pretty_name: Pick-a-Pic v2 · FiFA Filtered
license: mit
dataset_info:
- config_name: FiFA-100k
features:
- name: are_different
dtype: bool
- name: best_image_uid
dtype: string
- name: caption
dtype: string
- name: created_at
dtype: timestamp[ns]
- name: has_label
dtype: bool
- name: image_0_uid
dtype: string
- name: image_0_url
dtype: string
- name: image_1_uid
dtype: string
- name: image_1_url
dtype: string
- name: jpg_0
dtype: binary
- name: jpg_1
dtype: binary
- name: label_0
dtype: float64
- name: label_1
dtype: float64
- name: model_0
dtype: string
- name: model_1
dtype: string
- name: ranking_id
dtype: int64
- name: user_id
dtype: int64
- name: num_example_per_prompt
dtype: int64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 32217070275.579575
num_examples: 95948
download_size: 32218306878
dataset_size: 32217070275.579575
- config_name: FiFA-10k
features:
- name: are_different
dtype: bool
- name: best_image_uid
dtype: string
- name: caption
dtype: string
- name: created_at
dtype: timestamp[ns]
- name: has_label
dtype: bool
- name: image_0_uid
dtype: string
- name: image_0_url
dtype: string
- name: image_1_uid
dtype: string
- name: image_1_url
dtype: string
- name: jpg_0
dtype: binary
- name: jpg_1
dtype: binary
- name: label_0
dtype: float64
- name: label_1
dtype: float64
- name: model_0
dtype: string
- name: model_1
dtype: string
- name: ranking_id
dtype: int64
- name: user_id
dtype: int64
- name: num_example_per_prompt
dtype: int64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 3218416419.2211432
num_examples: 9585
download_size: 3216732485
dataset_size: 3218416419.2211432
- config_name: FiFA-1k
features:
- name: are_different
dtype: bool
- name: best_image_uid
dtype: string
- name: caption
dtype: string
- name: created_at
dtype: timestamp[ns]
- name: has_label
dtype: bool
- name: image_0_uid
dtype: string
- name: image_0_url
dtype: string
- name: image_1_uid
dtype: string
- name: image_1_url
dtype: string
- name: jpg_0
dtype: binary
- name: jpg_1
dtype: binary
- name: label_0
dtype: float64
- name: label_1
dtype: float64
- name: model_0
dtype: string
- name: model_1
dtype: string
- name: ranking_id
dtype: int64
- name: user_id
dtype: int64
- name: num_example_per_prompt
dtype: int64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 322345306.4634635
num_examples: 960
download_size: 318043276
dataset_size: 322345306.4634635
- config_name: FiFA-20k
features:
- name: are_different
dtype: bool
- name: best_image_uid
dtype: string
- name: caption
dtype: string
- name: created_at
dtype: timestamp[ns]
- name: has_label
dtype: bool
- name: image_0_uid
dtype: string
- name: image_0_url
dtype: string
- name: image_1_uid
dtype: string
- name: image_1_url
dtype: string
- name: jpg_0
dtype: binary
- name: jpg_1
dtype: binary
- name: label_0
dtype: float64
- name: label_1
dtype: float64
- name: model_0
dtype: string
- name: model_1
dtype: string
- name: ranking_id
dtype: int64
- name: user_id
dtype: int64
- name: num_example_per_prompt
dtype: int64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 6444891471.103872
num_examples: 19194
download_size: 6450692192
dataset_size: 6444891471.103872
- config_name: FiFA-500
features:
- name: are_different
dtype: bool
- name: best_image_uid
dtype: string
- name: caption
dtype: string
- name: created_at
dtype: timestamp[ns]
- name: has_label
dtype: bool
- name: image_0_uid
dtype: string
- name: image_0_url
dtype: string
- name: image_1_uid
dtype: string
- name: image_1_url
dtype: string
- name: jpg_0
dtype: binary
- name: jpg_1
dtype: binary
- name: label_0
dtype: float64
- name: label_1
dtype: float64
- name: model_0
dtype: string
- name: model_1
dtype: string
- name: ranking_id
dtype: int64
- name: user_id
dtype: int64
- name: num_example_per_prompt
dtype: int64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 162515758.6753295
num_examples: 484
download_size: 160479513
dataset_size: 162515758.6753295
- config_name: FiFA-50k
features:
- name: are_different
dtype: bool
- name: best_image_uid
dtype: string
- name: caption
dtype: string
- name: created_at
dtype: timestamp[ns]
- name: has_label
dtype: bool
- name: image_0_uid
dtype: string
- name: image_0_url
dtype: string
- name: image_1_uid
dtype: string
- name: image_1_url
dtype: string
- name: jpg_0
dtype: binary
- name: jpg_1
dtype: binary
- name: label_0
dtype: float64
- name: label_1
dtype: float64
- name: model_0
dtype: string
- name: model_1
dtype: string
- name: ranking_id
dtype: int64
- name: user_id
dtype: int64
- name: num_example_per_prompt
dtype: int64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 16102155386.9327
num_examples: 47955
download_size: 16114773526
dataset_size: 16102155386.9327
- config_name: FiFA-5k
features:
- name: are_different
dtype: bool
- name: best_image_uid
dtype: string
- name: caption
dtype: string
- name: created_at
dtype: timestamp[ns]
- name: has_label
dtype: bool
- name: image_0_uid
dtype: string
- name: image_0_url
dtype: string
- name: image_1_uid
dtype: string
- name: image_1_url
dtype: string
- name: jpg_0
dtype: binary
- name: jpg_1
dtype: binary
- name: label_0
dtype: float64
- name: label_1
dtype: float64
- name: model_0
dtype: string
- name: model_1
dtype: string
- name: ranking_id
dtype: int64
- name: user_id
dtype: int64
- name: num_example_per_prompt
dtype: int64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 1606018334.1820269
num_examples: 4783
download_size: 1592623798
dataset_size: 1606018334.1820269
configs:
- config_name: FiFA-100k
data_files:
- split: train
path: FiFA-100k/train-*
- config_name: FiFA-10k
data_files:
- split: train
path: FiFA-10k/train-*
- config_name: FiFA-1k
data_files:
- split: train
path: FiFA-1k/train-*
- config_name: FiFA-20k
data_files:
- split: train
path: FiFA-20k/train-*
- config_name: FiFA-500
data_files:
- split: train
path: FiFA-500/train-*
- config_name: FiFA-50k
data_files:
- split: train
path: FiFA-50k/train-*
- config_name: FiFA-5k
data_files:
- split: train
path: FiFA-5k/train-*
default: true
Pick-a-Pic v2 · FiFA Filtered Subsets
These subsets were produced by filtering the original Pick-a-Pic v2 dataset using FiFA, a data filtering algorithm proposed in the paper Automated Filtering of Human Feedback Data for Aligning Text-to-Image Diffusion Models.
Overview
The filtering process is based on three key metrics:
- Preference Margin: Estimated using PickScore
- Text Quality: Estimated through LLM scoring
- Text Diversity: Estimated using K-NN distance
Dataset Configurations
This dataset provides several configurations, each corresponding to a different number of filtered triplets selected by the automated FiFA algorithm. You can choose from FiFA-500
, FiFA-1k
, FiFA-5k
, FiFA-10k
, FiFA-20k
, FiFA-50k
, and FiFA-100k
, depending on your needs. The only difference between these configurations is the number of examples included; all are filtered using the same FiFA method. We recommend using the FiFA-5k
configuration as the default, as it generally works best for Stable Diffusion training.
Quick Start
from datasets import load_dataset
# Load a specific configuration
dataset = load_dataset("Dragonjinny/FiFA-pickapic-v2", "FiFA-5k", split="train")
# Access the data
import io
from PIL import Image
for example in dataset:
caption = example["caption"] # The prompt text
jpg_0 = example["jpg_0"] # First image (bytes)
jpg_1 = example["jpg_1"] # Second image (bytes)
label_0 = example["label_0"] # Binary label (0 or 1) indicating which image is preferred
# Convert bytes to PIL Images
image1 = Image.open(io.BytesIO(jpg_0)).convert("RGB")
image2 = Image.open(io.BytesIO(jpg_1)).convert("RGB")
# Now you can work with the images
print(f"Caption: {caption}")
print(f"Preferred image: {'jpg_0' if label_0 == 1 else 'jpg_1'}")
# image1.show() # Display the first image
# image2.show() # Display the second image
Data Format
Each example contains:
caption
: The prompt textjpg_0
: First image (bytes)jpg_1
: Second image (bytes)label_0
: Binary label (0 or 1) indicating which image is preferred__index_level_0__
: Unique ID for each data point
Citation
If you use this dataset in your research, please cite our paper:
@inproceedings{
yang2025automated,
title={Automated Filtering of Human Feedback Data for Aligning Text-to-Image Diffusion Models},
author={Yongjin Yang and Sihyeon Kim and Hojung Jung and Sangmin Bae and SangMook Kim and Se-Young Yun and Kimin Lee},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=8jvVNPHtVJ}
}
License
This dataset is licensed under MIT License, following the license of the original Pick-a-Pic v2 dataset.