id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
59
127
d791178e0d57-1
verbose=verbose, ), LLMChain( llm=llm, prompt=check_assertions_prompt, output_key="checked_assertions", verbose=verbose, ), LLMChain( llm=llm, prompt=revised_summary_prompt, output_key="revised_summary", verbose=verbose, ), LLMChain( llm=llm, output_key="all_true", prompt=are_all_true_prompt, verbose=verbose, ), ], input_variables=["summary"], output_variables=["all_true", "revised_summary"], verbose=verbose, ) return chain [docs]class LLMSummarizationCheckerChain(Chain): """Chain for question-answering with self-verification. Example: .. code-block:: python from langchain import OpenAI, LLMSummarizationCheckerChain llm = OpenAI(temperature=0.0) checker_chain = LLMSummarizationCheckerChain.from_llm(llm) """ sequential_chain: SequentialChain llm: Optional[BaseLanguageModel] = None """[Deprecated] LLM wrapper to use.""" create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT """[Deprecated]""" check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT """[Deprecated]""" revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT """[Deprecated]""" are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT """[Deprecated]""" input_key: str = "query" #: :meta private:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_summarization_checker/base.html
d791178e0d57-2
input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: max_checks: int = 2 """Maximum number of times to check the assertions. Default to double-checking.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values: warnings.warn( "Directly instantiating an LLMSummarizationCheckerChain with an llm is " "deprecated. Please instantiate with" " sequential_chain argument or using the from_llm class method." ) if "sequential_chain" not in values and values["llm"] is not None: values["sequential_chain"] = _load_sequential_chain( values["llm"], values.get("create_assertions_prompt", CREATE_ASSERTIONS_PROMPT), values.get("check_assertions_prompt", CHECK_ASSERTIONS_PROMPT), values.get("revised_summary_prompt", REVISED_SUMMARY_PROMPT), values.get("are_all_true_prompt", ARE_ALL_TRUE_PROMPT), verbose=values.get("verbose", False), ) return values @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ return [self.output_key] def _call( self, inputs: Dict[str, Any],
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_summarization_checker/base.html
d791178e0d57-3
def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() all_true = False count = 0 output = None original_input = inputs[self.input_key] chain_input = original_input while not all_true and count < self.max_checks: output = self.sequential_chain( {"summary": chain_input}, callbacks=_run_manager.get_child() ) count += 1 if output["all_true"].strip() == "True": break if self.verbose: print(output["revised_summary"]) chain_input = output["revised_summary"] if not output: raise ValueError("No output from chain") return {self.output_key: output["revised_summary"].strip()} @property def _chain_type(self) -> str: return "llm_summarization_checker_chain" [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT, check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT, revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT, are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT, verbose: bool = False, **kwargs: Any, ) -> LLMSummarizationCheckerChain: chain = _load_sequential_chain( llm, create_assertions_prompt, check_assertions_prompt, revised_summary_prompt,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_summarization_checker/base.html
d791178e0d57-4
create_assertions_prompt, check_assertions_prompt, revised_summary_prompt, are_all_true_prompt, verbose=verbose, ) return cls(sequential_chain=chain, verbose=verbose, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_summarization_checker/base.html
f54b57b10006-0
Source code for langchain.chains.combine_documents.base """Base interface for chains combining documents.""" from abc import ABC, abstractmethod from typing import Any, Dict, List, Optional, Tuple from pydantic import Field from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.docstore.document import Document from langchain.prompts.base import BasePromptTemplate from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter def format_document(doc: Document, prompt: BasePromptTemplate) -> str: """Format a document into a string based on a prompt template.""" base_info = {"page_content": doc.page_content} base_info.update(doc.metadata) missing_metadata = set(prompt.input_variables).difference(base_info) if len(missing_metadata) > 0: required_metadata = [ iv for iv in prompt.input_variables if iv != "page_content" ] raise ValueError( f"Document prompt requires documents to have metadata variables: " f"{required_metadata}. Received document with missing metadata: " f"{list(missing_metadata)}." ) document_info = {k: base_info[k] for k in prompt.input_variables} return prompt.format(**document_info) class BaseCombineDocumentsChain(Chain, ABC): """Base interface for chains combining documents.""" input_key: str = "input_documents" #: :meta private: output_key: str = "output_text" #: :meta private: @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/combine_documents/base.html
f54b57b10006-1
""" return [self.input_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return [self.output_key] def prompt_length(self, docs: List[Document], **kwargs: Any) -> Optional[int]: """Return the prompt length given the documents passed in. Returns None if the method does not depend on the prompt length. """ return None @abstractmethod def combine_docs(self, docs: List[Document], **kwargs: Any) -> Tuple[str, dict]: """Combine documents into a single string.""" @abstractmethod async def acombine_docs( self, docs: List[Document], **kwargs: Any ) -> Tuple[str, dict]: """Combine documents into a single string asynchronously.""" def _call( self, inputs: Dict[str, List[Document]], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() docs = inputs[self.input_key] # Other keys are assumed to be needed for LLM prediction other_keys = {k: v for k, v in inputs.items() if k != self.input_key} output, extra_return_dict = self.combine_docs( docs, callbacks=_run_manager.get_child(), **other_keys ) extra_return_dict[self.output_key] = output return extra_return_dict async def _acall( self, inputs: Dict[str, List[Document]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/combine_documents/base.html
f54b57b10006-2
) -> Dict[str, str]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() docs = inputs[self.input_key] # Other keys are assumed to be needed for LLM prediction other_keys = {k: v for k, v in inputs.items() if k != self.input_key} output, extra_return_dict = await self.acombine_docs( docs, callbacks=_run_manager.get_child(), **other_keys ) extra_return_dict[self.output_key] = output return extra_return_dict [docs]class AnalyzeDocumentChain(Chain): """Chain that splits documents, then analyzes it in pieces.""" input_key: str = "input_document" #: :meta private: text_splitter: TextSplitter = Field(default_factory=RecursiveCharacterTextSplitter) combine_docs_chain: BaseCombineDocumentsChain @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return self.combine_docs_chain.output_keys def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() document = inputs[self.input_key] docs = self.text_splitter.create_documents([document]) # Other keys are assumed to be needed for LLM prediction other_keys: Dict = {k: v for k, v in inputs.items() if k != self.input_key}
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/combine_documents/base.html
f54b57b10006-3
other_keys[self.combine_docs_chain.input_key] = docs return self.combine_docs_chain( other_keys, return_only_outputs=True, callbacks=_run_manager.get_child() ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/combine_documents/base.html
cf5e270ef9d0-0
Source code for langchain.chains.sql_database.base """Chain for interacting with SQL Database.""" from __future__ import annotations import warnings from typing import Any, Dict, List, Optional from pydantic import Extra, Field, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.sql_database.prompt import DECIDER_PROMPT, PROMPT, SQL_PROMPTS from langchain.prompts.base import BasePromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.sql_database import SQLDatabase from langchain.tools.sql_database.prompt import QUERY_CHECKER INTERMEDIATE_STEPS_KEY = "intermediate_steps" [docs]class SQLDatabaseChain(Chain): """Chain for interacting with SQL Database. Example: .. code-block:: python from langchain import SQLDatabaseChain, OpenAI, SQLDatabase db = SQLDatabase(...) db_chain = SQLDatabaseChain.from_llm(OpenAI(), db) """ llm_chain: LLMChain llm: Optional[BaseLanguageModel] = None """[Deprecated] LLM wrapper to use.""" database: SQLDatabase = Field(exclude=True) """SQL Database to connect to.""" prompt: Optional[BasePromptTemplate] = None """[Deprecated] Prompt to use to translate natural language to SQL.""" top_k: int = 5 """Number of results to return from the query""" input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: return_intermediate_steps: bool = False
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/sql_database/base.html
cf5e270ef9d0-1
return_intermediate_steps: bool = False """Whether or not to return the intermediate steps along with the final answer.""" return_direct: bool = False """Whether or not to return the result of querying the SQL table directly.""" use_query_checker: bool = False """Whether or not the query checker tool should be used to attempt to fix the initial SQL from the LLM.""" query_checker_prompt: Optional[BasePromptTemplate] = None """The prompt template that should be used by the query checker""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values: warnings.warn( "Directly instantiating an SQLDatabaseChain with an llm is deprecated. " "Please instantiate with llm_chain argument or using the from_llm " "class method." ) if "llm_chain" not in values and values["llm"] is not None: database = values["database"] prompt = values.get("prompt") or SQL_PROMPTS.get( database.dialect, PROMPT ) values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt) return values @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if not self.return_intermediate_steps:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/sql_database/base.html
cf5e270ef9d0-2
:meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, INTERMEDIATE_STEPS_KEY] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() input_text = f"{inputs[self.input_key]}\nSQLQuery:" _run_manager.on_text(input_text, verbose=self.verbose) # If not present, then defaults to None which is all tables. table_names_to_use = inputs.get("table_names_to_use") table_info = self.database.get_table_info(table_names=table_names_to_use) llm_inputs = { "input": input_text, "top_k": str(self.top_k), "dialect": self.database.dialect, "table_info": table_info, "stop": ["\nSQLResult:"], } intermediate_steps: List = [] try: intermediate_steps.append(llm_inputs) # input: sql generation sql_cmd = self.llm_chain.predict( callbacks=_run_manager.get_child(), **llm_inputs, ).strip() if not self.use_query_checker: _run_manager.on_text(sql_cmd, color="green", verbose=self.verbose) intermediate_steps.append( sql_cmd ) # output: sql generation (no checker) intermediate_steps.append({"sql_cmd": sql_cmd}) # input: sql exec result = self.database.run(sql_cmd)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/sql_database/base.html
cf5e270ef9d0-3
result = self.database.run(sql_cmd) intermediate_steps.append(str(result)) # output: sql exec else: query_checker_prompt = self.query_checker_prompt or PromptTemplate( template=QUERY_CHECKER, input_variables=["query", "dialect"] ) query_checker_chain = LLMChain( llm=self.llm_chain.llm, prompt=query_checker_prompt ) query_checker_inputs = { "query": sql_cmd, "dialect": self.database.dialect, } checked_sql_command: str = query_checker_chain.predict( callbacks=_run_manager.get_child(), **query_checker_inputs ).strip() intermediate_steps.append( checked_sql_command ) # output: sql generation (checker) _run_manager.on_text( checked_sql_command, color="green", verbose=self.verbose ) intermediate_steps.append( {"sql_cmd": checked_sql_command} ) # input: sql exec result = self.database.run(checked_sql_command) intermediate_steps.append(str(result)) # output: sql exec sql_cmd = checked_sql_command _run_manager.on_text("\nSQLResult: ", verbose=self.verbose) _run_manager.on_text(result, color="yellow", verbose=self.verbose) # If return direct, we just set the final result equal to # the result of the sql query result, otherwise try to get a human readable # final answer if self.return_direct: final_result = result else: _run_manager.on_text("\nAnswer:", verbose=self.verbose) input_text += f"{sql_cmd}\nSQLResult: {result}\nAnswer:" llm_inputs["input"] = input_text
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/sql_database/base.html
cf5e270ef9d0-4
llm_inputs["input"] = input_text intermediate_steps.append(llm_inputs) # input: final answer final_result = self.llm_chain.predict( callbacks=_run_manager.get_child(), **llm_inputs, ).strip() intermediate_steps.append(final_result) # output: final answer _run_manager.on_text(final_result, color="green", verbose=self.verbose) chain_result: Dict[str, Any] = {self.output_key: final_result} if self.return_intermediate_steps: chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps return chain_result except Exception as exc: # Append intermediate steps to exception, to aid in logging and later # improvement of few shot prompt seeds exc.intermediate_steps = intermediate_steps # type: ignore raise exc @property def _chain_type(self) -> str: return "sql_database_chain" [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, db: SQLDatabase, prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> SQLDatabaseChain: prompt = prompt or SQL_PROMPTS.get(db.dialect, PROMPT) llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(llm_chain=llm_chain, database=db, **kwargs) [docs]class SQLDatabaseSequentialChain(Chain): """Chain for querying SQL database that is a sequential chain. The chain is as follows: 1. Based on the query, determine which tables to use. 2. Based on those tables, call the normal SQL database chain.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/sql_database/base.html
cf5e270ef9d0-5
2. Based on those tables, call the normal SQL database chain. This is useful in cases where the number of tables in the database is large. """ decider_chain: LLMChain sql_chain: SQLDatabaseChain input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: return_intermediate_steps: bool = False [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, database: SQLDatabase, query_prompt: BasePromptTemplate = PROMPT, decider_prompt: BasePromptTemplate = DECIDER_PROMPT, **kwargs: Any, ) -> SQLDatabaseSequentialChain: """Load the necessary chains.""" sql_chain = SQLDatabaseChain.from_llm( llm, database, prompt=query_prompt, **kwargs ) decider_chain = LLMChain( llm=llm, prompt=decider_prompt, output_key="table_names" ) return cls(sql_chain=sql_chain, decider_chain=decider_chain, **kwargs) @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, INTERMEDIATE_STEPS_KEY] def _call( self, inputs: Dict[str, Any],
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/sql_database/base.html
cf5e270ef9d0-6
def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() _table_names = self.sql_chain.database.get_usable_table_names() table_names = ", ".join(_table_names) llm_inputs = { "query": inputs[self.input_key], "table_names": table_names, } _lowercased_table_names = [name.lower() for name in _table_names] table_names_from_chain = self.decider_chain.predict_and_parse(**llm_inputs) table_names_to_use = [ name for name in table_names_from_chain if name.lower() in _lowercased_table_names ] _run_manager.on_text("Table names to use:", end="\n", verbose=self.verbose) _run_manager.on_text( str(table_names_to_use), color="yellow", verbose=self.verbose ) new_inputs = { self.sql_chain.input_key: inputs[self.input_key], "table_names_to_use": table_names_to_use, } return self.sql_chain( new_inputs, callbacks=_run_manager.get_child(), return_only_outputs=True ) @property def _chain_type(self) -> str: return "sql_database_sequential_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/sql_database/base.html
f043fac22094-0
Source code for langchain.chains.hyde.base """Hypothetical Document Embeddings. https://arxiv.org/abs/2212.10496 """ from __future__ import annotations from typing import Any, Dict, List, Optional import numpy as np from pydantic import Extra from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.hyde.prompts import PROMPT_MAP from langchain.chains.llm import LLMChain from langchain.embeddings.base import Embeddings [docs]class HypotheticalDocumentEmbedder(Chain, Embeddings): """Generate hypothetical document for query, and then embed that. Based on https://arxiv.org/abs/2212.10496 """ base_embeddings: Embeddings llm_chain: LLMChain class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Input keys for Hyde's LLM chain.""" return self.llm_chain.input_keys @property def output_keys(self) -> List[str]: """Output keys for Hyde's LLM chain.""" return self.llm_chain.output_keys [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call the base embeddings.""" return self.base_embeddings.embed_documents(texts) [docs] def combine_embeddings(self, embeddings: List[List[float]]) -> List[float]: """Combine embeddings into final embeddings.""" return list(np.array(embeddings).mean(axis=0))
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/hyde/base.html
f043fac22094-1
return list(np.array(embeddings).mean(axis=0)) [docs] def embed_query(self, text: str) -> List[float]: """Generate a hypothetical document and embedded it.""" var_name = self.llm_chain.input_keys[0] result = self.llm_chain.generate([{var_name: text}]) documents = [generation.text for generation in result.generations[0]] embeddings = self.embed_documents(documents) return self.combine_embeddings(embeddings) def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: """Call the internal llm chain.""" _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() return self.llm_chain(inputs, callbacks=_run_manager.get_child()) [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, base_embeddings: Embeddings, prompt_key: str, **kwargs: Any, ) -> HypotheticalDocumentEmbedder: """Load and use LLMChain for a specific prompt key.""" prompt = PROMPT_MAP[prompt_key] llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(base_embeddings=base_embeddings, llm_chain=llm_chain, **kwargs) @property def _chain_type(self) -> str: return "hyde_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/hyde/base.html
c758ad599ce9-0
Source code for langchain.chains.qa_with_sources.base """Question answering with sources over documents.""" from __future__ import annotations import re from abc import ABC, abstractmethod from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.llm import LLMChain from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain from langchain.chains.qa_with_sources.map_reduce_prompt import ( COMBINE_PROMPT, EXAMPLE_PROMPT, QUESTION_PROMPT, ) from langchain.docstore.document import Document from langchain.prompts.base import BasePromptTemplate class BaseQAWithSourcesChain(Chain, ABC): """Question answering with sources over documents.""" combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine documents.""" question_key: str = "question" #: :meta private: input_docs_key: str = "docs" #: :meta private: answer_key: str = "answer" #: :meta private: sources_answer_key: str = "sources" #: :meta private: return_source_documents: bool = False """Return the source documents.""" @classmethod def from_llm( cls, llm: BaseLanguageModel, document_prompt: BasePromptTemplate = EXAMPLE_PROMPT,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/qa_with_sources/base.html
c758ad599ce9-1
document_prompt: BasePromptTemplate = EXAMPLE_PROMPT, question_prompt: BasePromptTemplate = QUESTION_PROMPT, combine_prompt: BasePromptTemplate = COMBINE_PROMPT, **kwargs: Any, ) -> BaseQAWithSourcesChain: """Construct the chain from an LLM.""" llm_question_chain = LLMChain(llm=llm, prompt=question_prompt) llm_combine_chain = LLMChain(llm=llm, prompt=combine_prompt) combine_results_chain = StuffDocumentsChain( llm_chain=llm_combine_chain, document_prompt=document_prompt, document_variable_name="summaries", ) combine_document_chain = MapReduceDocumentsChain( llm_chain=llm_question_chain, combine_document_chain=combine_results_chain, document_variable_name="context", ) return cls( combine_documents_chain=combine_document_chain, **kwargs, ) @classmethod def from_chain_type( cls, llm: BaseLanguageModel, chain_type: str = "stuff", chain_type_kwargs: Optional[dict] = None, **kwargs: Any, ) -> BaseQAWithSourcesChain: """Load chain from chain type.""" _chain_kwargs = chain_type_kwargs or {} combine_document_chain = load_qa_with_sources_chain( llm, chain_type=chain_type, **_chain_kwargs ) return cls(combine_documents_chain=combine_document_chain, **kwargs) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Expect input key.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/qa_with_sources/base.html
c758ad599ce9-2
def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.question_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ _output_keys = [self.answer_key, self.sources_answer_key] if self.return_source_documents: _output_keys = _output_keys + ["source_documents"] return _output_keys @root_validator(pre=True) def validate_naming(cls, values: Dict) -> Dict: """Fix backwards compatability in naming.""" if "combine_document_chain" in values: values["combine_documents_chain"] = values.pop("combine_document_chain") return values @abstractmethod def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]: """Get docs to run questioning over.""" def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() docs = self._get_docs(inputs) answer = self.combine_documents_chain.run( input_documents=docs, callbacks=_run_manager.get_child(), **inputs ) if re.search(r"SOURCES:\s", answer): answer, sources = re.split(r"SOURCES:\s", answer) else: sources = "" result: Dict[str, Any] = { self.answer_key: answer, self.sources_answer_key: sources, } if self.return_source_documents: result["source_documents"] = docs
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/qa_with_sources/base.html
c758ad599ce9-3
} if self.return_source_documents: result["source_documents"] = docs return result @abstractmethod async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]: """Get docs to run questioning over.""" async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() docs = await self._aget_docs(inputs) answer = await self.combine_documents_chain.arun( input_documents=docs, callbacks=_run_manager.get_child(), **inputs ) if re.search(r"SOURCES:\s", answer): answer, sources = re.split(r"SOURCES:\s", answer) else: sources = "" result: Dict[str, Any] = { self.answer_key: answer, self.sources_answer_key: sources, } if self.return_source_documents: result["source_documents"] = docs return result [docs]class QAWithSourcesChain(BaseQAWithSourcesChain): """Question answering with sources over documents.""" input_docs_key: str = "docs" #: :meta private: @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_docs_key, self.question_key] def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]: return inputs.pop(self.input_docs_key) async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/qa_with_sources/base.html
c758ad599ce9-4
return inputs.pop(self.input_docs_key) @property def _chain_type(self) -> str: return "qa_with_sources_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/qa_with_sources/base.html
92de44e5f839-0
Source code for langchain.chains.qa_with_sources.vector_db """Question-answering with sources over a vector database.""" import warnings from typing import Any, Dict, List from pydantic import Field, root_validator from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain from langchain.docstore.document import Document from langchain.vectorstores.base import VectorStore [docs]class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over a vector database.""" vectorstore: VectorStore = Field(exclude=True) """Vector Database to connect to.""" k: int = 4 """Number of results to return from store""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" search_kwargs: Dict[str, Any] = Field(default_factory=dict) """Extra search args.""" def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain ): tokens = [ self.combine_documents_chain.llm_chain.llm.get_num_tokens( doc.page_content ) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs]
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/qa_with_sources/vector_db.html
92de44e5f839-1
num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]: question = inputs[self.question_key] docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs ) return self._reduce_tokens_below_limit(docs) async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]: raise NotImplementedError("VectorDBQAWithSourcesChain does not support async") @root_validator() def raise_deprecation(cls, values: Dict) -> Dict: warnings.warn( "`VectorDBQAWithSourcesChain` is deprecated - " "please use `from langchain.chains import RetrievalQAWithSourcesChain`" ) return values @property def _chain_type(self) -> str: return "vector_db_qa_with_sources_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/qa_with_sources/vector_db.html
022fb0123bab-0
Source code for langchain.chains.qa_with_sources.retrieval """Question-answering with sources over an index.""" from typing import Any, Dict, List from pydantic import Field from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain from langchain.docstore.document import Document from langchain.schema import BaseRetriever [docs]class RetrievalQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over an index.""" retriever: BaseRetriever = Field(exclude=True) """Index to connect to.""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain ): tokens = [ self.combine_documents_chain.llm_chain.llm.get_num_tokens( doc.page_content ) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]: question = inputs[self.question_key] docs = self.retriever.get_relevant_documents(question)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/qa_with_sources/retrieval.html
022fb0123bab-1
docs = self.retriever.get_relevant_documents(question) return self._reduce_tokens_below_limit(docs) async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]: question = inputs[self.question_key] docs = await self.retriever.aget_relevant_documents(question) return self._reduce_tokens_below_limit(docs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/qa_with_sources/retrieval.html
947118fa9f6e-0
Source code for langchain.chains.llm_math.base """Chain that interprets a prompt and executes python code to do math.""" from __future__ import annotations import math import re import warnings from typing import Any, Dict, List, Optional import numexpr from pydantic import Extra, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.llm_math.prompt import PROMPT from langchain.prompts.base import BasePromptTemplate [docs]class LLMMathChain(Chain): """Chain that interprets a prompt and executes python code to do math. Example: .. code-block:: python from langchain import LLMMathChain, OpenAI llm_math = LLMMathChain.from_llm(OpenAI()) """ llm_chain: LLMChain llm: Optional[BaseLanguageModel] = None """[Deprecated] LLM wrapper to use.""" prompt: BasePromptTemplate = PROMPT """[Deprecated] Prompt to use to translate to python if necessary.""" input_key: str = "question" #: :meta private: output_key: str = "answer" #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values: warnings.warn(
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_math/base.html
947118fa9f6e-1
if "llm" in values: warnings.warn( "Directly instantiating an LLMMathChain with an llm is deprecated. " "Please instantiate with llm_chain argument or using the from_llm " "class method." ) if "llm_chain" not in values and values["llm"] is not None: prompt = values.get("prompt", PROMPT) values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt) return values @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Expect output key. :meta private: """ return [self.output_key] def _evaluate_expression(self, expression: str) -> str: try: local_dict = {"pi": math.pi, "e": math.e} output = str( numexpr.evaluate( expression.strip(), global_dict={}, # restrict access to globals local_dict=local_dict, # add common mathematical functions ) ) except Exception as e: raise ValueError( f'LLMMathChain._evaluate("{expression}") raised error: {e}.' " Please try again with a valid numerical expression" ) # Remove any leading and trailing brackets from the output return re.sub(r"^\[|\]$", "", output) def _process_llm_result( self, llm_output: str, run_manager: CallbackManagerForChainRun ) -> Dict[str, str]:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_math/base.html
947118fa9f6e-2
) -> Dict[str, str]: run_manager.on_text(llm_output, color="green", verbose=self.verbose) llm_output = llm_output.strip() text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL) if text_match: expression = text_match.group(1) output = self._evaluate_expression(expression) run_manager.on_text("\nAnswer: ", verbose=self.verbose) run_manager.on_text(output, color="yellow", verbose=self.verbose) answer = "Answer: " + output elif llm_output.startswith("Answer:"): answer = llm_output elif "Answer:" in llm_output: answer = "Answer: " + llm_output.split("Answer:")[-1] else: raise ValueError(f"unknown format from LLM: {llm_output}") return {self.output_key: answer} async def _aprocess_llm_result( self, llm_output: str, run_manager: AsyncCallbackManagerForChainRun, ) -> Dict[str, str]: await run_manager.on_text(llm_output, color="green", verbose=self.verbose) llm_output = llm_output.strip() text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL) if text_match: expression = text_match.group(1) output = self._evaluate_expression(expression) await run_manager.on_text("\nAnswer: ", verbose=self.verbose) await run_manager.on_text(output, color="yellow", verbose=self.verbose) answer = "Answer: " + output elif llm_output.startswith("Answer:"): answer = llm_output
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_math/base.html
947118fa9f6e-3
elif llm_output.startswith("Answer:"): answer = llm_output elif "Answer:" in llm_output: answer = "Answer: " + llm_output.split("Answer:")[-1] else: raise ValueError(f"unknown format from LLM: {llm_output}") return {self.output_key: answer} def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() _run_manager.on_text(inputs[self.input_key]) llm_output = self.llm_chain.predict( question=inputs[self.input_key], stop=["```output"], callbacks=_run_manager.get_child(), ) return self._process_llm_result(llm_output, _run_manager) async def _acall( self, inputs: Dict[str, str], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() await _run_manager.on_text(inputs[self.input_key]) llm_output = await self.llm_chain.apredict( question=inputs[self.input_key], stop=["```output"], callbacks=_run_manager.get_child(), ) return await self._aprocess_llm_result(llm_output, _run_manager) @property def _chain_type(self) -> str: return "llm_math_chain" [docs] @classmethod def from_llm( cls,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_math/base.html
947118fa9f6e-4
[docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: BasePromptTemplate = PROMPT, **kwargs: Any, ) -> LLMMathChain: llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(llm_chain=llm_chain, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_math/base.html
a3093a112b78-0
Source code for langchain.chains.retrieval_qa.base """Chain for question-answering against a vector database.""" from __future__ import annotations import warnings from abc import abstractmethod from typing import Any, Dict, List, Optional from pydantic import Extra, Field, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.llm import LLMChain from langchain.chains.question_answering import load_qa_chain from langchain.chains.question_answering.stuff_prompt import PROMPT_SELECTOR from langchain.prompts import PromptTemplate from langchain.schema import BaseRetriever, Document from langchain.vectorstores.base import VectorStore class BaseRetrievalQA(Chain): combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine the documents.""" input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: return_source_documents: bool = False """Return the source documents.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True allow_population_by_field_name = True @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the output keys.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/retrieval_qa/base.html
a3093a112b78-1
def output_keys(self) -> List[str]: """Return the output keys. :meta private: """ _output_keys = [self.output_key] if self.return_source_documents: _output_keys = _output_keys + ["source_documents"] return _output_keys @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[PromptTemplate] = None, **kwargs: Any, ) -> BaseRetrievalQA: """Initialize from LLM.""" _prompt = prompt or PROMPT_SELECTOR.get_prompt(llm) llm_chain = LLMChain(llm=llm, prompt=_prompt) document_prompt = PromptTemplate( input_variables=["page_content"], template="Context:\n{page_content}" ) combine_documents_chain = StuffDocumentsChain( llm_chain=llm_chain, document_variable_name="context", document_prompt=document_prompt, ) return cls(combine_documents_chain=combine_documents_chain, **kwargs) @classmethod def from_chain_type( cls, llm: BaseLanguageModel, chain_type: str = "stuff", chain_type_kwargs: Optional[dict] = None, **kwargs: Any, ) -> BaseRetrievalQA: """Load chain from chain type.""" _chain_type_kwargs = chain_type_kwargs or {} combine_documents_chain = load_qa_chain( llm, chain_type=chain_type, **_chain_type_kwargs ) return cls(combine_documents_chain=combine_documents_chain, **kwargs) @abstractmethod def _get_docs(self, question: str) -> List[Document]:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/retrieval_qa/base.html
a3093a112b78-2
def _get_docs(self, question: str) -> List[Document]: """Get documents to do question answering over.""" def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] docs = self._get_docs(question) answer = self.combine_documents_chain.run( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} @abstractmethod async def _aget_docs(self, question: str) -> List[Document]: """Get documents to do question answering over.""" async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/retrieval_qa/base.html
a3093a112b78-3
the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] docs = await self._aget_docs(question) answer = await self.combine_documents_chain.arun( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} [docs]class RetrievalQA(BaseRetrievalQA): """Chain for question-answering against an index. Example: .. code-block:: python from langchain.llms import OpenAI from langchain.chains import RetrievalQA from langchain.faiss import FAISS from langchain.vectorstores.base import VectorStoreRetriever retriever = VectorStoreRetriever(vectorstore=FAISS(...)) retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=retriever) """ retriever: BaseRetriever = Field(exclude=True) def _get_docs(self, question: str) -> List[Document]: return self.retriever.get_relevant_documents(question) async def _aget_docs(self, question: str) -> List[Document]: return await self.retriever.aget_relevant_documents(question) @property def _chain_type(self) -> str: """Return the chain type."""
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/retrieval_qa/base.html
a3093a112b78-4
def _chain_type(self) -> str: """Return the chain type.""" return "retrieval_qa" [docs]class VectorDBQA(BaseRetrievalQA): """Chain for question-answering against a vector database.""" vectorstore: VectorStore = Field(exclude=True, alias="vectorstore") """Vector Database to connect to.""" k: int = 4 """Number of documents to query for.""" search_type: str = "similarity" """Search type to use over vectorstore. `similarity` or `mmr`.""" search_kwargs: Dict[str, Any] = Field(default_factory=dict) """Extra search args.""" @root_validator() def raise_deprecation(cls, values: Dict) -> Dict: warnings.warn( "`VectorDBQA` is deprecated - " "please use `from langchain.chains import RetrievalQA`" ) return values @root_validator() def validate_search_type(cls, values: Dict) -> Dict: """Validate search type.""" if "search_type" in values: search_type = values["search_type"] if search_type not in ("similarity", "mmr"): raise ValueError(f"search_type of {search_type} not allowed.") return values def _get_docs(self, question: str) -> List[Document]: if self.search_type == "similarity": docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs ) elif self.search_type == "mmr": docs = self.vectorstore.max_marginal_relevance_search( question, k=self.k, **self.search_kwargs )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/retrieval_qa/base.html
a3093a112b78-5
question, k=self.k, **self.search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs async def _aget_docs(self, question: str) -> List[Document]: raise NotImplementedError("VectorDBQA does not support async") @property def _chain_type(self) -> str: """Return the chain type.""" return "vector_db_qa" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/retrieval_qa/base.html
24db6450623b-0
Source code for langchain.chains.conversation.base """Chain that carries on a conversation and calls an LLM.""" from typing import Dict, List from pydantic import Extra, Field, root_validator from langchain.chains.conversation.prompt import PROMPT from langchain.chains.llm import LLMChain from langchain.memory.buffer import ConversationBufferMemory from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseMemory [docs]class ConversationChain(LLMChain): """Chain to have a conversation and load context from memory. Example: .. code-block:: python from langchain import ConversationChain, OpenAI conversation = ConversationChain(llm=OpenAI()) """ memory: BaseMemory = Field(default_factory=ConversationBufferMemory) """Default memory store.""" prompt: BasePromptTemplate = PROMPT """Default conversation prompt to use.""" input_key: str = "input" #: :meta private: output_key: str = "response" #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Use this since so some prompt vars come from history.""" return [self.input_key] @root_validator() def validate_prompt_input_variables(cls, values: Dict) -> Dict: """Validate that prompt input variables are consistent.""" memory_keys = values["memory"].memory_variables input_key = values["input_key"] if input_key in memory_keys: raise ValueError( f"The input key {input_key} was also found in the memory keys "
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/conversation/base.html
24db6450623b-1
f"The input key {input_key} was also found in the memory keys " f"({memory_keys}) - please provide keys that don't overlap." ) prompt_variables = values["prompt"].input_variables expected_keys = memory_keys + [input_key] if set(expected_keys) != set(prompt_variables): raise ValueError( "Got unexpected prompt input variables. The prompt expects " f"{prompt_variables}, but got {memory_keys} as inputs from " f"memory, and {input_key} as the normal input key." ) return values By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/conversation/base.html
df77e24cd9d0-0
Source code for langchain.chains.api.base """Chain that makes API calls and summarizes the responses to answer a question.""" from __future__ import annotations from typing import Any, Dict, List, Optional from pydantic import Field, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.api.prompt import API_RESPONSE_PROMPT, API_URL_PROMPT from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.prompts import BasePromptTemplate from langchain.requests import TextRequestsWrapper [docs]class APIChain(Chain): """Chain that makes API calls and summarizes the responses to answer a question.""" api_request_chain: LLMChain api_answer_chain: LLMChain requests_wrapper: TextRequestsWrapper = Field(exclude=True) api_docs: str question_key: str = "question" #: :meta private: output_key: str = "output" #: :meta private: @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.question_key] @property def output_keys(self) -> List[str]: """Expect output key. :meta private: """ return [self.output_key] @root_validator(pre=True) def validate_api_request_prompt(cls, values: Dict) -> Dict: """Check that api request prompt expects the right variables.""" input_vars = values["api_request_chain"].prompt.input_variables expected_vars = {"question", "api_docs"} if set(input_vars) != expected_vars:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/api/base.html
df77e24cd9d0-1
if set(input_vars) != expected_vars: raise ValueError( f"Input variables should be {expected_vars}, got {input_vars}" ) return values @root_validator(pre=True) def validate_api_answer_prompt(cls, values: Dict) -> Dict: """Check that api answer prompt expects the right variables.""" input_vars = values["api_answer_chain"].prompt.input_variables expected_vars = {"question", "api_docs", "api_url", "api_response"} if set(input_vars) != expected_vars: raise ValueError( f"Input variables should be {expected_vars}, got {input_vars}" ) return values def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs[self.question_key] api_url = self.api_request_chain.predict( question=question, api_docs=self.api_docs, callbacks=_run_manager.get_child(), ) _run_manager.on_text(api_url, color="green", end="\n", verbose=self.verbose) api_url = api_url.strip() api_response = self.requests_wrapper.get(api_url) _run_manager.on_text( api_response, color="yellow", end="\n", verbose=self.verbose ) answer = self.api_answer_chain.predict( question=question, api_docs=self.api_docs, api_url=api_url, api_response=api_response, callbacks=_run_manager.get_child(), ) return {self.output_key: answer} async def _acall(
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/api/base.html
df77e24cd9d0-2
return {self.output_key: answer} async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() question = inputs[self.question_key] api_url = await self.api_request_chain.apredict( question=question, api_docs=self.api_docs, callbacks=_run_manager.get_child(), ) await _run_manager.on_text( api_url, color="green", end="\n", verbose=self.verbose ) api_url = api_url.strip() api_response = await self.requests_wrapper.aget(api_url) await _run_manager.on_text( api_response, color="yellow", end="\n", verbose=self.verbose ) answer = await self.api_answer_chain.apredict( question=question, api_docs=self.api_docs, api_url=api_url, api_response=api_response, callbacks=_run_manager.get_child(), ) return {self.output_key: answer} [docs] @classmethod def from_llm_and_api_docs( cls, llm: BaseLanguageModel, api_docs: str, headers: Optional[dict] = None, api_url_prompt: BasePromptTemplate = API_URL_PROMPT, api_response_prompt: BasePromptTemplate = API_RESPONSE_PROMPT, **kwargs: Any, ) -> APIChain: """Load chain from just an LLM and the api docs.""" get_request_chain = LLMChain(llm=llm, prompt=api_url_prompt)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/api/base.html
df77e24cd9d0-3
requests_wrapper = TextRequestsWrapper(headers=headers) get_answer_chain = LLMChain(llm=llm, prompt=api_response_prompt) return cls( api_request_chain=get_request_chain, api_answer_chain=get_answer_chain, requests_wrapper=requests_wrapper, api_docs=api_docs, **kwargs, ) @property def _chain_type(self) -> str: return "api_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/api/base.html
8f0fcfc20bfb-0
Source code for langchain.chains.api.openapi.chain """Chain that makes API calls and summarizes the responses to answer a question.""" from __future__ import annotations import json from typing import Any, Dict, List, NamedTuple, Optional, cast from pydantic import BaseModel, Field from requests import Response from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun, Callbacks from langchain.chains.api.openapi.requests_chain import APIRequesterChain from langchain.chains.api.openapi.response_chain import APIResponderChain from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.requests import Requests from langchain.tools.openapi.utils.api_models import APIOperation class _ParamMapping(NamedTuple): """Mapping from parameter name to parameter value.""" query_params: List[str] body_params: List[str] path_params: List[str] [docs]class OpenAPIEndpointChain(Chain, BaseModel): """Chain interacts with an OpenAPI endpoint using natural language.""" api_request_chain: LLMChain api_response_chain: Optional[LLMChain] api_operation: APIOperation requests: Requests = Field(exclude=True, default_factory=Requests) param_mapping: _ParamMapping = Field(alias="param_mapping") return_intermediate_steps: bool = False instructions_key: str = "instructions" #: :meta private: output_key: str = "output" #: :meta private: max_text_length: Optional[int] = Field(ge=0) #: :meta private: @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.instructions_key] @property
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/api/openapi/chain.html
8f0fcfc20bfb-1
""" return [self.instructions_key] @property def output_keys(self) -> List[str]: """Expect output key. :meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, "intermediate_steps"] def _construct_path(self, args: Dict[str, str]) -> str: """Construct the path from the deserialized input.""" path = self.api_operation.base_url + self.api_operation.path for param in self.param_mapping.path_params: path = path.replace(f"{{{param}}}", str(args.pop(param, ""))) return path def _extract_query_params(self, args: Dict[str, str]) -> Dict[str, str]: """Extract the query params from the deserialized input.""" query_params = {} for param in self.param_mapping.query_params: if param in args: query_params[param] = args.pop(param) return query_params def _extract_body_params(self, args: Dict[str, str]) -> Optional[Dict[str, str]]: """Extract the request body params from the deserialized input.""" body_params = None if self.param_mapping.body_params: body_params = {} for param in self.param_mapping.body_params: if param in args: body_params[param] = args.pop(param) return body_params [docs] def deserialize_json_input(self, serialized_args: str) -> dict: """Use the serialized typescript dictionary. Resolve the path, query params dict, and optional requestBody dict. """ args: dict = json.loads(serialized_args) path = self._construct_path(args)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/api/openapi/chain.html
8f0fcfc20bfb-2
path = self._construct_path(args) body_params = self._extract_body_params(args) query_params = self._extract_query_params(args) return { "url": path, "data": body_params, "params": query_params, } def _get_output(self, output: str, intermediate_steps: dict) -> dict: """Return the output from the API call.""" if self.return_intermediate_steps: return { self.output_key: output, "intermediate_steps": intermediate_steps, } else: return {self.output_key: output} def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() intermediate_steps = {} instructions = inputs[self.instructions_key] instructions = instructions[: self.max_text_length] _api_arguments = self.api_request_chain.predict_and_parse( instructions=instructions, callbacks=_run_manager.get_child() ) api_arguments = cast(str, _api_arguments) intermediate_steps["request_args"] = api_arguments _run_manager.on_text( api_arguments, color="green", end="\n", verbose=self.verbose ) if api_arguments.startswith("ERROR"): return self._get_output(api_arguments, intermediate_steps) elif api_arguments.startswith("MESSAGE:"): return self._get_output( api_arguments[len("MESSAGE:") :], intermediate_steps ) try: request_args = self.deserialize_json_input(api_arguments) method = getattr(self.requests, self.api_operation.method.value)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/api/openapi/chain.html
8f0fcfc20bfb-3
method = getattr(self.requests, self.api_operation.method.value) api_response: Response = method(**request_args) if api_response.status_code != 200: method_str = str(self.api_operation.method.value) response_text = ( f"{api_response.status_code}: {api_response.reason}" + f"\nFor {method_str.upper()} {request_args['url']}\n" + f"Called with args: {request_args['params']}" ) else: response_text = api_response.text except Exception as e: response_text = f"Error with message {str(e)}" response_text = response_text[: self.max_text_length] intermediate_steps["response_text"] = response_text _run_manager.on_text( response_text, color="blue", end="\n", verbose=self.verbose ) if self.api_response_chain is not None: _answer = self.api_response_chain.predict_and_parse( response=response_text, instructions=instructions, callbacks=_run_manager.get_child(), ) answer = cast(str, _answer) _run_manager.on_text(answer, color="yellow", end="\n", verbose=self.verbose) return self._get_output(answer, intermediate_steps) else: return self._get_output(response_text, intermediate_steps) [docs] @classmethod def from_url_and_method( cls, spec_url: str, path: str, method: str, llm: BaseLanguageModel, requests: Optional[Requests] = None, return_intermediate_steps: bool = False, **kwargs: Any # TODO: Handle async ) -> "OpenAPIEndpointChain":
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/api/openapi/chain.html
8f0fcfc20bfb-4
# TODO: Handle async ) -> "OpenAPIEndpointChain": """Create an OpenAPIEndpoint from a spec at the specified url.""" operation = APIOperation.from_openapi_url(spec_url, path, method) return cls.from_api_operation( operation, requests=requests, llm=llm, return_intermediate_steps=return_intermediate_steps, **kwargs, ) [docs] @classmethod def from_api_operation( cls, operation: APIOperation, llm: BaseLanguageModel, requests: Optional[Requests] = None, verbose: bool = False, return_intermediate_steps: bool = False, raw_response: bool = False, callbacks: Callbacks = None, **kwargs: Any # TODO: Handle async ) -> "OpenAPIEndpointChain": """Create an OpenAPIEndpointChain from an operation and a spec.""" param_mapping = _ParamMapping( query_params=operation.query_params, body_params=operation.body_params, path_params=operation.path_params, ) requests_chain = APIRequesterChain.from_llm_and_typescript( llm, typescript_definition=operation.to_typescript(), verbose=verbose, callbacks=callbacks, ) if raw_response: response_chain = None else: response_chain = APIResponderChain.from_llm( llm, verbose=verbose, callbacks=callbacks ) _requests = requests or Requests() return cls( api_request_chain=requests_chain, api_response_chain=response_chain, api_operation=operation, requests=_requests, param_mapping=param_mapping,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/api/openapi/chain.html
8f0fcfc20bfb-5
requests=_requests, param_mapping=param_mapping, verbose=verbose, return_intermediate_steps=return_intermediate_steps, callbacks=callbacks, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/api/openapi/chain.html
a4536c037b83-0
Source code for langchain.retrievers.chatgpt_plugin_retriever from __future__ import annotations from typing import List, Optional import aiohttp import requests from pydantic import BaseModel from langchain.schema import BaseRetriever, Document [docs]class ChatGPTPluginRetriever(BaseRetriever, BaseModel): url: str bearer_token: str top_k: int = 3 filter: Optional[dict] = None aiosession: Optional[aiohttp.ClientSession] = None class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_relevant_documents(self, query: str) -> List[Document]: url, json, headers = self._create_request(query) response = requests.post(url, json=json, headers=headers) results = response.json()["results"][0]["results"] docs = [] for d in results: content = d.pop("text") metadata = d.pop("metadata", d) if metadata.get("source_id"): metadata["source"] = metadata.pop("source_id") docs.append(Document(page_content=content, metadata=metadata)) return docs [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: url, json, headers = self._create_request(query) if not self.aiosession: async with aiohttp.ClientSession() as session: async with session.post(url, headers=headers, json=json) as response: res = await response.json() else: async with self.aiosession.post( url, headers=headers, json=json ) as response: res = await response.json()
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/chatgpt_plugin_retriever.html
a4536c037b83-1
) as response: res = await response.json() results = res["results"][0]["results"] docs = [] for d in results: content = d.pop("text") metadata = d.pop("metadata", d) if metadata.get("source_id"): metadata["source"] = metadata.pop("source_id") docs.append(Document(page_content=content, metadata=metadata)) return docs def _create_request(self, query: str) -> tuple[str, dict, dict]: url = f"{self.url}/query" json = { "queries": [ { "query": query, "filter": self.filter, "top_k": self.top_k, } ] } headers = { "Content-Type": "application/json", "Authorization": f"Bearer {self.bearer_token}", } return url, json, headers By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/chatgpt_plugin_retriever.html
e739168c01d9-0
Source code for langchain.retrievers.elastic_search_bm25 """Wrapper around Elasticsearch vector database.""" from __future__ import annotations import uuid from typing import Any, Iterable, List from langchain.docstore.document import Document from langchain.schema import BaseRetriever [docs]class ElasticSearchBM25Retriever(BaseRetriever): """Wrapper around Elasticsearch using BM25 as a retrieval method. To connect to an Elasticsearch instance that requires login credentials, including Elastic Cloud, use the Elasticsearch URL format https://username:password@es_host:9243. For example, to connect to Elastic Cloud, create the Elasticsearch URL with the required authentication details and pass it to the ElasticVectorSearch constructor as the named parameter elasticsearch_url. You can obtain your Elastic Cloud URL and login credentials by logging in to the Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and navigating to the "Deployments" page. To obtain your Elastic Cloud password for the default "elastic" user: 1. Log in to the Elastic Cloud console at https://cloud.elastic.co 2. Go to "Security" > "Users" 3. Locate the "elastic" user and click "Edit" 4. Click "Reset password" 5. Follow the prompts to reset the password The format for Elastic Cloud URLs is https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243. """ def __init__(self, client: Any, index_name: str): self.client = client self.index_name = index_name [docs] @classmethod def create(
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/elastic_search_bm25.html
e739168c01d9-1
self.index_name = index_name [docs] @classmethod def create( cls, elasticsearch_url: str, index_name: str, k1: float = 2.0, b: float = 0.75 ) -> ElasticSearchBM25Retriever: from elasticsearch import Elasticsearch # Create an Elasticsearch client instance es = Elasticsearch(elasticsearch_url) # Define the index settings and mappings settings = { "analysis": {"analyzer": {"default": {"type": "standard"}}}, "similarity": { "custom_bm25": { "type": "BM25", "k1": k1, "b": b, } }, } mappings = { "properties": { "content": { "type": "text", "similarity": "custom_bm25", # Use the custom BM25 similarity } } } # Create the index with the specified settings and mappings es.indices.create(index=index_name, mappings=mappings, settings=settings) return cls(es, index_name) [docs] def add_texts( self, texts: Iterable[str], refresh_indices: bool = True, ) -> List[str]: """Run more texts through the embeddings and add to the retriver. Args: texts: Iterable of strings to add to the retriever. refresh_indices: bool to refresh ElasticSearch indices Returns: List of ids from adding the texts into the retriever. """ try: from elasticsearch.helpers import bulk except ImportError: raise ValueError( "Could not import elasticsearch python package. "
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/elastic_search_bm25.html
e739168c01d9-2
raise ValueError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) requests = [] ids = [] for i, text in enumerate(texts): _id = str(uuid.uuid4()) request = { "_op_type": "index", "_index": self.index_name, "content": text, "_id": _id, } ids.append(_id) requests.append(request) bulk(self.client, requests) if refresh_indices: self.client.indices.refresh(index=self.index_name) return ids [docs] def get_relevant_documents(self, query: str) -> List[Document]: query_dict = {"query": {"match": {"content": query}}} res = self.client.search(index=self.index_name, body=query_dict) docs = [] for r in res["hits"]["hits"]: docs.append(Document(page_content=r["_source"]["content"])) return docs [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/elastic_search_bm25.html
19f6955e3979-0
Source code for langchain.retrievers.tfidf """TF-IDF Retriever. Largely based on https://github.com/asvskartheek/Text-Retrieval/blob/master/TF-IDF%20Search%20Engine%20(SKLEARN).ipynb""" from __future__ import annotations from typing import Any, Dict, Iterable, List, Optional from pydantic import BaseModel from langchain.schema import BaseRetriever, Document [docs]class TFIDFRetriever(BaseRetriever, BaseModel): vectorizer: Any docs: List[Document] tfidf_array: Any k: int = 4 class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] @classmethod def from_texts( cls, texts: Iterable[str], metadatas: Optional[Iterable[dict]] = None, tfidf_params: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> TFIDFRetriever: try: from sklearn.feature_extraction.text import TfidfVectorizer except ImportError: raise ImportError( "Could not import scikit-learn, please install with `pip install " "scikit-learn`." ) tfidf_params = tfidf_params or {} vectorizer = TfidfVectorizer(**tfidf_params) tfidf_array = vectorizer.fit_transform(texts) metadatas = metadatas or ({} for _ in texts) docs = [Document(page_content=t, metadata=m) for t, m in zip(texts, metadatas)]
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/tfidf.html
19f6955e3979-1
return cls(vectorizer=vectorizer, docs=docs, tfidf_array=tfidf_array, **kwargs) [docs] @classmethod def from_documents( cls, documents: Iterable[Document], *, tfidf_params: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> TFIDFRetriever: texts, metadatas = zip(*((d.page_content, d.metadata) for d in documents)) return cls.from_texts( texts=texts, tfidf_params=tfidf_params, metadatas=metadatas, **kwargs ) [docs] def get_relevant_documents(self, query: str) -> List[Document]: from sklearn.metrics.pairwise import cosine_similarity query_vec = self.vectorizer.transform( [query] ) # Ip -- (n_docs,x), Op -- (n_docs,n_Feats) results = cosine_similarity(self.tfidf_array, query_vec).reshape( (-1,) ) # Op -- (n_docs,1) -- Cosine Sim with each doc return_docs = [self.docs[i] for i in results.argsort()[-self.k :][::-1]] return return_docs [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/tfidf.html
f7819b69d7e5-0
Source code for langchain.retrievers.zep from __future__ import annotations from typing import TYPE_CHECKING, Dict, List, Optional from langchain.schema import BaseRetriever, Document if TYPE_CHECKING: from zep_python import MemorySearchResult [docs]class ZepRetriever(BaseRetriever): """A Retriever implementation for the Zep long-term memory store. Search your user's long-term chat history with Zep. Note: You will need to provide the user's `session_id` to use this retriever. More on Zep: Zep provides long-term conversation storage for LLM apps. The server stores, summarizes, embeds, indexes, and enriches conversational AI chat histories, and exposes them via simple, low-latency APIs. For server installation instructions, see: https://getzep.github.io/deployment/quickstart/ """ def __init__( self, session_id: str, url: str, top_k: Optional[int] = None, ): try: from zep_python import ZepClient except ImportError: raise ValueError( "Could not import zep-python package. " "Please install it with `pip install zep-python`." ) self.zep_client = ZepClient(base_url=url) self.session_id = session_id self.top_k = top_k def _search_result_to_doc( self, results: List[MemorySearchResult] ) -> List[Document]: return [ Document( page_content=r.message.pop("content"), metadata={"score": r.dist, **r.message}, ) for r in results
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/zep.html
f7819b69d7e5-1
) for r in results if r.message ] [docs] def get_relevant_documents( self, query: str, metadata: Optional[Dict] = None ) -> List[Document]: from zep_python import MemorySearchPayload payload: MemorySearchPayload = MemorySearchPayload( text=query, metadata=metadata ) results: List[MemorySearchResult] = self.zep_client.search_memory( self.session_id, payload, limit=self.top_k ) return self._search_result_to_doc(results) [docs] async def aget_relevant_documents( self, query: str, metadata: Optional[Dict] = None ) -> List[Document]: from zep_python import MemorySearchPayload payload: MemorySearchPayload = MemorySearchPayload( text=query, metadata=metadata ) results: List[MemorySearchResult] = await self.zep_client.asearch_memory( self.session_id, payload, limit=self.top_k ) return self._search_result_to_doc(results) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/zep.html
ba158238f972-0
Source code for langchain.retrievers.remote_retriever from typing import List, Optional import aiohttp import requests from pydantic import BaseModel from langchain.schema import BaseRetriever, Document [docs]class RemoteLangChainRetriever(BaseRetriever, BaseModel): url: str headers: Optional[dict] = None input_key: str = "message" response_key: str = "response" page_content_key: str = "page_content" metadata_key: str = "metadata" [docs] def get_relevant_documents(self, query: str) -> List[Document]: response = requests.post( self.url, json={self.input_key: query}, headers=self.headers ) result = response.json() return [ Document( page_content=r[self.page_content_key], metadata=r[self.metadata_key] ) for r in result[self.response_key] ] [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: async with aiohttp.ClientSession() as session: async with session.request( "POST", self.url, headers=self.headers, json={self.input_key: query} ) as response: result = await response.json() return [ Document( page_content=r[self.page_content_key], metadata=r[self.metadata_key] ) for r in result[self.response_key] ] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/remote_retriever.html
5ab5b5df176e-0
Source code for langchain.retrievers.aws_kendra_index_retriever """Retriever wrapper for AWS Kendra.""" import re from typing import Any, Dict, List from langchain.schema import BaseRetriever, Document [docs]class AwsKendraIndexRetriever(BaseRetriever): """Wrapper around AWS Kendra.""" kendraindex: str """Kendra index id""" k: int """Number of documents to query for.""" languagecode: str """Languagecode used for querying.""" kclient: Any """ boto3 client for Kendra. """ def __init__( self, kclient: Any, kendraindex: str, k: int = 3, languagecode: str = "en" ): self.kendraindex = kendraindex self.k = k self.languagecode = languagecode self.kclient = kclient def _clean_result(self, res_text: str) -> str: return re.sub("\s+", " ", res_text).replace("...", "") def _get_top_n_results(self, resp: Dict, count: int) -> Document: r = resp["ResultItems"][count] doc_title = r["DocumentTitle"]["Text"] doc_uri = r["DocumentURI"] r_type = r["Type"] if ( r["AdditionalAttributes"] and r["AdditionalAttributes"][0]["Key"] == "AnswerText" ): res_text = r["AdditionalAttributes"][0]["Value"]["TextWithHighlightsValue"][ "Text" ] else: res_text = r["DocumentExcerpt"]["Text"] doc_excerpt = self._clean_result(res_text)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/aws_kendra_index_retriever.html
5ab5b5df176e-1
doc_excerpt = self._clean_result(res_text) combined_text = f"""Document Title: {doc_title} Document Excerpt: {doc_excerpt} """ return Document( page_content=combined_text, metadata={ "source": doc_uri, "title": doc_title, "excerpt": doc_excerpt, "type": r_type, }, ) def _kendra_query(self, kquery: str) -> List[Document]: response = self.kclient.query( IndexId=self.kendraindex, QueryText=kquery.strip(), AttributeFilter={ "AndAllFilters": [ { "EqualsTo": { "Key": "_language_code", "Value": { "StringValue": self.languagecode, }, } } ] }, ) if len(response["ResultItems"]) > self.k: r_count = self.k else: r_count = len(response["ResultItems"]) return [self._get_top_n_results(response, i) for i in range(0, r_count)] [docs] def get_relevant_documents(self, query: str) -> List[Document]: """Run search on Kendra index and get top k documents docs = get_relevant_documents('This is my query') """ return self._kendra_query(query) [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: raise NotImplementedError("AwsKendraIndexRetriever does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/aws_kendra_index_retriever.html
67cb7bb02754-0
Source code for langchain.retrievers.svm """SMV Retriever. Largely based on https://github.com/karpathy/randomfun/blob/master/knn_vs_svm.ipynb""" from __future__ import annotations import concurrent.futures from typing import Any, List, Optional import numpy as np from pydantic import BaseModel from langchain.embeddings.base import Embeddings from langchain.schema import BaseRetriever, Document def create_index(contexts: List[str], embeddings: Embeddings) -> np.ndarray: with concurrent.futures.ThreadPoolExecutor() as executor: return np.array(list(executor.map(embeddings.embed_query, contexts))) [docs]class SVMRetriever(BaseRetriever, BaseModel): embeddings: Embeddings index: Any texts: List[str] k: int = 4 relevancy_threshold: Optional[float] = None class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] @classmethod def from_texts( cls, texts: List[str], embeddings: Embeddings, **kwargs: Any ) -> SVMRetriever: index = create_index(texts, embeddings) return cls(embeddings=embeddings, index=index, texts=texts, **kwargs) [docs] def get_relevant_documents(self, query: str) -> List[Document]: from sklearn import svm query_embeds = np.array(self.embeddings.embed_query(query)) x = np.concatenate([query_embeds[None, ...], self.index]) y = np.zeros(x.shape[0]) y[0] = 1 clf = svm.LinearSVC(
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/svm.html
67cb7bb02754-1
y[0] = 1 clf = svm.LinearSVC( class_weight="balanced", verbose=False, max_iter=10000, tol=1e-6, C=0.1 ) clf.fit(x, y) similarities = clf.decision_function(x) sorted_ix = np.argsort(-similarities) # svm.LinearSVC in scikit-learn is non-deterministic. # if a text is the same as a query, there is no guarantee # the query will be in the first index. # this performs a simple swap, this works because anything # left of the 0 should be equivalent. zero_index = np.where(sorted_ix == 0)[0][0] if zero_index != 0: sorted_ix[0], sorted_ix[zero_index] = sorted_ix[zero_index], sorted_ix[0] denominator = np.max(similarities) - np.min(similarities) + 1e-6 normalized_similarities = (similarities - np.min(similarities)) / denominator top_k_results = [] for row in sorted_ix[1 : self.k + 1]: if ( self.relevancy_threshold is None or normalized_similarities[row] >= self.relevancy_threshold ): top_k_results.append(Document(page_content=self.texts[row - 1])) return top_k_results [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/svm.html
dfb467d7ec76-0
Source code for langchain.retrievers.contextual_compression """Retriever that wraps a base retriever and filters the results.""" from typing import List from pydantic import BaseModel, Extra from langchain.retrievers.document_compressors.base import ( BaseDocumentCompressor, ) from langchain.schema import BaseRetriever, Document [docs]class ContextualCompressionRetriever(BaseRetriever, BaseModel): """Retriever that wraps a base retriever and compresses the results.""" base_compressor: BaseDocumentCompressor """Compressor for compressing retrieved documents.""" base_retriever: BaseRetriever """Base Retriever to use for getting relevant documents.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True [docs] def get_relevant_documents(self, query: str) -> List[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: Sequence of relevant documents """ docs = self.base_retriever.get_relevant_documents(query) compressed_docs = self.base_compressor.compress_documents(docs, query) return list(compressed_docs) [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: List of relevant documents """ docs = await self.base_retriever.aget_relevant_documents(query) compressed_docs = await self.base_compressor.acompress_documents(docs, query) return list(compressed_docs) By Harrison Chase
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/contextual_compression.html
dfb467d7ec76-1
return list(compressed_docs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/contextual_compression.html
bb8e89143840-0
Source code for langchain.retrievers.time_weighted_retriever """Retriever that combines embedding similarity with recency in retrieving values.""" import datetime from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple from pydantic import BaseModel, Field from langchain.schema import BaseRetriever, Document from langchain.vectorstores.base import VectorStore def _get_hours_passed(time: datetime.datetime, ref_time: datetime.datetime) -> float: """Get the hours passed between two datetime objects.""" return (time - ref_time).total_seconds() / 3600 [docs]class TimeWeightedVectorStoreRetriever(BaseRetriever, BaseModel): """Retriever combining embedding similarity with recency.""" vectorstore: VectorStore """The vectorstore to store documents and determine salience.""" search_kwargs: dict = Field(default_factory=lambda: dict(k=100)) """Keyword arguments to pass to the vectorstore similarity search.""" # TODO: abstract as a queue memory_stream: List[Document] = Field(default_factory=list) """The memory_stream of documents to search through.""" decay_rate: float = Field(default=0.01) """The exponential decay factor used as (1.0-decay_rate)**(hrs_passed).""" k: int = 4 """The maximum number of documents to retrieve in a given call.""" other_score_keys: List[str] = [] """Other keys in the metadata to factor into the score, e.g. 'importance'.""" default_salience: Optional[float] = None """The salience to assign memories not retrieved from the vector store. None assigns no salience to documents not fetched from the vector store. """ class Config:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/time_weighted_retriever.html
bb8e89143840-1
""" class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def _get_combined_score( self, document: Document, vector_relevance: Optional[float], current_time: datetime.datetime, ) -> float: """Return the combined score for a document.""" hours_passed = _get_hours_passed( current_time, document.metadata["last_accessed_at"], ) score = (1.0 - self.decay_rate) ** hours_passed for key in self.other_score_keys: if key in document.metadata: score += document.metadata[key] if vector_relevance is not None: score += vector_relevance return score [docs] def get_salient_docs(self, query: str) -> Dict[int, Tuple[Document, float]]: """Return documents that are salient to the query.""" docs_and_scores: List[Tuple[Document, float]] docs_and_scores = self.vectorstore.similarity_search_with_relevance_scores( query, **self.search_kwargs ) results = {} for fetched_doc, relevance in docs_and_scores: if "buffer_idx" in fetched_doc.metadata: buffer_idx = fetched_doc.metadata["buffer_idx"] doc = self.memory_stream[buffer_idx] results[buffer_idx] = (doc, relevance) return results [docs] def get_relevant_documents(self, query: str) -> List[Document]: """Return documents that are relevant to the query.""" current_time = datetime.datetime.now() docs_and_scores = { doc.metadata["buffer_idx"]: (doc, self.default_salience) for doc in self.memory_stream[-self.k :]
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/time_weighted_retriever.html
bb8e89143840-2
for doc in self.memory_stream[-self.k :] } # If a doc is considered salient, update the salience score docs_and_scores.update(self.get_salient_docs(query)) rescored_docs = [ (doc, self._get_combined_score(doc, relevance, current_time)) for doc, relevance in docs_and_scores.values() ] rescored_docs.sort(key=lambda x: x[1], reverse=True) result = [] # Ensure frequently accessed memories aren't forgotten for doc, _ in rescored_docs[: self.k]: # TODO: Update vector store doc once `update` method is exposed. buffered_doc = self.memory_stream[doc.metadata["buffer_idx"]] buffered_doc.metadata["last_accessed_at"] = current_time result.append(buffered_doc) return result [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: """Return documents that are relevant to the query.""" raise NotImplementedError [docs] def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: """Add documents to vectorstore.""" current_time = kwargs.get("current_time") if current_time is None: current_time = datetime.datetime.now() # Avoid mutating input documents dup_docs = [deepcopy(d) for d in documents] for i, doc in enumerate(dup_docs): if "last_accessed_at" not in doc.metadata: doc.metadata["last_accessed_at"] = current_time if "created_at" not in doc.metadata: doc.metadata["created_at"] = current_time doc.metadata["buffer_idx"] = len(self.memory_stream) + i
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/time_weighted_retriever.html
bb8e89143840-3
doc.metadata["buffer_idx"] = len(self.memory_stream) + i self.memory_stream.extend(dup_docs) return self.vectorstore.add_documents(dup_docs, **kwargs) [docs] async def aadd_documents( self, documents: List[Document], **kwargs: Any ) -> List[str]: """Add documents to vectorstore.""" current_time = kwargs.get("current_time") if current_time is None: current_time = datetime.datetime.now() # Avoid mutating input documents dup_docs = [deepcopy(d) for d in documents] for i, doc in enumerate(dup_docs): if "last_accessed_at" not in doc.metadata: doc.metadata["last_accessed_at"] = current_time if "created_at" not in doc.metadata: doc.metadata["created_at"] = current_time doc.metadata["buffer_idx"] = len(self.memory_stream) + i self.memory_stream.extend(dup_docs) return await self.vectorstore.aadd_documents(dup_docs, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/time_weighted_retriever.html
f33751026e13-0
Source code for langchain.retrievers.knn """KNN Retriever. Largely based on https://github.com/karpathy/randomfun/blob/master/knn_vs_svm.ipynb""" from __future__ import annotations import concurrent.futures from typing import Any, List, Optional import numpy as np from pydantic import BaseModel from langchain.embeddings.base import Embeddings from langchain.schema import BaseRetriever, Document def create_index(contexts: List[str], embeddings: Embeddings) -> np.ndarray: with concurrent.futures.ThreadPoolExecutor() as executor: return np.array(list(executor.map(embeddings.embed_query, contexts))) [docs]class KNNRetriever(BaseRetriever, BaseModel): embeddings: Embeddings index: Any texts: List[str] k: int = 4 relevancy_threshold: Optional[float] = None class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] @classmethod def from_texts( cls, texts: List[str], embeddings: Embeddings, **kwargs: Any ) -> KNNRetriever: index = create_index(texts, embeddings) return cls(embeddings=embeddings, index=index, texts=texts, **kwargs) [docs] def get_relevant_documents(self, query: str) -> List[Document]: query_embeds = np.array(self.embeddings.embed_query(query)) # calc L2 norm index_embeds = self.index / np.sqrt((self.index**2).sum(1, keepdims=True)) query_embeds = query_embeds / np.sqrt((query_embeds**2).sum()) similarities = index_embeds.dot(query_embeds)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/knn.html
f33751026e13-1
similarities = index_embeds.dot(query_embeds) sorted_ix = np.argsort(-similarities) denominator = np.max(similarities) - np.min(similarities) + 1e-6 normalized_similarities = (similarities - np.min(similarities)) / denominator top_k_results = [ Document(page_content=self.texts[row]) for row in sorted_ix[0 : self.k] if ( self.relevancy_threshold is None or normalized_similarities[row] >= self.relevancy_threshold ) ] return top_k_results [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/knn.html
a9c0445e574d-0
Source code for langchain.retrievers.azure_cognitive_search """Retriever wrapper for Azure Cognitive Search.""" from __future__ import annotations import json from typing import Dict, List, Optional import aiohttp import requests from pydantic import BaseModel, Extra, root_validator from langchain.schema import BaseRetriever, Document from langchain.utils import get_from_dict_or_env [docs]class AzureCognitiveSearchRetriever(BaseRetriever, BaseModel): """Wrapper around Azure Cognitive Search.""" service_name: str = "" """Name of Azure Cognitive Search service""" index_name: str = "" """Name of Index inside Azure Cognitive Search service""" api_key: str = "" """API Key. Both Admin and Query keys work, but for reading data it's recommended to use a Query key.""" api_version: str = "2020-06-30" """API version""" aiosession: Optional[aiohttp.ClientSession] = None """ClientSession, in case we want to reuse connection for better performance.""" content_key: str = "content" """Key in a retrieved result to set as the Document page_content.""" class Config: extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that service name, index name and api key exists in environment.""" values["service_name"] = get_from_dict_or_env( values, "service_name", "AZURE_COGNITIVE_SEARCH_SERVICE_NAME" ) values["index_name"] = get_from_dict_or_env( values, "index_name", "AZURE_COGNITIVE_SEARCH_INDEX_NAME" )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/azure_cognitive_search.html
a9c0445e574d-1
) values["api_key"] = get_from_dict_or_env( values, "api_key", "AZURE_COGNITIVE_SEARCH_API_KEY" ) return values def _build_search_url(self, query: str) -> str: base_url = f"https://{self.service_name}.search.windows.net/" endpoint_path = f"indexes/{self.index_name}/docs?api-version={self.api_version}" return base_url + endpoint_path + f"&search={query}" @property def _headers(self) -> Dict[str, str]: return { "Content-Type": "application/json", "api-key": self.api_key, } def _search(self, query: str) -> List[dict]: search_url = self._build_search_url(query) response = requests.get(search_url, headers=self._headers) if response.status_code != 200: raise Exception(f"Error in search request: {response}") return json.loads(response.text)["value"] async def _asearch(self, query: str) -> List[dict]: search_url = self._build_search_url(query) if not self.aiosession: async with aiohttp.ClientSession() as session: async with session.get(search_url, headers=self._headers) as response: response_json = await response.json() else: async with self.aiosession.get( search_url, headers=self._headers ) as response: response_json = await response.json() return response_json["value"] [docs] def get_relevant_documents(self, query: str) -> List[Document]: search_results = self._search(query) return [
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/azure_cognitive_search.html
a9c0445e574d-2
search_results = self._search(query) return [ Document(page_content=result.pop(self.content_key), metadata=result) for result in search_results ] [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: search_results = await self._asearch(query) return [ Document(page_content=result.pop(self.content_key), metadata=result) for result in search_results ] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/azure_cognitive_search.html
c7671d075d44-0
Source code for langchain.retrievers.weaviate_hybrid_search """Wrapper around weaviate vector database.""" from __future__ import annotations from typing import Any, Dict, List, Optional from uuid import uuid4 from pydantic import Extra from langchain.docstore.document import Document from langchain.schema import BaseRetriever [docs]class WeaviateHybridSearchRetriever(BaseRetriever): def __init__( self, client: Any, index_name: str, text_key: str, alpha: float = 0.5, k: int = 4, attributes: Optional[List[str]] = None, create_schema_if_missing: bool = True, ): try: import weaviate except ImportError: raise ImportError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self.k = k self.alpha = alpha self._index_name = index_name self._text_key = text_key self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) if create_schema_if_missing: self._create_schema_if_missing() def _create_schema_if_missing(self) -> None: class_obj = { "class": self._index_name, "properties": [{"name": self._text_key, "dataType": ["text"]}],
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/weaviate_hybrid_search.html
c7671d075d44-1
"properties": [{"name": self._text_key, "dataType": ["text"]}], "vectorizer": "text2vec-openai", } if not self._client.schema.exists(self._index_name): self._client.schema.create_class(class_obj) [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True # added text_key [docs] def add_documents(self, docs: List[Document], **kwargs: Any) -> List[str]: """Upload documents to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(docs): metadata = doc.metadata or {} data_properties = {self._text_key: doc.page_content, **metadata} # If the UUID of one of the objects already exists # then the existing objectwill be replaced by the new object. if "uuids" in kwargs: _id = kwargs["uuids"][i] else: _id = get_valid_uuid(uuid4()) batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids [docs] def get_relevant_documents( self, query: str, where_filter: Optional[Dict[str, object]] = None ) -> List[Document]: """Look up similar documents in Weaviate.""" query_obj = self._client.query.get(self._index_name, self._query_attrs) if where_filter: query_obj = query_obj.with_where(where_filter)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/weaviate_hybrid_search.html
c7671d075d44-2
if where_filter: query_obj = query_obj.with_where(where_filter) result = query_obj.with_hybrid(query, alpha=self.alpha).with_limit(self.k).do() if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs [docs] async def aget_relevant_documents( self, query: str, where_filter: Optional[Dict[str, object]] = None ) -> List[Document]: raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/weaviate_hybrid_search.html
daed6da266ed-0
Source code for langchain.retrievers.pinecone_hybrid_search """Taken from: https://docs.pinecone.io/docs/hybrid-search""" import hashlib from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.schema import BaseRetriever, Document def hash_text(text: str) -> str: return str(hashlib.sha256(text.encode("utf-8")).hexdigest()) def create_index( contexts: List[str], index: Any, embeddings: Embeddings, sparse_encoder: Any, ids: Optional[List[str]] = None, metadatas: Optional[List[dict]] = None, ) -> None: batch_size = 32 _iterator = range(0, len(contexts), batch_size) try: from tqdm.auto import tqdm _iterator = tqdm(_iterator) except ImportError: pass if ids is None: # create unique ids using hash of the text ids = [hash_text(context) for context in contexts] for i in _iterator: # find end of batch i_end = min(i + batch_size, len(contexts)) # extract batch context_batch = contexts[i:i_end] batch_ids = ids[i:i_end] metadata_batch = ( metadatas[i:i_end] if metadatas else [{} for _ in context_batch] ) # add context passages as metadata meta = [ {"context": context, **metadata} for context, metadata in zip(context_batch, metadata_batch) ] # create dense vectors dense_embeds = embeddings.embed_documents(context_batch)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/pinecone_hybrid_search.html
daed6da266ed-1
# create dense vectors dense_embeds = embeddings.embed_documents(context_batch) # create sparse vectors sparse_embeds = sparse_encoder.encode_documents(context_batch) for s in sparse_embeds: s["values"] = [float(s1) for s1 in s["values"]] vectors = [] # loop through the data and create dictionaries for upserts for doc_id, sparse, dense, metadata in zip( batch_ids, sparse_embeds, dense_embeds, meta ): vectors.append( { "id": doc_id, "sparse_values": sparse, "values": dense, "metadata": metadata, } ) # upload the documents to the new hybrid index index.upsert(vectors) [docs]class PineconeHybridSearchRetriever(BaseRetriever, BaseModel): embeddings: Embeddings sparse_encoder: Any index: Any top_k: int = 4 alpha: float = 0.5 class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True [docs] def add_texts( self, texts: List[str], ids: Optional[List[str]] = None, metadatas: Optional[List[dict]] = None, ) -> None: create_index( texts, self.index, self.embeddings, self.sparse_encoder, ids=ids, metadatas=metadatas, ) @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" try:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/pinecone_hybrid_search.html
daed6da266ed-2
"""Validate that api key and python package exists in environment.""" try: from pinecone_text.hybrid import hybrid_convex_scale # noqa:F401 from pinecone_text.sparse.base_sparse_encoder import ( BaseSparseEncoder, # noqa:F401 ) except ImportError: raise ValueError( "Could not import pinecone_text python package. " "Please install it with `pip install pinecone_text`." ) return values [docs] def get_relevant_documents(self, query: str) -> List[Document]: from pinecone_text.hybrid import hybrid_convex_scale sparse_vec = self.sparse_encoder.encode_queries(query) # convert the question into a dense vector dense_vec = self.embeddings.embed_query(query) # scale alpha with hybrid_scale dense_vec, sparse_vec = hybrid_convex_scale(dense_vec, sparse_vec, self.alpha) sparse_vec["values"] = [float(s1) for s1 in sparse_vec["values"]] # query pinecone with the query parameters result = self.index.query( vector=dense_vec, sparse_vector=sparse_vec, top_k=self.top_k, include_metadata=True, ) final_result = [] for res in result["matches"]: context = res["metadata"].pop("context") final_result.append( Document(page_content=context, metadata=res["metadata"]) ) # return search results as json return final_result [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/pinecone_hybrid_search.html
cdf5c77bf365-0
Source code for langchain.retrievers.vespa_retriever """Wrapper for retrieving documents from Vespa.""" from __future__ import annotations import json from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, Sequence, Union from langchain.schema import BaseRetriever, Document if TYPE_CHECKING: from vespa.application import Vespa [docs]class VespaRetriever(BaseRetriever): def __init__( self, app: Vespa, body: Dict, content_field: str, metadata_fields: Optional[Sequence[str]] = None, ): self._application = app self._query_body = body self._content_field = content_field self._metadata_fields = metadata_fields or () def _query(self, body: Dict) -> List[Document]: response = self._application.query(body) if not str(response.status_code).startswith("2"): raise RuntimeError( "Could not retrieve data from Vespa. Error code: {}".format( response.status_code ) ) root = response.json["root"] if "errors" in root: raise RuntimeError(json.dumps(root["errors"])) docs = [] for child in response.hits: page_content = child["fields"].pop(self._content_field, "") if self._metadata_fields == "*": metadata = child["fields"] else: metadata = {mf: child["fields"].get(mf) for mf in self._metadata_fields} metadata["id"] = child["id"] docs.append(Document(page_content=page_content, metadata=metadata)) return docs
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/vespa_retriever.html
cdf5c77bf365-1
docs.append(Document(page_content=page_content, metadata=metadata)) return docs [docs] def get_relevant_documents(self, query: str) -> List[Document]: body = self._query_body.copy() body["query"] = query return self._query(body) [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: raise NotImplementedError [docs] def get_relevant_documents_with_filter( self, query: str, *, _filter: Optional[str] = None ) -> List[Document]: body = self._query_body.copy() _filter = f" and {_filter}" if _filter else "" body["yql"] = body["yql"] + _filter body["query"] = query return self._query(body) [docs] @classmethod def from_params( cls, url: str, content_field: str, *, k: Optional[int] = None, metadata_fields: Union[Sequence[str], Literal["*"]] = (), sources: Union[Sequence[str], Literal["*"], None] = None, _filter: Optional[str] = None, yql: Optional[str] = None, **kwargs: Any, ) -> VespaRetriever: """Instantiate retriever from params. Args: url (str): Vespa app URL. content_field (str): Field in results to return as Document page_content. k (Optional[int]): Number of Documents to return. Defaults to None. metadata_fields(Sequence[str] or "*"): Fields in results to include in document metadata. Defaults to empty tuple ().
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/vespa_retriever.html
cdf5c77bf365-2
document metadata. Defaults to empty tuple (). sources (Sequence[str] or "*" or None): Sources to retrieve from. Defaults to None. _filter (Optional[str]): Document filter condition expressed in YQL. Defaults to None. yql (Optional[str]): Full YQL query to be used. Should not be specified if _filter or sources are specified. Defaults to None. kwargs (Any): Keyword arguments added to query body. """ try: from vespa.application import Vespa except ImportError: raise ImportError( "pyvespa is not installed, please install with `pip install pyvespa`" ) app = Vespa(url) body = kwargs.copy() if yql and (sources or _filter): raise ValueError( "yql should only be specified if both sources and _filter are not " "specified." ) else: if metadata_fields == "*": _fields = "*" body["summary"] = "short" else: _fields = ", ".join([content_field] + list(metadata_fields or [])) _sources = ", ".join(sources) if isinstance(sources, Sequence) else "*" _filter = f" and {_filter}" if _filter else "" yql = f"select {_fields} from sources {_sources} where userQuery(){_filter}" body["yql"] = yql if k: body["hits"] = k return cls(app, body, content_field, metadata_fields=metadata_fields) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/vespa_retriever.html
d05d3131bd44-0
Source code for langchain.retrievers.pupmed from typing import List from langchain.schema import BaseRetriever, Document from langchain.utilities.pupmed import PubMedAPIWrapper [docs]class PubMedRetriever(BaseRetriever, PubMedAPIWrapper): """ It is effectively a wrapper for PubMedAPIWrapper. It wraps load() to get_relevant_documents(). It uses all PubMedAPIWrapper arguments without any change. """ [docs] def get_relevant_documents(self, query: str) -> List[Document]: return self.load_docs(query=query) [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/pupmed.html
d336c3d5ecde-0
Source code for langchain.retrievers.arxiv from typing import List from langchain.schema import BaseRetriever, Document from langchain.utilities.arxiv import ArxivAPIWrapper [docs]class ArxivRetriever(BaseRetriever, ArxivAPIWrapper): """ It is effectively a wrapper for ArxivAPIWrapper. It wraps load() to get_relevant_documents(). It uses all ArxivAPIWrapper arguments without any change. """ [docs] def get_relevant_documents(self, query: str) -> List[Document]: return self.load(query=query) [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/arxiv.html
2448275fad5e-0
Source code for langchain.retrievers.databerry from typing import List, Optional import aiohttp import requests from langchain.schema import BaseRetriever, Document [docs]class DataberryRetriever(BaseRetriever): datastore_url: str top_k: Optional[int] api_key: Optional[str] def __init__( self, datastore_url: str, top_k: Optional[int] = None, api_key: Optional[str] = None, ): self.datastore_url = datastore_url self.api_key = api_key self.top_k = top_k [docs] def get_relevant_documents(self, query: str) -> List[Document]: response = requests.post( self.datastore_url, json={ "query": query, **({"topK": self.top_k} if self.top_k is not None else {}), }, headers={ "Content-Type": "application/json", **( {"Authorization": f"Bearer {self.api_key}"} if self.api_key is not None else {} ), }, ) data = response.json() return [ Document( page_content=r["text"], metadata={"source": r["source"], "score": r["score"]}, ) for r in data["results"] ] [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: async with aiohttp.ClientSession() as session: async with session.request( "POST", self.datastore_url, json={ "query": query,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/databerry.html
2448275fad5e-1
self.datastore_url, json={ "query": query, **({"topK": self.top_k} if self.top_k is not None else {}), }, headers={ "Content-Type": "application/json", **( {"Authorization": f"Bearer {self.api_key}"} if self.api_key is not None else {} ), }, ) as response: data = await response.json() return [ Document( page_content=r["text"], metadata={"source": r["source"], "score": r["score"]}, ) for r in data["results"] ] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/databerry.html
655fad512421-0
Source code for langchain.retrievers.wikipedia from typing import List from langchain.schema import BaseRetriever, Document from langchain.utilities.wikipedia import WikipediaAPIWrapper [docs]class WikipediaRetriever(BaseRetriever, WikipediaAPIWrapper): """ It is effectively a wrapper for WikipediaAPIWrapper. It wraps load() to get_relevant_documents(). It uses all WikipediaAPIWrapper arguments without any change. """ [docs] def get_relevant_documents(self, query: str) -> List[Document]: return self.load(query=query) [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/wikipedia.html
0910faed59a3-0
Source code for langchain.retrievers.merger_retriever from typing import List from langchain.schema import BaseRetriever, Document [docs]class MergerRetriever(BaseRetriever): """ This class merges the results of multiple retrievers. Args: retrievers: A list of retrievers to merge. """ def __init__( self, retrievers: List[BaseRetriever], ): """ Initialize the MergerRetriever class. Args: retrievers: A list of retrievers to merge. """ self.retrievers = retrievers [docs] def get_relevant_documents(self, query: str) -> List[Document]: """ Get the relevant documents for a given query. Args: query: The query to search for. Returns: A list of relevant documents. """ # Merge the results of the retrievers. merged_documents = self.merge_documents(query) return merged_documents [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: """ Asynchronously get the relevant documents for a given query. Args: query: The query to search for. Returns: A list of relevant documents. """ # Merge the results of the retrievers. merged_documents = await self.amerge_documents(query) return merged_documents [docs] def merge_documents(self, query: str) -> List[Document]: """ Merge the results of the retrievers. Args: query: The query to search for. Returns: A list of merged documents. """
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/merger_retriever.html
0910faed59a3-1
Returns: A list of merged documents. """ # Get the results of all retrievers. retriever_docs = [ retriever.get_relevant_documents(query) for retriever in self.retrievers ] # Merge the results of the retrievers. merged_documents = [] max_docs = max(len(docs) for docs in retriever_docs) for i in range(max_docs): for retriever, doc in zip(self.retrievers, retriever_docs): if i < len(doc): merged_documents.append(doc[i]) return merged_documents [docs] async def amerge_documents(self, query: str) -> List[Document]: """ Asynchronously merge the results of the retrievers. Args: query: The query to search for. Returns: A list of merged documents. """ # Get the results of all retrievers. retriever_docs = [ await retriever.aget_relevant_documents(query) for retriever in self.retrievers ] # Merge the results of the retrievers. merged_documents = [] max_docs = max(len(docs) for docs in retriever_docs) for i in range(max_docs): for retriever, doc in zip(self.retrievers, retriever_docs): if i < len(doc): merged_documents.append(doc[i]) return merged_documents By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/merger_retriever.html
60d44a6814ff-0
Source code for langchain.retrievers.metal from typing import Any, List, Optional from langchain.schema import BaseRetriever, Document [docs]class MetalRetriever(BaseRetriever): def __init__(self, client: Any, params: Optional[dict] = None): from metal_sdk.metal import Metal if not isinstance(client, Metal): raise ValueError( "Got unexpected client, should be of type metal_sdk.metal.Metal. " f"Instead, got {type(client)}" ) self.client: Metal = client self.params = params or {} [docs] def get_relevant_documents(self, query: str) -> List[Document]: results = self.client.search({"text": query}, **self.params) final_results = [] for r in results["data"]: metadata = {k: v for k, v in r.items() if k != "text"} final_results.append(Document(page_content=r["text"], metadata=metadata)) return final_results [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/metal.html
10f467bd2847-0
Source code for langchain.retrievers.self_query.base """Retriever that generates and executes structured queries over its own data source.""" from typing import Any, Dict, List, Optional, Type, cast from pydantic import BaseModel, Field, root_validator from langchain import LLMChain from langchain.base_language import BaseLanguageModel from langchain.chains.query_constructor.base import load_query_constructor_chain from langchain.chains.query_constructor.ir import StructuredQuery, Visitor from langchain.chains.query_constructor.schema import AttributeInfo from langchain.retrievers.self_query.chroma import ChromaTranslator from langchain.retrievers.self_query.pinecone import PineconeTranslator from langchain.retrievers.self_query.qdrant import QdrantTranslator from langchain.retrievers.self_query.weaviate import WeaviateTranslator from langchain.schema import BaseRetriever, Document from langchain.vectorstores import Chroma, Pinecone, Qdrant, VectorStore, Weaviate def _get_builtin_translator(vectorstore: VectorStore) -> Visitor: """Get the translator class corresponding to the vector store class.""" vectorstore_cls = vectorstore.__class__ BUILTIN_TRANSLATORS: Dict[Type[VectorStore], Type[Visitor]] = { Pinecone: PineconeTranslator, Chroma: ChromaTranslator, Weaviate: WeaviateTranslator, Qdrant: QdrantTranslator, } if vectorstore_cls not in BUILTIN_TRANSLATORS: raise ValueError( f"Self query retriever with Vector Store type {vectorstore_cls}" f" not supported." ) if isinstance(vectorstore, Qdrant): return QdrantTranslator(metadata_key=vectorstore.metadata_payload_key)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/self_query/base.html
10f467bd2847-1
return QdrantTranslator(metadata_key=vectorstore.metadata_payload_key) return BUILTIN_TRANSLATORS[vectorstore_cls]() [docs]class SelfQueryRetriever(BaseRetriever, BaseModel): """Retriever that wraps around a vector store and uses an LLM to generate the vector store queries.""" vectorstore: VectorStore """The underlying vector store from which documents will be retrieved.""" llm_chain: LLMChain """The LLMChain for generating the vector store queries.""" search_type: str = "similarity" """The search type to perform on the vector store.""" search_kwargs: dict = Field(default_factory=dict) """Keyword arguments to pass in to the vector store search.""" structured_query_translator: Visitor """Translator for turning internal query language into vectorstore search params.""" verbose: bool = False class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True @root_validator(pre=True) def validate_translator(cls, values: Dict) -> Dict: """Validate translator.""" if "structured_query_translator" not in values: values["structured_query_translator"] = _get_builtin_translator( values["vectorstore"] ) return values [docs] def get_relevant_documents(self, query: str) -> List[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: List of relevant documents """ inputs = self.llm_chain.prep_inputs({"query": query}) structured_query = cast( StructuredQuery, self.llm_chain.predict_and_parse(callbacks=None, **inputs) ) if self.verbose:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/self_query/base.html
10f467bd2847-2
) if self.verbose: print(structured_query) new_query, new_kwargs = self.structured_query_translator.visit_structured_query( structured_query ) if structured_query.limit is not None: new_kwargs["k"] = structured_query.limit search_kwargs = {**self.search_kwargs, **new_kwargs} docs = self.vectorstore.search(new_query, self.search_type, **search_kwargs) return docs [docs] async def aget_relevant_documents(self, query: str) -> List[Document]: raise NotImplementedError [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, vectorstore: VectorStore, document_contents: str, metadata_field_info: List[AttributeInfo], structured_query_translator: Optional[Visitor] = None, chain_kwargs: Optional[Dict] = None, enable_limit: bool = False, **kwargs: Any, ) -> "SelfQueryRetriever": if structured_query_translator is None: structured_query_translator = _get_builtin_translator(vectorstore) chain_kwargs = chain_kwargs or {} if "allowed_comparators" not in chain_kwargs: chain_kwargs[ "allowed_comparators" ] = structured_query_translator.allowed_comparators if "allowed_operators" not in chain_kwargs: chain_kwargs[ "allowed_operators" ] = structured_query_translator.allowed_operators llm_chain = load_query_constructor_chain( llm, document_contents, metadata_field_info, enable_limit=enable_limit, **chain_kwargs, ) return cls(
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/self_query/base.html
10f467bd2847-3
**chain_kwargs, ) return cls( llm_chain=llm_chain, vectorstore=vectorstore, structured_query_translator=structured_query_translator, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/self_query/base.html
d29c02dfb229-0
Source code for langchain.retrievers.document_compressors.base """Interface for retrieved document compressors.""" from abc import ABC, abstractmethod from typing import List, Sequence, Union from pydantic import BaseModel from langchain.schema import BaseDocumentTransformer, Document class BaseDocumentCompressor(BaseModel, ABC): """Base abstraction interface for document compression.""" @abstractmethod def compress_documents( self, documents: Sequence[Document], query: str ) -> Sequence[Document]: """Compress retrieved documents given the query context.""" @abstractmethod async def acompress_documents( self, documents: Sequence[Document], query: str ) -> Sequence[Document]: """Compress retrieved documents given the query context.""" [docs]class DocumentCompressorPipeline(BaseDocumentCompressor): """Document compressor that uses a pipeline of transformers.""" transformers: List[Union[BaseDocumentTransformer, BaseDocumentCompressor]] """List of document filters that are chained together and run in sequence.""" class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def compress_documents( self, documents: Sequence[Document], query: str ) -> Sequence[Document]: """Transform a list of documents.""" for _transformer in self.transformers: if isinstance(_transformer, BaseDocumentCompressor): documents = _transformer.compress_documents(documents, query) elif isinstance(_transformer, BaseDocumentTransformer): documents = _transformer.transform_documents(documents) else: raise ValueError(f"Got unexpected transformer type: {_transformer}") return documents [docs] async def acompress_documents( self, documents: Sequence[Document], query: str
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/document_compressors/base.html
d29c02dfb229-1
self, documents: Sequence[Document], query: str ) -> Sequence[Document]: """Compress retrieved documents given the query context.""" for _transformer in self.transformers: if isinstance(_transformer, BaseDocumentCompressor): documents = await _transformer.acompress_documents(documents, query) elif isinstance(_transformer, BaseDocumentTransformer): documents = await _transformer.atransform_documents(documents) else: raise ValueError(f"Got unexpected transformer type: {_transformer}") return documents By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/document_compressors/base.html
f11df7c5b63e-0
Source code for langchain.retrievers.document_compressors.cohere_rerank from __future__ import annotations from typing import TYPE_CHECKING, Dict, Sequence from pydantic import Extra, root_validator from langchain.retrievers.document_compressors.base import BaseDocumentCompressor from langchain.schema import Document from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: from cohere import Client else: # We do to avoid pydantic annotation issues when actually instantiating # while keeping this import optional try: from cohere import Client except ImportError: pass [docs]class CohereRerank(BaseDocumentCompressor): client: Client top_n: int = 3 model: str = "rerank-english-v2.0" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" cohere_api_key = get_from_dict_or_env( values, "cohere_api_key", "COHERE_API_KEY" ) try: import cohere values["client"] = cohere.Client(cohere_api_key) except ImportError: raise ImportError( "Could not import cohere python package. " "Please install it with `pip install cohere`." ) return values [docs] def compress_documents( self, documents: Sequence[Document], query: str ) -> Sequence[Document]: if len(documents) == 0: # to avoid empty api call return []
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/document_compressors/cohere_rerank.html
f11df7c5b63e-1
return [] doc_list = list(documents) _docs = [d.page_content for d in doc_list] results = self.client.rerank( model=self.model, query=query, documents=_docs, top_n=self.top_n ) final_results = [] for r in results: doc = doc_list[r.index] doc.metadata["relevance_score"] = r.relevance_score final_results.append(doc) return final_results [docs] async def acompress_documents( self, documents: Sequence[Document], query: str ) -> Sequence[Document]: raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/document_compressors/cohere_rerank.html
e81835ae1e31-0
Source code for langchain.retrievers.document_compressors.chain_extract """DocumentFilter that uses an LLM chain to extract the relevant parts of documents.""" from __future__ import annotations import asyncio from typing import Any, Callable, Dict, Optional, Sequence from langchain import LLMChain, PromptTemplate from langchain.base_language import BaseLanguageModel from langchain.retrievers.document_compressors.base import BaseDocumentCompressor from langchain.retrievers.document_compressors.chain_extract_prompt import ( prompt_template, ) from langchain.schema import BaseOutputParser, Document def default_get_input(query: str, doc: Document) -> Dict[str, Any]: """Return the compression chain input.""" return {"question": query, "context": doc.page_content} class NoOutputParser(BaseOutputParser[str]): """Parse outputs that could return a null string of some sort.""" no_output_str: str = "NO_OUTPUT" def parse(self, text: str) -> str: cleaned_text = text.strip() if cleaned_text == self.no_output_str: return "" return cleaned_text def _get_default_chain_prompt() -> PromptTemplate: output_parser = NoOutputParser() template = prompt_template.format(no_output_str=output_parser.no_output_str) return PromptTemplate( template=template, input_variables=["question", "context"], output_parser=output_parser, ) [docs]class LLMChainExtractor(BaseDocumentCompressor): llm_chain: LLMChain """LLM wrapper to use for compressing documents.""" get_input: Callable[[str, Document], dict] = default_get_input """Callable for constructing the chain input from the query and a Document.""" [docs] def compress_documents(
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/retrievers/document_compressors/chain_extract.html