id
stringlengths 14
16
| text
stringlengths 36
2.73k
| source
stringlengths 59
127
|
---|---|---|
b00eb29f0e62-1
|
traceback (bool): whether to include full traceback (default is False).
loader.load()
[Document(page_content='\'markdown\' cell: \'[\'# Notebook\', \'\', \'This notebook covers how to load data from an .ipynb notebook into a format suitable by LangChain.\']\'\n\n \'code\' cell: \'[\'from langchain.document_loaders import NotebookLoader\']\'\n\n \'code\' cell: \'[\'loader = NotebookLoader("example_data/notebook.ipynb")\']\'\n\n \'markdown\' cell: \'[\'`NotebookLoader.load()` loads the `.ipynb` notebook file into a `Document` object.\', \'\', \'**Parameters**:\', \'\', \'* `include_outputs` (bool): whether to include cell outputs in the resulting document (default is False).\', \'* `max_output_length` (int): the maximum number of characters to include from each cell output (default is 10).\', \'* `remove_newline` (bool): whether to remove newline characters from the cell sources and outputs (default is False).\', \'* `traceback` (bool): whether to include full traceback (default is False).\']\'\n\n \'code\' cell: \'[\'loader.load(include_outputs=True, max_output_length=20, remove_newline=True)\']\'\n\n', metadata={'source': 'example_data/notebook.ipynb'})]
previous
Images
next
JSON
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/jupyter_notebook.html
|
6a17f8844184-0
|
.ipynb
.pdf
YouTube transcripts
Contents
Add video info
Add language preferences
YouTube loader from Google Cloud
Prerequisites
🧑 Instructions for ingesting your Google Docs data
YouTube transcripts#
YouTube is an online video sharing and social media platform created by Google.
This notebook covers how to load documents from YouTube transcripts.
from langchain.document_loaders import YoutubeLoader
# !pip install youtube-transcript-api
loader = YoutubeLoader.from_youtube_url("https://www.youtube.com/watch?v=QsYGlZkevEg", add_video_info=True)
loader.load()
Add video info#
# ! pip install pytube
loader = YoutubeLoader.from_youtube_url("https://www.youtube.com/watch?v=QsYGlZkevEg", add_video_info=True)
loader.load()
Add language preferences#
Language param : It’s a list of language codes in a descending priority, en by default.
translation param : It’s a translate preference when the youtube does’nt have your select language, en by default.
loader = YoutubeLoader.from_youtube_url("https://www.youtube.com/watch?v=QsYGlZkevEg", add_video_info=True, language=['en','id'], translation='en')
loader.load()
YouTube loader from Google Cloud#
Prerequisites#
Create a Google Cloud project or use an existing project
Enable the Youtube Api
Authorize credentials for desktop app
pip install --upgrade google-api-python-client google-auth-httplib2 google-auth-oauthlib youtube-transcript-api
🧑 Instructions for ingesting your Google Docs data#
By default, the GoogleDriveLoader expects the credentials.json file to be ~/.credentials/credentials.json, but this is configurable using the credentials_file keyword argument. Same thing with token.json. Note that token.json will be created automatically the first time you use the loader.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/youtube_transcript.html
|
6a17f8844184-1
|
GoogleApiYoutubeLoader can load from a list of Google Docs document ids or a folder id. You can obtain your folder and document id from the URL:
Note depending on your set up, the service_account_path needs to be set up. See here for more details.
from langchain.document_loaders import GoogleApiClient, GoogleApiYoutubeLoader
# Init the GoogleApiClient
from pathlib import Path
google_api_client = GoogleApiClient(credentials_path=Path("your_path_creds.json"))
# Use a Channel
youtube_loader_channel = GoogleApiYoutubeLoader(google_api_client=google_api_client, channel_name="Reducible",captions_language="en")
# Use Youtube Ids
youtube_loader_ids = GoogleApiYoutubeLoader(google_api_client=google_api_client, video_ids=["TrdevFK_am4"], add_video_info=True)
# returns a list of Documents
youtube_loader_channel.load()
previous
Wikipedia
next
Airbyte JSON
Contents
Add video info
Add language preferences
YouTube loader from Google Cloud
Prerequisites
🧑 Instructions for ingesting your Google Docs data
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/youtube_transcript.html
|
e2dc33b558e0-0
|
.ipynb
.pdf
DuckDB
Contents
Specifying Which Columns are Content vs Metadata
Adding Source to Metadata
DuckDB#
DuckDB is an in-process SQL OLAP database management system.
Load a DuckDB query with one document per row.
#!pip install duckdb
from langchain.document_loaders import DuckDBLoader
%%file example.csv
Team,Payroll
Nationals,81.34
Reds,82.20
Writing example.csv
loader = DuckDBLoader("SELECT * FROM read_csv_auto('example.csv')")
data = loader.load()
print(data)
[Document(page_content='Team: Nationals\nPayroll: 81.34', metadata={}), Document(page_content='Team: Reds\nPayroll: 82.2', metadata={})]
Specifying Which Columns are Content vs Metadata#
loader = DuckDBLoader(
"SELECT * FROM read_csv_auto('example.csv')",
page_content_columns=["Team"],
metadata_columns=["Payroll"]
)
data = loader.load()
print(data)
[Document(page_content='Team: Nationals', metadata={'Payroll': 81.34}), Document(page_content='Team: Reds', metadata={'Payroll': 82.2})]
Adding Source to Metadata#
loader = DuckDBLoader(
"SELECT Team, Payroll, Team As source FROM read_csv_auto('example.csv')",
metadata_columns=["source"]
)
data = loader.load()
print(data)
[Document(page_content='Team: Nationals\nPayroll: 81.34\nsource: Nationals', metadata={'source': 'Nationals'}), Document(page_content='Team: Reds\nPayroll: 82.2\nsource: Reds', metadata={'source': 'Reds'})]
previous
Docugami
next
Fauna
Contents
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/duckdb.html
|
e2dc33b558e0-1
|
previous
Docugami
next
Fauna
Contents
Specifying Which Columns are Content vs Metadata
Adding Source to Metadata
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/duckdb.html
|
4749d6a8152e-0
|
.ipynb
.pdf
College Confidential
College Confidential#
College Confidential gives information on 3,800+ colleges and universities.
This covers how to load College Confidential webpages into a document format that we can use downstream.
from langchain.document_loaders import CollegeConfidentialLoader
loader = CollegeConfidentialLoader("https://www.collegeconfidential.com/colleges/brown-university/")
data = loader.load()
data
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/college_confidential.html
|
4749d6a8152e-1
|
[Document(page_content='\n\n\n\n\n\n\n\nA68FEB02-9D19-447C-B8BC-818149FD6EAF\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n Media (2)\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nE45B8B13-33D4-450E-B7DB-F66EFE8F2097\n\n\n\n\n\n\n\n\n\nE45B8B13-33D4-450E-B7DB-F66EFE8F2097\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nAbout Brown\n\n\n\n\n\n\nBrown University Overview\nBrown University is a private, nonprofit school in the urban setting of Providence, Rhode Island. Brown was founded in 1764 and the school currently enrolls around 10,696 students a year, including 7,349 undergraduates. Brown provides on-campus housing for students. Most students live in off campus housing.\n📆 Mark your calendar! January 5, 2023 is the final deadline to submit an application for the Fall 2023 semester. \nThere are many ways for students to get involved at Brown! \nLove music or performing? Join a campus band, sing in a chorus, or perform with one of the school\'s theater groups.\nInterested in journalism or communications? Brown students can write for the campus newspaper, host a radio show or be a producer for the student-run television channel.\nInterested in joining a fraternity or sorority? Brown has fraternities and sororities.\nPlanning to play sports? Brown has
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/college_confidential.html
|
4749d6a8152e-2
|
Brown has fraternities and sororities.\nPlanning to play sports? Brown has many options for athletes. See them all and learn more about life at Brown on the Student Life page.\n\n\n\n2022 Brown Facts At-A-Glance\n\n\n\n\n\nAcademic Calendar\nOther\n\n\nOverall Acceptance Rate\n6%\n\n\nEarly Decision Acceptance Rate\n16%\n\n\nEarly Action Acceptance Rate\nEA not offered\n\n\nApplicants Submitting SAT scores\n51%\n\n\nTuition\n$62,680\n\n\nPercent of Need Met\n100%\n\n\nAverage First-Year Financial Aid Package\n$59,749\n\n\n\n\nIs Brown a Good School?\n\nDifferent people have different ideas about what makes a "good" school. Some factors that can help you determine what a good school for you might be include admissions criteria, acceptance rate, tuition costs, and more.\nLet\'s take a look at these factors to get a clearer sense of what Brown offers and if it could be the right college for you.\nBrown Acceptance Rate 2022\nIt is extremely difficult to get into Brown. Around 6% of applicants get into Brown each year. In 2022, just 2,568 out of the 46,568 students who applied were accepted.\nRetention and Graduation Rates at Brown\nRetention refers to the number of students that stay enrolled at a school over time. This is a way to get a sense of how satisfied students are with their school experience, and if they have the support necessary to succeed in college. \nApproximately 98% of first-year, full-time undergrads who start at Browncome back their sophomore year. 95% of Brown undergrads graduate within six years. The average six-year graduation rate for U.S. colleges and universities is 61% for public schools, and 67% for
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/college_confidential.html
|
4749d6a8152e-3
|
for U.S. colleges and universities is 61% for public schools, and 67% for private, non-profit schools.\nJob Outcomes for Brown Grads\nJob placement stats are a good resource for understanding the value of a degree from Brown by providing a look on how job placement has gone for other grads. \nCheck with Brown directly, for information on any information on starting salaries for recent grads.\nBrown\'s Endowment\nAn endowment is the total value of a school\'s investments, donations, and assets. Endowment is not necessarily an indicator of the quality of a school, but it can give you a sense of how much money a college can afford to invest in expanding programs, improving facilities, and support students. \nAs of 2022, the total market value of Brown University\'s endowment was $4.7 billion. The average college endowment was $905 million in 2021. The school spends $34,086 for each full-time student enrolled. \nTuition and Financial Aid at Brown\nTuition is another important factor when choose a college. Some colleges may have high tuition, but do a better job at meeting students\' financial need.\nBrown meets 100% of the demonstrated financial need for undergraduates. The average financial aid package for a full-time, first-year student is around $59,749 a year. \nThe average student debt for graduates in the class of 2022 was around $24,102 per student, not including those with no debt. For context, compare this number with the average national debt, which is around $36,000 per borrower. \nThe 2023-2024 FAFSA Opened on October 1st, 2022\nSome financial aid is awarded on a first-come, first-served basis, so fill out the FAFSA as soon as you can. Visit the FAFSA website to apply for student aid.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/college_confidential.html
|
4749d6a8152e-4
|
as soon as you can. Visit the FAFSA website to apply for student aid. Remember, the first F in FAFSA stands for FREE! You should never have to pay to submit the Free Application for Federal Student Aid (FAFSA), so be very wary of anyone asking you for money.\nLearn more about Tuition and Financial Aid at Brown.\nBased on this information, does Brown seem like a good fit? Remember, a school that is perfect for one person may be a terrible fit for someone else! So ask yourself: Is Brown a good school for you?\nIf Brown University seems like a school you want to apply to, click the heart button to save it to your college list.\n\nStill Exploring Schools?\nChoose one of the options below to learn more about Brown:\nAdmissions\nStudent Life\nAcademics\nTuition & Aid\nBrown Community Forums\nThen use the college admissions predictor to take a data science look at your chances of getting into some of the best colleges and universities in the U.S.\nWhere is Brown?\nBrown is located in the urban setting of Providence, Rhode Island, less than an hour from Boston. \nIf you would like to see Brown for yourself, plan a visit. The best way to reach campus is to take Interstate 95 to Providence, or book a flight to the nearest airport, T.F. Green.\nYou can also take a virtual campus tour to get a sense of what Brown and Providence are like without leaving home.\nConsidering Going to School in Rhode Island?\nSee a full list of colleges in Rhode Island and save your favorites to your college list.\n\n\n\nCollege Info\n\n\n\n\n\n\n\n\n\n Providence, RI 02912\n
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/college_confidential.html
|
4749d6a8152e-5
|
RI 02912\n \n\n\n\n Campus Setting: Urban\n \n\n\n\n\n\n\n\n (401) 863-2378\n \n\n Website\n \n\n Virtual Tour\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nBrown Application Deadline\n\n\n\nFirst-Year Applications are Due\n\nJan 5\n\nTransfer Applications are Due\n\nMar 1\n\n\n\n \n The deadline for Fall first-year applications to Brown is \n Jan 5. \n \n \n \n\n \n
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/college_confidential.html
|
4749d6a8152e-6
|
\n\n \n The deadline for Fall transfer applications to Brown is \n Mar 1. \n \n \n \n\n \n Check the school website \n for more information about deadlines for specific programs or special admissions programs\n \n \n\n\n\n\n\n\nBrown ACT Scores\n\n\n\n\nic_reflect\n\n\n\n\n\n\n\n\nACT Range\n\n\n \n 33 - 35\n \n \n\n\n\nEstimated Chance of Acceptance by ACT Score\n\n\nACT Score\nEstimated Chance\n\n\n35 and Above\nGood\n\n\n33 to 35\nAvg\n\n\n33 and Less\nLow\n\n\n\n\n\n\nStand out on your college application\n\n• Qualify for scholarships\n• Most students who retest improve their score\n\nSponsored by ACT\n\n\n Take the Next ACT Test\n
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/college_confidential.html
|
4749d6a8152e-7
|
Take the Next ACT Test\n \n\n\n\n\n\nBrown SAT Scores\n\n\n\n\nic_reflect\n\n\n\n\n\n\n\n\nComposite SAT Range\n\n\n \n 720 - 770\n \n \n\n\n\nic_reflect\n\n\n\n\n\n\n\n\nMath SAT Range\n\n\n \n Not available\n \n \n\n\n\nic_reflect\n\n\n\n\n\n\n\n\nReading SAT Range\n\n\n \n 740 - 800\n \n \n\n\n\n\n\n\n Brown Tuition & Fees\n \n\n\n\nTuition & Fees\n\n\n\n
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/college_confidential.html
|
4749d6a8152e-8
|
& Fees\n\n\n\n $82,286\n \nIn State\n\n\n\n\n $82,286\n \nOut-of-State\n\n\n\n\n\n\n\nCost Breakdown\n\n\nIn State\n\n\nOut-of-State\n\n\n\n\nState Tuition\n\n\n\n $62,680\n \n\n\n\n $62,680\n \n\n\n\n\nFees\n\n\n\n $2,466\n \n\n\n\n $2,466\n
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/college_confidential.html
|
4749d6a8152e-9
|
\n\n\n\n\nHousing\n\n\n\n $15,840\n \n\n\n\n $15,840\n \n\n\n\n\nBooks\n\n\n\n $1,300\n \n\n\n\n $1,300\n \n\n\n\n\n\n Total (Before Financial Aid):\n \n\n\n\n $82,286\n
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/college_confidential.html
|
4749d6a8152e-10
|
\n\n\n\n $82,286\n \n\n\n\n\n\n\n\n\n\n\n\nStudent Life\n\n Wondering what life at Brown is like? There are approximately \n 10,696 students enrolled at \n Brown, \n including 7,349 undergraduate students and \n 3,347 graduate students.\n 96% percent of students attend school \n full-time, \n 6% percent are from RI and \n 94% percent of students are from other states.\n \n\n\n\n\n\n None\n \n\n\n\n\nUndergraduate Enrollment\n\n\n\n 96%\n \nFull Time\n\n\n\n\n 4%\n
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/college_confidential.html
|
4749d6a8152e-11
|
4%\n \nPart Time\n\n\n\n\n\n\n\n 94%\n \n\n\n\n\nResidency\n\n\n\n 6%\n \nIn State\n\n\n\n\n 94%\n \nOut-of-State\n\n\n\n\n\n\n\n Data Source: IPEDs and Peterson\'s Databases © 2022 Peterson\'s LLC All rights reserved\n \n', lookup_str='', metadata={'source': 'https://www.collegeconfidential.com/colleges/brown-university/'}, lookup_index=0)]
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/college_confidential.html
|
4749d6a8152e-12
|
previous
BiliBili
next
Gutenberg
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/college_confidential.html
|
fe29a40320ba-0
|
.ipynb
.pdf
WhatsApp Chat
WhatsApp Chat#
WhatsApp (also called WhatsApp Messenger) is a freeware, cross-platform, centralized instant messaging (IM) and voice-over-IP (VoIP) service. It allows users to send text and voice messages, make voice and video calls, and share images, documents, user locations, and other content.
This notebook covers how to load data from the WhatsApp Chats into a format that can be ingested into LangChain.
from langchain.document_loaders import WhatsAppChatLoader
loader = WhatsAppChatLoader("example_data/whatsapp_chat.txt")
loader.load()
previous
Weather
next
Arxiv
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/whatsapp_chat.html
|
e7cc554065b7-0
|
.ipynb
.pdf
Blackboard
Blackboard#
Blackboard Learn (previously the Blackboard Learning Management System) is a web-based virtual learning environment and learning management system developed by Blackboard Inc. The software features course management, customizable open architecture, and scalable design that allows integration with student information systems and authentication protocols. It may be installed on local servers, hosted by Blackboard ASP Solutions, or provided as Software as a Service hosted on Amazon Web Services. Its main purposes are stated to include the addition of online elements to courses traditionally delivered face-to-face and development of completely online courses with few or no face-to-face meetings
This covers how to load data from a Blackboard Learn instance.
This loader is not compatible with all Blackboard courses. It is only
compatible with courses that use the new Blackboard interface.
To use this loader, you must have the BbRouter cookie. You can get this
cookie by logging into the course and then copying the value of the
BbRouter cookie from the browser’s developer tools.
from langchain.document_loaders import BlackboardLoader
loader = BlackboardLoader(
blackboard_course_url="https://blackboard.example.com/webapps/blackboard/execute/announcement?method=search&context=course_entry&course_id=_123456_1",
bbrouter="expires:12345...",
load_all_recursively=True,
)
documents = loader.load()
previous
Azure Blob Storage File
next
Blockchain
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/blackboard.html
|
56c69f662e47-0
|
.ipynb
.pdf
Microsoft PowerPoint
Contents
Retain Elements
Microsoft PowerPoint#
Microsoft PowerPoint is a presentation program by Microsoft.
This covers how to load Microsoft PowerPoint documents into a document format that we can use downstream.
from langchain.document_loaders import UnstructuredPowerPointLoader
loader = UnstructuredPowerPointLoader("example_data/fake-power-point.pptx")
data = loader.load()
data
[Document(page_content='Adding a Bullet Slide\n\nFind the bullet slide layout\n\nUse _TextFrame.text for first bullet\n\nUse _TextFrame.add_paragraph() for subsequent bullets\n\nHere is a lot of text!\n\nHere is some text in a text box!', metadata={'source': 'example_data/fake-power-point.pptx'})]
Retain Elements#
Under the hood, Unstructured creates different “elements” for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying mode="elements".
loader = UnstructuredPowerPointLoader("example_data/fake-power-point.pptx", mode="elements")
data = loader.load()
data[0]
Document(page_content='Adding a Bullet Slide', lookup_str='', metadata={'source': 'example_data/fake-power-point.pptx'}, lookup_index=0)
previous
Markdown
next
Microsoft Word
Contents
Retain Elements
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/microsoft_powerpoint.html
|
21e52f3d9afb-0
|
.ipynb
.pdf
Fauna
Contents
Query data example
Query with Pagination
Fauna#
Fauna is a Document Database.
Query Fauna documents
#!pip install fauna
Query data example#
from langchain.document_loaders.fauna import FaunaLoader
secret = "<enter-valid-fauna-secret>"
query = "Item.all()" # Fauna query. Assumes that the collection is called "Item"
field = "text" # The field that contains the page content. Assumes that the field is called "text"
loader = FaunaLoader(query, field, secret)
docs = loader.lazy_load()
for value in docs:
print(value)
Query with Pagination#
You get a after value if there are more data. You can get values after the curcor by passing in the after string in query.
To learn more following this link
query = """
Item.paginate("hs+DzoPOg ... aY1hOohozrV7A")
Item.all()
"""
loader = FaunaLoader(query, field, secret)
previous
DuckDB
next
Figma
Contents
Query data example
Query with Pagination
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/fauna.html
|
76bac03996f4-0
|
.ipynb
.pdf
Twitter
Twitter#
Twitter is an online social media and social networking service.
This loader fetches the text from the Tweets of a list of Twitter users, using the tweepy Python package.
You must initialize the loader with your Twitter API token, and you need to pass in the Twitter username you want to extract.
from langchain.document_loaders import TwitterTweetLoader
#!pip install tweepy
loader = TwitterTweetLoader.from_bearer_token(
oauth2_bearer_token="YOUR BEARER TOKEN",
twitter_users=['elonmusk'],
number_tweets=50, # Default value is 100
)
# Or load from access token and consumer keys
# loader = TwitterTweetLoader.from_secrets(
# access_token='YOUR ACCESS TOKEN',
# access_token_secret='YOUR ACCESS TOKEN SECRET',
# consumer_key='YOUR CONSUMER KEY',
# consumer_secret='YOUR CONSUMER SECRET',
# twitter_users=['elonmusk'],
# number_tweets=50,
# )
documents = loader.load()
documents[:5]
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-1
|
[Document(page_content='@MrAndyNgo @REI One store after another shutting down', metadata={'created_at': 'Tue Apr 18 03:45:50 +0000 2023', 'user_info': {'id': 44196397, 'id_str': '44196397', 'name': 'Elon Musk', 'screen_name': 'elonmusk', 'location': 'A Shortfall of Gravitas', 'profile_location': None, 'description': 'nothing', 'url': None, 'entities': {'description': {'urls': []}}, 'protected': False, 'followers_count': 135528327, 'friends_count': 220, 'listed_count': 120478, 'created_at': 'Tue Jun 02 20:12:29 +0000 2009', 'favourites_count': 21285, 'utc_offset': None, 'time_zone': None, 'geo_enabled': False, 'verified': False, 'statuses_count': 24795, 'lang': None, 'status': {'created_at': 'Tue Apr 18 03:45:50 +0000 2023', 'id': 1648170947541704705, 'id_str': '1648170947541704705', 'text': '@MrAndyNgo @REI One store after another shutting down', 'truncated': False, 'entities': {'hashtags': [], 'symbols': [], 'user_mentions': [{'screen_name': 'MrAndyNgo', 'name': 'Andy Ngô 🏳️\u200d🌈', 'id': 2835451658, 'id_str': '2835451658', 'indices': [0, 10]}, {'screen_name': 'REI', 'name': 'REI', 'id': 16583846, 'id_str': '16583846', 'indices':
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-2
|
'id': 16583846, 'id_str': '16583846', 'indices': [11, 15]}], 'urls': []}, 'source': '<a href="http://twitter.com/download/iphone" rel="nofollow">Twitter for iPhone</a>', 'in_reply_to_status_id': 1648134341678051328, 'in_reply_to_status_id_str': '1648134341678051328', 'in_reply_to_user_id': 2835451658, 'in_reply_to_user_id_str': '2835451658', 'in_reply_to_screen_name': 'MrAndyNgo', 'geo': None, 'coordinates': None, 'place': None, 'contributors': None, 'is_quote_status': False, 'retweet_count': 118, 'favorite_count': 1286, 'favorited': False, 'retweeted': False, 'lang': 'en'}, 'contributors_enabled': False, 'is_translator': False, 'is_translation_enabled': False, 'profile_background_color': 'C0DEED', 'profile_background_image_url': 'http://abs.twimg.com/images/themes/theme1/bg.png', 'profile_background_image_url_https': 'https://abs.twimg.com/images/themes/theme1/bg.png', 'profile_background_tile': False, 'profile_image_url': 'http://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_normal.jpg', 'profile_image_url_https': 'https://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_normal.jpg', 'profile_banner_url': 'https://pbs.twimg.com/profile_banners/44196397/1576183471', 'profile_link_color': '0084B4', 'profile_sidebar_border_color': 'C0DEED', 'profile_sidebar_fill_color': 'DDEEF6', 'profile_text_color': '333333',
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-3
|
'DDEEF6', 'profile_text_color': '333333', 'profile_use_background_image': True, 'has_extended_profile': True, 'default_profile': False, 'default_profile_image': False, 'following': None, 'follow_request_sent': None, 'notifications': None, 'translator_type': 'none', 'withheld_in_countries': []}}),
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-4
|
Document(page_content='@KanekoaTheGreat @joshrogin @glennbeck Large ships are fundamentally vulnerable to ballistic (hypersonic) missiles', metadata={'created_at': 'Tue Apr 18 03:43:25 +0000 2023', 'user_info': {'id': 44196397, 'id_str': '44196397', 'name': 'Elon Musk', 'screen_name': 'elonmusk', 'location': 'A Shortfall of Gravitas', 'profile_location': None, 'description': 'nothing', 'url': None, 'entities': {'description': {'urls': []}}, 'protected': False, 'followers_count': 135528327, 'friends_count': 220, 'listed_count': 120478, 'created_at': 'Tue Jun 02 20:12:29 +0000 2009', 'favourites_count': 21285, 'utc_offset': None, 'time_zone': None, 'geo_enabled': False, 'verified': False, 'statuses_count': 24795, 'lang': None, 'status': {'created_at': 'Tue Apr 18 03:45:50 +0000 2023', 'id': 1648170947541704705, 'id_str': '1648170947541704705', 'text': '@MrAndyNgo @REI One store after another shutting down', 'truncated': False, 'entities': {'hashtags': [], 'symbols': [], 'user_mentions': [{'screen_name': 'MrAndyNgo', 'name': 'Andy Ngô 🏳️\u200d🌈', 'id': 2835451658, 'id_str': '2835451658', 'indices': [0, 10]}, {'screen_name': 'REI', 'name': 'REI', 'id': 16583846,
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-5
|
'REI', 'name': 'REI', 'id': 16583846, 'id_str': '16583846', 'indices': [11, 15]}], 'urls': []}, 'source': '<a href="http://twitter.com/download/iphone" rel="nofollow">Twitter for iPhone</a>', 'in_reply_to_status_id': 1648134341678051328, 'in_reply_to_status_id_str': '1648134341678051328', 'in_reply_to_user_id': 2835451658, 'in_reply_to_user_id_str': '2835451658', 'in_reply_to_screen_name': 'MrAndyNgo', 'geo': None, 'coordinates': None, 'place': None, 'contributors': None, 'is_quote_status': False, 'retweet_count': 118, 'favorite_count': 1286, 'favorited': False, 'retweeted': False, 'lang': 'en'}, 'contributors_enabled': False, 'is_translator': False, 'is_translation_enabled': False, 'profile_background_color': 'C0DEED', 'profile_background_image_url': 'http://abs.twimg.com/images/themes/theme1/bg.png', 'profile_background_image_url_https': 'https://abs.twimg.com/images/themes/theme1/bg.png', 'profile_background_tile': False, 'profile_image_url': 'http://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_normal.jpg', 'profile_image_url_https': 'https://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_normal.jpg', 'profile_banner_url': 'https://pbs.twimg.com/profile_banners/44196397/1576183471', 'profile_link_color': '0084B4', 'profile_sidebar_border_color': 'C0DEED', 'profile_sidebar_fill_color': 'DDEEF6',
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-6
|
'C0DEED', 'profile_sidebar_fill_color': 'DDEEF6', 'profile_text_color': '333333', 'profile_use_background_image': True, 'has_extended_profile': True, 'default_profile': False, 'default_profile_image': False, 'following': None, 'follow_request_sent': None, 'notifications': None, 'translator_type': 'none', 'withheld_in_countries': []}}),
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-7
|
Document(page_content='@KanekoaTheGreat The Golden Rule', metadata={'created_at': 'Tue Apr 18 03:37:17 +0000 2023', 'user_info': {'id': 44196397, 'id_str': '44196397', 'name': 'Elon Musk', 'screen_name': 'elonmusk', 'location': 'A Shortfall of Gravitas', 'profile_location': None, 'description': 'nothing', 'url': None, 'entities': {'description': {'urls': []}}, 'protected': False, 'followers_count': 135528327, 'friends_count': 220, 'listed_count': 120478, 'created_at': 'Tue Jun 02 20:12:29 +0000 2009', 'favourites_count': 21285, 'utc_offset': None, 'time_zone': None, 'geo_enabled': False, 'verified': False, 'statuses_count': 24795, 'lang': None, 'status': {'created_at': 'Tue Apr 18 03:45:50 +0000 2023', 'id': 1648170947541704705, 'id_str': '1648170947541704705', 'text': '@MrAndyNgo @REI One store after another shutting down', 'truncated': False, 'entities': {'hashtags': [], 'symbols': [], 'user_mentions': [{'screen_name': 'MrAndyNgo', 'name': 'Andy Ngô 🏳️\u200d🌈', 'id': 2835451658, 'id_str': '2835451658', 'indices': [0, 10]}, {'screen_name': 'REI', 'name': 'REI', 'id': 16583846, 'id_str': '16583846', 'indices': [11,
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-8
|
16583846, 'id_str': '16583846', 'indices': [11, 15]}], 'urls': []}, 'source': '<a href="http://twitter.com/download/iphone" rel="nofollow">Twitter for iPhone</a>', 'in_reply_to_status_id': 1648134341678051328, 'in_reply_to_status_id_str': '1648134341678051328', 'in_reply_to_user_id': 2835451658, 'in_reply_to_user_id_str': '2835451658', 'in_reply_to_screen_name': 'MrAndyNgo', 'geo': None, 'coordinates': None, 'place': None, 'contributors': None, 'is_quote_status': False, 'retweet_count': 118, 'favorite_count': 1286, 'favorited': False, 'retweeted': False, 'lang': 'en'}, 'contributors_enabled': False, 'is_translator': False, 'is_translation_enabled': False, 'profile_background_color': 'C0DEED', 'profile_background_image_url': 'http://abs.twimg.com/images/themes/theme1/bg.png', 'profile_background_image_url_https': 'https://abs.twimg.com/images/themes/theme1/bg.png', 'profile_background_tile': False, 'profile_image_url': 'http://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_normal.jpg', 'profile_image_url_https': 'https://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_normal.jpg', 'profile_banner_url': 'https://pbs.twimg.com/profile_banners/44196397/1576183471', 'profile_link_color': '0084B4', 'profile_sidebar_border_color': 'C0DEED', 'profile_sidebar_fill_color': 'DDEEF6', 'profile_text_color': '333333',
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-9
|
'DDEEF6', 'profile_text_color': '333333', 'profile_use_background_image': True, 'has_extended_profile': True, 'default_profile': False, 'default_profile_image': False, 'following': None, 'follow_request_sent': None, 'notifications': None, 'translator_type': 'none', 'withheld_in_countries': []}}),
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-10
|
Document(page_content='@KanekoaTheGreat 🧐', metadata={'created_at': 'Tue Apr 18 03:35:48 +0000 2023', 'user_info': {'id': 44196397, 'id_str': '44196397', 'name': 'Elon Musk', 'screen_name': 'elonmusk', 'location': 'A Shortfall of Gravitas', 'profile_location': None, 'description': 'nothing', 'url': None, 'entities': {'description': {'urls': []}}, 'protected': False, 'followers_count': 135528327, 'friends_count': 220, 'listed_count': 120478, 'created_at': 'Tue Jun 02 20:12:29 +0000 2009', 'favourites_count': 21285, 'utc_offset': None, 'time_zone': None, 'geo_enabled': False, 'verified': False, 'statuses_count': 24795, 'lang': None, 'status': {'created_at': 'Tue Apr 18 03:45:50 +0000 2023', 'id': 1648170947541704705, 'id_str': '1648170947541704705', 'text': '@MrAndyNgo @REI One store after another shutting down', 'truncated': False, 'entities': {'hashtags': [], 'symbols': [], 'user_mentions': [{'screen_name': 'MrAndyNgo', 'name': 'Andy Ngô 🏳️\u200d🌈', 'id': 2835451658, 'id_str': '2835451658', 'indices': [0, 10]}, {'screen_name': 'REI', 'name': 'REI', 'id': 16583846, 'id_str': '16583846', 'indices': [11,
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-11
|
16583846, 'id_str': '16583846', 'indices': [11, 15]}], 'urls': []}, 'source': '<a href="http://twitter.com/download/iphone" rel="nofollow">Twitter for iPhone</a>', 'in_reply_to_status_id': 1648134341678051328, 'in_reply_to_status_id_str': '1648134341678051328', 'in_reply_to_user_id': 2835451658, 'in_reply_to_user_id_str': '2835451658', 'in_reply_to_screen_name': 'MrAndyNgo', 'geo': None, 'coordinates': None, 'place': None, 'contributors': None, 'is_quote_status': False, 'retweet_count': 118, 'favorite_count': 1286, 'favorited': False, 'retweeted': False, 'lang': 'en'}, 'contributors_enabled': False, 'is_translator': False, 'is_translation_enabled': False, 'profile_background_color': 'C0DEED', 'profile_background_image_url': 'http://abs.twimg.com/images/themes/theme1/bg.png', 'profile_background_image_url_https': 'https://abs.twimg.com/images/themes/theme1/bg.png', 'profile_background_tile': False, 'profile_image_url': 'http://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_normal.jpg', 'profile_image_url_https': 'https://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_normal.jpg', 'profile_banner_url': 'https://pbs.twimg.com/profile_banners/44196397/1576183471', 'profile_link_color': '0084B4', 'profile_sidebar_border_color': 'C0DEED', 'profile_sidebar_fill_color': 'DDEEF6', 'profile_text_color': '333333',
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-12
|
'DDEEF6', 'profile_text_color': '333333', 'profile_use_background_image': True, 'has_extended_profile': True, 'default_profile': False, 'default_profile_image': False, 'following': None, 'follow_request_sent': None, 'notifications': None, 'translator_type': 'none', 'withheld_in_countries': []}}),
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-13
|
Document(page_content='@TRHLofficial What’s he talking about and why is it sponsored by Erik’s son?', metadata={'created_at': 'Tue Apr 18 03:32:17 +0000 2023', 'user_info': {'id': 44196397, 'id_str': '44196397', 'name': 'Elon Musk', 'screen_name': 'elonmusk', 'location': 'A Shortfall of Gravitas', 'profile_location': None, 'description': 'nothing', 'url': None, 'entities': {'description': {'urls': []}}, 'protected': False, 'followers_count': 135528327, 'friends_count': 220, 'listed_count': 120478, 'created_at': 'Tue Jun 02 20:12:29 +0000 2009', 'favourites_count': 21285, 'utc_offset': None, 'time_zone': None, 'geo_enabled': False, 'verified': False, 'statuses_count': 24795, 'lang': None, 'status': {'created_at': 'Tue Apr 18 03:45:50 +0000 2023', 'id': 1648170947541704705, 'id_str': '1648170947541704705', 'text': '@MrAndyNgo @REI One store after another shutting down', 'truncated': False, 'entities': {'hashtags': [], 'symbols': [], 'user_mentions': [{'screen_name': 'MrAndyNgo', 'name': 'Andy Ngô 🏳️\u200d🌈', 'id': 2835451658, 'id_str': '2835451658', 'indices': [0, 10]}, {'screen_name': 'REI', 'name': 'REI', 'id': 16583846, 'id_str': '16583846',
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-14
|
'id': 16583846, 'id_str': '16583846', 'indices': [11, 15]}], 'urls': []}, 'source': '<a href="http://twitter.com/download/iphone" rel="nofollow">Twitter for iPhone</a>', 'in_reply_to_status_id': 1648134341678051328, 'in_reply_to_status_id_str': '1648134341678051328', 'in_reply_to_user_id': 2835451658, 'in_reply_to_user_id_str': '2835451658', 'in_reply_to_screen_name': 'MrAndyNgo', 'geo': None, 'coordinates': None, 'place': None, 'contributors': None, 'is_quote_status': False, 'retweet_count': 118, 'favorite_count': 1286, 'favorited': False, 'retweeted': False, 'lang': 'en'}, 'contributors_enabled': False, 'is_translator': False, 'is_translation_enabled': False, 'profile_background_color': 'C0DEED', 'profile_background_image_url': 'http://abs.twimg.com/images/themes/theme1/bg.png', 'profile_background_image_url_https': 'https://abs.twimg.com/images/themes/theme1/bg.png', 'profile_background_tile': False, 'profile_image_url': 'http://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_normal.jpg', 'profile_image_url_https': 'https://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_normal.jpg', 'profile_banner_url': 'https://pbs.twimg.com/profile_banners/44196397/1576183471', 'profile_link_color': '0084B4', 'profile_sidebar_border_color': 'C0DEED', 'profile_sidebar_fill_color': 'DDEEF6', 'profile_text_color': '333333',
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-15
|
'DDEEF6', 'profile_text_color': '333333', 'profile_use_background_image': True, 'has_extended_profile': True, 'default_profile': False, 'default_profile_image': False, 'following': None, 'follow_request_sent': None, 'notifications': None, 'translator_type': 'none', 'withheld_in_countries': []}})]
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
76bac03996f4-16
|
previous
2Markdown
next
Text Splitters
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/twitter.html
|
5bb3b27a8220-0
|
.ipynb
.pdf
PySpark DataFrame Loader
PySpark DataFrame Loader#
This notebook goes over how to load data from a PySpark DataFrame.
#!pip install pyspark
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
23/05/31 14:08:33 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
df = spark.read.csv('example_data/mlb_teams_2012.csv', header=True)
from langchain.document_loaders import PySparkDataFrameLoader
loader = PySparkDataFrameLoader(spark, df, page_content_column="Team")
loader.load()
[Stage 8:> (0 + 1) / 1]
[Document(page_content='Nationals', metadata={' "Payroll (millions)"': ' 81.34', ' "Wins"': ' 98'}),
Document(page_content='Reds', metadata={' "Payroll (millions)"': ' 82.20', ' "Wins"': ' 97'}),
Document(page_content='Yankees', metadata={' "Payroll (millions)"': ' 197.96', ' "Wins"': ' 95'}),
Document(page_content='Giants', metadata={' "Payroll (millions)"': ' 117.62', ' "Wins"': ' 94'}),
Document(page_content='Braves', metadata={' "Payroll (millions)"': ' 83.31', ' "Wins"': ' 94'}),
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pyspark_dataframe.html
|
5bb3b27a8220-1
|
Document(page_content='Athletics', metadata={' "Payroll (millions)"': ' 55.37', ' "Wins"': ' 94'}),
Document(page_content='Rangers', metadata={' "Payroll (millions)"': ' 120.51', ' "Wins"': ' 93'}),
Document(page_content='Orioles', metadata={' "Payroll (millions)"': ' 81.43', ' "Wins"': ' 93'}),
Document(page_content='Rays', metadata={' "Payroll (millions)"': ' 64.17', ' "Wins"': ' 90'}),
Document(page_content='Angels', metadata={' "Payroll (millions)"': ' 154.49', ' "Wins"': ' 89'}),
Document(page_content='Tigers', metadata={' "Payroll (millions)"': ' 132.30', ' "Wins"': ' 88'}),
Document(page_content='Cardinals', metadata={' "Payroll (millions)"': ' 110.30', ' "Wins"': ' 88'}),
Document(page_content='Dodgers', metadata={' "Payroll (millions)"': ' 95.14', ' "Wins"': ' 86'}),
Document(page_content='White Sox', metadata={' "Payroll (millions)"': ' 96.92', ' "Wins"': ' 85'}),
Document(page_content='Brewers', metadata={' "Payroll (millions)"': ' 97.65', ' "Wins"': ' 83'}),
Document(page_content='Phillies', metadata={' "Payroll (millions)"': ' 174.54', ' "Wins"': ' 81'}),
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pyspark_dataframe.html
|
5bb3b27a8220-2
|
Document(page_content='Diamondbacks', metadata={' "Payroll (millions)"': ' 74.28', ' "Wins"': ' 81'}),
Document(page_content='Pirates', metadata={' "Payroll (millions)"': ' 63.43', ' "Wins"': ' 79'}),
Document(page_content='Padres', metadata={' "Payroll (millions)"': ' 55.24', ' "Wins"': ' 76'}),
Document(page_content='Mariners', metadata={' "Payroll (millions)"': ' 81.97', ' "Wins"': ' 75'}),
Document(page_content='Mets', metadata={' "Payroll (millions)"': ' 93.35', ' "Wins"': ' 74'}),
Document(page_content='Blue Jays', metadata={' "Payroll (millions)"': ' 75.48', ' "Wins"': ' 73'}),
Document(page_content='Royals', metadata={' "Payroll (millions)"': ' 60.91', ' "Wins"': ' 72'}),
Document(page_content='Marlins', metadata={' "Payroll (millions)"': ' 118.07', ' "Wins"': ' 69'}),
Document(page_content='Red Sox', metadata={' "Payroll (millions)"': ' 173.18', ' "Wins"': ' 69'}),
Document(page_content='Indians', metadata={' "Payroll (millions)"': ' 78.43', ' "Wins"': ' 68'}),
Document(page_content='Twins', metadata={' "Payroll (millions)"': ' 94.08', ' "Wins"': ' 66'}),
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pyspark_dataframe.html
|
5bb3b27a8220-3
|
Document(page_content='Rockies', metadata={' "Payroll (millions)"': ' 78.06', ' "Wins"': ' 64'}),
Document(page_content='Cubs', metadata={' "Payroll (millions)"': ' 88.19', ' "Wins"': ' 61'}),
Document(page_content='Astros', metadata={' "Payroll (millions)"': ' 60.65', ' "Wins"': ' 55'})]
previous
Psychic
next
ReadTheDocs Documentation
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pyspark_dataframe.html
|
95535fabdf64-0
|
.ipynb
.pdf
Subtitle
Subtitle#
The SubRip file format is described on the Matroska multimedia container format website as “perhaps the most basic of all subtitle formats.” SubRip (SubRip Text) files are named with the extension .srt, and contain formatted lines of plain text in groups separated by a blank line. Subtitles are numbered sequentially, starting at 1. The timecode format used is hours:minutes:seconds,milliseconds with time units fixed to two zero-padded digits and fractions fixed to three zero-padded digits (00:00:00,000). The fractional separator used is the comma, since the program was written in France.
How to load data from subtitle (.srt) files
Please, download the example .srt file from here.
!pip install pysrt
from langchain.document_loaders import SRTLoader
loader = SRTLoader("example_data/Star_Wars_The_Clone_Wars_S06E07_Crisis_at_the_Heart.srt")
docs = loader.load()
docs[0].page_content[:100]
'<i>Corruption discovered\nat the core of the Banking Clan!</i> <i>Reunited, Rush Clovis\nand Senator A'
previous
Sitemap
next
Telegram
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/subtitle.html
|
127a21c98f3e-0
|
.ipynb
.pdf
Telegram
Telegram#
Telegram Messenger is a globally accessible freemium, cross-platform, encrypted, cloud-based and centralized instant messaging service. The application also provides optional end-to-end encrypted chats and video calling, VoIP, file sharing and several other features.
This notebook covers how to load data from Telegram into a format that can be ingested into LangChain.
from langchain.document_loaders import TelegramChatFileLoader, TelegramChatApiLoader
loader = TelegramChatFileLoader("example_data/telegram.json")
loader.load()
[Document(page_content="Henry on 2020-01-01T00:00:02: It's 2020...\n\nHenry on 2020-01-01T00:00:04: Fireworks!\n\nGrace 🧤 ðŸ\x8d’ on 2020-01-01T00:00:05: You're a minute late!\n\n", metadata={'source': 'example_data/telegram.json'})]
TelegramChatApiLoader loads data directly from any specified chat from Telegram. In order to export the data, you will need to authenticate your Telegram account.
You can get the API_HASH and API_ID from https://my.telegram.org/auth?to=apps
chat_entity – recommended to be the entity of a channel.
loader = TelegramChatApiLoader(
chat_entity="<CHAT_URL>", # recommended to use Entity here
api_hash="<API HASH >",
api_id="<API_ID>",
user_name ="", # needed only for caching the session.
)
loader.load()
previous
Subtitle
next
TOML
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/telegram.html
|
0520909e4e58-0
|
.ipynb
.pdf
Email
Contents
Using Unstructured
Retain Elements
Using OutlookMessageLoader
Email#
This notebook shows how to load email (.eml) or Microsoft Outlook (.msg) files.
Using Unstructured#
#!pip install unstructured
from langchain.document_loaders import UnstructuredEmailLoader
loader = UnstructuredEmailLoader('example_data/fake-email.eml')
data = loader.load()
data
[Document(page_content='This is a test email to use for unit tests.\n\nImportant points:\n\nRoses are red\n\nViolets are blue', metadata={'source': 'example_data/fake-email.eml'})]
Retain Elements#
Under the hood, Unstructured creates different “elements” for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying mode="elements".
loader = UnstructuredEmailLoader('example_data/fake-email.eml', mode="elements")
data = loader.load()
data[0]
Document(page_content='This is a test email to use for unit tests.', lookup_str='', metadata={'source': 'example_data/fake-email.eml'}, lookup_index=0)
Using OutlookMessageLoader#
#!pip install extract_msg
from langchain.document_loaders import OutlookMessageLoader
loader = OutlookMessageLoader('example_data/fake-email.msg')
data = loader.load()
data[0]
Document(page_content='This is a test email to experiment with the MS Outlook MSG Extractor\r\n\r\n\r\n-- \r\n\r\n\r\nKind regards\r\n\r\n\r\n\r\n\r\nBrian Zhou\r\n\r\n', metadata={'subject': 'Test for TIF files', 'sender': 'Brian Zhou <[email protected]>', 'date': 'Mon, 18 Nov 2013 16:26:24 +0800'})
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/email.html
|
0520909e4e58-1
|
previous
CSV
next
EPub
Contents
Using Unstructured
Retain Elements
Using OutlookMessageLoader
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/email.html
|
fa57e49e1aa5-0
|
.ipynb
.pdf
Blockchain
Contents
Overview
Load NFTs into Document Loader
Option 1: Ethereum Mainnet (default BlockchainType)
Option 2: Polygon Mainnet
Blockchain#
Overview#
The intention of this notebook is to provide a means of testing functionality in the Langchain Document Loader for Blockchain.
Initially this Loader supports:
Loading NFTs as Documents from NFT Smart Contracts (ERC721 and ERC1155)
Ethereum Mainnnet, Ethereum Testnet, Polygon Mainnet, Polygon Testnet (default is eth-mainnet)
Alchemy’s getNFTsForCollection API
It can be extended if the community finds value in this loader. Specifically:
Additional APIs can be added (e.g. Tranction-related APIs)
This Document Loader Requires:
A free Alchemy API Key
The output takes the following format:
pageContent= Individual NFT
metadata={‘source’: ‘0x1a92f7381b9f03921564a437210bb9396471050c’, ‘blockchain’: ‘eth-mainnet’, ‘tokenId’: ‘0x15’})
Load NFTs into Document Loader#
# get ALCHEMY_API_KEY from https://www.alchemy.com/
alchemyApiKey = "..."
Option 1: Ethereum Mainnet (default BlockchainType)#
from langchain.document_loaders.blockchain import BlockchainDocumentLoader, BlockchainType
contractAddress = "0xbc4ca0eda7647a8ab7c2061c2e118a18a936f13d" # Bored Ape Yacht Club contract address
blockchainType = BlockchainType.ETH_MAINNET #default value, optional parameter
blockchainLoader = BlockchainDocumentLoader(contract_address=contractAddress,
api_key=alchemyApiKey)
nfts = blockchainLoader.load()
nfts[:2]
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/blockchain.html
|
fa57e49e1aa5-1
|
nfts = blockchainLoader.load()
nfts[:2]
Option 2: Polygon Mainnet#
contractAddress = "0x448676ffCd0aDf2D85C1f0565e8dde6924A9A7D9" # Polygon Mainnet contract address
blockchainType = BlockchainType.POLYGON_MAINNET
blockchainLoader = BlockchainDocumentLoader(contract_address=contractAddress,
blockchainType=blockchainType,
api_key=alchemyApiKey)
nfts = blockchainLoader.load()
nfts[:2]
previous
Blackboard
next
ChatGPT Data
Contents
Overview
Load NFTs into Document Loader
Option 1: Ethereum Mainnet (default BlockchainType)
Option 2: Polygon Mainnet
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/blockchain.html
|
d49372cc10e2-0
|
.ipynb
.pdf
Airtable
Airtable#
! pip install pyairtable
from langchain.document_loaders import AirtableLoader
Get your API key here.
Get ID of your base here.
Get your table ID from the table url as shown here.
api_key="xxx"
base_id="xxx"
table_id="xxx"
loader = AirtableLoader(api_key,table_id,base_id)
docs = loader.load()
Returns each table row as dict.
len(docs)
3
eval(docs[0].page_content)
{'id': 'recF3GbGZCuh9sXIQ',
'createdTime': '2023-06-09T04:47:21.000Z',
'fields': {'Priority': 'High',
'Status': 'In progress',
'Name': 'Document Splitters'}}
previous
Document Loaders
next
OpenAIWhisperParser
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/airtable.html
|
04f25361658b-0
|
.ipynb
.pdf
Google Drive
Contents
Prerequisites
🧑 Instructions for ingesting your Google Docs data
Google Drive#
Google Drive is a file storage and synchronization service developed by Google.
This notebook covers how to load documents from Google Drive. Currently, only Google Docs are supported.
Prerequisites#
Create a Google Cloud project or use an existing project
Enable the Google Drive API
Authorize credentials for desktop app
pip install --upgrade google-api-python-client google-auth-httplib2 google-auth-oauthlib
🧑 Instructions for ingesting your Google Docs data#
By default, the GoogleDriveLoader expects the credentials.json file to be ~/.credentials/credentials.json, but this is configurable using the credentials_path keyword argument. Same thing with token.json - token_path. Note that token.json will be created automatically the first time you use the loader.
GoogleDriveLoader can load from a list of Google Docs document ids or a folder id. You can obtain your folder and document id from the URL:
Folder: https://drive.google.com/drive/u/0/folders/1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5 -> folder id is "1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5"
Document: https://docs.google.com/document/d/1bfaMQ18_i56204VaQDVeAFpqEijJTgvurupdEDiaUQw/edit -> document id is "1bfaMQ18_i56204VaQDVeAFpqEijJTgvurupdEDiaUQw"
!pip install --upgrade google-api-python-client google-auth-httplib2 google-auth-oauthlib
from langchain.document_loaders import GoogleDriveLoader
loader = GoogleDriveLoader(
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/google_drive.html
|
04f25361658b-1
|
from langchain.document_loaders import GoogleDriveLoader
loader = GoogleDriveLoader(
folder_id="1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5",
# Optional: configure whether to recursively fetch files from subfolders. Defaults to False.
recursive=False
)
docs = loader.load()
When you pass a folder_id by default all files of type document, sheet and pdf are loaded. You can modify this behaviour by passing a file_types argument
loader = GoogleDriveLoader(
folder_id="1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5",
file_types=["document", "sheet"]
recursive=False
)
previous
Google Cloud Storage File
next
Image captions
Contents
Prerequisites
🧑 Instructions for ingesting your Google Docs data
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/google_drive.html
|
b8bd9ca5879e-0
|
.ipynb
.pdf
PDF
Contents
Using PyPDF
Using MathPix
Using Unstructured
Retain Elements
Fetching remote PDFs using Unstructured
Using PyPDFium2
Using PDFMiner
Using PDFMiner to generate HTML text
Using PyMuPDF
PyPDF Directory
Using pdfplumber
PDF#
Portable Document Format (PDF), standardized as ISO 32000, is a file format developed by Adobe in 1992 to present documents, including text formatting and images, in a manner independent of application software, hardware, and operating systems.
This covers how to load PDF documents into the Document format that we use downstream.
Using PyPDF#
Load PDF using pypdf into array of documents, where each document contains the page content and metadata with page number.
!pip install pypdf
from langchain.document_loaders import PyPDFLoader
loader = PyPDFLoader("example_data/layout-parser-paper.pdf")
pages = loader.load_and_split()
pages[0]
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-1
|
Document(page_content='LayoutParser : A Uni\x0ced Toolkit for Deep\nLearning Based Document Image Analysis\nZejiang Shen1( \x00), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain\nLee4, Jacob Carlson3, and Weining Li5\n1Allen Institute for AI\[email protected]\n2Brown University\nruochen [email protected]\n3Harvard University\nfmelissadell,jacob carlson [email protected]\n4University of Washington\[email protected]\n5University of Waterloo\[email protected]\nAbstract. Recent advances in document image analysis (DIA) have been\nprimarily driven by the application of neural networks. Ideally, research\noutcomes could be easily deployed in production and extended for further\ninvestigation. However, various factors like loosely organized codebases\nand sophisticated model con\x0cgurations complicate the easy reuse of im-\nportant innovations by a wide audience. Though there have been on-going\ne\x0borts to improve reusability and simplify deep learning (DL) model\ndevelopment in disciplines like natural language processing and computer\nvision, none of them are optimized for challenges in the domain of DIA.\nThis represents a major gap in the existing toolkit, as DIA is central to\nacademic research across a wide range of disciplines in the social sciences\nand humanities. This paper introduces LayoutParser , an open-source\nlibrary for streamlining the usage of DL in DIA research and applica-\ntions. The core LayoutParser library comes with a set of simple and\nintuitive interfaces for applying and customizing DL models for layout de-\ntection, character recognition, and many other document processing tasks.\nTo promote extensibility, LayoutParser also incorporates a community\nplatform for sharing both pre-trained models and full document digiti-\nzation
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-2
|
also incorporates a community\nplatform for sharing both pre-trained models and full document digiti-\nzation pipelines. We demonstrate that LayoutParser is helpful for both\nlightweight and large-scale digitization pipelines in real-word use cases.\nThe library is publicly available at https://layout-parser.github.io .\nKeywords: Document Image Analysis ·Deep Learning ·Layout Analysis\n·Character Recognition ·Open Source library ·Toolkit.\n1 Introduction\nDeep Learning(DL)-based approaches are the state-of-the-art for a wide range of\ndocument image analysis (DIA) tasks including document image classi\x0ccation [ 11,arXiv:2103.15348v2 [cs.CV] 21 Jun 2021', metadata={'source': 'example_data/layout-parser-paper.pdf', 'page': 0})
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-3
|
An advantage of this approach is that documents can be retrieved with page numbers.
We want to use OpenAIEmbeddings so we have to get the OpenAI API Key.
import os
import getpass
os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')
OpenAI API Key: ········
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
faiss_index = FAISS.from_documents(pages, OpenAIEmbeddings())
docs = faiss_index.similarity_search("How will the community be engaged?", k=2)
for doc in docs:
print(str(doc.metadata["page"]) + ":", doc.page_content[:300])
9: 10 Z. Shen et al.
Fig. 4: Illustration of (a) the original historical Japanese document with layout
detection results and (b) a recreated version of the document image that achieves
much better character recognition recall. The reorganization algorithm rearranges
the tokens based on the their detect
3: 4 Z. Shen et al.
Efficient Data AnnotationC u s t o m i z e d M o d e l T r a i n i n gModel Cust omizationDI A Model HubDI A Pipeline SharingCommunity PlatformLa y out Detection ModelsDocument Images
T h e C o r e L a y o u t P a r s e r L i b r a r yOCR ModuleSt or age & VisualizationLa y ou
Using MathPix#
Inspired by Daniel Gross’s https://gist.github.com/danielgross/3ab4104e14faccc12b49200843adab21
from langchain.document_loaders import MathpixPDFLoader
loader = MathpixPDFLoader("example_data/layout-parser-paper.pdf")
data = loader.load()
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-4
|
data = loader.load()
Using Unstructured#
from langchain.document_loaders import UnstructuredPDFLoader
loader = UnstructuredPDFLoader("example_data/layout-parser-paper.pdf")
data = loader.load()
Retain Elements#
Under the hood, Unstructured creates different “elements” for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying mode="elements".
loader = UnstructuredPDFLoader("example_data/layout-parser-paper.pdf", mode="elements")
data = loader.load()
data[0]
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-5
|
Document(page_content='LayoutParser: A Unified Toolkit for Deep\nLearning Based Document Image Analysis\nZejiang Shen1 (�), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain\nLee4, Jacob Carlson3, and Weining Li5\n1 Allen Institute for AI\[email protected]\n2 Brown University\nruochen [email protected]\n3 Harvard University\n{melissadell,jacob carlson}@fas.harvard.edu\n4 University of Washington\[email protected]\n5 University of Waterloo\[email protected]\nAbstract. Recent advances in document image analysis (DIA) have been\nprimarily driven by the application of neural networks. Ideally, research\noutcomes could be easily deployed in production and extended for further\ninvestigation. However, various factors like loosely organized codebases\nand sophisticated model configurations complicate the easy reuse of im-\nportant innovations by a wide audience. Though there have been on-going\nefforts to improve reusability and simplify deep learning (DL) model\ndevelopment in disciplines like natural language processing and computer\nvision, none of them are optimized for challenges in the domain of DIA.\nThis represents a major gap in the existing toolkit, as DIA is central to\nacademic research across a wide range of disciplines in the social sciences\nand humanities. This paper introduces LayoutParser, an open-source\nlibrary for streamlining the usage of DL in DIA research and applica-\ntions. The core LayoutParser library comes with a set of simple and\nintuitive interfaces for applying and customizing DL models for layout de-\ntection, character recognition, and many other document processing tasks.\nTo promote extensibility, LayoutParser also incorporates a community\nplatform for sharing both pre-trained models and full document digiti-\nzation pipelines. We demonstrate that
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-6
|
for sharing both pre-trained models and full document digiti-\nzation pipelines. We demonstrate that LayoutParser is helpful for both\nlightweight and large-scale digitization pipelines in real-word use cases.\nThe library is publicly available at https://layout-parser.github.io.\nKeywords: Document Image Analysis · Deep Learning · Layout Analysis\n· Character Recognition · Open Source library · Toolkit.\n1\nIntroduction\nDeep Learning(DL)-based approaches are the state-of-the-art for a wide range of\ndocument image analysis (DIA) tasks including document image classification [11,\narXiv:2103.15348v2 [cs.CV] 21 Jun 2021\n', lookup_str='', metadata={'file_path': 'example_data/layout-parser-paper.pdf', 'page_number': 1, 'total_pages': 16, 'format': 'PDF 1.5', 'title': '', 'author': '', 'subject': '', 'keywords': '', 'creator': 'LaTeX with hyperref', 'producer': 'pdfTeX-1.40.21', 'creationDate': 'D:20210622012710Z', 'modDate': 'D:20210622012710Z', 'trapped': '', 'encryption': None}, lookup_index=0)
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-7
|
Fetching remote PDFs using Unstructured#
This covers how to load online pdfs into a document format that we can use downstream. This can be used for various online pdf sites such as https://open.umn.edu/opentextbooks/textbooks/ and https://arxiv.org/archive/
Note: all other pdf loaders can also be used to fetch remote PDFs, but OnlinePDFLoader is a legacy function, and works specifically with UnstructuredPDFLoader.
from langchain.document_loaders import OnlinePDFLoader
loader = OnlinePDFLoader("https://arxiv.org/pdf/2302.03803.pdf")
data = loader.load()
print(data)
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-8
|
[Document(page_content='A WEAK ( k, k ) -LEFSCHETZ THEOREM FOR PROJECTIVE TORIC ORBIFOLDS\n\nWilliam D. Montoya\n\nInstituto de Matem´atica, Estat´ıstica e Computa¸c˜ao Cient´ıfica,\n\nIn [3] we proved that, under suitable conditions, on a very general codimension s quasi- smooth intersection subvariety X in a projective toric orbifold P d Σ with d + s = 2 ( k + 1 ) the Hodge conjecture holds, that is, every ( p, p ) -cohomology class, under the Poincar´e duality is a rational linear combination of fundamental classes of algebraic subvarieties of X . The proof of the above-mentioned result relies, for p ≠ d + 1 − s , on a Lefschetz\n\nKeywords: (1,1)- Lefschetz theorem, Hodge conjecture, toric varieties, complete intersection Email: [email protected]\n\ntheorem ([7]) and the Hard Lefschetz theorem for projective orbifolds ([11]). When p = d + 1 − s the proof relies on the Cayley trick, a trick which associates to X a quasi-smooth hypersurface Y in a projective vector bundle, and the Cayley Proposition (4.3) which gives an isomorphism of some primitive cohomologies (4.2) of X and Y . The Cayley trick, following the philosophy of Mavlyutov in [7], reduces results known for quasi-smooth hypersurfaces to quasi-smooth intersection subvarieties. The idea in this paper goes the other way around, we translate some results for quasi-smooth intersection subvarieties to\n\nAcknowledgement. I thank
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-9
|
we translate some results for quasi-smooth intersection subvarieties to\n\nAcknowledgement. I thank Prof. Ugo Bruzzo and Tiago Fonseca for useful discus- sions. I also acknowledge support from FAPESP postdoctoral grant No. 2019/23499-7.\n\nLet M be a free abelian group of rank d , let N = Hom ( M, Z ) , and N R = N ⊗ Z R .\n\nif there exist k linearly independent primitive elements e\n\n, . . . , e k ∈ N such that σ = { µ\n\ne\n\n+ ⋯ + µ k e k } . • The generators e i are integral if for every i and any nonnegative rational number µ the product µe i is in N only if µ is an integer. • Given two rational simplicial cones σ , σ ′ one says that σ ′ is a face of σ ( σ ′ < σ ) if the set of integral generators of σ ′ is a subset of the set of integral generators of σ . • A finite set Σ = { σ\n\n, . . . , σ t } of rational simplicial cones is called a rational simplicial complete d -dimensional fan if:\n\nall faces of cones in Σ are in Σ ;\n\nif σ, σ ′ ∈ Σ then σ ∩ σ ′ < σ and σ ∩ σ ′ < σ ′ ;\n\nN R = σ\n\n∪ ⋅ ⋅ ⋅ ∪ σ t .\n\nA rational simplicial complete d -dimensional fan Σ defines a d -dimensional toric variety P d Σ having only orbifold singularities which we assume to be projective. Moreover, T ∶ = N ⊗ Z C
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-10
|
which we assume to be projective. Moreover, T ∶ = N ⊗ Z C ∗ ≃ ( C ∗ ) d is the torus action on P d Σ . We denote by Σ ( i ) the i -dimensional cones\n\nFor a cone σ ∈ Σ, ˆ σ is the set of 1-dimensional cone in Σ that are not contained in σ\n\nand x ˆ σ ∶ = ∏ ρ ∈ ˆ σ x ρ is the associated monomial in S .\n\nDefinition 2.2. The irrelevant ideal of P d Σ is the monomial ideal B Σ ∶ =< x ˆ σ ∣ σ ∈ Σ > and the zero locus Z ( Σ ) ∶ = V ( B Σ ) in the affine space A d ∶ = Spec ( S ) is the irrelevant locus.\n\nProposition 2.3 (Theorem 5.1.11 [5]) . The toric variety P d Σ is a categorical quotient A d ∖ Z ( Σ ) by the group Hom ( Cl ( Σ ) , C ∗ ) and the group action is induced by the Cl ( Σ ) - grading of S .\n\nNow we give a brief introduction to complex orbifolds and we mention the needed theorems for the next section. Namely: de Rham theorem and Dolbeault theorem for complex orbifolds.\n\nDefinition 2.4. A complex orbifold of complex dimension d is a singular complex space whose singularities are locally isomorphic to quotient singularities C d / G , for finite sub- groups G ⊂ Gl ( d, C ) .\n\nDefinition 2.5. A differential form
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-11
|
2.5. A differential form on a complex orbifold Z is defined locally at z ∈ Z as a G -invariant differential form on C d where G ⊂ Gl ( d, C ) and Z is locally isomorphic to d\n\nRoughly speaking the local geometry of orbifolds reduces to local G -invariant geometry.\n\nWe have a complex of differential forms ( A ● ( Z ) , d ) and a double complex ( A ● , ● ( Z ) , ∂, ¯ ∂ ) of bigraded differential forms which define the de Rham and the Dolbeault cohomology groups (for a fixed p ∈ N ) respectively:\n\n(1,1)-Lefschetz theorem for projective toric orbifolds\n\nDefinition 3.1. A subvariety X ⊂ P d Σ is quasi-smooth if V ( I X ) ⊂ A #Σ ( 1 ) is smooth outside\n\nExample 3.2 . Quasi-smooth hypersurfaces or more generally quasi-smooth intersection sub-\n\nExample 3.2 . Quasi-smooth hypersurfaces or more generally quasi-smooth intersection sub- varieties are quasi-smooth subvarieties (see [2] or [7] for more details).\n\nRemark 3.3 . Quasi-smooth subvarieties are suborbifolds of P d Σ in the sense of Satake in [8]. Intuitively speaking they are subvarieties whose only singularities come from the ambient\n\nProof. From the exponential short exact sequence\n\nwe have a long exact sequence in cohomology\n\nH 1 (O ∗ X ) → H 2 ( X, Z )
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-12
|
1 (O ∗ X ) → H 2 ( X, Z ) → H 2 (O X ) ≃ H 0 , 2 ( X )\n\nwhere the last isomorphisms is due to Steenbrink in [9]. Now, it is enough to prove the commutativity of the next diagram\n\nwhere the last isomorphisms is due to Steenbrink in [9]. Now,\n\nH 2 ( X, Z ) / / H 2 ( X, O X ) ≃ Dolbeault H 2 ( X, C ) deRham ≃ H 2 dR ( X, C ) / / H 0 , 2 ¯ ∂ ( X )\n\nof the proof follows as the ( 1 , 1 ) -Lefschetz theorem in [6].\n\nRemark 3.5 . For k = 1 and P d Σ as the projective space, we recover the classical ( 1 , 1 ) - Lefschetz theorem.\n\nBy the Hard Lefschetz Theorem for projective orbifolds (see [11] for details) we\n\nBy the Hard Lefschetz Theorem for projective orbifolds (see [11] for details) we get an isomorphism of cohomologies :\n\ngiven by the Lefschetz morphism and since it is a morphism of Hodge structures, we have:\n\nH 1 , 1 ( X, Q ) ≃ H dim X − 1 , dim X − 1 ( X, Q )\n\nCorollary 3.6. If the dimension of X is 1 , 2 or 3 . The Hodge conjecture holds on X\n\nProof. If the dim C X = 1 the result is clear by the
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-13
|
on X\n\nProof. If the dim C X = 1 the result is clear by the Hard Lefschetz theorem for projective orbifolds. The dimension 2 and 3 cases are covered by Theorem 3.5 and the Hard Lefschetz.\n\nCayley trick and Cayley proposition\n\nThe Cayley trick is a way to associate to a quasi-smooth intersection subvariety a quasi- smooth hypersurface. Let L 1 , . . . , L s be line bundles on P d Σ and let π ∶ P ( E ) → P d Σ be the projective space bundle associated to the vector bundle E = L 1 ⊕ ⋯ ⊕ L s . It is known that P ( E ) is a ( d + s − 1 ) -dimensional simplicial toric variety whose fan depends on the degrees of the line bundles and the fan Σ. Furthermore, if the Cox ring, without considering the grading, of P d Σ is C [ x 1 , . . . , x m ] then the Cox ring of P ( E ) is\n\nMoreover for X a quasi-smooth intersection subvariety cut off by f 1 , . . . , f s with deg ( f i ) = [ L i ] we relate the hypersurface Y cut off by F = y 1 f 1 + ⋅ ⋅ ⋅ + y s f s which turns out to be quasi-smooth. For more details see Section 2 in [7].\n\nWe will denote P ( E ) as P d + s − 1 Σ ,X to keep track of its relation with X and P d Σ .\n\nThe following is a key remark.\n\nRemark 4.1 . There is a morphism ι ∶ X → Y
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-14
|
4.1 . There is a morphism ι ∶ X → Y ⊂ P d + s − 1 Σ ,X . Moreover every point z ∶ = ( x, y ) ∈ Y with y ≠ 0 has a preimage. Hence for any subvariety W = V ( I W ) ⊂ X ⊂ P d Σ there exists W ′ ⊂ Y ⊂ P d + s − 1 Σ ,X such that π ( W ′ ) = W , i.e., W ′ = { z = ( x, y ) ∣ x ∈ W } .\n\nFor X ⊂ P d Σ a quasi-smooth intersection variety the morphism in cohomology induced by the inclusion i ∗ ∶ H d − s ( P d Σ , C ) → H d − s ( X, C ) is injective by Proposition 1.4 in [7].\n\nDefinition 4.2. The primitive cohomology of H d − s prim ( X ) is the quotient H d − s ( X, C )/ i ∗ ( H d − s ( P d Σ , C )) and H d − s prim ( X, Q ) with rational coefficients.\n\nH d − s ( P d Σ , C ) and H d − s ( X, C ) have pure Hodge structures, and the morphism i ∗ is com- patible with them, so that H d − s prim ( X ) gets a pure Hodge structure.\n\nThe next Proposition is the Cayley proposition.\n\nProposition 4.3. [Proposition 2.3 in [3] ] Let X = X 1 ∩⋅ ⋅ ⋅∩ X s be a quasi-smooth intersec- tion
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-15
|
⋅ ⋅∩ X s be a quasi-smooth intersec- tion subvariety in P d Σ cut off by homogeneous polynomials f 1 . . . f s . Then for p ≠ d + s − 1 2 , d + s − 3 2\n\nRemark 4.5 . The above isomorphisms are also true with rational coefficients since H ● ( X, C ) = H ● ( X, Q ) ⊗ Q C . See the beginning of Section 7.1 in [10] for more details.\n\nTheorem 5.1. Let Y = { F = y 1 f 1 + ⋯ + y k f k = 0 } ⊂ P 2 k + 1 Σ ,X be the quasi-smooth hypersurface associated to the quasi-smooth intersection surface X = X f 1 ∩ ⋅ ⋅ ⋅ ∩ X f k ⊂ P k + 2 Σ . Then on Y the Hodge conjecture holds.\n\nthe Hodge conjecture holds.\n\nProof. If H k,k prim ( X, Q ) = 0 we are done. So let us assume H k,k prim ( X, Q ) ≠ 0. By the Cayley proposition H k,k prim ( Y, Q ) ≃ H 1 , 1 prim ( X, Q ) and by the ( 1 , 1 ) -Lefschetz theorem for projective\n\ntoric orbifolds there is a non-zero algebraic basis λ C 1 , . . . , λ C n with rational coefficients of H 1 , 1 prim ( X, Q ) , that is, there are n ∶ = h 1 , 1 prim ( X, Q )
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-16
|
is, there are n ∶ = h 1 , 1 prim ( X, Q ) algebraic curves C 1 , . . . , C n in X such that under the Poincar´e duality the class in homology [ C i ] goes to λ C i , [ C i ] ↦ λ C i . Recall that the Cox ring of P k + 2 is contained in the Cox ring of P 2 k + 1 Σ ,X without considering the grading. Considering the grading we have that if α ∈ Cl ( P k + 2 Σ ) then ( α, 0 ) ∈ Cl ( P 2 k + 1 Σ ,X ) . So the polynomials defining C i ⊂ P k + 2 Σ can be interpreted in P 2 k + 1 X, Σ but with different degree. Moreover, by Remark 4.1 each C i is contained in Y = { F = y 1 f 1 + ⋯ + y k f k = 0 } and\n\nfurthermore it has codimension k .\n\nClaim: { C i } ni = 1 is a basis of prim ( ) . It is enough to prove that λ C i is different from zero in H k,k prim ( Y, Q ) or equivalently that the cohomology classes { λ C i } ni = 1 do not come from the ambient space. By contradiction, let us assume that there exists a j and C ⊂ P 2 k + 1 Σ ,X such that λ C ∈ H k,k ( P 2 k + 1 Σ ,X , Q ) with i ∗ ( λ C ) = λ C j or in terms of homology there exists a ( k + 2 ) -dimensional algebraic subvariety
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-17
|
of homology there exists a ( k + 2 ) -dimensional algebraic subvariety V ⊂ P 2 k + 1 Σ ,X such that V ∩ Y = C j so they are equal as a homology class of P 2 k + 1 Σ ,X ,i.e., [ V ∩ Y ] = [ C j ] . It is easy to check that π ( V ) ∩ X = C j as a subvariety of P k + 2 Σ where π ∶ ( x, y ) ↦ x . Hence [ π ( V ) ∩ X ] = [ C j ] which is equivalent to say that λ C j comes from P k + 2 Σ which contradicts the choice of [ C j ] .\n\nRemark 5.2 . Into the proof of the previous theorem, the key fact was that on X the Hodge conjecture holds and we translate it to Y by contradiction. So, using an analogous argument we have:\n\nargument we have:\n\nProposition 5.3. Let Y = { F = y 1 f s +⋯+ y s f s = 0 } ⊂ P 2 k + 1 Σ ,X be the quasi-smooth hypersurface associated to a quasi-smooth intersection subvariety X = X f 1 ∩ ⋅ ⋅ ⋅ ∩ X f s ⊂ P d Σ such that d + s = 2 ( k + 1 ) . If the Hodge conjecture holds on X then it holds as well on Y .\n\nCorollary 5.4. If the dimension of Y is 2 s − 1 , 2 s or 2 s + 1 then the Hodge conjecture holds on Y .\n\nProof. By Proposition 5.3 and
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-18
|
Hodge conjecture holds on Y .\n\nProof. By Proposition 5.3 and Corollary 3.6.\n\n[\n\n] Angella, D. Cohomologies of certain orbifolds. Journal of Geometry and Physics\n\n(\n\n),\n\n–\n\n[\n\n] Batyrev, V. V., and Cox, D. A. On the Hodge structure of projective hypersur- faces in toric varieties. Duke Mathematical Journal\n\n,\n\n(Aug\n\n). [\n\n] Bruzzo, U., and Montoya, W. On the Hodge conjecture for quasi-smooth in- tersections in toric varieties. S˜ao Paulo J. Math. Sci. Special Section: Geometry in Algebra and Algebra in Geometry (\n\n). [\n\n] Caramello Jr, F. C. Introduction to orbifolds. a\n\niv:\n\nv\n\n(\n\n). [\n\n] Cox, D., Little, J., and Schenck, H. Toric varieties, vol.\n\nAmerican Math- ematical Soc.,\n\n[\n\n] Griffiths, P., and Harris, J. Principles of Algebraic Geometry. John Wiley & Sons, Ltd,\n\n[\n\n] Mavlyutov, A. R. Cohomology of complete intersections in toric varieties. Pub- lished in Pacific J. of Math.\n\nNo.\n\n(\n\n),\n\n–\n\n[\n\n] Satake, I. On a Generalization of the Notion of Manifold. Proceedings of the National Academy of Sciences of the United States of America\n\n,\n\n(\n\n),\n\n–\n\n[\n\n] Steenbrink, J. H. M. Intersection form for
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-19
|
Steenbrink, J. H. M. Intersection form for quasi-homogeneous singularities. Com- positio Mathematica\n\n,\n\n(\n\n),\n\n–\n\n[\n\n] Voisin, C. Hodge Theory and Complex Algebraic Geometry I, vol.\n\nof Cambridge Studies in Advanced Mathematics . Cambridge University Press,\n\n[\n\n] Wang, Z. Z., and Zaffran, D. A remark on the Hard Lefschetz theorem for K¨ahler orbifolds. Proceedings of the American Mathematical Society\n\n,\n\n(Aug\n\n).\n\n[2] Batyrev, V. V., and Cox, D. A. On the Hodge structure of projective hypersur- faces in toric varieties. Duke Mathematical Journal 75, 2 (Aug 1994).\n\n[\n\n] Bruzzo, U., and Montoya, W. On the Hodge conjecture for quasi-smooth in- tersections in toric varieties. S˜ao Paulo J. Math. Sci. Special Section: Geometry in Algebra and Algebra in Geometry (\n\n).\n\n[3] Bruzzo, U., and Montoya, W. On the Hodge conjecture for quasi-smooth in- tersections in toric varieties. S˜ao Paulo J. Math. Sci. Special Section: Geometry in Algebra and Algebra in Geometry (2021).\n\nA. R. Cohomology of complete intersections in toric varieties. Pub-', lookup_str='', metadata={'source': '/var/folders/ph/hhm7_zyx4l13k3v8z02dwp1w0000gn/T/tmpgq0ckaja/online_file.pdf'}, lookup_index=0)]
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-20
|
Using PyPDFium2#
from langchain.document_loaders import PyPDFium2Loader
loader = PyPDFium2Loader("example_data/layout-parser-paper.pdf")
data = loader.load()
Using PDFMiner#
from langchain.document_loaders import PDFMinerLoader
loader = PDFMinerLoader("example_data/layout-parser-paper.pdf")
data = loader.load()
Using PDFMiner to generate HTML text#
This can be helpful for chunking texts semantically into sections as the output html content can be parsed via BeautifulSoup to get more structured and rich information about font size, page numbers, pdf headers/footers, etc.
from langchain.document_loaders import PDFMinerPDFasHTMLLoader
loader = PDFMinerPDFasHTMLLoader("example_data/layout-parser-paper.pdf")
data = loader.load()[0] # entire pdf is loaded as a single Document
from bs4 import BeautifulSoup
soup = BeautifulSoup(data.page_content,'html.parser')
content = soup.find_all('div')
import re
cur_fs = None
cur_text = ''
snippets = [] # first collect all snippets that have the same font size
for c in content:
sp = c.find('span')
if not sp:
continue
st = sp.get('style')
if not st:
continue
fs = re.findall('font-size:(\d+)px',st)
if not fs:
continue
fs = int(fs[0])
if not cur_fs:
cur_fs = fs
if fs == cur_fs:
cur_text += c.text
else:
snippets.append((cur_text,cur_fs))
cur_fs = fs
cur_text = c.text
snippets.append((cur_text,cur_fs))
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-21
|
cur_text = c.text
snippets.append((cur_text,cur_fs))
# Note: The above logic is very straightforward. One can also add more strategies such as removing duplicate snippets (as
# headers/footers in a PDF appear on multiple pages so if we find duplicatess safe to assume that it is redundant info)
from langchain.docstore.document import Document
cur_idx = -1
semantic_snippets = []
# Assumption: headings have higher font size than their respective content
for s in snippets:
# if current snippet's font size > previous section's heading => it is a new heading
if not semantic_snippets or s[1] > semantic_snippets[cur_idx].metadata['heading_font']:
metadata={'heading':s[0], 'content_font': 0, 'heading_font': s[1]}
metadata.update(data.metadata)
semantic_snippets.append(Document(page_content='',metadata=metadata))
cur_idx += 1
continue
# if current snippet's font size <= previous section's content => content belongs to the same section (one can also create
# a tree like structure for sub sections if needed but that may require some more thinking and may be data specific)
if not semantic_snippets[cur_idx].metadata['content_font'] or s[1] <= semantic_snippets[cur_idx].metadata['content_font']:
semantic_snippets[cur_idx].page_content += s[0]
semantic_snippets[cur_idx].metadata['content_font'] = max(s[1], semantic_snippets[cur_idx].metadata['content_font'])
continue
# if current snippet's font size > previous section's content but less tha previous section's heading than also make a new
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-22
|
# section (e.g. title of a pdf will have the highest font size but we don't want it to subsume all sections)
metadata={'heading':s[0], 'content_font': 0, 'heading_font': s[1]}
metadata.update(data.metadata)
semantic_snippets.append(Document(page_content='',metadata=metadata))
cur_idx += 1
semantic_snippets[4]
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-23
|
Document(page_content='Recently, various DL models and datasets have been developed for layout analysis\ntasks. The dhSegment [22] utilizes fully convolutional networks [20] for segmen-\ntation tasks on historical documents. Object detection-based methods like Faster\nR-CNN [28] and Mask R-CNN [12] are used for identifying document elements [38]\nand detecting tables [30, 26]. Most recently, Graph Neural Networks [29] have also\nbeen used in table detection [27]. However, these models are usually implemented\nindividually and there is no unified framework to load and use such models.\nThere has been a surge of interest in creating open-source tools for document\nimage processing: a search of document image analysis in Github leads to 5M\nrelevant code pieces 6; yet most of them rely on traditional rule-based methods\nor provide limited functionalities. The closest prior research to our work is the\nOCR-D project7, which also tries to build a complete toolkit for DIA. However,\nsimilar to the platform developed by Neudecker et al. [21], it is designed for\nanalyzing historical documents, and provides no supports for recent DL models.\nThe DocumentLayoutAnalysis project8 focuses on processing born-digital PDF\ndocuments via analyzing the stored PDF data. Repositories like DeepLayout9\nand Detectron2-PubLayNet10 are individual deep learning models trained on\nlayout analysis datasets without support for the full DIA pipeline. The Document\nAnalysis and Exploitation (DAE) platform [15] and the DeepDIVA project [2]\naim to improve the reproducibility of DIA methods (or DL models), yet they\nare not actively maintained. OCR engines like Tesseract [14], easyOCR11 and\npaddleOCR12 usually do not come with comprehensive functionalities for other\nDIA tasks like layout analysis.\nRecent
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-24
|
usually do not come with comprehensive functionalities for other\nDIA tasks like layout analysis.\nRecent years have also seen numerous efforts to create libraries for promoting\nreproducibility and reusability in the field of DL. Libraries like Dectectron2 [35],\n6 The number shown is obtained by specifying the search type as ‘code’.\n7 https://ocr-d.de/en/about\n8 https://github.com/BobLd/DocumentLayoutAnalysis\n9 https://github.com/leonlulu/DeepLayout\n10 https://github.com/hpanwar08/detectron2\n11 https://github.com/JaidedAI/EasyOCR\n12 https://github.com/PaddlePaddle/PaddleOCR\n4\nZ. Shen et al.\nFig. 1: The overall architecture of LayoutParser. For an input document image,\nthe core LayoutParser library provides a set of off-the-shelf tools for layout\ndetection, OCR, visualization, and storage, backed by a carefully designed layout\ndata structure. LayoutParser also supports high level customization via efficient\nlayout annotation and model training functions. These improve model accuracy\non the target samples. The community platform enables the easy sharing of DIA\nmodels and whole digitization pipelines to promote reusability and reproducibility.\nA collection of detailed documentation, tutorials and exemplar projects make\nLayoutParser easy to learn and use.\nAllenNLP [8] and transformers [34] have provided the community with complete\nDL-based support for developing and deploying models for general computer\nvision and natural language processing problems. LayoutParser, on the other\nhand, specializes specifically in DIA tasks. LayoutParser is also equipped with a\ncommunity platform inspired by established model hubs such as Torch Hub [23]\nand TensorFlow Hub [1]. It enables the sharing of pretrained models as
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-25
|
Torch Hub [23]\nand TensorFlow Hub [1]. It enables the sharing of pretrained models as well as\nfull document processing pipelines that are unique to DIA tasks.\nThere have been a variety of document data collections to facilitate the\ndevelopment of DL models. Some examples include PRImA [3](magazine layouts),\nPubLayNet [38](academic paper layouts), Table Bank [18](tables in academic\npapers), Newspaper Navigator Dataset [16, 17](newspaper figure layouts) and\nHJDataset [31](historical Japanese document layouts). A spectrum of models\ntrained on these datasets are currently available in the LayoutParser model zoo\nto support different use cases.\n', metadata={'heading': '2 Related Work\n', 'content_font': 9, 'heading_font': 11, 'source': 'example_data/layout-parser-paper.pdf'})
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-26
|
Using PyMuPDF#
This is the fastest of the PDF parsing options, and contains detailed metadata about the PDF and its pages, as well as returns one document per page.
from langchain.document_loaders import PyMuPDFLoader
loader = PyMuPDFLoader("example_data/layout-parser-paper.pdf")
data = loader.load()
data[0]
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-27
|
Document(page_content='LayoutParser: A Unified Toolkit for Deep\nLearning Based Document Image Analysis\nZejiang Shen1 (�), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain\nLee4, Jacob Carlson3, and Weining Li5\n1 Allen Institute for AI\[email protected]\n2 Brown University\nruochen [email protected]\n3 Harvard University\n{melissadell,jacob carlson}@fas.harvard.edu\n4 University of Washington\[email protected]\n5 University of Waterloo\[email protected]\nAbstract. Recent advances in document image analysis (DIA) have been\nprimarily driven by the application of neural networks. Ideally, research\noutcomes could be easily deployed in production and extended for further\ninvestigation. However, various factors like loosely organized codebases\nand sophisticated model configurations complicate the easy reuse of im-\nportant innovations by a wide audience. Though there have been on-going\nefforts to improve reusability and simplify deep learning (DL) model\ndevelopment in disciplines like natural language processing and computer\nvision, none of them are optimized for challenges in the domain of DIA.\nThis represents a major gap in the existing toolkit, as DIA is central to\nacademic research across a wide range of disciplines in the social sciences\nand humanities. This paper introduces LayoutParser, an open-source\nlibrary for streamlining the usage of DL in DIA research and applica-\ntions. The core LayoutParser library comes with a set of simple and\nintuitive interfaces for applying and customizing DL models for layout de-\ntection, character recognition, and many other document processing tasks.\nTo promote extensibility, LayoutParser also incorporates a community\nplatform for sharing both pre-trained models and full document digiti-\nzation pipelines. We demonstrate that
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-28
|
for sharing both pre-trained models and full document digiti-\nzation pipelines. We demonstrate that LayoutParser is helpful for both\nlightweight and large-scale digitization pipelines in real-word use cases.\nThe library is publicly available at https://layout-parser.github.io.\nKeywords: Document Image Analysis · Deep Learning · Layout Analysis\n· Character Recognition · Open Source library · Toolkit.\n1\nIntroduction\nDeep Learning(DL)-based approaches are the state-of-the-art for a wide range of\ndocument image analysis (DIA) tasks including document image classification [11,\narXiv:2103.15348v2 [cs.CV] 21 Jun 2021\n', lookup_str='', metadata={'file_path': 'example_data/layout-parser-paper.pdf', 'page_number': 1, 'total_pages': 16, 'format': 'PDF 1.5', 'title': '', 'author': '', 'subject': '', 'keywords': '', 'creator': 'LaTeX with hyperref', 'producer': 'pdfTeX-1.40.21', 'creationDate': 'D:20210622012710Z', 'modDate': 'D:20210622012710Z', 'trapped': '', 'encryption': None}, lookup_index=0)
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-29
|
Additionally, you can pass along any of the options from the PyMuPDF documentation as keyword arguments in the load call, and it will be pass along to the get_text() call.
PyPDF Directory#
Load PDFs from directory
from langchain.document_loaders import PyPDFDirectoryLoader
loader = PyPDFDirectoryLoader("example_data/")
docs = loader.load()
Using pdfplumber#
Like PyMuPDF, the output Documents contain detailed metadata about the PDF and its pages, and returns one document per page.
from langchain.document_loaders import PDFPlumberLoader
loader = PDFPlumberLoader("example_data/layout-parser-paper.pdf")
data = loader.load()
data[0]
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-30
|
Document(page_content='LayoutParser: A Unified Toolkit for Deep\nLearning Based Document Image Analysis\nZejiang Shen1 ((cid:0)), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain\nLee4, Jacob Carlson3, and Weining Li5\n1 Allen Institute for AI\n1202 [email protected]\n2 Brown University\nruochen [email protected]\n3 Harvard University\nnuJ {melissadell,jacob carlson}@fas.harvard.edu\n4 University of Washington\[email protected]\n12 5 University of Waterloo\[email protected]\n]VC.sc[\nAbstract. Recentadvancesindocumentimageanalysis(DIA)havebeen\nprimarily driven by the application of neural networks. Ideally, research\noutcomescouldbeeasilydeployedinproductionandextendedforfurther\ninvestigation. However, various factors like loosely organized codebases\nand sophisticated model configurations complicate the easy reuse of im-\n2v84351.3012:viXra portantinnovationsbyawideaudience.Thoughtherehavebeenon-going\nefforts to improve reusability and simplify deep learning (DL) model\ndevelopmentindisciplineslikenaturallanguageprocessingandcomputer\nvision, none of them are optimized for challenges in the domain of DIA.\nThis represents a major gap in the existing toolkit, as DIA is central to\nacademicresearchacross awiderangeof disciplinesinthesocialsciences\nand humanities. This paper introduces LayoutParser, an open-source\nlibrary for streamlining the usage of DL in DIA research and applica-\ntions. The core LayoutParser library comes with a set of simple and\nintuitiveinterfacesforapplyingandcustomizingDLmodelsforlayoutde-\ntection,characterrecognition,andmanyotherdocumentprocessingtasks.\nTo promote extensibility,
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-31
|
promote extensibility, LayoutParser also incorporates a community\nplatform for sharing both pre-trained models and full document digiti-\nzation pipelines. We demonstrate that LayoutParser is helpful for both\nlightweight and large-scale digitization pipelines in real-word use cases.\nThe library is publicly available at https://layout-parser.github.io.\nKeywords: DocumentImageAnalysis·DeepLearning·LayoutAnalysis\n· Character Recognition · Open Source library · Toolkit.\n1 Introduction\nDeep Learning(DL)-based approaches are the state-of-the-art for a wide range of\ndocumentimageanalysis(DIA)tasksincludingdocumentimageclassification[11,', metadata={'source': 'example_data/layout-parser-paper.pdf', 'file_path': 'example_data/layout-parser-paper.pdf', 'page': 1, 'total_pages': 16, 'Author': '', 'CreationDate': 'D:20210622012710Z', 'Creator': 'LaTeX with hyperref', 'Keywords': '', 'ModDate': 'D:20210622012710Z', 'PTEX.Fullbanner': 'This is pdfTeX, Version 3.14159265-2.6-1.40.21 (TeX Live 2020) kpathsea version 6.3.2', 'Producer': 'pdfTeX-1.40.21', 'Subject': '', 'Title': '', 'Trapped': 'False'})
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
b8bd9ca5879e-32
|
previous
Pandas DataFrame
next
Sitemap
Contents
Using PyPDF
Using MathPix
Using Unstructured
Retain Elements
Fetching remote PDFs using Unstructured
Using PyPDFium2
Using PDFMiner
Using PDFMiner to generate HTML text
Using PyMuPDF
PyPDF Directory
Using pdfplumber
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/pdf.html
|
667e148cf600-0
|
.ipynb
.pdf
Open Document Format (ODT)
Open Document Format (ODT)#
The Open Document Format for Office Applications (ODF), also known as OpenDocument, is an open file format for word processing documents, spreadsheets, presentations and graphics and using ZIP-compressed XML files. It was developed with the aim of providing an open, XML-based file format specification for office applications.
The standard is developed and maintained by a technical committee in the Organization for the Advancement of Structured Information Standards (OASIS) consortium. It was based on the Sun Microsystems specification for OpenOffice.org XML, the default format for OpenOffice.org and LibreOffice. It was originally developed for StarOffice “to provide an open standard for office documents.”
The UnstructuredODTLoader is used to load Open Office ODT files.
from langchain.document_loaders import UnstructuredODTLoader
loader = UnstructuredODTLoader("example_data/fake.odt", mode="elements")
docs = loader.load()
docs[0]
Document(page_content='Lorem ipsum dolor sit amet.', metadata={'source': 'example_data/fake.odt', 'filename': 'example_data/fake.odt', 'category': 'Title'})
previous
Microsoft Word
next
Pandas DataFrame
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/odt.html
|
5d05c9047a0f-0
|
.ipynb
.pdf
Azure Blob Storage Container
Contents
Specifying a prefix
Azure Blob Storage Container#
Azure Blob Storage is Microsoft’s object storage solution for the cloud. Blob Storage is optimized for storing massive amounts of unstructured data. Unstructured data is data that doesn’t adhere to a particular data model or definition, such as text or binary data.
Azure Blob Storage is designed for:
Serving images or documents directly to a browser.
Storing files for distributed access.
Streaming video and audio.
Writing to log files.
Storing data for backup and restore, disaster recovery, and archiving.
Storing data for analysis by an on-premises or Azure-hosted service.
This notebook covers how to load document objects from a container on Azure Blob Storage.
#!pip install azure-storage-blob
from langchain.document_loaders import AzureBlobStorageContainerLoader
loader = AzureBlobStorageContainerLoader(conn_str="<conn_str>", container="<container>")
loader.load()
[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpaa9xl6ch/fake.docx'}, lookup_index=0)]
Specifying a prefix#
You can also specify a prefix for more finegrained control over what files to load.
loader = AzureBlobStorageContainerLoader(conn_str="<conn_str>", container="<container>", prefix="<prefix>")
loader.load()
[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpujbkzf_l/fake.docx'}, lookup_index=0)]
previous
AWS S3 File
next
Azure Blob Storage File
Contents
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/azure_blob_storage_container.html
|
5d05c9047a0f-1
|
previous
AWS S3 File
next
Azure Blob Storage File
Contents
Specifying a prefix
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/azure_blob_storage_container.html
|
b2447fbabcc9-0
|
.ipynb
.pdf
Trello
Contents
Features
Trello#
Trello is a web-based project management and collaboration tool that allows individuals and teams to organize and track their tasks and projects. It provides a visual interface known as a “board” where users can create lists and cards to represent their tasks and activities.
The TrelloLoader allows you to load cards from a Trello board and is implemented on top of py-trello
This currently supports api_key/token only.
Credentials generation: https://trello.com/power-ups/admin/
Click in the manual token generation link to get the token.
To specify the API key and token you can either set the environment variables TRELLO_API_KEY and TRELLO_TOKEN or you can pass api_key and token directly into the from_credentials convenience constructor method.
This loader allows you to provide the board name to pull in the corresponding cards into Document objects.
Notice that the board “name” is also called “title” in oficial documentation:
https://support.atlassian.com/trello/docs/changing-a-boards-title-and-description/
You can also specify several load parameters to include / remove different fields both from the document page_content properties and metadata.
Features#
Load cards from a Trello board.
Filter cards based on their status (open or closed).
Include card names, comments, and checklists in the loaded documents.
Customize the additional metadata fields to include in the document.
By default all card fields are included for the full text page_content and metadata accordinly.
#!pip install py-trello beautifulsoup4
# If you have already set the API key and token using environment variables,
# you can skip this cell and comment out the `api_key` and `token` named arguments
# in the initialization steps below.
from getpass import getpass
API_KEY = getpass()
TOKEN = getpass()
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/trello.html
|
b2447fbabcc9-1
|
from getpass import getpass
API_KEY = getpass()
TOKEN = getpass()
········
········
from langchain.document_loaders import TrelloLoader
# Get the open cards from "Awesome Board"
loader = TrelloLoader.from_credentials(
"Awesome Board",
api_key=API_KEY,
token=TOKEN,
card_filter="open",
)
documents = loader.load()
print(documents[0].page_content)
print(documents[0].metadata)
Review Tech partner pages
Comments:
{'title': 'Review Tech partner pages', 'id': '6475357890dc8d17f73f2dcc', 'url': 'https://trello.com/c/b0OTZwkZ/1-review-tech-partner-pages', 'labels': ['Demand Marketing'], 'list': 'Done', 'closed': False, 'due_date': ''}
# Get all the cards from "Awesome Board" but only include the
# card list(column) as extra metadata.
loader = TrelloLoader.from_credentials(
"Awesome Board",
api_key=API_KEY,
token=TOKEN,
extra_metadata=("list"),
)
documents = loader.load()
print(documents[0].page_content)
print(documents[0].metadata)
Review Tech partner pages
Comments:
{'title': 'Review Tech partner pages', 'id': '6475357890dc8d17f73f2dcc', 'url': 'https://trello.com/c/b0OTZwkZ/1-review-tech-partner-pages', 'list': 'Done'}
# Get the cards from "Another Board" and exclude the card name,
# checklist and comments from the Document page_content text.
loader = TrelloLoader.from_credentials(
"test",
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/trello.html
|
b2447fbabcc9-2
|
loader = TrelloLoader.from_credentials(
"test",
api_key=API_KEY,
token=TOKEN,
include_card_name= False,
include_checklist= False,
include_comments= False,
)
documents = loader.load()
print("Document: " + documents[0].page_content)
print(documents[0].metadata)
Contents
Features
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/trello.html
|
ea6eba7eeaa4-0
|
.ipynb
.pdf
ReadTheDocs Documentation
ReadTheDocs Documentation#
Read the Docs is an open-sourced free software documentation hosting platform. It generates documentation written with the Sphinx documentation generator.
This notebook covers how to load content from HTML that was generated as part of a Read-The-Docs build.
For an example of this in the wild, see here.
This assumes that the HTML has already been scraped into a folder. This can be done by uncommenting and running the following command
#!pip install beautifulsoup4
#!wget -r -A.html -P rtdocs https://python.langchain.com/en/latest/
from langchain.document_loaders import ReadTheDocsLoader
loader = ReadTheDocsLoader("rtdocs", features='html.parser')
docs = loader.load()
previous
PySpark DataFrame Loader
next
Reddit
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/readthedocs_documentation.html
|
4d1c3837677f-0
|
.ipynb
.pdf
WebBaseLoader
Contents
Loading multiple webpages
Load multiple urls concurrently
Loading a xml file, or using a different BeautifulSoup parser
WebBaseLoader#
This covers how to use WebBaseLoader to load all text from HTML webpages into a document format that we can use downstream. For more custom logic for loading webpages look at some child class examples such as IMSDbLoader, AZLyricsLoader, and CollegeConfidentialLoader
from langchain.document_loaders import WebBaseLoader
loader = WebBaseLoader("https://www.espn.com/")
data = loader.load()
data
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/web_base.html
|
4d1c3837677f-1
|
[Document(page_content="\n\n\n\n\n\n\n\n\nESPN - Serving Sports Fans. Anytime. Anywhere.\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n Skip to main content\n \n\n Skip to navigation\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n<\n\n>\n\n\n\n\n\n\n\n\n\nMenuESPN\n\n\nSearch\n\n\n\nscores\n\n\n\nNFLNBANCAAMNCAAWNHLSoccer…MLBNCAAFGolfTennisSports BettingBoxingCFLNCAACricketF1HorseLLWSMMANASCARNBA G LeagueOlympic SportsRacingRN BBRN FBRugbyWNBAWorld Baseball ClassicWWEX GamesXFLMore ESPNFantasyListenWatchESPN+\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n\nSUBSCRIBE NOW\n\n\n\n\n\nNHL: Select Games\n\n\n\n\n\n\n\nXFL\n\n\n\n\n\n\n\nMLB: Select Games\n\n\n\n\n\n\n\nNCAA Baseball\n\n\n\n\n\n\n\nNCAA Softball\n\n\n\n\n\n\n\nCricket: Select Matches\n\n\n\n\n\n\n\nMel Kiper's NFL
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/web_base.html
|
4d1c3837677f-2
|
Select Matches\n\n\n\n\n\n\n\nMel Kiper's NFL Mock Draft 3.0\n\n\nQuick Links\n\n\n\n\nMen's Tournament Challenge\n\n\n\n\n\n\n\nWomen's Tournament Challenge\n\n\n\n\n\n\n\nNFL Draft Order\n\n\n\n\n\n\n\nHow To Watch NHL Games\n\n\n\n\n\n\n\nFantasy Baseball: Sign Up\n\n\n\n\n\n\n\nHow To Watch PGA TOUR\n\n\n\n\n\n\nFavorites\n\n\n\n\n\n\n Manage Favorites\n \n\n\n\nCustomize ESPNSign UpLog InESPN Sites\n\n\n\n\nESPN Deportes\n\n\n\n\n\n\n\nAndscape\n\n\n\n\n\n\n\nespnW\n\n\n\n\n\n\n\nESPNFC\n\n\n\n\n\n\n\nX Games\n\n\n\n\n\n\n\nSEC Network\n\n\nESPN Apps\n\n\n\n\nESPN\n\n\n\n\n\n\n\nESPN Fantasy\n\n\nFollow ESPN\n\n\n\n\nFacebook\n\n\n\n\n\n\n\nTwitter\n\n\n\n\n\n\n\nInstagram\n\n\n\n\n\n\n\nSnapchat\n\n\n\n\n\n\n\nYouTube\n\n\n\n\n\n\n\nThe ESPN Daily Podcast\n\n\nAre you ready for Opening Day? Here's your guide to MLB's offseason chaosWait, Jacob deGrom is on the Rangers now? Xander Bogaerts and Trea Turner signed where? And what about Carlos Correa? Yeah, you're going to need to read up before Opening Day.12hESPNIllustration by ESPNEverything you missed in the MLB offseason3h2:33World Series odds, win totals, props for every teamPlay fantasy baseball for free!TOP HEADLINESQB Jackson has requested trade from RavensSources: Texas
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/web_base.html
|
4d1c3837677f-3
|
fantasy baseball for free!TOP HEADLINESQB Jackson has requested trade from RavensSources: Texas hiring Terry as full-time coachJets GM: No rush on Rodgers; Lamar not optionLove to leave North Carolina, enter transfer portalBelichick to angsty Pats fans: See last 25 yearsEmbiid out, Harden due back vs. Jokic, NuggetsLynch: Purdy 'earned the right' to start for NinersMan Utd, Wrexham plan July friendly in San DiegoOn paper, Padres overtake DodgersLAMAR WANTS OUT OF BALTIMOREMarcus Spears identifies the two teams that need Lamar Jackson the most8h2:00Would Lamar sit out? Will Ravens draft a QB? Jackson trade request insightsLamar Jackson has asked Baltimore to trade him, but Ravens coach John Harbaugh hopes the QB will be back.3hJamison HensleyBallard, Colts will consider trading for QB JacksonJackson to Indy? Washington? Barnwell ranks the QB's trade fitsSNYDER'S TUMULTUOUS 24-YEAR RUNHow Washington’s NFL franchise sank on and off the field under owner Dan SnyderSnyder purchased one of the NFL's marquee franchises in 1999. Twenty-four years later, and with the team up for sale, he leaves a legacy of on-field futility and off-field scandal.13hJohn KeimESPNIOWA STAR STEPS UP AGAINJ-Will: Caitlin Clark is the biggest brand in college sports right now8h0:47'The better the opponent, the better she plays': Clark draws comparisons to TaurasiCaitlin Clark's performance on Sunday had longtime observers going back decades to find comparisons.16hKevin PeltonWOMEN'S ELITE EIGHT SCOREBOARDMONDAY'S GAMESCheck your bracket!NBA DRAFTHow top prospects fared on the road to the Final FourThe 2023 NCAA tournament is down to four
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/web_base.html
|
4d1c3837677f-4
|
prospects fared on the road to the Final FourThe 2023 NCAA tournament is down to four teams, and ESPN's Jonathan Givony recaps the players who saw their NBA draft stock change.11hJonathan GivonyAndy Lyons/Getty ImagesTALKING BASKETBALLWhy AD needs to be more assertive with LeBron on the court10h1:33Why Perk won't blame Kyrie for Mavs' woes8h1:48WHERE EVERY TEAM STANDSNew NFL Power Rankings: Post-free-agency 1-32 poll, plus underrated offseason movesThe free agent frenzy has come and gone. Which teams have improved their 2023 outlook, and which teams have taken a hit?12hNFL Nation reportersIllustration by ESPNTHE BUCK STOPS WITH BELICHICKBruschi: Fair to criticize Bill Belichick for Patriots' struggles10h1:27 Top HeadlinesQB Jackson has requested trade from RavensSources: Texas hiring Terry as full-time coachJets GM: No rush on Rodgers; Lamar not optionLove to leave North Carolina, enter transfer portalBelichick to angsty Pats fans: See last 25 yearsEmbiid out, Harden due back vs. Jokic, NuggetsLynch: Purdy 'earned the right' to start for NinersMan Utd, Wrexham plan July friendly in San DiegoOn paper, Padres overtake DodgersFavorites FantasyManage FavoritesFantasy HomeCustomize ESPNSign UpLog InMarch Madness LiveESPNMarch Madness LiveWatch every men's NCAA tournament game live! ICYMI1:42Austin Peay's coach, pitcher and catcher all ejected after retaliation pitchAustin Peay's pitcher, catcher and coach were all ejected after a pitch was thrown at Liberty's Nathan Keeter, who earlier in the game hit a home run and celebrated while running down the third-base line. Men's Tournament ChallengeIllustration by ESPNMen's Tournament ChallengeCheck your bracket(s) in the
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/web_base.html
|
4d1c3837677f-5
|
Men's Tournament ChallengeIllustration by ESPNMen's Tournament ChallengeCheck your bracket(s) in the 2023 Men's Tournament Challenge, which you can follow throughout the Big Dance. Women's Tournament ChallengeIllustration by ESPNWomen's Tournament ChallengeCheck your bracket(s) in the 2023 Women's Tournament Challenge, which you can follow throughout the Big Dance. Best of ESPN+AP Photo/Lynne SladkyFantasy Baseball ESPN+ Cheat Sheet: Sleepers, busts, rookies and closersYou've read their names all preseason long, it'd be a shame to forget them on draft day. The ESPN+ Cheat Sheet is one way to make sure that doesn't happen.Steph Chambers/Getty ImagesPassan's 2023 MLB season preview: Bold predictions and moreOpening Day is just over a week away -- and Jeff Passan has everything you need to know covered from every possible angle.Photo by Bob Kupbens/Icon Sportswire2023 NFL free agency: Best team fits for unsigned playersWhere could Ezekiel Elliott land? Let's match remaining free agents to teams and find fits for two trade candidates.Illustration by ESPN2023 NFL mock draft: Mel Kiper's first-round pick predictionsMel Kiper Jr. makes his predictions for Round 1 of the NFL draft, including projecting a trade in the top five. Trending NowAnne-Marie Sorvin-USA TODAY SBoston Bruins record tracker: Wins, points, milestonesThe B's are on pace for NHL records in wins and points, along with some individual superlatives as well. Follow along here with our updated tracker.Mandatory Credit: William Purnell-USA TODAY Sports2023 NFL full draft order: AFC, NFC team picks for all roundsStarting with the Carolina Panthers at No. 1 overall, here's the entire 2023 NFL draft broken down round by round. How to Watch on ESPN+Gregory Fisher/Icon Sportswire2023 NCAA men's hockey: Results,
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/web_base.html
|
4d1c3837677f-6
|
Watch on ESPN+Gregory Fisher/Icon Sportswire2023 NCAA men's hockey: Results, bracket, how to watchThe matchups in Tampa promise to be thrillers, featuring plenty of star power, high-octane offense and stellar defense.(AP Photo/Koji Sasahara, File)How to watch the PGA Tour, Masters, PGA Championship and FedEx Cup playoffs on ESPN, ESPN+Here's everything you need to know about how to watch the PGA Tour, Masters, PGA Championship and FedEx Cup playoffs on ESPN and ESPN+.Hailie Lynch/XFLHow to watch the XFL: 2023 schedule, teams, players, news, moreEvery XFL game will be streamed on ESPN+. Find out when and where else you can watch the eight teams compete. Sign up to play the #1 Fantasy Baseball GameReactivate A LeagueCreate A LeagueJoin a Public LeaguePractice With a Mock DraftSports BettingAP Photo/Mike KropfMarch Madness betting 2023: Bracket odds, lines, tips, moreThe 2023 NCAA tournament brackets have finally been released, and we have everything you need to know to make a bet on all of the March Madness games. Sign up to play the #1 Fantasy game!Create A LeagueJoin Public LeagueReactivateMock Draft Now\n\nESPN+\n\n\n\n\nNHL: Select Games\n\n\n\n\n\n\n\nXFL\n\n\n\n\n\n\n\nMLB: Select Games\n\n\n\n\n\n\n\nNCAA Baseball\n\n\n\n\n\n\n\nNCAA Softball\n\n\n\n\n\n\n\nCricket: Select Matches\n\n\n\n\n\n\n\nMel Kiper's NFL Mock Draft 3.0\n\n\nQuick Links\n\n\n\n\nMen's Tournament Challenge\n\n\n\n\n\n\n\nWomen's Tournament Challenge\n\n\n\n\n\n\n\nNFL Draft Order\n\n\n\n\n\n\n\nHow To Watch
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/web_base.html
|
4d1c3837677f-7
|
Draft Order\n\n\n\n\n\n\n\nHow To Watch NHL Games\n\n\n\n\n\n\n\nFantasy Baseball: Sign Up\n\n\n\n\n\n\n\nHow To Watch PGA TOUR\n\n\nESPN Sites\n\n\n\n\nESPN Deportes\n\n\n\n\n\n\n\nAndscape\n\n\n\n\n\n\n\nespnW\n\n\n\n\n\n\n\nESPNFC\n\n\n\n\n\n\n\nX Games\n\n\n\n\n\n\n\nSEC Network\n\n\nESPN Apps\n\n\n\n\nESPN\n\n\n\n\n\n\n\nESPN Fantasy\n\n\nFollow ESPN\n\n\n\n\nFacebook\n\n\n\n\n\n\n\nTwitter\n\n\n\n\n\n\n\nInstagram\n\n\n\n\n\n\n\nSnapchat\n\n\n\n\n\n\n\nYouTube\n\n\n\n\n\n\n\nThe ESPN Daily Podcast\n\n\nTerms of UsePrivacy PolicyYour US State Privacy RightsChildren's Online Privacy PolicyInterest-Based AdsAbout Nielsen MeasurementDo Not Sell or Share My Personal InformationContact UsDisney Ad Sales SiteWork for ESPNCopyright: © ESPN Enterprises, Inc. All rights reserved.\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", lookup_str='', metadata={'source': 'https://www.espn.com/'}, lookup_index=0)]
|
rtdocs_stable/api.python.langchain.com/en/stable/modules/indexes/document_loaders/examples/web_base.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.