ftp` to that list does not immediately solve the issue, so there probably needs to be some extra work.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/721/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/721/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/720
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/720/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/720/comments
https://api.github.com/repos/huggingface/datasets/issues/720/events
https://github.com/huggingface/datasets/issues/720
716,581,266
MDU6SXNzdWU3MTY1ODEyNjY=
720
OSError: Cannot find data file when not using the dummy dataset in RAG
{ "login": "josemlopez", "id": 4112135, "node_id": "MDQ6VXNlcjQxMTIxMzU=", "avatar_url": "https://avatars.githubusercontent.com/u/4112135?v=4", "gravatar_id": "", "url": "https://api.github.com/users/josemlopez", "html_url": "https://github.com/josemlopez", "followers_url": "https://api.github.com/users/josemlopez/followers", "following_url": "https://api.github.com/users/josemlopez/following{/other_user}", "gists_url": "https://api.github.com/users/josemlopez/gists{/gist_id}", "starred_url": "https://api.github.com/users/josemlopez/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/josemlopez/subscriptions", "organizations_url": "https://api.github.com/users/josemlopez/orgs", "repos_url": "https://api.github.com/users/josemlopez/repos", "events_url": "https://api.github.com/users/josemlopez/events{/privacy}", "received_events_url": "https://api.github.com/users/josemlopez/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[ { "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false } ]
null
[ "Same issue here. I will be digging further, but it looks like the [script](https://github.com/huggingface/datasets/blob/master/datasets/wiki_dpr/wiki_dpr.py#L132) is attempting to open a file that is not downloaded yet. \r\n\r\n```\r\n99dcbca09109e58502e6b9271d4d3f3791b43f61f3161a76b25d2775ab1a4498.lock\r\n```\r\n\r\n```\r\n---------------------------------------------------------------------------\r\nUnpicklingError Traceback (most recent call last)\r\n~/anaconda3/envs/eqa/lib/python3.7/site-packages/numpy/lib/npyio.py in load(file, mmap_mode, allow_pickle, fix_imports, encoding)\r\n 446 try:\r\n--> 447 return pickle.load(fid, **pickle_kwargs)\r\n 448 except Exception:\r\n\r\nUnpicklingError: pickle data was truncated\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nOSError Traceback (most recent call last)\r\n~/src/datasets/src/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)\r\n 559 \r\n--> 560 if verify_infos:\r\n 561 verify_splits(self.info.splits, split_dict)\r\n\r\n~/src/datasets/src/datasets/builder.py in _prepare_split(self, split_generator)\r\n 847 writer.write(example)\r\n--> 848 finally:\r\n 849 num_examples, num_bytes = writer.finalize()\r\n\r\n~/anaconda3/envs/eqa/lib/python3.7/site-packages/tqdm/notebook.py in __iter__(self, *args, **kwargs)\r\n 227 try:\r\n--> 228 for obj in super(tqdm_notebook, self).__iter__(*args, **kwargs):\r\n 229 # return super(tqdm...) will not catch exception\r\n\r\n~/anaconda3/envs/eqa/lib/python3.7/site-packages/tqdm/std.py in __iter__(self)\r\n 1132 try:\r\n-> 1133 for obj in iterable:\r\n 1134 yield obj\r\n\r\n/hdd/rag/cache/huggingface/modules/datasets_modules/datasets/wiki_dpr/14b973bf2a456087ff69c0fd34526684eed22e48e0dfce4338f9a22b965ce7c2/wiki_dpr.py in _generate_examples(self, data_file, vectors_files)\r\n 131 break\r\n--> 132 vecs = np.load(open(vectors_files.pop(0), \"rb\"), allow_pickle=True)\r\n 133 vec_idx = 0\r\n\r\n~/anaconda3/envs/eqa/lib/python3.7/site-packages/numpy/lib/npyio.py in load(file, mmap_mode, allow_pickle, fix_imports, encoding)\r\n 449 raise IOError(\r\n--> 450 \"Failed to interpret file %s as a pickle\" % repr(file))\r\n 451 \r\n\r\nOSError: Failed to interpret file <_io.BufferedReader name='/hdd/rag/downloads/99dcbca09109e58502e6b9271d4d3f3791b43f61f3161a76b25d2775ab1a4498'> as a pickle\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nOSError Traceback (most recent call last)\r\n<ipython-input-8-24351ff8ce44> in <module>\r\n 4 retriever = RagRetriever.from_pretrained(\"facebook/rag-sequence-nq\", \r\n 5 index_name=\"exact\",\r\n----> 6 use_dummy_dataset=False)\r\n\r\n~/src/transformers/src/transformers/retrieval_rag.py in from_pretrained(cls, retriever_name_or_path, **kwargs)\r\n 321 generator_tokenizer = rag_tokenizer.generator\r\n 322 return cls(\r\n--> 323 config, question_encoder_tokenizer=question_encoder_tokenizer, generator_tokenizer=generator_tokenizer\r\n 324 )\r\n 325 \r\n\r\n~/src/transformers/src/transformers/retrieval_rag.py in __init__(self, config, question_encoder_tokenizer, generator_tokenizer)\r\n 310 self.config = config\r\n 311 if self._init_retrieval:\r\n--> 312 self.init_retrieval()\r\n 313 \r\n 314 @classmethod\r\n\r\n~/src/transformers/src/transformers/retrieval_rag.py in init_retrieval(self)\r\n 338 \r\n 339 logger.info(\"initializing retrieval\")\r\n--> 340 self.index.init_index()\r\n 341 \r\n 342 def postprocess_docs(self, docs, input_strings, prefix, n_docs, return_tensors=None):\r\n\r\n~/src/transformers/src/transformers/retrieval_rag.py in init_index(self)\r\n 248 split=self.dataset_split,\r\n 249 index_name=self.index_name,\r\n--> 250 dummy=self.use_dummy_dataset,\r\n 251 )\r\n 252 self.dataset.set_format(\"numpy\", columns=[\"embeddings\"], output_all_columns=True)\r\n\r\n~/src/datasets/src/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, save_infos, script_version, **config_kwargs)\r\n 615 builder_instance.download_and_prepare(\r\n 616 download_config=download_config,\r\n--> 617 download_mode=download_mode,\r\n 618 ignore_verifications=ignore_verifications,\r\n 619 )\r\n\r\n~/src/datasets/src/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs)\r\n 481 # Sync info\r\n 482 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())\r\n--> 483 self.info.download_checksums = dl_manager.get_recorded_sizes_checksums()\r\n 484 self.info.size_in_bytes = self.info.dataset_size + self.info.download_size\r\n 485 # Save info\r\n\r\n~/src/datasets/src/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)\r\n 560 if verify_infos:\r\n 561 verify_splits(self.info.splits, split_dict)\r\n--> 562 \r\n 563 # Update the info object with the splits.\r\n 564 self.info.splits = split_dict\r\n\r\nOSError: Cannot find data file.\r\n```\r\n\r\nThank you.", "An update on my end. This seems like a transient issue. Reran the script from scratch overnight with no errors. ", "Closing this one. Feel free to re-open if you have other questions about this issue" ]
2020-10-07T14:27:13
2020-12-23T14:04:31
2020-12-23T14:04:31
NONE
null
null
null
## Environment info transformers version: 3.3.1 Platform: Linux-4.19 Python version: 3.7.7 PyTorch version (GPU?): 1.6.0 Tensorflow version (GPU?): No Using GPU in script?: Yes Using distributed or parallel set-up in script?: No ## To reproduce Steps to reproduce the behaviour: ``` import os os.environ['HF_DATASETS_CACHE'] = '/workspace/notebooks/POCs/cache' from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=False) ``` Plese note that I'm using the whole dataset: **use_dummy_dataset=False** After around 4 hours (downloading and some other things) this is returned: ``` Downloading and preparing dataset wiki_dpr/psgs_w100.nq.exact (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /workspace/notebooks/POCs/cache/wiki_dpr/psgs_w100.nq.exact/0.0.0/14b973bf2a456087ff69c0fd34526684eed22e48e0dfce4338f9a22b965ce7c2... --------------------------------------------------------------------------- UnpicklingError Traceback (most recent call last) /opt/conda/lib/python3.7/site-packages/numpy/lib/npyio.py in load(file, mmap_mode, allow_pickle, fix_imports, encoding) 459 try: --> 460 return pickle.load(fid, **pickle_kwargs) 461 except Exception: UnpicklingError: pickle data was truncated During handling of the above exception, another exception occurred: OSError Traceback (most recent call last) /opt/conda/lib/python3.7/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 552 # Prepare split will record examples associated to the split --> 553 self._prepare_split(split_generator, **prepare_split_kwargs) 554 except OSError: /opt/conda/lib/python3.7/site-packages/datasets/builder.py in _prepare_split(self, split_generator) 840 for key, record in utils.tqdm( --> 841 generator, unit=" examples", total=split_info.num_examples, leave=False, disable=not_verbose 842 ): /opt/conda/lib/python3.7/site-packages/tqdm/notebook.py in __iter__(self, *args, **kwargs) 217 try: --> 218 for obj in super(tqdm_notebook, self).__iter__(*args, **kwargs): 219 # return super(tqdm...) will not catch exception /opt/conda/lib/python3.7/site-packages/tqdm/std.py in __iter__(self) 1128 try: -> 1129 for obj in iterable: 1130 yield obj ~/.cache/huggingface/modules/datasets_modules/datasets/wiki_dpr/14b973bf2a456087ff69c0fd34526684eed22e48e0dfce4338f9a22b965ce7c2/wiki_dpr.py in _generate_examples(self, data_file, vectors_files) 131 break --> 132 vecs = np.load(open(vectors_files.pop(0), "rb"), allow_pickle=True) 133 vec_idx = 0 /opt/conda/lib/python3.7/site-packages/numpy/lib/npyio.py in load(file, mmap_mode, allow_pickle, fix_imports, encoding) 462 raise IOError( --> 463 "Failed to interpret file %s as a pickle" % repr(file)) 464 finally: OSError: Failed to interpret file <_io.BufferedReader name='/workspace/notebooks/POCs/cache/downloads/f34d5f091294259b4ca90e813631e69a6ded660d71b6cbedf89ddba50df94448'> as a pickle During handling of the above exception, another exception occurred: OSError Traceback (most recent call last) <ipython-input-10-f28df370ac47> in <module> 1 # ln -s /workspace/notebooks/POCs/cache /root/.cache/huggingface/datasets ----> 2 retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=False) /opt/conda/lib/python3.7/site-packages/transformers/retrieval_rag.py in from_pretrained(cls, retriever_name_or_path, **kwargs) 307 generator_tokenizer = rag_tokenizer.generator 308 return cls( --> 309 config, question_encoder_tokenizer=question_encoder_tokenizer, generator_tokenizer=generator_tokenizer 310 ) 311 /opt/conda/lib/python3.7/site-packages/transformers/retrieval_rag.py in __init__(self, config, question_encoder_tokenizer, generator_tokenizer) 298 self.config = config 299 if self._init_retrieval: --> 300 self.init_retrieval() 301 302 @classmethod /opt/conda/lib/python3.7/site-packages/transformers/retrieval_rag.py in init_retrieval(self) 324 325 logger.info("initializing retrieval") --> 326 self.index.init_index() 327 328 def postprocess_docs(self, docs, input_strings, prefix, n_docs, return_tensors=None): /opt/conda/lib/python3.7/site-packages/transformers/retrieval_rag.py in init_index(self) 238 split=self.dataset_split, 239 index_name=self.index_name, --> 240 dummy=self.use_dummy_dataset, 241 ) 242 self.dataset.set_format("numpy", columns=["embeddings"], output_all_columns=True) /opt/conda/lib/python3.7/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, save_infos, script_version, **config_kwargs) 609 download_config=download_config, 610 download_mode=download_mode, --> 611 ignore_verifications=ignore_verifications, 612 ) 613 /opt/conda/lib/python3.7/site-packages/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 474 if not downloaded_from_gcs: 475 self._download_and_prepare( --> 476 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 477 ) 478 # Sync info /opt/conda/lib/python3.7/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 553 self._prepare_split(split_generator, **prepare_split_kwargs) 554 except OSError: --> 555 raise OSError("Cannot find data file. " + (self.manual_download_instructions or "")) 556 557 if verify_infos: OSError: Cannot find data file. ``` Thanks
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/720/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/720/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/712
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/712/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/712/comments
https://api.github.com/repos/huggingface/datasets/issues/712/events
https://github.com/huggingface/datasets/issues/712
714,242,316
MDU6SXNzdWU3MTQyNDIzMTY=
712
Error in the notebooks/Overview.ipynb notebook
{ "login": "subhrm", "id": 850012, "node_id": "MDQ6VXNlcjg1MDAxMg==", "avatar_url": "https://avatars.githubusercontent.com/u/850012?v=4", "gravatar_id": "", "url": "https://api.github.com/users/subhrm", "html_url": "https://github.com/subhrm", "followers_url": "https://api.github.com/users/subhrm/followers", "following_url": "https://api.github.com/users/subhrm/following{/other_user}", "gists_url": "https://api.github.com/users/subhrm/gists{/gist_id}", "starred_url": "https://api.github.com/users/subhrm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/subhrm/subscriptions", "organizations_url": "https://api.github.com/users/subhrm/orgs", "repos_url": "https://api.github.com/users/subhrm/repos", "events_url": "https://api.github.com/users/subhrm/events{/privacy}", "received_events_url": "https://api.github.com/users/subhrm/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Do this:\r\n``` python\r\nsquad_dataset = list_datasets(with_details=True)[datasets.index('squad')]\r\npprint(squad_dataset.__dict__) # It's a simple python dataclass\r\n```", "Thanks! This worked. I have created a PR to fix this in the notebook. " ]
2020-10-04T05:58:31
2020-10-05T16:25:40
2020-10-05T16:25:40
CONTRIBUTOR
null
null
null
Hi, I got the following error in **cell number 3** while exploring the **Overview.ipynb** notebook in google colab. I used the [link ](https://colab.research.google.com/github/huggingface/datasets/blob/master/notebooks/Overview.ipynb) provided in the main README file to open it in colab. ```python # You can access various attributes of the datasets before downloading them squad_dataset = list_datasets()[datasets.index('squad')] pprint(squad_dataset.__dict__) # It's a simple python dataclass ``` Error message ``` --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-5-8dc805c4949c> in <module>() 2 squad_dataset = list_datasets()[datasets.index('squad')] 3 ----> 4 pprint(squad_dataset.__dict__) # It's a simple python dataclass AttributeError: 'str' object has no attribute '__dict__' ``` The object `squad_dataset` is a `str` not a `dataclass` .
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/712/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/712/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/709
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/709/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/709/comments
https://api.github.com/repos/huggingface/datasets/issues/709/events
https://github.com/huggingface/datasets/issues/709
714,067,902
MDU6SXNzdWU3MTQwNjc5MDI=
709
How to use similarity settings other then "BM25" in Elasticsearch index ?
{ "login": "nsankar", "id": 431890, "node_id": "MDQ6VXNlcjQzMTg5MA==", "avatar_url": "https://avatars.githubusercontent.com/u/431890?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nsankar", "html_url": "https://github.com/nsankar", "followers_url": "https://api.github.com/users/nsankar/followers", "following_url": "https://api.github.com/users/nsankar/following{/other_user}", "gists_url": "https://api.github.com/users/nsankar/gists{/gist_id}", "starred_url": "https://api.github.com/users/nsankar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nsankar/subscriptions", "organizations_url": "https://api.github.com/users/nsankar/orgs", "repos_url": "https://api.github.com/users/nsankar/repos", "events_url": "https://api.github.com/users/nsankar/events{/privacy}", "received_events_url": "https://api.github.com/users/nsankar/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Datasets does not use elasticsearch API to define custom similarity. If you want to use a custom similarity, the best would be to run a curl request directly to your elasticsearch instance (see sample hereafter, directly from ES documentation), then you should be able to use `my_similarity` in your configuration passed to datasets\r\n\r\n```\r\ncurl -X PUT \"localhost:9200/index?pretty\" -H 'Content-Type: application/json' -d'\r\n{\r\n \"settings\": {\r\n \"index\": {\r\n \"similarity\": {\r\n \"my_similarity\": {\r\n \"type\": \"DFR\",\r\n \"basic_model\": \"g\",\r\n \"after_effect\": \"l\",\r\n \"normalization\": \"h2\",\r\n \"normalization.h2.c\": \"3.0\"\r\n }\r\n }\r\n }\r\n }\r\n}\r\n'\r\n\r\n```" ]
2020-10-03T11:18:49
2022-10-04T17:19:37
2022-10-04T17:19:37
NONE
null
null
null
**QUESTION : How should we use other similarity algorithms supported by Elasticsearch other than "BM25" ?** **ES Reference** https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-similarity.html **HF doc reference:** https://huggingface.co/docs/datasets/faiss_and_ea.html **context :** ======== I used the latest Elasticsearch server version 7.9.2 When I set DFR which is one of the other similarity algorithms supported by elasticsearch in the mapping, I get an error For example DFR that I had tried in the first instance in mappings as below., `"mappings": {"properties": {"text": {"type": "text", "analyzer": "standard", "similarity": "DFR"}}},` I get the following error RequestError: RequestError(400, 'mapper_parsing_exception', 'Unknown Similarity type [DFR] for field [text]') The other thing as another option I had tried was to declare "similarity": "my_similarity" within settings and then assigning "my_similarity" inside the mappings as below `es_config = { "settings": { "number_of_shards": 1, **"similarity": "my_similarity"**: { "type": "DFR", "basic_model": "g", "after_effect": "l", "normalization": "h2", "normalization.h2.c": "3.0" } , "analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}}, }, "mappings": {"properties": {"text": {"type": "text", "analyzer": "standard", "similarity": "my_similarity"}}}, }` For this , I got the following error RequestError: RequestError(400, 'illegal_argument_exception', 'unknown setting [index.similarity] please check that any required plugins are installed, or check the breaking changes documentation for removed settings')
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/709/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/709/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/708
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/708/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/708/comments
https://api.github.com/repos/huggingface/datasets/issues/708/events
https://github.com/huggingface/datasets/issues/708
714,020,953
MDU6SXNzdWU3MTQwMjA5NTM=
708
Datasets performance slow? - 6.4x slower than in memory dataset
{ "login": "eugeneware", "id": 38154, "node_id": "MDQ6VXNlcjM4MTU0", "avatar_url": "https://avatars.githubusercontent.com/u/38154?v=4", "gravatar_id": "", "url": "https://api.github.com/users/eugeneware", "html_url": "https://github.com/eugeneware", "followers_url": "https://api.github.com/users/eugeneware/followers", "following_url": "https://api.github.com/users/eugeneware/following{/other_user}", "gists_url": "https://api.github.com/users/eugeneware/gists{/gist_id}", "starred_url": "https://api.github.com/users/eugeneware/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eugeneware/subscriptions", "organizations_url": "https://api.github.com/users/eugeneware/orgs", "repos_url": "https://api.github.com/users/eugeneware/repos", "events_url": "https://api.github.com/users/eugeneware/events{/privacy}", "received_events_url": "https://api.github.com/users/eugeneware/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Facing a similar issue here. My model using SQuAD dataset takes about 1h to process with in memory data and more than 2h with datasets directly.", "And if you use in-memory-data with datasets with `load_dataset(..., keep_in_memory=True)`?", "Thanks for the tip @thomwolf ! I did not see that flag in the docs. I'll try with that.", "We should add it indeed and also maybe a specific section with all the tips for maximal speed. What do you think @lhoestq @SBrandeis @yjernite ?", "By default the datasets loaded with `load_dataset` live on disk.\r\nIt's possible to load them in memory by using some transforms like `.map(..., keep_in_memory=True)`.\r\n\r\nSmall correction to @thomwolf 's comment above: currently we don't have the `keep_in_memory` parameter for `load_dataset` AFAIK but it would be nice to add it indeed :)", "Yes indeed we should add it!", "Great! Thanks a lot.\r\n\r\nI did a test using `map(..., keep_in_memory=True)` and also a test using in-memory only data.\r\n\r\n```python\r\nfeatures = dataset.map(tokenize, batched=True, remove_columns=dataset['train'].column_names)\r\nfeatures.set_format(type='torch', columns=['input_ids', 'token_type_ids', 'attention_mask'])\r\n\r\nfeatures_in_memory = dataset.map(tokenize, batched=True, keep_in_memory=True, remove_columns=dataset['train'].column_names)\r\nfeatures_in_memory.set_format(type='torch', columns=['input_ids', 'token_type_ids', 'attention_mask'])\r\n\r\nin_memory = [features['train'][i] for i in range(len(features['train']))]\r\n```\r\n\r\nFor using the features without any tweak, I got **1min17s** for copying the entire DataLoader to CUDA:\r\n\r\n```\r\n%%time\r\n\r\nfor i, batch in enumerate(DataLoader(features['train'], batch_size=16, num_workers=4)):\r\n batch['input_ids'].to(device)\r\n```\r\n\r\nFor using the features mapped with `keep_in_memory=True`, I also got **1min17s** for copying the entire DataLoader to CUDA:\r\n\r\n```\r\n%%time\r\n\r\nfor i, batch in enumerate(DataLoader(features_in_memory['train'], batch_size=16, num_workers=4)):\r\n batch['input_ids'].to(device)\r\n```\r\n\r\nAnd for the case using every element in memory, converted from the original dataset, I got **12.5s**:\r\n\r\n```\r\n%%time\r\n\r\nfor i, batch in enumerate(DataLoader(in_memory, batch_size=16, num_workers=4)):\r\n batch['input_ids'].to(device)\r\n```\r\n\r\nTaking a closer look in my SQuAD code, using a profiler, I see a lot of calls to `posix read` api. It seems that it is really reliying on disk, which results in a very high train time.", "I am having the same issue here. When loading from memory I can get the GPU up to 70% util but when loading after mapping I can only get 40%.\r\n\r\nIn disk:\r\n```\r\nbook_corpus = load_dataset('bookcorpus', 'plain_text', cache_dir='/home/ad/Desktop/bookcorpus', split='train[:20%]')\r\nbook_corpus = book_corpus.map(encode, batched=True, num_proc=20, load_from_cache_file=True, batch_size=2500)\r\nbook_corpus.set_format(type='torch', columns=['text', \"input_ids\", \"attention_mask\", \"token_type_ids\"])\r\n\r\ntraining_args = TrainingArguments(\r\n output_dir=\"./mobile_bert_big\",\r\n overwrite_output_dir=True,\r\n num_train_epochs=1,\r\n per_device_train_batch_size=32,\r\n per_device_eval_batch_size=16,\r\n save_steps=50,\r\n save_total_limit=2,\r\n logging_first_step=True,\r\n warmup_steps=100,\r\n logging_steps=50,\r\n eval_steps=100,\r\n no_cuda=False,\r\n gradient_accumulation_steps=16,\r\n fp16=True)\r\n\r\ntrainer = Trainer(\r\n model=model,\r\n args=training_args,\r\n data_collator=data_collator,\r\n train_dataset=book_corpus,\r\n tokenizer=tokenizer)\r\n```\r\n\r\nIn disk I can only get 0,17 it/s:\r\n`[ 13/28907 01:03 < 46:03:27, 0.17 it/s, Epoch 0.00/1] `\r\n\r\nIf I load it with torch.utils.data.Dataset()\r\n```\r\nclass BCorpusDataset(torch.utils.data.Dataset):\r\n def __init__(self, encodings):\r\n self.encodings = encodings\r\n\r\n def __getitem__(self, idx):\r\n item = [torch.tensor(val[idx]) for key, val in self.encodings.items()][0]\r\n return item\r\n\r\n def __len__(self):\r\n length = [len(val) for key, val in self.encodings.items()][0]\r\n return length\r\n\r\n**book_corpus = book_corpus.select([i for i in range(16*2000)])** # filtering to not have 20% of BC in memory...\r\nbook_corpus = book_corpus(book_corpus)\r\n```\r\nI can get:\r\n` [ 5/62 00:09 < 03:03, 0.31 it/s, Epoch 0.06/1]`\r\n\r\nBut obviously I can not get BookCorpus in memory xD\r\n\r\nEDIT: it is something weird. If i load in disk 1% of bookcorpus:\r\n```\r\nbook_corpus = load_dataset('bookcorpus', 'plain_text', cache_dir='/home/ad/Desktop/bookcorpus', split='train[:1%]')\r\n```\r\n\r\nI can get 0.28 it/s, (the same that in memory) but if I load 20% of bookcorpus:\r\n```\r\nbook_corpus = load_dataset('bookcorpus', 'plain_text', cache_dir='/home/ad/Desktop/bookcorpus', split='train[:20%]')\r\n```\r\nI get again 0.17 it/s. \r\n\r\nI am missing something? I think it is something related to size, and not disk or in-memory.", "There is a way to increase the batches read from memory? or multiprocessed it? I think that one of two or it is reading with just 1 core o it is reading very small chunks from disk and left my GPU at 0 between batches", "My fault! I had not seen the `dataloader_num_workers` in `TrainingArguments` ! Now I can parallelize and go fast! Sorry, and thanks." ]
2020-10-03T06:44:07
2021-02-12T14:13:28
2021-02-12T14:13:28
NONE
null
null
null
I've been very excited about this amazing datasets project. However, I've noticed that the performance can be substantially slower than using an in-memory dataset. Now, this is expected I guess, due to memory mapping data using arrow files, and you don't get anything for free. But I was surprised at how much slower. For example, in the `yelp_polarity` dataset (560000 datapoints, or 17500 batches of 32), it was taking me 3:31 to just get process the data and get it on the GPU (no model involved). Whereas, the equivalent in-memory dataset would finish in just 0:33. Is this expected? Given that one of the goals of this project is also accelerate dataset processing, this seems a bit slower than I would expect. I understand the advantages of being able to work on datasets that exceed memory, and that's very exciting to me, but thought I'd open this issue to discuss. For reference I'm running a AMD Ryzen Threadripper 1900X 8-Core Processor CPU, with 128 GB of RAM and an NVME SSD Samsung 960 EVO. I'm running with an RTX Titan 24GB GPU. I can see with `iotop` that the dataset gets quickly loaded into the system read buffers, and thus doesn't incur any additional IO reads. Thus in theory, all the data *should* be in RAM, but in my benchmark code below it's still 6.4 times slower. What am I doing wrong? And is there a way to force the datasets to completely load into memory instead of being memory mapped in cases where you want maximum performance? At 3:31 for 17500 batches, that's 12ms per batch. Does this 12ms just become insignificant as a proportion of forward and backward passes in practice, and thus it's not worth worrying about this in practice? In any case, here's my code `benchmark.py`. If you run it with an argument of `memory` it will copy the data into memory before executing the same test. ``` py import sys from datasets import load_dataset from transformers import DataCollatorWithPadding, BertTokenizerFast from torch.utils.data import DataLoader from tqdm import tqdm if __name__ == '__main__': tokenizer = BertTokenizerFast.from_pretrained('bert-base-cased') collate_fn = DataCollatorWithPadding(tokenizer, padding=True) ds = load_dataset('yelp_polarity') def do_tokenize(x): return tokenizer(x['text'], truncation=True) ds = ds.map(do_tokenize, batched=True) ds.set_format('torch', ['input_ids', 'token_type_ids', 'attention_mask']) if len(sys.argv) == 2 and sys.argv[1] == 'memory': # copy to memory - probably a faster way to do this - but demonstrates the point # approximately 530 batches per second - 17500 batches in 0:33 print('using memory') _ds = [data for data in tqdm(ds['train'])] else: # approximately 83 batches per second - 17500 batches in 3:31 print('using datasets') _ds = ds['train'] dl = DataLoader(_ds, shuffle=True, collate_fn=collate_fn, batch_size=32, num_workers=4) for data in tqdm(dl): for k, v in data.items(): data[k] = v.to('cuda') ``` For reference, my conda environment is [here](https://gist.github.com/05b6101518ff70ed42a858b302a0405d) Once again, I'm very excited about this library, and how easy it is to load datasets, and to do so without worrying about system memory constraints. Thanks for all your great work.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/708/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/708/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/707
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/707/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/707/comments
https://api.github.com/repos/huggingface/datasets/issues/707/events
https://github.com/huggingface/datasets/issues/707
713,954,666
MDU6SXNzdWU3MTM5NTQ2NjY=
707
Requirements should specify pyarrow<1
{ "login": "mathcass", "id": 918541, "node_id": "MDQ6VXNlcjkxODU0MQ==", "avatar_url": "https://avatars.githubusercontent.com/u/918541?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mathcass", "html_url": "https://github.com/mathcass", "followers_url": "https://api.github.com/users/mathcass/followers", "following_url": "https://api.github.com/users/mathcass/following{/other_user}", "gists_url": "https://api.github.com/users/mathcass/gists{/gist_id}", "starred_url": "https://api.github.com/users/mathcass/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mathcass/subscriptions", "organizations_url": "https://api.github.com/users/mathcass/orgs", "repos_url": "https://api.github.com/users/mathcass/repos", "events_url": "https://api.github.com/users/mathcass/events{/privacy}", "received_events_url": "https://api.github.com/users/mathcass/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hello @mathcass I would want to work on this issue. May I do the same? ", "@punitaojha, certainly. Feel free to work on this. Let me know if you need any help or clarity.", "Hello @mathcass \r\n1. I did fork the repository and clone the same on my local system. \r\n\r\n2. Then learnt about how we can publish our package on pypi.org. Also, found some instructions on same in setup.py documentation.\r\n\r\n3. Then I Perplexity document link that you shared above. I created a colab link from there keep both tensorflow and pytorch means a mixed option and tried to run it in colab but I encountered no errors at a point where you mentioned. Can you help me to figure out the issue. \r\n\r\n4.Here is the link of the colab file with my saved responses. \r\nhttps://colab.research.google.com/drive/1hfYz8Ira39FnREbxgwa_goZWpOojp2NH?usp=sharing", "Also, please share some links which made you conclude that pyarrow < 1 would help. ", "Access granted for the colab link. ", "Thanks for looking at this @punitaojha and thanks for sharing the notebook. \r\n\r\nI just tried to reproduce this on my own (based on the environment where I had this issue) and I can't reproduce it somehow. If I run into this again, I'll include some steps to reproduce it. I'll close this as invalid. \r\n\r\nThanks again. ", "I am sorry for hijacking this closed issue, but I believe I was able to reproduce this very issue. Strangely enough, it also turned out that running `pip install \"pyarrow<1\" --upgrade` did indeed fix the issue (PyArrow was installed in version `0.14.1` in my case).\r\n\r\nPlease see the Colab below:\r\n\r\nhttps://colab.research.google.com/drive/15QQS3xWjlKW2aK0J74eEcRFuhXUddUST\r\n\r\nThanks!" ]
2020-10-02T23:39:39
2020-12-04T08:22:39
2020-10-04T20:50:28
NONE
null
null
null
I was looking at the docs on [Perplexity](https://huggingface.co/transformers/perplexity.html) via GPT2. When you load datasets and try to load Wikitext, you get the error, ``` module 'pyarrow' has no attribute 'PyExtensionType' ``` I traced it back to datasets having installed PyArrow 1.0.1 but there's not pinning in the setup file. https://github.com/huggingface/datasets/blob/e86a2a8f869b91654e782c9133d810bb82783200/setup.py#L68 Downgrading by installing `pip install "pyarrow<1"` resolved the issue.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/707/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/707/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/705
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/705/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/705/comments
https://api.github.com/repos/huggingface/datasets/issues/705/events
https://github.com/huggingface/datasets/issues/705
713,709,100
MDU6SXNzdWU3MTM3MDkxMDA=
705
TypeError: '<' not supported between instances of 'NamedSplit' and 'NamedSplit'
{ "login": "pvcastro", "id": 12713359, "node_id": "MDQ6VXNlcjEyNzEzMzU5", "avatar_url": "https://avatars.githubusercontent.com/u/12713359?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pvcastro", "html_url": "https://github.com/pvcastro", "followers_url": "https://api.github.com/users/pvcastro/followers", "following_url": "https://api.github.com/users/pvcastro/following{/other_user}", "gists_url": "https://api.github.com/users/pvcastro/gists{/gist_id}", "starred_url": "https://api.github.com/users/pvcastro/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pvcastro/subscriptions", "organizations_url": "https://api.github.com/users/pvcastro/orgs", "repos_url": "https://api.github.com/users/pvcastro/repos", "events_url": "https://api.github.com/users/pvcastro/events{/privacy}", "received_events_url": "https://api.github.com/users/pvcastro/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[ { "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi !\r\nThanks for reporting :) \r\nIndeed this is an issue on the `datasets` side.\r\nI'm creating a PR", "Thanks @lhoestq !" ]
2020-10-02T15:27:55
2020-10-05T08:14:59
2020-10-05T08:14:59
NONE
null
null
null
## Environment info <!-- You can run the command `transformers-cli env` and copy-and-paste its output below. Don't forget to fill out the missing fields in that output! --> - `transformers` version: 3.3.1 (installed from master) - `datasets` version: 1.0.2 (installed as a dependency from transformers) - Platform: Linux-4.15.0-118-generic-x86_64-with-debian-stretch-sid - Python version: 3.7.9 I'm testing my own text classification dataset using [this example](https://github.com/huggingface/transformers/tree/master/examples/text-classification#run-generic-text-classification-script-in-tensorflow) from transformers. The dataset is split into train / dev / test, and in csv format, containing just a text and a label columns, using comma as sep. Here's a sample: ``` text,label "Registra-se a presença do acadêmico <name> . <REL_SEP> Ao me deparar com a descrição de dois autores no polo ativo da ação junto ao PJe , margem esquerda foi informado pela procuradora do reclamante que se trata de uma reclamação trabalhista individual . <REL_SEP> Diante disso , face a ausência injustificada do autor <name> , determina-se o ARQUIVAMENTO do presente processo , com relação a este , nos termos do [[ art . 844 da CLT ]] . <REL_SEP> CUSTAS AUTOR - DISPENSADO <REL_SEP> Custas pelo autor no importe de R $326,82 , calculadas sobre R $16.341,03 , dispensadas na forma da lei , em virtude da concessão dos benefícios da Justiça Gratuita , ora deferida . <REL_SEP> Cientes os presentes . <REL_SEP> Audiência encerrada às 8h42min . <REL_SEP> <name> <REL_SEP> Juíza do Trabalho <REL_SEP> Ata redigida por << <name> >> , Secretário de Audiência .",NO_RELATION ``` However, @Santosh-Gupta reported in #7351 that he had the exact same problem using the ChemProt dataset. His colab notebook is referenced in the following section. ## To reproduce Steps to reproduce the behavior: 1. Created a new conda environment using conda env -n transformers python=3.7 2. Cloned transformers master, `cd` into it and installed using pip install --editable . -r examples/requirements.txt 3. Installed tensorflow with `pip install tensorflow` 3. Ran `run_tf_text_classification.py` with the following parameters: ``` --train_file <DATASET_PATH>/train.csv \ --dev_file <DATASET_PATH>/dev.csv \ --test_file <DATASET_PATH>/test.csv \ --label_column_id 1 \ --model_name_or_path neuralmind/bert-base-portuguese-cased \ --output_dir <OUTPUT_PATH> \ --num_train_epochs 4 \ --per_device_train_batch_size 4 \ --per_device_eval_batch_size 4 \ --do_train \ --do_eval \ --do_predict \ --logging_steps 1000 \ --evaluate_during_training \ --save_steps 1000 \ --overwrite_output_dir \ --overwrite_cache ``` I have also copied [@Santosh-Gupta 's colab notebook](https://colab.research.google.com/drive/11APei6GjphCZbH5wD9yVlfGvpIkh8pwr?usp=sharing) as a reference. <!-- If you have code snippets, error messages, stack traces please provide them here as well. Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.--> Here is the stack trace: ``` 2020-10-02 07:33:41.622011: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1 /media/discoD/repositorios/transformers_pedro/src/transformers/training_args.py:333: FutureWarning: The `evaluate_during_training` argument is deprecated in favor of `evaluation_strategy` (which has more options) FutureWarning, 2020-10-02 07:33:43.471648: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcuda.so.1 2020-10-02 07:33:43.471791: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-02 07:33:43.472664: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties: pciBusID: 0000:01:00.0 name: GeForce GTX 1070 computeCapability: 6.1 coreClock: 1.7085GHz coreCount: 15 deviceMemorySize: 7.92GiB deviceMemoryBandwidth: 238.66GiB/s 2020-10-02 07:33:43.472684: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1 2020-10-02 07:33:43.472765: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10 2020-10-02 07:33:43.472809: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10 2020-10-02 07:33:43.472848: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10 2020-10-02 07:33:43.474209: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusolver.so.10 2020-10-02 07:33:43.474276: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusparse.so.10 2020-10-02 07:33:43.561219: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7 2020-10-02 07:33:43.561397: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-02 07:33:43.562345: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-02 07:33:43.563219: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0 2020-10-02 07:33:43.563595: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2020-10-02 07:33:43.570091: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 3591830000 Hz 2020-10-02 07:33:43.570494: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x560842432400 initialized for platform Host (this does not guarantee that XLA will be used). Devices: 2020-10-02 07:33:43.570511: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version 2020-10-02 07:33:43.570702: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-02 07:33:43.571599: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties: pciBusID: 0000:01:00.0 name: GeForce GTX 1070 computeCapability: 6.1 coreClock: 1.7085GHz coreCount: 15 deviceMemorySize: 7.92GiB deviceMemoryBandwidth: 238.66GiB/s 2020-10-02 07:33:43.571633: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1 2020-10-02 07:33:43.571645: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10 2020-10-02 07:33:43.571654: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10 2020-10-02 07:33:43.571664: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10 2020-10-02 07:33:43.571691: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusolver.so.10 2020-10-02 07:33:43.571704: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusparse.so.10 2020-10-02 07:33:43.571718: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7 2020-10-02 07:33:43.571770: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-02 07:33:43.572641: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-02 07:33:43.573475: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0 2020-10-02 07:33:47.139227: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1257] Device interconnect StreamExecutor with strength 1 edge matrix: 2020-10-02 07:33:47.139265: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1263] 0 2020-10-02 07:33:47.139272: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 0: N 2020-10-02 07:33:47.140323: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-02 07:33:47.141248: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-02 07:33:47.142085: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-10-02 07:33:47.142854: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1402] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5371 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1) 2020-10-02 07:33:47.146317: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5608b95dc5c0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices: 2020-10-02 07:33:47.146336: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): GeForce GTX 1070, Compute Capability 6.1 10/02/2020 07:33:47 - INFO - __main__ - n_replicas: 1, distributed training: False, 16-bits training: False 10/02/2020 07:33:47 - INFO - __main__ - Training/evaluation parameters TFTrainingArguments(output_dir='/media/discoD/models/datalawyer/pedidos/transformers_tf', overwrite_output_dir=True, do_train=True, do_eval=True, do_predict=True, evaluate_during_training=True, evaluation_strategy=<EvaluationStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=4, per_device_eval_batch_size=4, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=1, learning_rate=5e-05, weight_decay=0.0, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=4.0, max_steps=-1, warmup_steps=0, logging_dir='runs/Oct02_07-33-43_user-XPS-8700', logging_first_step=False, logging_steps=1000, save_steps=1000, save_total_limit=None, no_cuda=False, seed=42, fp16=False, fp16_opt_level='O1', local_rank=-1, tpu_num_cores=None, tpu_metrics_debug=False, debug=False, dataloader_drop_last=False, eval_steps=1000, dataloader_num_workers=0, past_index=-1, run_name='/media/discoD/models/datalawyer/pedidos/transformers_tf', disable_tqdm=False, remove_unused_columns=True, label_names=None, load_best_model_at_end=False, metric_for_best_model=None, greater_is_better=False, tpu_name=None, xla=False) 10/02/2020 07:33:53 - INFO - filelock - Lock 140407857405776 acquired on /home/user/.cache/huggingface/datasets/e0f1e9ed46db1e2429189f06b479cbd4075c0976104c1aacf8f77d9a53d2ad87.03756fef6da334f50a7ff73608e21b5018229944ca250416ce7352e25d84a552.py.lock 10/02/2020 07:33:53 - INFO - filelock - Lock 140407857405776 released on /home/user/.cache/huggingface/datasets/e0f1e9ed46db1e2429189f06b479cbd4075c0976104c1aacf8f77d9a53d2ad87.03756fef6da334f50a7ff73608e21b5018229944ca250416ce7352e25d84a552.py.lock Using custom data configuration default Traceback (most recent call last): File "run_tf_text_classification.py", line 283, in <module> main() File "run_tf_text_classification.py", line 222, in main max_seq_length=data_args.max_seq_length, File "run_tf_text_classification.py", line 43, in get_tfds ds = datasets.load_dataset("csv", data_files=files) File "/media/discoD/anaconda3/envs/transformers/lib/python3.7/site-packages/datasets/load.py", line 604, in load_dataset **config_kwargs, File "/media/discoD/anaconda3/envs/transformers/lib/python3.7/site-packages/datasets/builder.py", line 158, in __init__ **config_kwargs, File "/media/discoD/anaconda3/envs/transformers/lib/python3.7/site-packages/datasets/builder.py", line 269, in _create_builder_config for key in sorted(data_files.keys()): TypeError: '<' not supported between instances of 'NamedSplit' and 'NamedSplit' ``` ## Expected behavior Should be able to run the text-classification example as described in [https://github.com/huggingface/transformers/tree/master/examples/text-classification#run-generic-text-classification-script-in-tensorflow](https://github.com/huggingface/transformers/tree/master/examples/text-classification#run-generic-text-classification-script-in-tensorflow) Originally opened this issue at transformers' repository: [https://github.com/huggingface/transformers/issues/7535](https://github.com/huggingface/transformers/issues/7535). @jplu instructed me to open here, since according to [this](https://github.com/huggingface/transformers/issues/7535#issuecomment-702778885) evidence, the problem is from datasets. Thanks!
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/705/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/705/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/699
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/699/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/699/comments
https://api.github.com/repos/huggingface/datasets/issues/699/events
https://github.com/huggingface/datasets/issues/699
713,395,642
MDU6SXNzdWU3MTMzOTU2NDI=
699
XNLI dataset is not loading
{ "login": "imadarsh1001", "id": 14936525, "node_id": "MDQ6VXNlcjE0OTM2NTI1", "avatar_url": "https://avatars.githubusercontent.com/u/14936525?v=4", "gravatar_id": "", "url": "https://api.github.com/users/imadarsh1001", "html_url": "https://github.com/imadarsh1001", "followers_url": "https://api.github.com/users/imadarsh1001/followers", "following_url": "https://api.github.com/users/imadarsh1001/following{/other_user}", "gists_url": "https://api.github.com/users/imadarsh1001/gists{/gist_id}", "starred_url": "https://api.github.com/users/imadarsh1001/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/imadarsh1001/subscriptions", "organizations_url": "https://api.github.com/users/imadarsh1001/orgs", "repos_url": "https://api.github.com/users/imadarsh1001/repos", "events_url": "https://api.github.com/users/imadarsh1001/events{/privacy}", "received_events_url": "https://api.github.com/users/imadarsh1001/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "also i tried below code to solve checksum error \r\n`datasets-cli test ./datasets/xnli --save_infos --all_configs`\r\n\r\nand it shows \r\n\r\n```\r\n2020-10-02 07:06:16.588760: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1\r\nTraceback (most recent call last):\r\n File \"/opt/conda/lib/python3.7/site-packages/datasets/load.py\", line 268, in prepare_module\r\n local_path = cached_path(file_path, download_config=download_config)\r\n File \"/opt/conda/lib/python3.7/site-packages/datasets/utils/file_utils.py\", line 308, in cached_path\r\n use_etag=download_config.use_etag,\r\n File \"/opt/conda/lib/python3.7/site-packages/datasets/utils/file_utils.py\", line 474, in get_from_cache\r\n raise FileNotFoundError(\"Couldn't find file at {}\".format(url))\r\nFileNotFoundError: Couldn't find file at https://raw.githubusercontent.com/huggingface/datasets/1.0.2/datasets/./datasets/xnli/xnli.py\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File \"/opt/conda/lib/python3.7/site-packages/datasets/load.py\", line 279, in prepare_module\r\n local_path = cached_path(file_path, download_config=download_config)\r\n File \"/opt/conda/lib/python3.7/site-packages/datasets/utils/file_utils.py\", line 308, in cached_path\r\n use_etag=download_config.use_etag,\r\n File \"/opt/conda/lib/python3.7/site-packages/datasets/utils/file_utils.py\", line 474, in get_from_cache\r\n raise FileNotFoundError(\"Couldn't find file at {}\".format(url))\r\nFileNotFoundError: Couldn't find file at https://s3.amazonaws.com/datasets.huggingface.co/datasets/datasets/./datasets/xnli/xnli.py\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File \"/opt/conda/bin/datasets-cli\", line 36, in <module>\r\n service.run()\r\n File \"/opt/conda/lib/python3.7/site-packages/datasets/commands/test.py\", line 76, in run\r\n module_path, hash = prepare_module(path)\r\n File \"/opt/conda/lib/python3.7/site-packages/datasets/load.py\", line 283, in prepare_module\r\n combined_path, github_file_path, file_path\r\nFileNotFoundError: Couldn't find file locally at ./datasets/xnli/xnli.py, or remotely at https://raw.githubusercontent.com/huggingface/datasets/1.0.2/datasets/./datasets/xnli/xnli.py or https://s3.amazonaws.com/datasets.huggingface.co/datasets/datasets/./datasets/xnli/xnli.py\r\n```\r\n\r\n", "Hi !\r\nYes the download url changed.\r\nIt's updated on the master branch. I'm doing a release today to fix that :)", "the issue is fixed with latest release \r\n\r\n" ]
2020-10-02T06:53:16
2020-10-03T17:45:52
2020-10-03T17:43:37
NONE
null
null
null
`dataset = datasets.load_dataset(path='xnli')` showing below error ``` /opt/conda/lib/python3.7/site-packages/nlp/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 36 if len(bad_urls) > 0: 37 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 38 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 39 logger.info("All the checksums matched successfully" + for_verification_name) 40 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://www.nyu.edu/projects/bowman/xnli/XNLI-1.0.zip'] ``` I think URL is now changed to "https://cims.nyu.edu/~sbowman/xnli/XNLI-MT-1.0.zip"
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/699/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/699/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/691
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/691/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/691/comments
https://api.github.com/repos/huggingface/datasets/issues/691/events
https://github.com/huggingface/datasets/issues/691
712,389,499
MDU6SXNzdWU3MTIzODk0OTk=
691
Add UI filter to filter datasets based on task
{ "login": "praateekmahajan", "id": 7589415, "node_id": "MDQ6VXNlcjc1ODk0MTU=", "avatar_url": "https://avatars.githubusercontent.com/u/7589415?v=4", "gravatar_id": "", "url": "https://api.github.com/users/praateekmahajan", "html_url": "https://github.com/praateekmahajan", "followers_url": "https://api.github.com/users/praateekmahajan/followers", "following_url": "https://api.github.com/users/praateekmahajan/following{/other_user}", "gists_url": "https://api.github.com/users/praateekmahajan/gists{/gist_id}", "starred_url": "https://api.github.com/users/praateekmahajan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/praateekmahajan/subscriptions", "organizations_url": "https://api.github.com/users/praateekmahajan/orgs", "repos_url": "https://api.github.com/users/praateekmahajan/repos", "events_url": "https://api.github.com/users/praateekmahajan/events{/privacy}", "received_events_url": "https://api.github.com/users/praateekmahajan/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
null
[]
null
[ "Already supported." ]
2020-10-01T00:56:18
2022-02-15T10:46:50
2022-02-15T10:46:50
NONE
null
null
null
This is great work, so huge shoutout to contributors and huggingface. The [/nlp/viewer](https://huggingface.co/nlp/viewer/) is great and the [/datasets](https://huggingface.co/datasets) page is great. I was wondering if in both or either places we can have a filter that selects if a dataset is good for the following tasks (non exhaustive list) - Classification - Multi label - Multi class - Q&A - Summarization - Translation I believe this feature might have some value, for folks trying to find datasets for a particular task, and then testing their model capabilities. Thank you :)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/691/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/691/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/690
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/690/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/690/comments
https://api.github.com/repos/huggingface/datasets/issues/690/events
https://github.com/huggingface/datasets/issues/690
712,150,321
MDU6SXNzdWU3MTIxNTAzMjE=
690
XNLI dataset: NonMatchingChecksumError
{ "login": "xiey1", "id": 13307358, "node_id": "MDQ6VXNlcjEzMzA3MzU4", "avatar_url": "https://avatars.githubusercontent.com/u/13307358?v=4", "gravatar_id": "", "url": "https://api.github.com/users/xiey1", "html_url": "https://github.com/xiey1", "followers_url": "https://api.github.com/users/xiey1/followers", "following_url": "https://api.github.com/users/xiey1/following{/other_user}", "gists_url": "https://api.github.com/users/xiey1/gists{/gist_id}", "starred_url": "https://api.github.com/users/xiey1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xiey1/subscriptions", "organizations_url": "https://api.github.com/users/xiey1/orgs", "repos_url": "https://api.github.com/users/xiey1/repos", "events_url": "https://api.github.com/users/xiey1/events{/privacy}", "received_events_url": "https://api.github.com/users/xiey1/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Thanks for reporting.\r\nThe data file must have been updated by the host.\r\nI'll update the checksum with the new one.", "Well actually it looks like the link isn't working anymore :(", "The new link is https://cims.nyu.edu/~sbowman/xnli/XNLI-1.0.zip\r\nI'll update the dataset script", "I'll do a release in the next few days to make the fix available for everyone.\r\nIn the meantime you can load `xnli` with\r\n```\r\nxnli = load_dataset('xnli', script_version=\"master\")\r\n```\r\nThis will use the latest version of the xnli script (available on master branch), instead of the old one.", "That's awesome! Thanks a lot!" ]
2020-09-30T17:50:03
2020-10-01T17:15:08
2020-10-01T14:01:14
NONE
null
null
null
Hi, I tried to download "xnli" dataset in colab using `xnli = load_dataset(path='xnli')` but got 'NonMatchingChecksumError' error `NonMatchingChecksumError Traceback (most recent call last) <ipython-input-27-a87bedc82eeb> in <module>() ----> 1 xnli = load_dataset(path='xnli') 3 frames /usr/local/lib/python3.6/dist-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 37 if len(bad_urls) > 0: 38 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 39 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 40 logger.info("All the checksums matched successfully" + for_verification_name) 41 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://www.nyu.edu/projects/bowman/xnli/XNLI-1.0.zip']` The same code worked well several days ago in colab but stopped working now. Thanks!
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/690/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/690/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/687
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/687/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/687/comments
https://api.github.com/repos/huggingface/datasets/issues/687/events
https://github.com/huggingface/datasets/issues/687
711,664,810
MDU6SXNzdWU3MTE2NjQ4MTA=
687
`ArrowInvalid` occurs while running `Dataset.map()` function
{ "login": "peinan", "id": 5601012, "node_id": "MDQ6VXNlcjU2MDEwMTI=", "avatar_url": "https://avatars.githubusercontent.com/u/5601012?v=4", "gravatar_id": "", "url": "https://api.github.com/users/peinan", "html_url": "https://github.com/peinan", "followers_url": "https://api.github.com/users/peinan/followers", "following_url": "https://api.github.com/users/peinan/following{/other_user}", "gists_url": "https://api.github.com/users/peinan/gists{/gist_id}", "starred_url": "https://api.github.com/users/peinan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/peinan/subscriptions", "organizations_url": "https://api.github.com/users/peinan/orgs", "repos_url": "https://api.github.com/users/peinan/repos", "events_url": "https://api.github.com/users/peinan/events{/privacy}", "received_events_url": "https://api.github.com/users/peinan/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi !\r\n\r\nThis is because `encode` expects one single text as input (str), or one tokenized text (List[str]).\r\nI believe that you actually wanted to use `encode_batch` which expects a batch of texts.\r\nHowever this method is only available for our \"fast\" tokenizers (ex: BertTokenizerFast).\r\nBertJapanese is not one of them unfortunately and I don't think it will be added for now (see https://github.com/huggingface/transformers/pull/7141)...\r\ncc @thomwolf for confirmation.\r\n\r\nTherefore what I'd suggest for now is disable batching and process one text at a time using `encode`.\r\nNote that you can make it faster by using multiprocessing:\r\n\r\n```python\r\nnum_proc = None # Specify here the number of processes if you want to use multiprocessing. ex: num_proc = 4\r\nencoded = train_ds.map(\r\n lambda example: {'tokens': t.encode(example['title'], max_length=1000)}, num_proc=num_proc\r\n)\r\n```\r\n", "Thank you very much for the kind and precise suggestion!\r\nI'm looking forward to seeing BertJapaneseTokenizer built into the \"fast\" tokenizers.\r\n\r\nI tried `map` with multiprocessing as follows, and it worked!\r\n\r\n```python\r\n# There was a Pickle problem if I use `lambda` for multiprocessing\r\ndef encode(examples):\r\n return {'tokens': t.encode(examples['title'], max_length=1000)}\r\n\r\nnum_proc = 8\r\nencoded = train_ds.map(encode, num_proc=num_proc)\r\n```\r\n\r\nThank you again!" ]
2020-09-30T06:16:50
2020-09-30T09:53:03
2020-09-30T09:53:03
NONE
null
null
null
It seems to fail to process the final batch. This [colab](https://colab.research.google.com/drive/1_byLZRHwGP13PHMkJWo62Wp50S_Z2HMD?usp=sharing) can reproduce the error. Code: ```python # train_ds = Dataset(features: { # 'title': Value(dtype='string', id=None), # 'score': Value(dtype='float64', id=None) # }, num_rows: 99999) # suggested in #665 class PicklableTokenizer(BertJapaneseTokenizer): def __getstate__(self): state = dict(self.__dict__) state['do_lower_case'] = self.word_tokenizer.do_lower_case state['never_split'] = self.word_tokenizer.never_split del state['word_tokenizer'] return state def __setstate(self): do_lower_case = state.pop('do_lower_case') never_split = state.pop('never_split') self.__dict__ = state self.word_tokenizer = MecabTokenizer( do_lower_case=do_lower_case, never_split=never_split ) t = PicklableTokenizer.from_pretrained('bert-base-japanese-whole-word-masking') encoded = train_ds.map( lambda examples: {'tokens': t.encode(examples['title'], max_length=1000)}, batched=True, batch_size=1000 ) ``` Error Message: ``` 99% 99/100 [00:22<00:00, 39.07ba/s] --------------------------------------------------------------------------- ArrowInvalid Traceback (most recent call last) <timed exec> in <module> /usr/local/lib/python3.6/site-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint) 1242 fn_kwargs=fn_kwargs, 1243 new_fingerprint=new_fingerprint, -> 1244 update_data=update_data, 1245 ) 1246 else: /usr/local/lib/python3.6/site-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs) 151 "output_all_columns": self._output_all_columns, 152 } --> 153 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 154 if new_format["columns"] is not None: 155 new_format["columns"] = list(set(new_format["columns"]) & set(out.column_names)) /usr/local/lib/python3.6/site-packages/datasets/fingerprint.py in wrapper(*args, **kwargs) 161 # Call actual function 162 --> 163 out = func(self, *args, **kwargs) 164 165 # Update fingerprint of in-place transforms + update in-place history of transforms /usr/local/lib/python3.6/site-packages/datasets/arrow_dataset.py in _map_single(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset, update_data) 1496 if update_data: 1497 batch = cast_to_python_objects(batch) -> 1498 writer.write_batch(batch) 1499 if update_data: 1500 writer.finalize() # close_stream=bool(buf_writer is None)) # We only close if we are writing in a file /usr/local/lib/python3.6/site-packages/datasets/arrow_writer.py in write_batch(self, batch_examples, writer_batch_size) 271 typed_sequence = TypedSequence(batch_examples[col], type=col_type, try_type=col_try_type) 272 typed_sequence_examples[col] = typed_sequence --> 273 pa_table = pa.Table.from_pydict(typed_sequence_examples) 274 self.write_table(pa_table) 275 /usr/local/lib/python3.6/site-packages/pyarrow/table.pxi in pyarrow.lib.Table.from_pydict() /usr/local/lib/python3.6/site-packages/pyarrow/table.pxi in pyarrow.lib.Table.from_arrays() /usr/local/lib/python3.6/site-packages/pyarrow/table.pxi in pyarrow.lib.Table.validate() /usr/local/lib/python3.6/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status() ArrowInvalid: Column 4 named tokens expected length 999 but got length 1000 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/687/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/687/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/686
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/686/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/686/comments
https://api.github.com/repos/huggingface/datasets/issues/686/events
https://github.com/huggingface/datasets/issues/686
711,385,739
MDU6SXNzdWU3MTEzODU3Mzk=
686
Dataset browser url is still https://huggingface.co/nlp/viewer/
{ "login": "jarednielsen", "id": 4564897, "node_id": "MDQ6VXNlcjQ1NjQ4OTc=", "avatar_url": "https://avatars.githubusercontent.com/u/4564897?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jarednielsen", "html_url": "https://github.com/jarednielsen", "followers_url": "https://api.github.com/users/jarednielsen/followers", "following_url": "https://api.github.com/users/jarednielsen/following{/other_user}", "gists_url": "https://api.github.com/users/jarednielsen/gists{/gist_id}", "starred_url": "https://api.github.com/users/jarednielsen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jarednielsen/subscriptions", "organizations_url": "https://api.github.com/users/jarednielsen/orgs", "repos_url": "https://api.github.com/users/jarednielsen/repos", "events_url": "https://api.github.com/users/jarednielsen/events{/privacy}", "received_events_url": "https://api.github.com/users/jarednielsen/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Yes! might do it with @srush one of these days. Hopefully it won't break too many links (we can always redirect from old url to new)", "This was fixed but forgot to close the issue. cc @lhoestq @yjernite \r\n\r\nThanks @jarednielsen!" ]
2020-09-29T19:21:52
2021-01-08T18:29:26
2021-01-08T18:29:26
CONTRIBUTOR
null
null
null
Might be worth updating to https://huggingface.co/datasets/viewer/
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/686/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/686/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/678
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/678/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/678/comments
https://api.github.com/repos/huggingface/datasets/issues/678/events
https://github.com/huggingface/datasets/issues/678
710,060,497
MDU6SXNzdWU3MTAwNjA0OTc=
678
The download instructions for c4 datasets are not contained in the error message
{ "login": "Narsil", "id": 204321, "node_id": "MDQ6VXNlcjIwNDMyMQ==", "avatar_url": "https://avatars.githubusercontent.com/u/204321?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Narsil", "html_url": "https://github.com/Narsil", "followers_url": "https://api.github.com/users/Narsil/followers", "following_url": "https://api.github.com/users/Narsil/following{/other_user}", "gists_url": "https://api.github.com/users/Narsil/gists{/gist_id}", "starred_url": "https://api.github.com/users/Narsil/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Narsil/subscriptions", "organizations_url": "https://api.github.com/users/Narsil/orgs", "repos_url": "https://api.github.com/users/Narsil/repos", "events_url": "https://api.github.com/users/Narsil/events{/privacy}", "received_events_url": "https://api.github.com/users/Narsil/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Good catch !\r\nIndeed the `@property` is missing.\r\n\r\nFeel free to open a PR :)", "Also not that C4 is a dataset that needs an Apache Beam runtime to be generated.\r\nFor example Dataflow, Spark, Flink etc.\r\n\r\nUsually we generate the dataset on our side once and for all, but we haven't done it for C4 yet.\r\nMore info about beam datasets [here](https://huggingface.co/docs/datasets/beam_dataset.html)\r\n\r\nLet me know if you have any questions" ]
2020-09-28T08:30:54
2020-09-28T10:26:09
2020-09-28T10:26:09
CONTRIBUTOR
null
null
null
The manual download instructions are not clear ```The dataset c4 with config en requires manual data. Please follow the manual download instructions: <bound method C4.manual_download_instructions of <datasets_modules.datasets.c4.830b0c218bd41fed439812c8dd19dbd4767d2a3faa385eb695cf8666c982b1b3.c4.C4 object at 0x7ff8c5969760>>. Manual data can be loaded with `datasets.load_dataset(c4, data_dir='<path/to/manual/data>') ``` Either `@property` could be added to C4.manual_download_instrcutions (or make it a real property), or the manual_download_instructions function needs to be called I think. Let me know if you want a PR for this, but I'm not sure which possible fix is the correct one.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/678/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/678/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/676
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/676/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/676/comments
https://api.github.com/repos/huggingface/datasets/issues/676/events
https://github.com/huggingface/datasets/issues/676
710,014,319
MDU6SXNzdWU3MTAwMTQzMTk=
676
train_test_split returns empty dataset item
{ "login": "mojave-pku", "id": 26648528, "node_id": "MDQ6VXNlcjI2NjQ4NTI4", "avatar_url": "https://avatars.githubusercontent.com/u/26648528?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mojave-pku", "html_url": "https://github.com/mojave-pku", "followers_url": "https://api.github.com/users/mojave-pku/followers", "following_url": "https://api.github.com/users/mojave-pku/following{/other_user}", "gists_url": "https://api.github.com/users/mojave-pku/gists{/gist_id}", "starred_url": "https://api.github.com/users/mojave-pku/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mojave-pku/subscriptions", "organizations_url": "https://api.github.com/users/mojave-pku/orgs", "repos_url": "https://api.github.com/users/mojave-pku/repos", "events_url": "https://api.github.com/users/mojave-pku/events{/privacy}", "received_events_url": "https://api.github.com/users/mojave-pku/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The problem still exists after removing the cache files.", "Can you reproduce this example in a Colab so we can investigate? (or give more information on your software/hardware config)", "Thanks for reporting.\r\nI just found the issue, I'm creating a PR", "We'll do a release pretty soon to include the fix :)\r\nIn the meantime you can install the lib from source if you want to " ]
2020-09-28T07:19:33
2020-10-07T13:46:33
2020-10-07T13:38:06
NONE
null
null
null
I try to split my dataset by `train_test_split`, but after that the item in `train` and `test` `Dataset` is empty. The codes: ``` yelp_data = datasets.load_from_disk('/home/ssd4/huanglianzhe/test_yelp') print(yelp_data[0]) yelp_data = yelp_data.train_test_split(test_size=0.1) print(yelp_data) print(yelp_data['test']) print(yelp_data['test'][0]) ``` The outputs: ``` {'stars': 2.0, 'text': 'xxxx'} Loading cached split indices for dataset at /home/ssd4/huanglianzhe/test_yelp/cache-f9b22d8b9d5a7346.arrow and /home/ssd4/huanglianzhe/test_yelp/cache-4aa26fa4005059d1.arrow DatasetDict({'train': Dataset(features: {'stars': Value(dtype='float64', id=None), 'text': Value(dtype='string', id=None)}, num_rows: 7219009), 'test': Dataset(features: {'stars': Value(dtype='float64', id=None), 'text': Value(dtype='string', id=None)}, num_rows: 802113)}) Dataset(features: {'stars': Value(dtype='float64', id=None), 'text': Value(dtype='string', id=None)}, num_rows: 802113) {} # yelp_data['test'][0] is empty ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/676/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/676/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/675
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/675/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/675/comments
https://api.github.com/repos/huggingface/datasets/issues/675/events
https://github.com/huggingface/datasets/issues/675
709,818,725
MDU6SXNzdWU3MDk4MTg3MjU=
675
Add custom dataset to NLP?
{ "login": "timpal0l", "id": 6556710, "node_id": "MDQ6VXNlcjY1NTY3MTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6556710?v=4", "gravatar_id": "", "url": "https://api.github.com/users/timpal0l", "html_url": "https://github.com/timpal0l", "followers_url": "https://api.github.com/users/timpal0l/followers", "following_url": "https://api.github.com/users/timpal0l/following{/other_user}", "gists_url": "https://api.github.com/users/timpal0l/gists{/gist_id}", "starred_url": "https://api.github.com/users/timpal0l/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/timpal0l/subscriptions", "organizations_url": "https://api.github.com/users/timpal0l/orgs", "repos_url": "https://api.github.com/users/timpal0l/repos", "events_url": "https://api.github.com/users/timpal0l/events{/privacy}", "received_events_url": "https://api.github.com/users/timpal0l/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Yes you can have a look here: https://huggingface.co/docs/datasets/loading_datasets.html#csv-files", "No activity, closing" ]
2020-09-27T21:22:50
2020-10-20T09:08:49
2020-10-20T09:08:49
CONTRIBUTOR
null
null
null
Is it possible to add a custom dataset such as a .csv to the NLP library? Thanks.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/675/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/675/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/674
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/674/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/674/comments
https://api.github.com/repos/huggingface/datasets/issues/674/events
https://github.com/huggingface/datasets/issues/674
709,661,006
MDU6SXNzdWU3MDk2NjEwMDY=
674
load_dataset() won't download in Windows
{ "login": "ThisDavehead", "id": 34422661, "node_id": "MDQ6VXNlcjM0NDIyNjYx", "avatar_url": "https://avatars.githubusercontent.com/u/34422661?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ThisDavehead", "html_url": "https://github.com/ThisDavehead", "followers_url": "https://api.github.com/users/ThisDavehead/followers", "following_url": "https://api.github.com/users/ThisDavehead/following{/other_user}", "gists_url": "https://api.github.com/users/ThisDavehead/gists{/gist_id}", "starred_url": "https://api.github.com/users/ThisDavehead/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ThisDavehead/subscriptions", "organizations_url": "https://api.github.com/users/ThisDavehead/orgs", "repos_url": "https://api.github.com/users/ThisDavehead/repos", "events_url": "https://api.github.com/users/ThisDavehead/events{/privacy}", "received_events_url": "https://api.github.com/users/ThisDavehead/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "I have the same issue. Tried to download a few of them and not a single one is downloaded successfully.\r\n\r\nThis is the output:\r\n```\r\n>>> dataset = load_dataset('blended_skill_talk', split='train')\r\nUsing custom data configuration default <-- This step never ends\r\n```", "This was fixed in #644 \r\nI'll do a new release soon :)\r\n\r\nIn the meantime you can run it by installing from source", "Closing since version 1.1.0 got released with Windows support :) \r\nLet me know if it works for you now" ]
2020-09-27T03:56:25
2020-10-05T08:28:18
2020-10-05T08:28:18
NONE
null
null
null
I don't know if this is just me or Windows. Maybe other Windows users can chime in if they don't have this problem. I've been trying to get some of the tutorials working on Windows, but when I use the load_dataset() function, it just stalls and the script keeps running indefinitely without downloading anything. I've waited upwards of 18 hours to download the 'multi-news' dataset (which isn't very big), and still nothing. I've tried running it through different IDE's and the command line, but it had the same behavior. I've also tried it with all virus and malware protection turned off. I've made sure python and all IDE's are exceptions to the firewall and all the requisite permissions are enabled. Additionally, I checked to see if other packages could download content such as an nltk corpus, and they could. I've also run the same script using Ubuntu and it downloaded fine (and quickly). When I copied the downloaded datasets from my Ubuntu drive to my Windows .cache folder it worked fine by reusing the already-downloaded dataset, but it's cumbersome to do that for every dataset I want to try in my Windows environment. Could this be a bug, or is there something I'm doing wrong or not thinking of? Thanks.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/674/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/674/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/673
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/673/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/673/comments
https://api.github.com/repos/huggingface/datasets/issues/673/events
https://github.com/huggingface/datasets/issues/673
709,603,989
MDU6SXNzdWU3MDk2MDM5ODk=
673
blog_authorship_corpus crashed
{ "login": "Moshiii", "id": 7553188, "node_id": "MDQ6VXNlcjc1NTMxODg=", "avatar_url": "https://avatars.githubusercontent.com/u/7553188?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Moshiii", "html_url": "https://github.com/Moshiii", "followers_url": "https://api.github.com/users/Moshiii/followers", "following_url": "https://api.github.com/users/Moshiii/following{/other_user}", "gists_url": "https://api.github.com/users/Moshiii/gists{/gist_id}", "starred_url": "https://api.github.com/users/Moshiii/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Moshiii/subscriptions", "organizations_url": "https://api.github.com/users/Moshiii/orgs", "repos_url": "https://api.github.com/users/Moshiii/repos", "events_url": "https://api.github.com/users/Moshiii/events{/privacy}", "received_events_url": "https://api.github.com/users/Moshiii/received_events", "type": "User", "site_admin": false }
[ { "id": 2107841032, "node_id": "MDU6TGFiZWwyMTA3ODQxMDMy", "url": "https://api.github.com/repos/huggingface/datasets/labels/nlp-viewer", "name": "nlp-viewer", "color": "94203D", "default": false, "description": "" } ]
closed
false
null
[]
null
[ "Thanks for reporting !\r\nWe'll free some memory" ]
2020-09-26T20:15:28
2022-02-15T10:47:58
2022-02-15T10:47:58
NONE
null
null
null
This is just to report that When I pick blog_authorship_corpus in https://huggingface.co/nlp/viewer/?dataset=blog_authorship_corpus I get this: ![image](https://user-images.githubusercontent.com/7553188/94349542-4364f300-0013-11eb-897d-b25660a449f0.png)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/673/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/673/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/672
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/672/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/672/comments
https://api.github.com/repos/huggingface/datasets/issues/672/events
https://github.com/huggingface/datasets/issues/672
709,575,527
MDU6SXNzdWU3MDk1NzU1Mjc=
672
Questions about XSUM
{ "login": "danyaljj", "id": 2441454, "node_id": "MDQ6VXNlcjI0NDE0NTQ=", "avatar_url": "https://avatars.githubusercontent.com/u/2441454?v=4", "gravatar_id": "", "url": "https://api.github.com/users/danyaljj", "html_url": "https://github.com/danyaljj", "followers_url": "https://api.github.com/users/danyaljj/followers", "following_url": "https://api.github.com/users/danyaljj/following{/other_user}", "gists_url": "https://api.github.com/users/danyaljj/gists{/gist_id}", "starred_url": "https://api.github.com/users/danyaljj/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/danyaljj/subscriptions", "organizations_url": "https://api.github.com/users/danyaljj/orgs", "repos_url": "https://api.github.com/users/danyaljj/repos", "events_url": "https://api.github.com/users/danyaljj/events{/privacy}", "received_events_url": "https://api.github.com/users/danyaljj/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "We should try to regenerate the data using the official script.\r\nBut iirc that's what we used in the first place, so not sure why it didn't match in the first place.\r\n\r\nI'll let you know when the dataset is updated", "Thanks, looking forward to hearing your update on this thread. \r\n\r\nThis is a blocking issue for us; would appreciate any progress on this front. We can also help with the fix, if you deem it appropriately. ", "I just started the generation on my side, I'll let you know how it goes :) ", "Hmm after a first run I'm still missing 136668/226711 urls.\r\nI'll relaunch it tomorrow to try to get the remaining ones.", "Update: I'm missing 36/226711 urls but I haven't managed to download them yet", "Thanks! That sounds like a reasonable number! ", "So I managed to download them all but when parsing only 226,181/226,711 worked.\r\nNot sure if it's worth digging and debugging parsing at this point :/ ", "Maybe @sshleifer can help, I think he's already played with xsum at one point", "Thanks @lhoestq\r\nIt would be great to improve coverage, but IDs are the really crucial part for us. We'd really appreciate an update to the dataset with IDs either way!", "I gave up at an even earlier point. The dataset I use has 204,017 train examples.", "@lhoestq @sshleifer like @jbragg said earlier, the main issue for us is that the current XSUM dataset (in your package) does not have IDs suggested by the original dataset ([here is the file](https://raw.githubusercontent.com/EdinburghNLP/XSum/master/XSum-Dataset/XSum-TRAINING-DEV-TEST-SPLIT-90-5-5.json).) Would appreciate if you update the XSUM dataset to include the instance IDs. \r\n\r\nThe missing instances is also a problem, but likely not worth pursuing given its relatively small scale. ", ">So I managed to download them all but when parsing only 226,181/226,711 worked.\r\n\r\n@lhoestq any chance we could update the HF-hosted dataset with the IDs in your new version? Happy to help if there's something I can do.", "Well I couldn't parse what I downloaded.\r\nUnfortunately I think I won't be able to take a look at it this week.\r\nI can try to send you what I got if you want to give it a shot @jbragg \r\nOtherwise feel free to re-run the xsum download script, maybe you'll be luckier than me", "Resolved via #754" ]
2020-09-26T17:16:24
2022-10-04T17:30:17
2022-10-04T17:30:17
CONTRIBUTOR
null
null
null
Hi there ✋ I'm looking into your `xsum` dataset and I have several questions on that. So here is how I loaded the data: ``` >>> data = datasets.load_dataset('xsum', version='1.0.1') >>> data['train'] Dataset(features: {'document': Value(dtype='string', id=None), 'summary': Value(dtype='string', id=None)}, num_rows: 204017) >>> data['test'] Dataset(features: {'document': Value(dtype='string', id=None), 'summary': Value(dtype='string', id=None)}, num_rows: 11333) ``` The first issue is, the instance counts don’t match what I see on [the dataset's website](https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset#what-builds-the-xsum-dataset) (11,333 vs 11,334 for test set; 204,017 vs 204,045 for training set) ``` … training (90%, 204,045), validation (5%, 11,332), and test (5%, 11,334) set. ``` Any thoughts why? Perhaps @mariamabarham could help here, since she recently had a PR on this dataaset https://github.com/huggingface/datasets/pull/289 (reviewed by @patrickvonplaten) Another issue is that the instances don't seem to have IDs. The original datasets provides IDs for the instances: https://github.com/EdinburghNLP/XSum/blob/master/XSum-Dataset/XSum-TRAINING-DEV-TEST-SPLIT-90-5-5.json but to be able to use them, the dataset sizes need to match. CC @jbragg
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/672/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/672/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/671
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/671/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/671/comments
https://api.github.com/repos/huggingface/datasets/issues/671/events
https://github.com/huggingface/datasets/issues/671
709,093,151
MDU6SXNzdWU3MDkwOTMxNTE=
671
[BUG] No such file or directory
{ "login": "jbragg", "id": 2238344, "node_id": "MDQ6VXNlcjIyMzgzNDQ=", "avatar_url": "https://avatars.githubusercontent.com/u/2238344?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jbragg", "html_url": "https://github.com/jbragg", "followers_url": "https://api.github.com/users/jbragg/followers", "following_url": "https://api.github.com/users/jbragg/following{/other_user}", "gists_url": "https://api.github.com/users/jbragg/gists{/gist_id}", "starred_url": "https://api.github.com/users/jbragg/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jbragg/subscriptions", "organizations_url": "https://api.github.com/users/jbragg/orgs", "repos_url": "https://api.github.com/users/jbragg/repos", "events_url": "https://api.github.com/users/jbragg/events{/privacy}", "received_events_url": "https://api.github.com/users/jbragg/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2020-09-25T16:38:54
2020-09-28T14:42:42
2020-09-28T14:42:42
CONTRIBUTOR
null
null
null
This happens when both 1. Huggingface datasets cache dir does not exist 2. Try to load a local dataset script builder.py throws an error when trying to create a filelock in a directory (cache/datasets) that does not exist https://github.com/huggingface/datasets/blob/master/src/datasets/builder.py#L177 Tested on v1.0.2 @lhoestq
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/671/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/671/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/669
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/669/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/669/comments
https://api.github.com/repos/huggingface/datasets/issues/669/events
https://github.com/huggingface/datasets/issues/669
708,857,595
MDU6SXNzdWU3MDg4NTc1OTU=
669
How to skip a example when running dataset.map
{ "login": "xixiaoyao", "id": 24541791, "node_id": "MDQ6VXNlcjI0NTQxNzkx", "avatar_url": "https://avatars.githubusercontent.com/u/24541791?v=4", "gravatar_id": "", "url": "https://api.github.com/users/xixiaoyao", "html_url": "https://github.com/xixiaoyao", "followers_url": "https://api.github.com/users/xixiaoyao/followers", "following_url": "https://api.github.com/users/xixiaoyao/following{/other_user}", "gists_url": "https://api.github.com/users/xixiaoyao/gists{/gist_id}", "starred_url": "https://api.github.com/users/xixiaoyao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xixiaoyao/subscriptions", "organizations_url": "https://api.github.com/users/xixiaoyao/orgs", "repos_url": "https://api.github.com/users/xixiaoyao/repos", "events_url": "https://api.github.com/users/xixiaoyao/events{/privacy}", "received_events_url": "https://api.github.com/users/xixiaoyao/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi @xixiaoyao,\r\nDepending on what you want to do you can:\r\n- use a first step of `filter` to filter out the invalid examples: https://huggingface.co/docs/datasets/processing.html#filtering-rows-select-and-filter\r\n- or directly detect the invalid examples inside the callable used with `map` and return them unchanged or even remove them at the same time if you are using `map` in batched mode. Here is an example where we use `map` in batched mode to add new rows on the fly but you can also use it to remove examples on the fly (that's what `filter` actually do under-the-hood): https://huggingface.co/docs/datasets/processing.html#augmenting-the-dataset", "Closing this one.\r\nFeel free to re-open if you have other questions", "Letting finders-of-this-thread know that the new link is: https://huggingface.co/docs/datasets/process#data-augmentation\r\n" ]
2020-09-25T11:17:53
2022-06-17T21:45:03
2020-10-05T16:28:13
NONE
null
null
null
in processing func, I process examples and detect some invalid examples, which I did not want it to be added into train dataset. However I did not find how to skip this recognized invalid example when doing dataset.map.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/669/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/669/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/668
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/668/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/668/comments
https://api.github.com/repos/huggingface/datasets/issues/668/events
https://github.com/huggingface/datasets/issues/668
708,310,956
MDU6SXNzdWU3MDgzMTA5NTY=
668
OverflowError when slicing with an array containing negative ids
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2020-09-24T16:27:14
2020-09-28T14:42:19
2020-09-28T14:42:19
MEMBER
null
null
null
```python from datasets import Dataset d = ds.Dataset.from_dict({"a": range(10)}) print(d[0]) # {'a': 0} print(d[-1]) # {'a': 9} print(d[[0, -1]]) # OverflowError ``` results in ``` --------------------------------------------------------------------------- OverflowError Traceback (most recent call last) <ipython-input-5-863dc3555598> in <module> ----> 1 d[[0, -1]] ~/Desktop/hf/nlp/src/datasets/arrow_dataset.py in __getitem__(self, key) 1070 format_columns=self._format_columns, 1071 output_all_columns=self._output_all_columns, -> 1072 format_kwargs=self._format_kwargs, 1073 ) 1074 ~/Desktop/hf/nlp/src/datasets/arrow_dataset.py in _getitem(self, key, format_type, format_columns, output_all_columns, format_kwargs) 1025 indices = key 1026 -> 1027 indices_array = pa.array([int(i) for i in indices], type=pa.uint64()) 1028 1029 # Check if we need to convert indices ~/.virtualenvs/hf-datasets/lib/python3.7/site-packages/pyarrow/array.pxi in pyarrow.lib.array() ~/.virtualenvs/hf-datasets/lib/python3.7/site-packages/pyarrow/array.pxi in pyarrow.lib._sequence_to_array() OverflowError: can't convert negative value to unsigned int ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/668/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/668/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/667
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/667/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/667/comments
https://api.github.com/repos/huggingface/datasets/issues/667/events
https://github.com/huggingface/datasets/issues/667
708,258,392
MDU6SXNzdWU3MDgyNTgzOTI=
667
Loss not decrease with Datasets and Transformers
{ "login": "wangcongcong123", "id": 23032865, "node_id": "MDQ6VXNlcjIzMDMyODY1", "avatar_url": "https://avatars.githubusercontent.com/u/23032865?v=4", "gravatar_id": "", "url": "https://api.github.com/users/wangcongcong123", "html_url": "https://github.com/wangcongcong123", "followers_url": "https://api.github.com/users/wangcongcong123/followers", "following_url": "https://api.github.com/users/wangcongcong123/following{/other_user}", "gists_url": "https://api.github.com/users/wangcongcong123/gists{/gist_id}", "starred_url": "https://api.github.com/users/wangcongcong123/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wangcongcong123/subscriptions", "organizations_url": "https://api.github.com/users/wangcongcong123/orgs", "repos_url": "https://api.github.com/users/wangcongcong123/repos", "events_url": "https://api.github.com/users/wangcongcong123/events{/privacy}", "received_events_url": "https://api.github.com/users/wangcongcong123/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "And I tested it on T5ForConditionalGeneration, that works no problem.", "Hi did you manage to fix your issue ?\r\n\r\nIf so feel free to share your fix and close this thread" ]
2020-09-24T15:14:43
2021-01-01T20:01:25
2021-01-01T20:01:25
NONE
null
null
null
HI, The following script is used to fine-tune a BertForSequenceClassification model on SST2. The script is adapted from [this colab](https://colab.research.google.com/github/huggingface/datasets/blob/master/notebooks/Overview.ipynb) that presents an example of fine-tuning BertForQuestionAnswering using squad dataset. In that colab, loss works fine. When I adapt it to SST2, the loss fails to decrease as it should. I attach the adapted script below and appreciate anyone pointing out what I miss? ```python import torch from datasets import load_dataset from transformers import BertForSequenceClassification from transformers import BertTokenizerFast # Load our training dataset and tokenizer dataset = load_dataset("glue", 'sst2') tokenizer = BertTokenizerFast.from_pretrained('bert-base-cased') del dataset["test"] # let's remove it in this demo # Tokenize our training dataset def convert_to_features(example_batch): encodings = tokenizer(example_batch["sentence"]) encodings.update({"labels": example_batch["label"]}) return encodings encoded_dataset = dataset.map(convert_to_features, batched=True) # Format our dataset to outputs torch.Tensor to train a pytorch model columns = ['input_ids', 'token_type_ids', 'attention_mask', 'labels'] encoded_dataset.set_format(type='torch', columns=columns) # Instantiate a PyTorch Dataloader around our dataset # Let's do dynamic batching (pad on the fly with our own collate_fn) def collate_fn(examples): return tokenizer.pad(examples, return_tensors='pt') dataloader = torch.utils.data.DataLoader(encoded_dataset['train'], collate_fn=collate_fn, batch_size=8) # Now let's train our model device = 'cuda' if torch.cuda.is_available() else 'cpu' # Let's load a pretrained Bert model and a simple optimizer model = BertForSequenceClassification.from_pretrained('bert-base-cased', return_dict=True) optimizer = torch.optim.Adam(model.parameters(), lr=1e-5) model.train().to(device) for i, batch in enumerate(dataloader): batch.to(device) outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() model.zero_grad() print(f'Step {i} - loss: {loss:.3}') ``` In case needed. - datasets == 1.0.2 - transformers == 3.2.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/667/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/667/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/666
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/666/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/666/comments
https://api.github.com/repos/huggingface/datasets/issues/666/events
https://github.com/huggingface/datasets/issues/666
707,608,578
MDU6SXNzdWU3MDc2MDg1Nzg=
666
Does both 'bookcorpus' and 'wikipedia' belong to the same datasets which Google used for pretraining BERT?
{ "login": "wahab4114", "id": 31090427, "node_id": "MDQ6VXNlcjMxMDkwNDI3", "avatar_url": "https://avatars.githubusercontent.com/u/31090427?v=4", "gravatar_id": "", "url": "https://api.github.com/users/wahab4114", "html_url": "https://github.com/wahab4114", "followers_url": "https://api.github.com/users/wahab4114/followers", "following_url": "https://api.github.com/users/wahab4114/following{/other_user}", "gists_url": "https://api.github.com/users/wahab4114/gists{/gist_id}", "starred_url": "https://api.github.com/users/wahab4114/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wahab4114/subscriptions", "organizations_url": "https://api.github.com/users/wahab4114/orgs", "repos_url": "https://api.github.com/users/wahab4114/repos", "events_url": "https://api.github.com/users/wahab4114/events{/privacy}", "received_events_url": "https://api.github.com/users/wahab4114/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "No they are other similar copies but they are not provided by the official Bert models authors." ]
2020-09-23T19:02:25
2020-10-27T15:19:25
2020-10-27T15:19:25
NONE
null
null
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/666/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/666/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/665
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/665/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/665/comments
https://api.github.com/repos/huggingface/datasets/issues/665/events
https://github.com/huggingface/datasets/issues/665
707,037,738
MDU6SXNzdWU3MDcwMzc3Mzg=
665
runing dataset.map, it raises TypeError: can't pickle Tokenizer objects
{ "login": "xixiaoyao", "id": 24541791, "node_id": "MDQ6VXNlcjI0NTQxNzkx", "avatar_url": "https://avatars.githubusercontent.com/u/24541791?v=4", "gravatar_id": "", "url": "https://api.github.com/users/xixiaoyao", "html_url": "https://github.com/xixiaoyao", "followers_url": "https://api.github.com/users/xixiaoyao/followers", "following_url": "https://api.github.com/users/xixiaoyao/following{/other_user}", "gists_url": "https://api.github.com/users/xixiaoyao/gists{/gist_id}", "starred_url": "https://api.github.com/users/xixiaoyao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xixiaoyao/subscriptions", "organizations_url": "https://api.github.com/users/xixiaoyao/orgs", "repos_url": "https://api.github.com/users/xixiaoyao/repos", "events_url": "https://api.github.com/users/xixiaoyao/events{/privacy}", "received_events_url": "https://api.github.com/users/xixiaoyao/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi !\r\nIt works on my side with both the LongFormerTokenizer and the LongFormerTokenizerFast.\r\n\r\nWhich version of transformers/datasets are you using ?", "transformers and datasets are both the latest", "Then I guess you need to give us more informations on your setup (OS, python, GPU, etc) or a Google Colab reproducing the error for us to be able to debug this error.", "And your version of `dill` if possible :)", "I have the same issue with `transformers/BertJapaneseTokenizer`.\r\n\r\n\r\n\r\n```python\r\n# train_ds = Dataset(features: {\r\n# 'title': Value(dtype='string', id=None), \r\n# 'score': Value(dtype='float64', id=None)\r\n# }, num_rows: 99999)\r\n\r\nt = BertJapaneseTokenizer.from_pretrained('bert-base-japanese-whole-word-masking')\r\nencoded = train_ds.map(lambda examples: {'tokens': t.encode(examples['title'])}, batched=True)\r\n```\r\n\r\n<details><summary>Error Message</summary>\r\n\r\n```\r\n---------------------------------------------------------------------------\r\nTypeError Traceback (most recent call last)\r\n<ipython-input-35-2b7d66b291c1> in <module>\r\n 2 \r\n 3 encoded = train_ds.map(lambda examples:\r\n----> 4 {'tokens': t.encode(examples['title'])}, batched=True)\r\n\r\n/usr/local/lib/python3.6/site-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint)\r\n 1242 fn_kwargs=fn_kwargs,\r\n 1243 new_fingerprint=new_fingerprint,\r\n-> 1244 update_data=update_data,\r\n 1245 )\r\n 1246 else:\r\n\r\n/usr/local/lib/python3.6/site-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs)\r\n 151 \"output_all_columns\": self._output_all_columns,\r\n 152 }\r\n--> 153 out: Union[\"Dataset\", \"DatasetDict\"] = func(self, *args, **kwargs)\r\n 154 if new_format[\"columns\"] is not None:\r\n 155 new_format[\"columns\"] = list(set(new_format[\"columns\"]) & set(out.column_names))\r\n\r\n/usr/local/lib/python3.6/site-packages/datasets/fingerprint.py in wrapper(*args, **kwargs)\r\n 156 kwargs_for_fingerprint[\"fingerprint_name\"] = fingerprint_name\r\n 157 kwargs[fingerprint_name] = update_fingerprint(\r\n--> 158 self._fingerprint, transform, kwargs_for_fingerprint\r\n 159 )\r\n 160 \r\n\r\n/usr/local/lib/python3.6/site-packages/datasets/fingerprint.py in update_fingerprint(fingerprint, transform, transform_args)\r\n 103 for key in sorted(transform_args):\r\n 104 hasher.update(key)\r\n--> 105 hasher.update(transform_args[key])\r\n 106 return hasher.hexdigest()\r\n 107 \r\n\r\n/usr/local/lib/python3.6/site-packages/datasets/fingerprint.py in update(self, value)\r\n 55 def update(self, value):\r\n 56 self.m.update(f\"=={type(value)}==\".encode(\"utf8\"))\r\n---> 57 self.m.update(self.hash(value).encode(\"utf-8\"))\r\n 58 \r\n 59 def hexdigest(self):\r\n\r\n/usr/local/lib/python3.6/site-packages/datasets/fingerprint.py in hash(cls, value)\r\n 51 return cls.dispatch[type(value)](cls, value)\r\n 52 else:\r\n---> 53 return cls.hash_default(value)\r\n 54 \r\n 55 def update(self, value):\r\n\r\n/usr/local/lib/python3.6/site-packages/datasets/fingerprint.py in hash_default(cls, value)\r\n 44 @classmethod\r\n 45 def hash_default(cls, value):\r\n---> 46 return cls.hash_bytes(dumps(value))\r\n 47 \r\n 48 @classmethod\r\n\r\n/usr/local/lib/python3.6/site-packages/datasets/utils/py_utils.py in dumps(obj)\r\n 365 file = StringIO()\r\n 366 with _no_cache_fields(obj):\r\n--> 367 dump(obj, file)\r\n 368 return file.getvalue()\r\n 369 \r\n\r\n/usr/local/lib/python3.6/site-packages/datasets/utils/py_utils.py in dump(obj, file)\r\n 337 def dump(obj, file):\r\n 338 \"\"\"pickle an object to a file\"\"\"\r\n--> 339 Pickler(file, recurse=True).dump(obj)\r\n 340 return\r\n 341 \r\n\r\n/usr/local/lib/python3.6/site-packages/dill/_dill.py in dump(self, obj)\r\n 444 raise PicklingError(msg)\r\n 445 else:\r\n--> 446 StockPickler.dump(self, obj)\r\n 447 stack.clear() # clear record of 'recursion-sensitive' pickled objects\r\n 448 return\r\n\r\n/usr/local/lib/python3.6/pickle.py in dump(self, obj)\r\n 407 if self.proto >= 4:\r\n 408 self.framer.start_framing()\r\n--> 409 self.save(obj)\r\n 410 self.write(STOP)\r\n 411 self.framer.end_framing()\r\n\r\n/usr/local/lib/python3.6/pickle.py in save(self, obj, save_persistent_id)\r\n 474 f = self.dispatch.get(t)\r\n 475 if f is not None:\r\n--> 476 f(self, obj) # Call unbound method with explicit self\r\n 477 return\r\n 478 \r\n\r\n/usr/local/lib/python3.6/site-packages/dill/_dill.py in save_function(pickler, obj)\r\n 1436 globs, obj.__name__,\r\n 1437 obj.__defaults__, obj.__closure__,\r\n-> 1438 obj.__dict__, fkwdefaults), obj=obj)\r\n 1439 else:\r\n 1440 _super = ('super' in getattr(obj.func_code,'co_names',())) and (_byref is not None) and getattr(pickler, '_recurse', False)\r\n\r\n/usr/local/lib/python3.6/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj)\r\n 608 else:\r\n 609 save(func)\r\n--> 610 save(args)\r\n 611 write(REDUCE)\r\n 612 \r\n\r\n/usr/local/lib/python3.6/pickle.py in save(self, obj, save_persistent_id)\r\n 474 f = self.dispatch.get(t)\r\n 475 if f is not None:\r\n--> 476 f(self, obj) # Call unbound method with explicit self\r\n 477 return\r\n 478 \r\n\r\n/usr/local/lib/python3.6/pickle.py in save_tuple(self, obj)\r\n 749 write(MARK)\r\n 750 for element in obj:\r\n--> 751 save(element)\r\n 752 \r\n 753 if id(obj) in memo:\r\n\r\n/usr/local/lib/python3.6/pickle.py in save(self, obj, save_persistent_id)\r\n 474 f = self.dispatch.get(t)\r\n 475 if f is not None:\r\n--> 476 f(self, obj) # Call unbound method with explicit self\r\n 477 return\r\n 478 \r\n\r\n/usr/local/lib/python3.6/site-packages/dill/_dill.py in save_module_dict(pickler, obj)\r\n 931 # we only care about session the first pass thru\r\n 932 pickler._session = False\r\n--> 933 StockPickler.save_dict(pickler, obj)\r\n 934 log.info(\"# D2\")\r\n 935 return\r\n\r\n/usr/local/lib/python3.6/pickle.py in save_dict(self, obj)\r\n 819 \r\n 820 self.memoize(obj)\r\n--> 821 self._batch_setitems(obj.items())\r\n 822 \r\n 823 dispatch[dict] = save_dict\r\n\r\n/usr/local/lib/python3.6/pickle.py in _batch_setitems(self, items)\r\n 850 k, v = tmp[0]\r\n 851 save(k)\r\n--> 852 save(v)\r\n 853 write(SETITEM)\r\n 854 # else tmp is empty, and we're done\r\n\r\n/usr/local/lib/python3.6/pickle.py in save(self, obj, save_persistent_id)\r\n 519 \r\n 520 # Save the reduce() output and finally memoize the object\r\n--> 521 self.save_reduce(obj=obj, *rv)\r\n 522 \r\n 523 def persistent_id(self, obj):\r\n\r\n/usr/local/lib/python3.6/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj)\r\n 632 \r\n 633 if state is not None:\r\n--> 634 save(state)\r\n 635 write(BUILD)\r\n 636 \r\n\r\n/usr/local/lib/python3.6/pickle.py in save(self, obj, save_persistent_id)\r\n 474 f = self.dispatch.get(t)\r\n 475 if f is not None:\r\n--> 476 f(self, obj) # Call unbound method with explicit self\r\n 477 return\r\n 478 \r\n\r\n/usr/local/lib/python3.6/site-packages/dill/_dill.py in save_module_dict(pickler, obj)\r\n 931 # we only care about session the first pass thru\r\n 932 pickler._session = False\r\n--> 933 StockPickler.save_dict(pickler, obj)\r\n 934 log.info(\"# D2\")\r\n 935 return\r\n\r\n/usr/local/lib/python3.6/pickle.py in save_dict(self, obj)\r\n 819 \r\n 820 self.memoize(obj)\r\n--> 821 self._batch_setitems(obj.items())\r\n 822 \r\n 823 dispatch[dict] = save_dict\r\n\r\n/usr/local/lib/python3.6/pickle.py in _batch_setitems(self, items)\r\n 845 for k, v in tmp:\r\n 846 save(k)\r\n--> 847 save(v)\r\n 848 write(SETITEMS)\r\n 849 elif n:\r\n\r\n/usr/local/lib/python3.6/pickle.py in save(self, obj, save_persistent_id)\r\n 519 \r\n 520 # Save the reduce() output and finally memoize the object\r\n--> 521 self.save_reduce(obj=obj, *rv)\r\n 522 \r\n 523 def persistent_id(self, obj):\r\n\r\n/usr/local/lib/python3.6/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj)\r\n 632 \r\n 633 if state is not None:\r\n--> 634 save(state)\r\n 635 write(BUILD)\r\n 636 \r\n\r\n/usr/local/lib/python3.6/pickle.py in save(self, obj, save_persistent_id)\r\n 474 f = self.dispatch.get(t)\r\n 475 if f is not None:\r\n--> 476 f(self, obj) # Call unbound method with explicit self\r\n 477 return\r\n 478 \r\n\r\n/usr/local/lib/python3.6/site-packages/dill/_dill.py in save_module_dict(pickler, obj)\r\n 931 # we only care about session the first pass thru\r\n 932 pickler._session = False\r\n--> 933 StockPickler.save_dict(pickler, obj)\r\n 934 log.info(\"# D2\")\r\n 935 return\r\n\r\n/usr/local/lib/python3.6/pickle.py in save_dict(self, obj)\r\n 819 \r\n 820 self.memoize(obj)\r\n--> 821 self._batch_setitems(obj.items())\r\n 822 \r\n 823 dispatch[dict] = save_dict\r\n\r\n/usr/local/lib/python3.6/pickle.py in _batch_setitems(self, items)\r\n 845 for k, v in tmp:\r\n 846 save(k)\r\n--> 847 save(v)\r\n 848 write(SETITEMS)\r\n 849 elif n:\r\n\r\n/usr/local/lib/python3.6/pickle.py in save(self, obj, save_persistent_id)\r\n 494 reduce = getattr(obj, \"__reduce_ex__\", None)\r\n 495 if reduce is not None:\r\n--> 496 rv = reduce(self.proto)\r\n 497 else:\r\n 498 reduce = getattr(obj, \"__reduce__\", None)\r\n\r\nTypeError: can't pickle Tagger objects\r\n```\r\n\r\n</details>\r\n\r\ntrainsformers: 2.10.0\r\ndatasets: 1.0.2\r\ndill: 0.3.2\r\npython: 3.6.8\r\n\r\nOS: ubuntu 16.04 (Docker Image) on [Deep Learning VM](https://console.cloud.google.com/marketplace/details/click-to-deploy-images/deeplearning) (GCP)\r\nGPU: Tesla P100 (CUDA 10)\r\n", "> I have the same issue with `transformers/BertJapaneseTokenizer`.\r\n\r\nIt looks like it this tokenizer is not supported unfortunately.\r\nThis is because `t.word_tokenizer.mecab` is a `fugashi.fugashi.GenericTagger` which is not compatible with pickle nor dill.\r\n\r\nWe need objects passes to `map` to be picklable for our caching system to work properly.\r\nHere it crashes because the caching system is not able to pickle the GenericTagger.\r\n\r\n\\> Maybe you can create an issue on [fugashi](https://github.com/polm/fugashi/issues) 's repo and ask to make `fugashi.fugashi.GenericTagger` compatible with pickle ?\r\n\r\nWhat you can do in the meantime is use a picklable wrapper of the tokenizer:\r\n\r\n\r\n```python\r\nfrom transformers import BertJapaneseTokenizer, MecabTokenizer\r\n\r\nclass PicklableTokenizer(BertJapaneseTokenizer):\r\n\r\n def __getstate__(self):\r\n state = dict(self.__dict__)\r\n state[\"do_lower_case\"] = self.word_tokenizer.do_lower_case\r\n state[\"never_split\"] = self.word_tokenizer.never_split \r\n del state[\"word_tokenizer\"]\r\n return state\r\n\r\n def __setstate__(self, state):\r\n do_lower_case = state.pop(\"do_lower_case\")\r\n never_split = state.pop(\"never_split\")\r\n self.__dict__ = state\r\n self.word_tokenizer = MecabTokenizer(\r\n do_lower_case=do_lower_case, never_split=never_split)\r\n )\r\n\r\nt = PicklableTokenizer.from_pretrained(\"cl-tohoku/bert-base-japanese-whole-word-masking\")\r\nencoded = train_ds.map(lambda examples: {'tokens': t.encode(examples['title'])}, batched=True) # it works\r\n```", "We can also update the `BertJapaneseTokenizer` in `transformers` as you just shown @lhoestq to make it compatible with pickle. It will be faster than asking on fugashi 's repo and good for the other users of `transformers` as well.\r\n\r\nI'm currently working on `transformers` I'll include it in the https://github.com/huggingface/transformers/pull/7141 PR and the next release of `transformers`.", "Thank you for the rapid and polite response!\r\n\r\n@lhoestq Thanks for the suggestion! I've passed the pickle phase, but another `ArrowInvalid` problem occored. I created another issue #687 .\r\n\r\n@thomwolf Wow, really fast work. I'm looking forward to the next release 🤗" ]
2020-09-23T04:28:14
2020-10-08T09:32:16
2020-10-08T09:32:16
NONE
null
null
null
I load squad dataset. Then want to process data use following function with `Huggingface Transformers LongformerTokenizer`. ``` def convert_to_features(example): # Tokenize contexts and questions (as pairs of inputs) input_pairs = [example['question'], example['context']] encodings = tokenizer.encode_plus(input_pairs, pad_to_max_length=True, max_length=512) context_encodings = tokenizer.encode_plus(example['context']) # Compute start and end tokens for labels using Transformers's fast tokenizers alignement methodes. # this will give us the position of answer span in the context text start_idx, end_idx = get_correct_alignement(example['context'], example['answers']) start_positions_context = context_encodings.char_to_token(start_idx) end_positions_context = context_encodings.char_to_token(end_idx-1) # here we will compute the start and end position of the answer in the whole example # as the example is encoded like this <s> question</s></s> context</s> # and we know the postion of the answer in the context # we can just find out the index of the sep token and then add that to position + 1 (+1 because there are two sep tokens) # this will give us the position of the answer span in whole example sep_idx = encodings['input_ids'].index(tokenizer.sep_token_id) start_positions = start_positions_context + sep_idx + 1 end_positions = end_positions_context + sep_idx + 1 if end_positions > 512: start_positions, end_positions = 0, 0 encodings.update({'start_positions': start_positions, 'end_positions': end_positions, 'attention_mask': encodings['attention_mask']}) return encodings ``` Then I run `dataset.map(convert_to_features)`, it raise ``` In [59]: a.map(convert_to_features) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-59-c453b508761d> in <module> ----> 1 a.map(convert_to_features) /opt/conda/lib/python3.7/site-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint) 1242 fn_kwargs=fn_kwargs, 1243 new_fingerprint=new_fingerprint, -> 1244 update_data=update_data, 1245 ) 1246 else: /opt/conda/lib/python3.7/site-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs) 151 "output_all_columns": self._output_all_columns, 152 } --> 153 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 154 if new_format["columns"] is not None: 155 new_format["columns"] = list(set(new_format["columns"]) & set(out.column_names)) /opt/conda/lib/python3.7/site-packages/datasets/fingerprint.py in wrapper(*args, **kwargs) 156 kwargs_for_fingerprint["fingerprint_name"] = fingerprint_name 157 kwargs[fingerprint_name] = update_fingerprint( --> 158 self._fingerprint, transform, kwargs_for_fingerprint 159 ) 160 /opt/conda/lib/python3.7/site-packages/datasets/fingerprint.py in update_fingerprint(fingerprint, transform, transform_args) 103 for key in sorted(transform_args): 104 hasher.update(key) --> 105 hasher.update(transform_args[key]) 106 return hasher.hexdigest() 107 /opt/conda/lib/python3.7/site-packages/datasets/fingerprint.py in update(self, value) 55 def update(self, value): 56 self.m.update(f"=={type(value)}==".encode("utf8")) ---> 57 self.m.update(self.hash(value).encode("utf-8")) 58 59 def hexdigest(self): /opt/conda/lib/python3.7/site-packages/datasets/fingerprint.py in hash(cls, value) 51 return cls.dispatch[type(value)](cls, value) 52 else: ---> 53 return cls.hash_default(value) 54 55 def update(self, value): /opt/conda/lib/python3.7/site-packages/datasets/fingerprint.py in hash_default(cls, value) 44 @classmethod 45 def hash_default(cls, value): ---> 46 return cls.hash_bytes(dumps(value)) 47 48 @classmethod /opt/conda/lib/python3.7/site-packages/datasets/utils/py_utils.py in dumps(obj) 365 file = StringIO() 366 with _no_cache_fields(obj): --> 367 dump(obj, file) 368 return file.getvalue() 369 /opt/conda/lib/python3.7/site-packages/datasets/utils/py_utils.py in dump(obj, file) 337 def dump(obj, file): 338 """pickle an object to a file""" --> 339 Pickler(file, recurse=True).dump(obj) 340 return 341 /opt/conda/lib/python3.7/site-packages/dill/_dill.py in dump(self, obj) 444 raise PicklingError(msg) 445 else: --> 446 StockPickler.dump(self, obj) 447 stack.clear() # clear record of 'recursion-sensitive' pickled objects 448 return /opt/conda/lib/python3.7/pickle.py in dump(self, obj) 435 if self.proto >= 4: 436 self.framer.start_framing() --> 437 self.save(obj) 438 self.write(STOP) 439 self.framer.end_framing() /opt/conda/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 /opt/conda/lib/python3.7/site-packages/dill/_dill.py in save_function(pickler, obj) 1436 globs, obj.__name__, 1437 obj.__defaults__, obj.__closure__, -> 1438 obj.__dict__, fkwdefaults), obj=obj) 1439 else: 1440 _super = ('super' in getattr(obj.func_code,'co_names',())) and (_byref is not None) and getattr(pickler, '_recurse', False) /opt/conda/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 636 else: 637 save(func) --> 638 save(args) 639 write(REDUCE) 640 /opt/conda/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 /opt/conda/lib/python3.7/pickle.py in save_tuple(self, obj) 787 write(MARK) 788 for element in obj: --> 789 save(element) 790 791 if id(obj) in memo: /opt/conda/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 /opt/conda/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 931 # we only care about session the first pass thru 932 pickler._session = False --> 933 StockPickler.save_dict(pickler, obj) 934 log.info("# D2") 935 return /opt/conda/lib/python3.7/pickle.py in save_dict(self, obj) 857 858 self.memoize(obj) --> 859 self._batch_setitems(obj.items()) 860 861 dispatch[dict] = save_dict /opt/conda/lib/python3.7/pickle.py in _batch_setitems(self, items) 883 for k, v in tmp: 884 save(k) --> 885 save(v) 886 write(SETITEMS) 887 elif n: /opt/conda/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 547 548 # Save the reduce() output and finally memoize the object --> 549 self.save_reduce(obj=obj, *rv) 550 551 def persistent_id(self, obj): /opt/conda/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 660 661 if state is not None: --> 662 save(state) 663 write(BUILD) 664 /opt/conda/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 /opt/conda/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 931 # we only care about session the first pass thru 932 pickler._session = False --> 933 StockPickler.save_dict(pickler, obj) 934 log.info("# D2") 935 return /opt/conda/lib/python3.7/pickle.py in save_dict(self, obj) 857 858 self.memoize(obj) --> 859 self._batch_setitems(obj.items()) 860 861 dispatch[dict] = save_dict /opt/conda/lib/python3.7/pickle.py in _batch_setitems(self, items) 883 for k, v in tmp: 884 save(k) --> 885 save(v) 886 write(SETITEMS) 887 elif n: /opt/conda/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 547 548 # Save the reduce() output and finally memoize the object --> 549 self.save_reduce(obj=obj, *rv) 550 551 def persistent_id(self, obj): /opt/conda/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 660 661 if state is not None: --> 662 save(state) 663 write(BUILD) 664 /opt/conda/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 /opt/conda/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 931 # we only care about session the first pass thru 932 pickler._session = False --> 933 StockPickler.save_dict(pickler, obj) 934 log.info("# D2") 935 return /opt/conda/lib/python3.7/pickle.py in save_dict(self, obj) 857 858 self.memoize(obj) --> 859 self._batch_setitems(obj.items()) 860 861 dispatch[dict] = save_dict /opt/conda/lib/python3.7/pickle.py in _batch_setitems(self, items) 883 for k, v in tmp: 884 save(k) --> 885 save(v) 886 write(SETITEMS) 887 elif n: /opt/conda/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 522 reduce = getattr(obj, "__reduce_ex__", None) 523 if reduce is not None: --> 524 rv = reduce(self.proto) 525 else: 526 reduce = getattr(obj, "__reduce__", None) TypeError: can't pickle Tokenizer objects ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/665/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/665/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/664
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/664/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/664/comments
https://api.github.com/repos/huggingface/datasets/issues/664/events
https://github.com/huggingface/datasets/issues/664
707,017,791
MDU6SXNzdWU3MDcwMTc3OTE=
664
load_dataset from local squad.py, raise error: TypeError: 'NoneType' object is not callable
{ "login": "xixiaoyao", "id": 24541791, "node_id": "MDQ6VXNlcjI0NTQxNzkx", "avatar_url": "https://avatars.githubusercontent.com/u/24541791?v=4", "gravatar_id": "", "url": "https://api.github.com/users/xixiaoyao", "html_url": "https://github.com/xixiaoyao", "followers_url": "https://api.github.com/users/xixiaoyao/followers", "following_url": "https://api.github.com/users/xixiaoyao/following{/other_user}", "gists_url": "https://api.github.com/users/xixiaoyao/gists{/gist_id}", "starred_url": "https://api.github.com/users/xixiaoyao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xixiaoyao/subscriptions", "organizations_url": "https://api.github.com/users/xixiaoyao/orgs", "repos_url": "https://api.github.com/users/xixiaoyao/repos", "events_url": "https://api.github.com/users/xixiaoyao/events{/privacy}", "received_events_url": "https://api.github.com/users/xixiaoyao/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi !\r\nThanks for reporting.\r\nIt looks like no object inherits from `datasets.GeneratorBasedBuilder` (or more generally from `datasets.DatasetBuilder`) in your script.\r\n\r\nCould you check that there exist at least one dataset builder class ?", "Hi @xixiaoyao did you manage to fix your issue ?", "No activity, closing", "It happened when try to change the old project which use 'nlp' to new project which use 'datasets'. You should check you old 'my_squad.py' file, change the inherit class from `nlp.xxx` to `datasets.xxx`. Otherwise datasets - load.py - import_main_class() `if inspect.isclass(obj) and issubclass(obj, main_cls_type):` can not find the main_cls." ]
2020-09-23T03:53:36
2023-04-17T09:31:20
2020-10-20T09:06:13
NONE
null
null
null
version: 1.0.2 ``` train_dataset = datasets.load_dataset('squad') ``` The above code can works. However, when I download the squad.py from your server, and saved as `my_squad.py` to local. I run followings raise errors. ``` train_dataset = datasets.load_dataset('./my_squad.py') ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-28-25a84b4d1581> in <module> ----> 1 train_dataset = nlp.load_dataset('./my_squad.py') /opt/conda/lib/python3.7/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, save_infos, script_version, **config_kwargs) 602 hash=hash, 603 features=features, --> 604 **config_kwargs, 605 ) 606 TypeError: 'NoneType' object is not callable
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/664/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/664/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/657
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/657/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/657/comments
https://api.github.com/repos/huggingface/datasets/issues/657/events
https://github.com/huggingface/datasets/issues/657
706,204,383
MDU6SXNzdWU3MDYyMDQzODM=
657
Squad Metric Description & Feature Mismatch
{ "login": "tshrjn", "id": 8372098, "node_id": "MDQ6VXNlcjgzNzIwOTg=", "avatar_url": "https://avatars.githubusercontent.com/u/8372098?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tshrjn", "html_url": "https://github.com/tshrjn", "followers_url": "https://api.github.com/users/tshrjn/followers", "following_url": "https://api.github.com/users/tshrjn/following{/other_user}", "gists_url": "https://api.github.com/users/tshrjn/gists{/gist_id}", "starred_url": "https://api.github.com/users/tshrjn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tshrjn/subscriptions", "organizations_url": "https://api.github.com/users/tshrjn/orgs", "repos_url": "https://api.github.com/users/tshrjn/repos", "events_url": "https://api.github.com/users/tshrjn/events{/privacy}", "received_events_url": "https://api.github.com/users/tshrjn/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Thanks for reporting !\r\nThere indeed a mismatch between the features and the kwargs description\r\n\r\nI believe `answer_start` was added to match the squad dataset format for consistency, even though it is not used in the metric computation. I think I'd rather keep it this way, so that you can just give `references=squad[\"answers\"]` to `.compute()`.\r\nMaybe we can just fix the description then.", "But then providing the `answer_start` becomes mandatory since the format of the features is checked against the one provided in the squad [file](https://github.com/huggingface/datasets/pull/658/files)." ]
2020-09-22T09:07:00
2020-10-13T02:16:56
2020-09-29T15:57:38
NONE
null
null
null
The [description](https://github.com/huggingface/datasets/blob/master/metrics/squad/squad.py#L39) doesn't mention `answer_start` in squad. However the `datasets.features` require [it](https://github.com/huggingface/datasets/blob/master/metrics/squad/squad.py#L68). It's also not used in the evaluation.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/657/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/657/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/651
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/651/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/651/comments
https://api.github.com/repos/huggingface/datasets/issues/651/events
https://github.com/huggingface/datasets/issues/651
705,212,034
MDU6SXNzdWU3MDUyMTIwMzQ=
651
Problem with JSON dataset format
{ "login": "vikigenius", "id": 12724810, "node_id": "MDQ6VXNlcjEyNzI0ODEw", "avatar_url": "https://avatars.githubusercontent.com/u/12724810?v=4", "gravatar_id": "", "url": "https://api.github.com/users/vikigenius", "html_url": "https://github.com/vikigenius", "followers_url": "https://api.github.com/users/vikigenius/followers", "following_url": "https://api.github.com/users/vikigenius/following{/other_user}", "gists_url": "https://api.github.com/users/vikigenius/gists{/gist_id}", "starred_url": "https://api.github.com/users/vikigenius/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vikigenius/subscriptions", "organizations_url": "https://api.github.com/users/vikigenius/orgs", "repos_url": "https://api.github.com/users/vikigenius/repos", "events_url": "https://api.github.com/users/vikigenius/events{/privacy}", "received_events_url": "https://api.github.com/users/vikigenius/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Currently the `json` dataset doesn't support this format unfortunately.\r\nHowever you could load it with\r\n```python\r\nfrom datasets import Dataset\r\nimport pandas as pd\r\n\r\ndf = pd.read_json(\"path_to_local.json\", orient=\"index\")\r\ndataset = Dataset.from_pandas(df)\r\n```", "or you can make a custom dataset script as explained in doc here: https://huggingface.co/docs/datasets/add_dataset.html" ]
2020-09-20T23:57:14
2020-09-21T12:14:24
null
NONE
null
null
null
I have a local json dataset with the following form. { 'id01234': {'key1': value1, 'key2': value2, 'key3': value3}, 'id01235': {'key1': value1, 'key2': value2, 'key3': value3}, . . . 'id09999': {'key1': value1, 'key2': value2, 'key3': value3} } Note that instead of a list of records it's basically a dictionary of key value pairs with the keys being the record_ids and the values being the corresponding record. Reading this with json: ``` data = datasets.load('json', data_files='path_to_local.json') ``` Throws an error and asks me to chose a field. What's the right way to handle this?
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/651/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/651/timeline
null
null
https://api.github.com/repos/huggingface/datasets/issues/650
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/650/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/650/comments
https://api.github.com/repos/huggingface/datasets/issues/650/events
https://github.com/huggingface/datasets/issues/650
704,861,844
MDU6SXNzdWU3MDQ4NjE4NDQ=
650
dummy data testing can't test datasets using `dl_manager.extract` in `_split_generators`
{ "login": "richarddwang", "id": 17963619, "node_id": "MDQ6VXNlcjE3OTYzNjE5", "avatar_url": "https://avatars.githubusercontent.com/u/17963619?v=4", "gravatar_id": "", "url": "https://api.github.com/users/richarddwang", "html_url": "https://github.com/richarddwang", "followers_url": "https://api.github.com/users/richarddwang/followers", "following_url": "https://api.github.com/users/richarddwang/following{/other_user}", "gists_url": "https://api.github.com/users/richarddwang/gists{/gist_id}", "starred_url": "https://api.github.com/users/richarddwang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/richarddwang/subscriptions", "organizations_url": "https://api.github.com/users/richarddwang/orgs", "repos_url": "https://api.github.com/users/richarddwang/repos", "events_url": "https://api.github.com/users/richarddwang/events{/privacy}", "received_events_url": "https://api.github.com/users/richarddwang/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi :) \r\nIn your dummy data zip file you can just have `subset000.xz` as directories instead of compressed files.\r\nLet me know if it helps", "Thanks for your comment @lhoestq ,\r\nJust for confirmation, changing dummy data like this won't make dummy test test the functionality to extract `subsetxxx.xz` but actually kind of circumvent it. But since we will test the real data so it is ok ?", "Yes it's fine for now. We plan to add a job for slow tests.\r\nAnd at one point we'll also do another pass on the dummy data handling and consider extracting files.", "Thanks for the confirmation.\r\nAlso the suggestion works. Thank you." ]
2020-09-19T11:07:03
2020-09-22T11:54:10
2020-09-22T11:54:09
CONTRIBUTOR
null
null
null
Hi, I recently want to add a dataset whose source data is like this ``` openwebtext.tar.xz |__ openwebtext |__subset000.xz | |__ ....txt | |__ ....txt | ... |__ subset001.xz | .... ``` So I wrote `openwebtext.py` like this ``` def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_URL) owt_dir = os.path.join(dl_dir, 'openwebtext') subset_xzs = [ os.path.join(owt_dir, file_name) for file_name in os.listdir(owt_dir) if file_name.endswith('xz') # filter out ...xz.lock ] ex_dirs = dl_manager.extract(subset_xzs, num_proc=round(os.cpu_count()*0.75)) nested_txt_files = [ [ os.path.join(ex_dir,txt_file_name) for txt_file_name in os.listdir(ex_dir) if txt_file_name.endswith('txt') ] for ex_dir in ex_dirs ] txt_files = chain(*nested_txt_files) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"txt_files": txt_files} ), ] ``` All went good, I can load and use real openwebtext, except when I try to test with dummy data. The problem is `MockDownloadManager.extract` do nothing, so `ex_dirs = dl_manager.extract(subset_xzs)` won't decompress `subset_xxx.xz`s for me. How should I do ? Or you can modify `MockDownloadManager` to make it like a real `DownloadManager` ?
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/650/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/650/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/649
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/649/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/649/comments
https://api.github.com/repos/huggingface/datasets/issues/649/events
https://github.com/huggingface/datasets/issues/649
704,838,415
MDU6SXNzdWU3MDQ4Mzg0MTU=
649
Inconsistent behavior in map
{ "login": "krandiash", "id": 10166085, "node_id": "MDQ6VXNlcjEwMTY2MDg1", "avatar_url": "https://avatars.githubusercontent.com/u/10166085?v=4", "gravatar_id": "", "url": "https://api.github.com/users/krandiash", "html_url": "https://github.com/krandiash", "followers_url": "https://api.github.com/users/krandiash/followers", "following_url": "https://api.github.com/users/krandiash/following{/other_user}", "gists_url": "https://api.github.com/users/krandiash/gists{/gist_id}", "starred_url": "https://api.github.com/users/krandiash/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/krandiash/subscriptions", "organizations_url": "https://api.github.com/users/krandiash/orgs", "repos_url": "https://api.github.com/users/krandiash/repos", "events_url": "https://api.github.com/users/krandiash/events{/privacy}", "received_events_url": "https://api.github.com/users/krandiash/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
closed
false
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[ { "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for reporting !\r\n\r\nThis issue must have appeared when we refactored type inference in `nlp`\r\nBy default the library tries to keep the same feature types when applying `map` but apparently it has troubles with nested structures. I'll try to fix that next week" ]
2020-09-19T08:41:12
2020-09-21T16:13:05
2020-09-21T16:13:05
NONE
null
null
null
I'm observing inconsistent behavior when applying .map(). This happens specifically when I'm incrementally adding onto a feature that is a nested dictionary. Here's a simple example that reproduces the problem. ```python import datasets # Dataset with a single feature called 'field' consisting of two examples dataset = datasets.Dataset.from_dict({'field': ['a', 'b']}) print(dataset[0]) # outputs {'field': 'a'} # Map this dataset to create another feature called 'otherfield', which is a dictionary containing a key called 'capital' dataset = dataset.map(lambda example: {'otherfield': {'capital': example['field'].capitalize()}}) print(dataset[0]) # output is okay {'field': 'a', 'otherfield': {'capital': 'A'}} # Now I want to map again to modify 'otherfield', by adding another key called 'append_x' to the dictionary under 'otherfield' print(dataset.map(lambda example: {'otherfield': {'append_x': example['field'] + 'x'}})[0]) # printing out the first example after applying the map shows that the new key 'append_x' doesn't get added # it also messes up the value stored at 'capital' {'field': 'a', 'otherfield': {'capital': None}} # Instead, I try to do the same thing by using a different mapped fn print(dataset.map(lambda example: {'otherfield': {'append_x': example['field'] + 'x', 'capital': example['otherfield']['capital']}})[0]) # this preserves the value under capital, but still no 'append_x' {'field': 'a', 'otherfield': {'capital': 'A'}} # Instead, I try to pass 'otherfield' to remove_columns print(dataset.map(lambda example: {'otherfield': {'append_x': example['field'] + 'x', 'capital': example['otherfield']['capital']}}, remove_columns=['otherfield'])[0]) # this still doesn't fix the problem {'field': 'a', 'otherfield': {'capital': 'A'}} # Alternately, here's what happens if I just directly map both 'capital' and 'append_x' on a fresh dataset. # Recreate the dataset dataset = datasets.Dataset.from_dict({'field': ['a', 'b']}) # Now map the entire 'otherfield' dict directly, instead of incrementally as before print(dataset.map(lambda example: {'otherfield': {'append_x': example['field'] + 'x', 'capital': example['field'].capitalize()}})[0]) # This looks good! {'field': 'a', 'otherfield': {'append_x': 'ax', 'capital': 'A'}} ``` This might be a new issue, because I didn't see this behavior in the `nlp` library. Any help is appreciated!
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/649/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/649/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/648
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/648/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/648/comments
https://api.github.com/repos/huggingface/datasets/issues/648/events
https://github.com/huggingface/datasets/issues/648
704,753,123
MDU6SXNzdWU3MDQ3NTMxMjM=
648
offset overflow when multiprocessing batched map on large datasets.
{ "login": "richarddwang", "id": 17963619, "node_id": "MDQ6VXNlcjE3OTYzNjE5", "avatar_url": "https://avatars.githubusercontent.com/u/17963619?v=4", "gravatar_id": "", "url": "https://api.github.com/users/richarddwang", "html_url": "https://github.com/richarddwang", "followers_url": "https://api.github.com/users/richarddwang/followers", "following_url": "https://api.github.com/users/richarddwang/following{/other_user}", "gists_url": "https://api.github.com/users/richarddwang/gists{/gist_id}", "starred_url": "https://api.github.com/users/richarddwang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/richarddwang/subscriptions", "organizations_url": "https://api.github.com/users/richarddwang/orgs", "repos_url": "https://api.github.com/users/richarddwang/repos", "events_url": "https://api.github.com/users/richarddwang/events{/privacy}", "received_events_url": "https://api.github.com/users/richarddwang/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
closed
false
null
[]
null
[ "This should be fixed with #645 ", "Feel free to re-open if it still occurs" ]
2020-09-19T02:15:11
2020-09-19T16:47:07
2020-09-19T16:46:31
CONTRIBUTOR
null
null
null
It only happened when "multiprocessing" + "batched" + "large dataset" at the same time. ``` def bprocess(examples): examples['len'] = [] for text in examples['text']: examples['len'].append(len(text)) return examples wiki.map(brpocess, batched=True, num_proc=8) ``` ``` --------------------------------------------------------------------------- RemoteTraceback Traceback (most recent call last) RemoteTraceback: """ Traceback (most recent call last): File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/multiprocessing/pool.py", line 121, in worker result = (True, func(*args, **kwds)) File "/home/yisiang/datasets/src/datasets/arrow_dataset.py", line 153, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/home/yisiang/datasets/src/datasets/fingerprint.py", line 163, in wrapper out = func(self, *args, **kwargs) File "/home/yisiang/datasets/src/datasets/arrow_dataset.py", line 1486, in _map_single batch = self[i : i + batch_size] File "/home/yisiang/datasets/src/datasets/arrow_dataset.py", line 1071, in __getitem__ format_kwargs=self._format_kwargs, File "/home/yisiang/datasets/src/datasets/arrow_dataset.py", line 972, in _getitem data_subset = self._data.take(indices_array) File "pyarrow/table.pxi", line 1145, in pyarrow.lib.Table.take File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/pyarrow/compute.py", line 268, in take return call_function('take', [data, indices], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: offset overflow while concatenating arrays """ The above exception was the direct cause of the following exception: ArrowInvalid Traceback (most recent call last) in 30 owt = datasets.load_dataset('/home/yisiang/datasets/datasets/openwebtext/openwebtext.py', cache_dir='./datasets')['train'] 31 print('load/create data from OpenWebText Corpus for ELECTRA') ---> 32 e_owt = ELECTRAProcessor(owt, apply_cleaning=False).map(cache_file_name=f"electra_owt_{c.max_length}.arrow") 33 dsets.append(e_owt) 34 ~/Reexamine_Attention/electra_pytorch/_utils/utils.py in map(self, **kwargs) 126 writer_batch_size=10**4, 127 num_proc=num_proc, --> 128 **kwargs 129 ) 130 ~/hugdatafast/hugdatafast/transform.py in my_map(self, *args, **kwargs) 21 if not cache_file_name.endswith('.arrow'): cache_file_name += '.arrow' 22 if '/' not in cache_file_name: cache_file_name = os.path.join(self.cache_directory(), cache_file_name) ---> 23 return self.map(*args, cache_file_name=cache_file_name, **kwargs) 24 25 @patch ~/datasets/src/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint) 1285 logger.info("Spawning {} processes".format(num_proc)) 1286 results = [pool.apply_async(self.__class__._map_single, kwds=kwds) for kwds in kwds_per_shard] -> 1287 transformed_shards = [r.get() for r in results] 1288 logger.info("Concatenating {} shards from multiprocessing".format(num_proc)) 1289 result = concatenate_datasets(transformed_shards) ~/datasets/src/datasets/arrow_dataset.py in (.0) 1285 logger.info("Spawning {} processes".format(num_proc)) 1286 results = [pool.apply_async(self.__class__._map_single, kwds=kwds) for kwds in kwds_per_shard] -> 1287 transformed_shards = [r.get() for r in results] 1288 logger.info("Concatenating {} shards from multiprocessing".format(num_proc)) 1289 result = concatenate_datasets(transformed_shards) ~/miniconda3/envs/ml/lib/python3.7/multiprocessing/pool.py in get(self, timeout) 655 return self._value 656 else: --> 657 raise self._value 658 659 def _set(self, i, obj): ArrowInvalid: offset overflow while concatenating arrays ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/648/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/648/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/647
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/647/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/647/comments
https://api.github.com/repos/huggingface/datasets/issues/647/events
https://github.com/huggingface/datasets/issues/647
704,734,764
MDU6SXNzdWU3MDQ3MzQ3NjQ=
647
Cannot download dataset_info.json
{ "login": "chiyuzhang94", "id": 33407613, "node_id": "MDQ6VXNlcjMzNDA3NjEz", "avatar_url": "https://avatars.githubusercontent.com/u/33407613?v=4", "gravatar_id": "", "url": "https://api.github.com/users/chiyuzhang94", "html_url": "https://github.com/chiyuzhang94", "followers_url": "https://api.github.com/users/chiyuzhang94/followers", "following_url": "https://api.github.com/users/chiyuzhang94/following{/other_user}", "gists_url": "https://api.github.com/users/chiyuzhang94/gists{/gist_id}", "starred_url": "https://api.github.com/users/chiyuzhang94/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/chiyuzhang94/subscriptions", "organizations_url": "https://api.github.com/users/chiyuzhang94/orgs", "repos_url": "https://api.github.com/users/chiyuzhang94/repos", "events_url": "https://api.github.com/users/chiyuzhang94/events{/privacy}", "received_events_url": "https://api.github.com/users/chiyuzhang94/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Thanks for reporting !\r\nWe should add support for servers without internet connection indeed\r\nI'll do that early next week", "Thanks, @lhoestq !\r\nPlease let me know when it is available. ", "Right now the recommended way is to create the dataset on a server with internet connection and then to save it and copy the serialized dataset to the server without internet connection.", "#652 should allow you to load text/json/csv/pandas datasets without an internet connection **IF** you've the dataset script locally.\r\n\r\nExample: \r\nIf you have `datasets/text/text.py` locally, then you can do `load_dataset(\"./datasets/text\", data_files=...)`" ]
2020-09-19T01:35:15
2020-09-21T08:28:42
2020-09-21T08:28:42
NONE
null
null
null
I am running my job on a cloud server where does not provide for connections from the standard compute nodes to outside resources. Hence, when I use `dataset.load_dataset()` to load data, I got an error like this: ``` ConnectionError: Couldn't reach https://storage.googleapis.com/huggingface-nlp/cache/datasets/text/default-53ee3045f07ba8ca/0.0.0/dataset_info.json ``` I tried to open this link manually, but I cannot access this file. How can I download this file and pass it through `dataset.load_dataset()` manually? Versions: Python version 3.7.3 PyTorch version 1.6.0 TensorFlow version 2.3.0 datasets version: 1.0.1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/647/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/647/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/643
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/643/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/643/comments
https://api.github.com/repos/huggingface/datasets/issues/643/events
https://github.com/huggingface/datasets/issues/643
704,477,164
MDU6SXNzdWU3MDQ0NzcxNjQ=
643
Caching processed dataset at wrong folder
{ "login": "mrm8488", "id": 3653789, "node_id": "MDQ6VXNlcjM2NTM3ODk=", "avatar_url": "https://avatars.githubusercontent.com/u/3653789?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mrm8488", "html_url": "https://github.com/mrm8488", "followers_url": "https://api.github.com/users/mrm8488/followers", "following_url": "https://api.github.com/users/mrm8488/following{/other_user}", "gists_url": "https://api.github.com/users/mrm8488/gists{/gist_id}", "starred_url": "https://api.github.com/users/mrm8488/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mrm8488/subscriptions", "organizations_url": "https://api.github.com/users/mrm8488/orgs", "repos_url": "https://api.github.com/users/mrm8488/repos", "events_url": "https://api.github.com/users/mrm8488/events{/privacy}", "received_events_url": "https://api.github.com/users/mrm8488/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
closed
false
null
[]
null
[ "Thanks for reporting !\r\nIt uses a temporary file to write the data.\r\nHowever it looks like the temporary file is not placed in the right directory during the processing", "Well actually I just tested and the temporary file is placed in the same directory, so it should work as expected.\r\nWhich version of `datasets` are you using ?", "`datasets-1.0.1`\r\nHere you can reproduce it here:\r\nhttps://colab.research.google.com/drive/1O0KcepTFsmpkBbrbLLMq42iwTKmQh8d5?usp=sharing\r\n", "It looks like a pyarrow issue with google colab.\r\nFor some reason this code increases the disk usage of google colab while it actually writes into google drive:\r\n\r\n```python\r\nimport pyarrow as pa\r\n\r\nstream = pa.OSFile(\"/content/drive/My Drive/path/to/file.arrow\", \"wb\")\r\nwriter = pa.RecordBatchStreamWriter(stream, schema=pa.schema({\"text\": pa.string()}))\r\nwriter.write_table(pa.Table.from_pydict({\"text\": [\"a\"*511 + \"\\n\"] * ((1 << 30) // 512)})) # 1GiB\r\nwriter.close()\r\nstream.close()\r\n```\r\n\r\nMoreover if I `rm` the file on google drive, it frees disk space on google colab.", "It looks like replacing `pa.OSFile` by `open` fixes it, I'm going to open a PR", "Ok. Thank you so much!", "Actually I did more tests it doesn't >.<\r\nI'll let you know if I find a way to fix that", "Actually I also have the issue when writing a regular text file\r\n\r\n```python\r\nf = open(\"/content/drive/My Drive/path/to/file\", \"w\")\r\nf.write((\"a\"*511 + \"\\n\") * ((1 << 30) // 512)) # 1GiB\r\nf.close()\r\n```\r\n\r\nIs that supposed to happen ?", "The code you wrote should write a 1GB file in the Google Drive folder. Doesn't it? ", "Yes it does, but the disk usage of google colab also increases by 1GB", "I could check it and as you say as I write to te Drive disk the colab disk also increases...", "To reproduce it: \r\n```bash\r\n!df -h | grep sda1\r\n```\r\n```python\r\nf = open(\"/content/drive/My Drive/test_to_remove.txt\", \"w\")\r\nf.write((\"a\"*511 + \"\\n\") * ((1 << 30) // 512)) # 1GiB\r\nf.write((\"a\"*511 + \"\\n\") * ((1 << 30) // 512)) # 1GiB\r\nf.close()\r\n```\r\n```bash\r\n!ls -lh /content/drive/My\\ Drive/test_to_remove.txt\r\n\r\n!df -h | grep sda1\r\n\r\n!rm -rf /content/drive/My\\ Drive/test_to_remove.txt\r\n\r\n```\r\n[Colab](https://colab.research.google.com/drive/1D0UiweCYQwwWZ65EEhuqqbaDDbhJYXfm?usp=sharing)\r\n\r\n\r\n", "Apparently, Colab uses a local cache of the data files read/written from Google Drive. See:\r\n- https://github.com/googlecolab/colabtools/issues/2087#issuecomment-860818457\r\n- https://github.com/googlecolab/colabtools/issues/1915#issuecomment-804234540\r\n- https://github.com/googlecolab/colabtools/issues/2147#issuecomment-885052636" ]
2020-09-18T15:41:26
2022-02-16T14:53:29
2022-02-16T14:53:29
CONTRIBUTOR
null
null
null
Hi guys, I run this on my Colab (PRO): ```python from datasets import load_dataset dataset = load_dataset('text', data_files='/content/corpus.txt', cache_dir='/content/drive/My Drive', split='train') def encode(examples): return tokenizer(examples['text'], truncation=True, padding='max_length') dataset = dataset.map(encode, batched=True) ``` The file is about 4 GB, so I cannot process it on the Colab HD because there is no enough space. So I decided to mount my Google Drive fs and do it on it. The dataset is cached in the right place but by processing it (applying `encode` function) seems to use a different folder because Colab HD starts to grow and it crashes when it should be done in the Drive fs. What gets me crazy, it prints it is processing/encoding the dataset in the right folder: ``` Testing the mapped function outputs Testing finished, running the mapping function on the dataset Caching processed dataset at /content/drive/My Drive/text/default-ad3e69d6242ee916/0.0.0/7e13bc0fa76783d4ef197f079dc8acfe54c3efda980f2c9adfab046ede2f0ff7/cache-b16341780a59747d.arrow ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/643/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/643/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/638
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/638/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/638/comments
https://api.github.com/repos/huggingface/datasets/issues/638/events
https://github.com/huggingface/datasets/issues/638
704,146,956
MDU6SXNzdWU3MDQxNDY5NTY=
638
GLUE/QQP dataset: NonMatchingChecksumError
{ "login": "richarddwang", "id": 17963619, "node_id": "MDQ6VXNlcjE3OTYzNjE5", "avatar_url": "https://avatars.githubusercontent.com/u/17963619?v=4", "gravatar_id": "", "url": "https://api.github.com/users/richarddwang", "html_url": "https://github.com/richarddwang", "followers_url": "https://api.github.com/users/richarddwang/followers", "following_url": "https://api.github.com/users/richarddwang/following{/other_user}", "gists_url": "https://api.github.com/users/richarddwang/gists{/gist_id}", "starred_url": "https://api.github.com/users/richarddwang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/richarddwang/subscriptions", "organizations_url": "https://api.github.com/users/richarddwang/orgs", "repos_url": "https://api.github.com/users/richarddwang/repos", "events_url": "https://api.github.com/users/richarddwang/events{/privacy}", "received_events_url": "https://api.github.com/users/richarddwang/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi ! Sure I'll take a look" ]
2020-09-18T07:09:10
2020-09-18T11:37:07
2020-09-18T11:37:07
CONTRIBUTOR
null
null
null
Hi @lhoestq , I know you are busy and there are also other important issues. But if this is easy to be fixed, I am shamelessly wondering if you can give me some help , so I can evaluate my models and restart with my developing cycle asap. 😚 datasets version: editable install of master at 9/17 `datasets.load_dataset('glue','qqp', cache_dir='./datasets')` ``` Downloading and preparing dataset glue/qqp (download: 57.73 MiB, generated: 107.02 MiB, post-processed: Unknown size, total: 164.75 MiB) to ./datasets/glue/qqp/1.0.0/7c99657241149a24692c402a5c3f34d4c9f1df5ac2e4c3759fadea38f6cb29c4... --------------------------------------------------------------------------- NonMatchingChecksumError Traceback (most recent call last) in ----> 1 datasets.load_dataset('glue','qqp', cache_dir='./datasets') ~/datasets/src/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, save_infos, script_version, **config_kwargs) 609 download_config=download_config, 610 download_mode=download_mode, --> 611 ignore_verifications=ignore_verifications, 612 ) 613 ~/datasets/src/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 467 if not downloaded_from_gcs: 468 self._download_and_prepare( --> 469 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 470 ) 471 # Sync info ~/datasets/src/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 527 if verify_infos: 528 verify_checksums( --> 529 self.info.download_checksums, dl_manager.get_recorded_sizes_checksums(), "dataset source files" 530 ) 531 ~/datasets/src/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 37 if len(bad_urls) > 0: 38 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 39 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 40 logger.info("All the checksums matched successfully" + for_verification_name) 41 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://dl.fbaipublicfiles.com/glue/data/QQP-clean.zip'] ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/638/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/638/timeline
null
completed
https://api.github.com/repos/huggingface/datasets/issues/633
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/633/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/633/comments
https://api.github.com/repos/huggingface/datasets/issues/633/events
https://github.com/huggingface/datasets/issues/633
702,440,484
MDU6SXNzdWU3MDI0NDA0ODQ=
633
Load large text file for LM pre-training resulting in OOM
{ "login": "leethu2012", "id": 29704017, "node_id": "MDQ6VXNlcjI5NzA0MDE3", "avatar_url": "https://avatars.githubusercontent.com/u/29704017?v=4", "gravatar_id": "", "url": "https://api.github.com/users/leethu2012", "html_url": "https://github.com/leethu2012", "followers_url": "https://api.github.com/users/leethu2012/followers", "following_url": "https://api.github.com/users/leethu2012/following{/other_user}", "gists_url": "https://api.github.com/users/leethu2012/gists{/gist_id}", "starred_url": "https://api.github.com/users/leethu2012/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/leethu2012/subscriptions", "organizations_url": "https://api.github.com/users/leethu2012/orgs", "repos_url": "https://api.github.com/users/leethu2012/repos", "events_url": "https://api.github.com/users/leethu2012/events{/privacy}", "received_events_url": "https://api.github.com/users/leethu2012/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Not sure what could cause that on the `datasets` side. Could this be a `Trainer` issue ? cc @julien-c @sgugger ?", "There was a memory leak issue fixed recently in master. You should install from source and see if it fixes your problem.", "@lhoestq @sgugger Thanks for your comments. I have install from source code as you told, but the problem is still there.\r\nTo reproduce the issue, just replace [these lines](https://github.com/huggingface/transformers/blob/master/examples/language-modeling/run_language_modeling.py#L241-L258) with: \r\n(load_dataset and DataCollatorForDatasetsLanguageModeling as [above mentioned](https://github.com/huggingface/datasets/issues/633#issue-702440484))\r\n```python\r\n dataset = load_dataset(\"bookcorpus\")\r\n dataset = dataset.train_test_split(test_size=0.1)\r\n train_dataset = dataset['train']\r\n eval_dataset = dataset['test'] if training_args.do_eval else None\r\n\r\n data_collator = DataCollatorForDatasetsLanguageModeling(\r\n tokenizer=tokenizer,\r\n mlm=data_args.mlm,\r\n mlm_probability=data_args.mlm_probability,\r\n block_size=data_args.block_size\r\n )\r\n```\r\nand run by:\r\n```bash\r\npython run_language_modeling.py\r\n--output_dir=output \\\r\n--model_type=bert \\\r\n--model_name_or_path=bert-base-uncased \\\r\n--do_train \\\r\n--do_eval \\\r\n--mlm \r\n```", "Same here. Pre-training on wikitext-103 to do some test. At the end of the training it takes 32GB of RAM + ~30GB of SWAP. I installed dataset==1.1.0, not built from source. I will try uninstalling and building from source when it finish.", "This seems to be on the `transformers` library side.\r\n\r\nIf you have more informations (pip env) or even better, a colab reproducing the error we can investigate.", "It seems like it's solved with freshed versions of transformers. I have tried to replicate the error doing a fresh pip install transformers & datasets on colab and the error doesn't continue. On colab it keeps stable on 5GB! (Y)\r\n\r\nEdit: **Thanks for your great work**. Have a good day.", "@gaceladri witch version transformers and datasets are you using now? I want to try again. Thanks.", "transformers==3.3.1\r\ndatasets==1.1.0\r\ntokenizers==0.8.1rc2\r\n", "doing some modifications to mobilebert\r\nhttps://colab.research.google.com/drive/1ba09ZOpyHGAOQLcsxiQAHRXl10qnMU5o?usp=sharing ", "It does not happen to me anymore. Can we close? @leethu2012 ", "It's happening to me again. After 4 hours of pre-training, my ram memory gets full and the kernel dies. I am using the last transformers version as today. 4.4.0 and the last version of datasets 1.2.1, both installed from master. The memory consumption keeps increasing.", "It looks like it is something from pytorch/python itself :face_with_head_bandage: https://github.com/pytorch/pytorch/issues/13246 ", "Thanks for the investigation @gaceladri \r\n\r\nApparently this happens when `num_workers>0` and has to do with objects being copied-on-write.\r\nDid you try setting num_workers to 0 @gaceladri ?\r\nIf the issue doesn't happen with `num_workers=0` then this would confirm that it's indeed related to this python/pytorch issue.\r\n\r\nSince a `Dataset` object is a wrapper of a pyarrow Table, we should investigate if the data being copied comes from the Table itself or from metadata in the `Dataset` object. If it comes from the metadata in the `Dataset` object, we should be able to implement a workaround. But if it comes from the Table, we'll need to see with the pyarrow team what we can do... ", "@lhoestq I have tried and it keeps increasing also with `dataloader_num_workers=0`", "Hmmm so this might come from another issue...\r\nSince it doesn't seem to be related to multiprocessing it should be easier to investigate though.\r\nDo you have some ideas @gaceladri ?", "@lhoestq I looked quickly to a previously spoted bug in my env wandb /sdk/interface/interface.py, because sometimes when I load the dataset I got a multiprocessing error at line 510 in wandb...interface.py\r\n\r\nThis bug is reported here https://github.com/huggingface/datasets/issues/847\r\n\r\n```\r\n---------------------------------------------------------------------------\r\nAssertionError Traceback (most recent call last)\r\n<timed eval> in <module>\r\n\r\n~/anaconda3/envs/tfm/lib/python3.6/site-packages/transformers/trainer.py in train(self, model_path, trial)\r\n 877 print(len(epoch_iterator))\r\n 878 \r\n--> 879 for step, inputs in enumerate(epoch_iterator):\r\n 880 \r\n 881 start_step = time.time()\r\n\r\n~/anaconda3/envs/tfm/lib/python3.6/site-packages/torch/utils/data/dataloader.py in __next__(self)\r\n 433 if self._sampler_iter is None:\r\n 434 self._reset()\r\n--> 435 data = self._next_data()\r\n 436 self._num_yielded += 1\r\n 437 if self._dataset_kind == _DatasetKind.Iterable and \\\r\n\r\n~/anaconda3/envs/tfm/lib/python3.6/site-packages/torch/utils/data/dataloader.py in _next_data(self)\r\n 1083 else:\r\n 1084 del self._task_info[idx]\r\n-> 1085 return self._process_data(data)\r\n 1086 \r\n 1087 def _try_put_index(self):\r\n\r\n~/anaconda3/envs/tfm/lib/python3.6/site-packages/torch/utils/data/dataloader.py in _process_data(self, data)\r\n 1109 self._try_put_index()\r\n 1110 if isinstance(data, ExceptionWrapper):\r\n-> 1111 data.reraise()\r\n 1112 return data\r\n 1113 \r\n\r\n~/anaconda3/envs/tfm/lib/python3.6/site-packages/torch/_utils.py in reraise(self)\r\n 426 # have message field\r\n 427 raise self.exc_type(message=msg)\r\n--> 428 raise self.exc_type(msg)\r\n 429 \r\n 430 \r\n\r\nAssertionError: Caught AssertionError in DataLoader worker process 0.\r\nOriginal Traceback (most recent call last):\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/site-packages/torch/utils/data/_utils/worker.py\", line 198, in _worker_loop\r\n data = fetcher.fetch(index)\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/site-packages/torch/utils/data/_utils/fetch.py\", line 44, in fetch\r\n data = [self.dataset[idx] for idx in possibly_batched_index]\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/site-packages/torch/utils/data/_utils/fetch.py\", line 44, in <listcomp>\r\n data = [self.dataset[idx] for idx in possibly_batched_index]\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/site-packages/datasets/arrow_dataset.py\", line 1083, in __getitem__\r\n format_kwargs=self._format_kwargs,\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/site-packages/datasets/arrow_dataset.py\", line 1070, in _getitem\r\n format_kwargs=format_kwargs,\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/site-packages/datasets/arrow_dataset.py\", line 886, in _convert_outputs\r\n v = map_nested(command, v, **map_nested_kwargs)\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/site-packages/datasets/utils/py_utils.py\", line 216, in map_nested\r\n return function(data_struct)\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/site-packages/datasets/arrow_dataset.py\", line 847, in command\r\n return torch.tensor(x, **format_kwargs)\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/warnings.py\", line 101, in _showwarnmsg\r\n _showwarnmsg_impl(msg)\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/warnings.py\", line 30, in _showwarnmsg_impl\r\n file.write(text)\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/site-packages/wandb/sdk/lib/redirect.py\", line 100, in new_write\r\n cb(name, data)\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/site-packages/wandb/sdk/wandb_run.py\", line 729, in _console_callback\r\n self._backend.interface.publish_output(name, data)\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/site-packages/wandb/sdk/interface/interface.py\", line 186, in publish_output\r\n self._publish_output(o)\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/site-packages/wandb/sdk/interface/interface.py\", line 191, in _publish_output\r\n self._publish(rec)\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/site-packages/wandb/sdk/interface/interface.py\", line 510, in _publish\r\n if self._process and not self._process.is_alive():\r\n File \"/home/ad/anaconda3/envs/tfm/lib/python3.6/multiprocessing/process.py\", line 134, in is_alive\r\n assert self._parent_pid == os.getpid(), 'can only test a child process'\r\nAssertionError: can only test a child process\r\n```\r\n\r\nMy workaround was to just comment those lines without looking to much into consecuences:\r\n\r\n```\r\ndef _publish(self, record: pb.Record, local: bool = None) -> None:\r\n #if self._process and not self._process.is_alive():\r\n # raise Exception(\"The wandb backend process has shutdown\")\r\n```\r\n\r\nIt worked so far... I need to try running without wandb and see if it could be causing something wrong with multiprocessing. I am going to try to launch the training setting wandb to false and I will let you know again.", "@lhoestq But despite this, I got lost into the [class Dataset()](https://huggingface.co/docs/datasets/_modules/datasets/arrow_dataset.html#Dataset) reading the pyarrow files.\r\n\r\nEdit: but you should be rigth, that it does not have to be related to multiprocessing since it keeps happening when `num_workers=0` ", "Or maybe wandb uses multiprocessing ? One process for wandb logging and one for actual training ? If this is the case then even setting `num_workers=0` would cause the process to be forked for wandb and therefore cause the memory issue.", "@lhoestq could be, but if we set wandb to false this should not happen. I am going to try.", "@lhoestq It keeps happening. I have uninstalled wandb from my env, setted `%env WANDB_DISABLED=true` on my notebook, and commented this func:\r\n\r\n```\r\ndef get_available_reporting_integrations():\r\n integrations = []\r\n if is_azureml_available():\r\n integrations.append(\"azure_ml\")\r\n if is_comet_available():\r\n integrations.append(\"comet_ml\")\r\n if is_mlflow_available():\r\n integrations.append(\"mlflow\")\r\n if is_tensorboard_available():\r\n integrations.append(\"tensorboard\")\r\n # if is_wandb_available():\r\n # integrations.append(\"wandb\")\r\n return integrations\r\n```\r\nAs a fast test and it keeps increasing the ram memory. Wandb could not be the blameworthy here.", "Thanks for checking @gaceladri . Let's investigate the single process setting then.\r\nIf you have some sort of colab notebook with a minimal code example that shows this behavior feel free to share it @gaceladri so that we can play around with it to find what causes this. Otherwise I'll probably try to reproduce on my side at one point", "@lhoestq sure. Here you have https://colab.research.google.com/drive/1ba09ZOpyHGAOQLcsxiQAHRXl10qnMU5o?usp=sharing let me know if the link works and it reproduces the issue. To me, it reproduces the issue, since if you start the training the ram memory keeps increasing.\r\n\r\nLet me know. Thanks!", "Could the bug be comming from tokenizers?\r\n\r\nI got this warning at the terminal from my jupyter notebook: \r\n```\r\nhuggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\r\nTo disable this warning, you can either:\r\n\t- Avoid using `tokenizers` before the fork if possible\r\n\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\r\n```", "I've never experienced memory issues with tokenizers so I don't know\r\nCc @n1t0 are you aware of any issue that would cause memory to keep increasing when the tokenizer is used in the Data Collator for language modeling ?", "@lhoestq Thanks for pointing to n1t0, just to clarify. That warning was doing fine-tuning, without collator:\r\n```\r\n\r\nfrom datasets import load_dataset, load_metric\r\nimport numpy as np\r\n\r\nGLUE_TASKS = [\r\n \"cola\",\r\n \"mnli\",\r\n \"mnli-mm\",\r\n \"mrpc\",\r\n \"qnli\",\r\n \"qqp\",\r\n \"rte\",\r\n \"sst2\",\r\n \"stsb\",\r\n \"wnli\",\r\n]\r\ntask = \"mnli\"\r\nactual_task = \"mnli\" if task == \"mnli-mm\" else task\r\ndataset = load_dataset(\"glue\", actual_task)\r\nmetric = load_metric(\"glue\", actual_task)\r\nbatch_size = 16\r\nattention_type = \"linear\"\r\n\r\nfrom transformers.models.mobilebert_mod import (\r\n MobileBertForSequenceClassification,\r\n MobileBertTokenizerFast,\r\n)\r\nfrom transformers.models.mobilebert_mod.configuration_mobilebert import (\r\n MobileBertConfigMod,\r\n)\r\nfrom transformers import TrainingArguments, Trainer\r\n\r\nnum_labels = 3 if task.startswith(\"mnli\") else 1 if task == \"stsb\" else 2\r\ntokenizer = MobileBertTokenizerFast.from_pretrained(\r\n \"/media/ad/00b5422b-9d54-4449-8b5d-08eab5cdac8c/training_trfm/big_linear_layerdrop_shared/checkpoint-23000/\",\r\n max_len=512,\r\n)\r\nmodel = MobileBertForSequenceClassification.from_pretrained(\r\n \"/media/ad/00b5422b-9d54-4449-8b5d-08eab5cdac8c/training_trfm/big_linear_layerdrop_shared/checkpoint-23000/\",\r\n num_labels=num_labels,\r\n)\r\nprint(model.num_parameters())\r\n\r\ntask_to_keys = {\r\n \"cola\": (\"sentence\", None),\r\n \"mnli\": (\"premise\", \"hypothesis\"),\r\n \"mnli-mm\": (\"premise\", \"hypothesis\"),\r\n \"mrpc\": (\"sentence1\", \"sentence2\"),\r\n \"qnli\": (\"question\", \"sentence\"),\r\n \"qqp\": (\"question1\", \"question2\"),\r\n \"rte\": (\"sentence1\", \"sentence2\"),\r\n \"sst2\": (\"sentence\", None),\r\n \"stsb\": (\"sentence1\", \"sentence2\"),\r\n \"wnli\": (\"sentence1\", \"sentence2\"),\r\n}\r\n\r\nsentence1_key, sentence2_key = task_to_keys[task]\r\nif sentence2_key is None:\r\n print(f\"Sentence: {dataset['train'][0][sentence1_key]}\")\r\nelse:\r\n print(f\"Sentence 1: {dataset['train'][0][sentence1_key]}\")\r\n print(f\"Sentence 2: {dataset['train'][0][sentence2_key]}\")\r\n\r\n\r\ndef preprocess_function(examples):\r\n if sentence2_key is None:\r\n return tokenizer(examples[sentence1_key], truncation=True)\r\n return tokenizer(examples[sentence1_key], examples[sentence2_key], truncation=True)\r\n\r\n\r\nencoded_dataset = dataset.map(preprocess_function, batched=True)\r\nmetric_name = (\r\n \"pearson\"\r\n if task == \"stsb\"\r\n else \"matthews_correlation\"\r\n if task == \"cola\"\r\n else \"accuracy\"\r\n)\r\n\r\nargs = TrainingArguments(\r\n f\"test-glue/{task}_{attention_type}\",\r\n evaluation_strategy=\"steps\",\r\n learning_rate=1e-5,\r\n per_device_train_batch_size=batch_size,\r\n per_device_eval_batch_size=batch_size,\r\n logging_steps=200,\r\n num_train_epochs=5,\r\n gradient_accumulation_steps=1,\r\n warmup_steps=10000,\r\n fp16=True,\r\n dataloader_num_workers=10,\r\n weight_decay=0.1,\r\n load_best_model_at_end=True,\r\n metric_for_best_model=metric_name,\r\n)\r\n\r\n\r\ndef compute_metrics(eval_pred):\r\n predictions, labels = eval_pred\r\n if task != \"stsb\":\r\n predictions = np.argmax(predictions, axis=1)\r\n else:\r\n predictions = predictions[:, 0]\r\n return metric.compute(predictions=predictions, references=labels)\r\n\r\n\r\nvalidation_key = (\r\n \"validation_mismatched\"\r\n if task == \"mnli-mm\"\r\n else \"validation_matched\"\r\n if task == \"mnli\"\r\n else \"validation\"\r\n)\r\n\r\ntrainer = Trainer(\r\n model,\r\n args,\r\n train_dataset=encoded_dataset[\"train\"],\r\n eval_dataset=encoded_dataset[validation_key],\r\n tokenizer=tokenizer,\r\n compute_metrics=compute_metrics,\r\n)\r\n\r\ntrainer.train()\r\n```\r\n\r\nNow, I have come back to pre-training. The changes that I think I have done are: not formatting the dataset to torch: ~~`big_dataset.set_format(type='torch', columns=[\"text\", \"input_ids\", \"attention_mask\", \"token_type_ids\"])`~~ so maybe some column is dropped and not freezed in memory and now I have not setted any validation dataset in the trainer. \r\n\r\nMy validation dataset before:\r\n```\r\nbook_corpus_eval = load_dataset(\r\n \"bookcorpus\",\r\n \"plain_text\",\r\n cache_dir=\"/home/ad/Desktop/bookcorpus\",\r\n split=\"train[98:99%]\",\r\n)\r\nbook_corpus_eval = book_corpus_eval.map(encode, batched=True)\r\nbook_corpus_eval.set_format(\r\n type=\"torch\", columns=[\"text\", \"input_ids\", \"attention_mask\", \"token_type_ids\"]\r\n)\r\n**book_corpus_eval = book_corpus_eval.select([i for i in range(1500)])**\r\n```\r\nMaybe _selecting_ or indexing the dataset before feeding it to the trainer, do something strange.\r\n\r\nMy trainer now:\r\n```\r\n\r\nbig_dataset = load_from_disk(\"/home/ad/Desktop/35percent_data.arrow/\")\r\n\r\nfrom transformers import DataCollatorForWholeWordMask\r\n\r\ndata_collator = DataCollatorForWholeWordMask(\r\n tokenizer=tokenizer, mlm=True, mlm_probability=0.15)\r\n\r\nfrom transformers import Trainer, TrainingArguments\r\n\r\ntraining_args = TrainingArguments(\r\n output_dir=\"./big_linear_layerdrop_shared_silu_secondtry\",\r\n overwrite_output_dir=True,\r\n per_device_train_batch_size=60,\r\n per_device_eval_batch_size=60,\r\n save_steps=500,\r\n save_total_limit=10,\r\n logging_first_step=True,\r\n logging_steps=100,\r\n# evaluation_strategy='steps',\r\n# eval_steps=250,\r\n gradient_accumulation_steps=8,\r\n fp16=True,\r\n dataloader_num_workers=10,\r\n warmup_steps=15000,\r\n learning_rate=6e-4,\r\n adam_epsilon=1e-6,\r\n adam_beta2=0.98,\r\n weight_decay=0.01,\r\n max_grad_norm=1.0,\r\n max_steps=500000, \r\n)\r\n\r\ntrainer = Trainer(\r\n model=model,\r\n args=training_args,\r\n data_collator=data_collator,\r\n train_dataset=big_dataset,\r\n# eval_dataset=book_corpus_eval,\r\n tokenizer=tokenizer)\r\n\r\nimport wandb\r\nwandb.login()\r\n\r\ntrainer.train()\r\n```\r\n\r\nAnd surprisingly, the ram now keeps going up and down. The training is up now for 12h without collapse the ram. I don't know what could cause the leakage. :mag: \r\n\r\nEdit: I didn't see the swap memory, that keeps increasing. So the problem persist. ", "Thanks for sharing your results.\r\nSo you still had the issue for fine-tuning ?\r\nAnd the issue still appears with a bare-bone dataset from an arrow file...", "Yes, on both cases. Fine-tuning a pre-trained model and pre-training from scratch with a local arrow file already pre-processed." ]
2020-09-16T04:33:15
2021-02-16T12:02:01
null
NONE
null
null
null
I tried to pretrain Longformer using transformers and datasets. But I got OOM issues with loading a large text file. My script is almost like this: ```python from datasets import load_dataset @dataclass class DataCollatorForDatasetsLanguageModeling(DataCollatorForLanguageModeling): """ Data collator used for language modeling based on DataCollatorForLazyLanguageModeling - collates batches of tensors, honoring their tokenizer's pad_token - preprocesses batches for masked language modeling """ block_size: int = 512 def __call__(self, examples: List[dict]) -> Dict[str, torch.Tensor]: examples = [example['text'] for example in examples] batch, attention_mask = self._tensorize_batch(examples) if self.mlm: inputs, labels = self.mask_tokens(batch) return {"input_ids": inputs, "labels": labels} else: labels = batch.clone().detach() if self.tokenizer.pad_token_id is not None: labels[labels == self.tokenizer.pad_token_id] = -100 return {"input_ids": batch, "labels": labels} def _tensorize_batch(self, examples: List[str]) -> Tuple[torch.Tensor, torch.Tensor]: if self.tokenizer._pad_token is None: raise ValueError( "You are attempting to pad samples but the tokenizer you are using" f" ({self.tokenizer.__class__.__name__}) does not have one." ) tensor_examples = self.tokenizer.batch_encode_plus( [ex for ex in examples if ex], max_length=self.block_size, return_tensors="pt", pad_to_max_length=True, return_attention_mask=True, truncation=True, ) input_ids, attention_mask = tensor_examples["input_ids"], tensor_examples["attention_mask"] return input_ids, attention_mask dataset = load_dataset('text', data_files='train.txt',cache_dir="./", , split='train') data_collator = DataCollatorForDatasetsLanguageModeling(tokenizer=tokenizer, mlm=True, mlm_probability=0.15, block_size=tokenizer.max_len) trainer = Trainer(model=model, args=args, data_collator=data_collator, train_dataset=train_dataset, prediction_loss_only=True, ) trainer.train(model_path=model_path) ``` This train.txt is about 1.1GB and has 90k lines where each line is a sequence of 4k words. During training, the memory usage increased fast as the following graph and resulted in OOM before the finish of training. ![image](https://user-images.githubusercontent.com/29704017/93292112-5576b280-f817-11ea-8da2-b2db9bf35665.png) Could you please give me any suggestions on why this happened and how to fix it? Thanks.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/633/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/633/timeline
null
null
https://api.github.com/repos/huggingface/datasets/issues/630
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/630/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/630/comments
https://api.github.com/repos/huggingface/datasets/issues/630/events
https://github.com/huggingface/datasets/issues/630
701,636,350
MDU6SXNzdWU3MDE2MzYzNTA=
630
Text dataset not working with large files
{ "login": "ksjae", "id": 17930170, "node_id": "MDQ6VXNlcjE3OTMwMTcw", "avatar_url": "https://avatars.githubusercontent.com/u/17930170?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ksjae", "html_url": "https://github.com/ksjae", "followers_url": "https://api.github.com/users/ksjae/followers", "following_url": "https://api.github.com/users/ksjae/following{/other_user}", "gists_url": "https://api.github.com/users/ksjae/gists{/gist_id}", "starred_url": "https://api.github.com/users/ksjae/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ksjae/subscriptions", "organizations_url": "https://api.github.com/users/ksjae/orgs", "repos_url": "https://api.github.com/users/ksjae/repos", "events_url": "https://api.github.com/users/ksjae/events{/privacy}", "received_events_url": "https://api.github.com/users/ksjae/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Seems like it works when setting ```block_size=2100000000``` or something arbitrarily large though.", "Can you give us some stats on the data files you use as inputs?", "Basically ~600MB txt files(UTF-8) * 59. \r\ncontents like ```안녕하세요, 이것은 예제로 한번 말해보는 텍스트입니다. 그냥 이렇다고요.<|endoftext|>\\n```\r\n\r\nAlso, it gets stuck for a loooong time at ```Testing the mapped function outputs```, for more than 12 hours(currently ongoing)", "It gets stuck while doing `.map()` ? Are you using multiprocessing ?\r\nIf you could provide a code snippet it could be very useful", "From transformers/examples/language-modeling/run-language-modeling.py :\r\n```\r\ndef get_dataset(\r\n args: DataTrainingArguments,\r\n tokenizer: PreTrainedTokenizer,\r\n evaluate: bool = False,\r\n cache_dir: Optional[str] = None,\r\n):\r\n file_path = args.eval_data_file if evaluate else args.train_data_file\r\n if True:\r\n dataset = load_dataset(\"text\", data_files=glob.glob(file_path), split='train', use_threads=True, \r\n ignore_verifications=True, save_infos=True, block_size=104857600)\r\n dataset = dataset.map(lambda ex: tokenizer(ex[\"text\"], add_special_tokens=True,\r\n truncation=True, max_length=args.block_size), batched=True)\r\n dataset.set_format(type='torch', columns=['input_ids'])\r\n return dataset\r\n if args.line_by_line:\r\n return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)\r\n else:\r\n return TextDataset(\r\n tokenizer=tokenizer,\r\n file_path=file_path,\r\n block_size=args.block_size,\r\n overwrite_cache=args.overwrite_cache,\r\n cache_dir=cache_dir,\r\n )\r\n```\r\n\r\nNo, I'm not using multiprocessing.", "I am not able to reproduce on my side :/\r\n\r\nCould you send the version of `datasets` and `pyarrow` you're using ?\r\nCould you try to update the lib and try again ?\r\nOr do you think you could try to reproduce it on google colab ?", "Huh, weird. It's fixed on my side too.\r\nBut now ```Caching processed dataset``` is taking forever - how can I disable it? Any flags?", "Right after `Caching processed dataset`, your function is applied to the dataset and there's a progress bar that shows how much time is left. How much time does it take for you ?\r\n\r\nAlso caching isn't supposed to slow down your processing. But if you still want to disable it you can do `.map(..., load_from_cache_file=False)`", "Ah, it’s much faster now(Takes around 15~20min). \r\nBTW, any way to set default tensor output as plain tensors with distributed training? The ragged tensors are incompatible with tpustrategy :(", "> Ah, it’s much faster now(Takes around 15~20min).\r\n\r\nGlad to see that it's faster now. What did you change exactly ?\r\n\r\n> BTW, any way to set default tensor output as plain tensors with distributed training? The ragged tensors are incompatible with tpustrategy :(\r\n\r\nOh I didn't know about that. Feel free to open an issue to mention that.\r\nI guess what you can do for now is set the dataset format to numpy instead of tensorflow, and use a wrapper of the dataset that converts the numpy arrays to tf tensors.\r\n\r\n", ">>> Glad to see that it's faster now. What did you change exactly ?\r\nI don't know, it just worked...? Sorry I couldn't be more helpful.\r\n\r\nSetting with numpy array is a great idea! Thanks." ]
2020-09-15T06:02:36
2020-09-25T22:21:43
2020-09-25T22:21:43
NONE
null
null
null
``` Traceback (most recent call last): File "examples/language-modeling/run_language_modeling.py", line 333, in <module> main() File "examples/language-modeling/run_language_modeling.py", line 262, in main get_dataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir) if training_args.do_train else None File "examples/language-modeling/run_language_modeling.py", line 144, in get_dataset dataset = load_dataset("text", data_files=file_path, split='train+test') File "/home/ksjae/.local/lib/python3.7/site-packages/datasets/load.py", line 611, in load_dataset ignore_verifications=ignore_verifications, File "/home/ksjae/.local/lib/python3.7/site-packages/datasets/builder.py", line 469, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/ksjae/.local/lib/python3.7/site-packages/datasets/builder.py", line 546, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/ksjae/.local/lib/python3.7/site-packages/datasets/builder.py", line 888, in _prepare_split for key, table in utils.tqdm(generator, unit=" tables", leave=False, disable=not_verbose): File "/home/ksjae/.local/lib/python3.7/site-packages/tqdm/std.py", line 1129, in __iter__ for obj in iterable: File "/home/ksjae/.cache/huggingface/modules/datasets_modules/datasets/text/7e13bc0fa76783d4ef197f079dc8acfe54c3efda980f2c9adfab046ede2f0ff7/text.py", line 104, in _generate_tables convert_options=self.config.convert_options, File "pyarrow/_csv.pyx", line 714, in pyarrow._csv.read_csv File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status ``` **pyarrow.lib.ArrowInvalid: straddling object straddles two block boundaries (try to increase block size?)** It gives the same message for both 200MB, 10GB .tx files but not for 700MB file. Can't upload due to size & copyright problem. sorry.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/630/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/630/timeline
null
completed