Update README.md
Browse files
README.md
CHANGED
|
@@ -9,125 +9,336 @@
|
|
| 9 |
**ShareRobot**, a high-quality heterogeneous dataset that labels multi-dimensional information, including task planning, object affordance, and end-effector trajectory, effectively enhancing various robotic capabilities.
|
| 10 |
|
| 11 |
## Overview of ShareRobot Dataset
|
|
|
|
|
|
|
| 12 |
|
|
|
|
| 13 |
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
|
| 17 |
-
## Dataset Sources
|
| 18 |
-
|
| 19 |
-
<!-- Provide the basic links for the dataset. -->
|
| 20 |
-
|
| 21 |
-
<!-- - **Repository:** [More Information Needed]
|
| 22 |
-
- **Paper [optional]:** [More Information Needed]
|
| 23 |
-
- **Demo [optional]:** [More Information Needed]
|
| 24 |
-
-->
|
| 25 |
-
## Uses
|
| 26 |
-
|
| 27 |
-
<!-- Address questions around how the dataset is intended to be used. -->
|
| 28 |
-
|
| 29 |
-
### Direct Use
|
| 30 |
-
|
| 31 |
-
<!-- This section describes suitable use cases for the dataset. -->
|
| 32 |
-
|
| 33 |
-
[More Information Needed]
|
| 34 |
-
|
| 35 |
-
### Out-of-Scope Use
|
| 36 |
-
|
| 37 |
-
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
|
| 38 |
-
|
| 39 |
-
[More Information Needed]
|
| 40 |
-
|
| 41 |
-
## Dataset Structure
|
| 42 |
-
|
| 43 |
-
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
|
| 44 |
-
|
| 45 |
-
[More Information Needed]
|
| 46 |
-
|
| 47 |
-
## Dataset Creation
|
| 48 |
-
|
| 49 |
-
### Curation Rationale
|
| 50 |
-
|
| 51 |
-
<!-- Motivation for the creation of this dataset. -->
|
| 52 |
-
|
| 53 |
-
[More Information Needed]
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
-
#### Personal and Sensitive Information
|
| 88 |
|
| 89 |
-
|
| 90 |
|
| 91 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
| 96 |
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
|
|
|
|
|
|
|
| 100 |
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
## Citation [optional]
|
| 106 |
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
## Glossary [optional]
|
| 118 |
|
| 119 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
|
| 120 |
|
| 121 |
-
|
| 122 |
|
| 123 |
-
## More Information [optional]
|
| 124 |
|
| 125 |
-
[More Information Needed]
|
| 126 |
|
| 127 |
-
## Dataset Card Authors [optional]
|
| 128 |
|
| 129 |
-
[More Information Needed]
|
| 130 |
|
| 131 |
-
##
|
| 132 |
|
| 133 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
**ShareRobot**, a high-quality heterogeneous dataset that labels multi-dimensional information, including task planning, object affordance, and end-effector trajectory, effectively enhancing various robotic capabilities.
|
| 10 |
|
| 11 |
## Overview of ShareRobot Dataset
|
| 12 |
+

|
| 13 |
+
For **planning**, we have 51,403 episodes and each with 30 frames. In the process of data generation, we design 5 different templates for each of the 10 question types in RoboVQA [1]. In the process of data generation, we randomly select 2 templates of each question type to generate question-answer pairs for every instance. This process transforms 51,403 instances into 1,027,990 question-answer pairs, with annotators monitoring data generation to maintain the dataset’s integrity.
|
| 14 |
|
| 15 |
+
For **Affordance**, we have 6,522 images and each with affordance areas aligned with an instruction.
|
| 16 |
|
| 17 |
+
For **Trajectory**, we have 6,870 images and each with at least 3 {x, y} coordinates aligned with an instruction.
|
| 18 |
|
| 19 |
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
## Dataset Sources
|
| 23 |
+
|
| 24 |
+

|
| 25 |
+
|
| 26 |
+
**ShareRobot** dataset contains 23 original datasets from Open X-Embodiment dataset [2], 12 embodiments and 107 types of atomic tasks.
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
### Raw Dataset for Planning
|
| 31 |
+
|
| 32 |
+
| Raw Dataset | Number of Raws |
|
| 33 |
+
|:-------------------------------------------------------------:| --------------:|
|
| 34 |
+
| nyu_door_opening_surprising_effectiveness | 421 |
|
| 35 |
+
| bridge | 15738 |
|
| 36 |
+
| dlr_edan_shared_control_converted_externally_to_rlds | 63 |
|
| 37 |
+
| utokyo_xarm_pick_and_place_converted_externally_to_rlds | 92 |
|
| 38 |
+
| cmu_stretch | 10 |
|
| 39 |
+
| asu_table_top_converted_externally_to_rlds | 109 |
|
| 40 |
+
| dlr_sara_pour_converted_externally_to_rlds | 51 |
|
| 41 |
+
| utokyo_xarm_bimanual_converted_externally_to_rlds | 27 |
|
| 42 |
+
| robo_set | 18164 |
|
| 43 |
+
| dobbe | 5200 |
|
| 44 |
+
| berkeley_autolab_ur5 | 882 |
|
| 45 |
+
| qut_dexterous_manpulation | 192 |
|
| 46 |
+
| aloha_mobile | 264 |
|
| 47 |
+
| dlr_sara_grid_clamp_converted_externally_to_rlds | 40 |
|
| 48 |
+
| ucsd_pick_and_place_dataset_converted_externally_to_rlds | 569 |
|
| 49 |
+
| ucsd_kitchen_dataset_converted_externally_to_rlds | 39 |
|
| 50 |
+
| jaco_play | 956 |
|
| 51 |
+
| utokyo_pr2_opening_fridge_converted_externally_to_rlds | 64 |
|
| 52 |
+
| conq_hose_manipulation | 56 |
|
| 53 |
+
| fmb | 7836 |
|
| 54 |
+
| plex_robosuite | 398 |
|
| 55 |
+
| utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds | 189 |
|
| 56 |
+
| viola | 44 |
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
### Raw Dataset for Affordance
|
| 61 |
+
|
| 62 |
+
| Raw Dataset | Number of Raws |
|
| 63 |
+
|:-------------------------------------------------------------:| -------------:|
|
| 64 |
+
| utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds | 24 |
|
| 65 |
+
| utokyo_xarm_pick_and_place_converted_externally_to_rlds | 23 |
|
| 66 |
+
| ucsd_kitchen_dataset_converted_externally_to_rlds | 10 |
|
| 67 |
+
| ucsd_pick_and_place_dataset_converted_externally_to_rlds | 112 |
|
| 68 |
+
| nyu_door_opening_surprising_effectiveness | 85 |
|
| 69 |
+
| jaco_play | 171 |
|
| 70 |
+
| bridge | 2610 |
|
| 71 |
+
| utokyo_pr2_opening_fridge_converted_externally_to_rlds | 12 |
|
| 72 |
+
| asu_table_top_converted_externally_to_rlds | 24 |
|
| 73 |
+
| viola | 1 |
|
| 74 |
+
| berkeley_autolab_ur5 | 122 |
|
| 75 |
+
| aloha_mobile | 23 |
|
| 76 |
+
| conq_hose_manipulation | 1 |
|
| 77 |
+
| dobbe | 717 |
|
| 78 |
+
| fmb | 561 |
|
| 79 |
+
| plex_robosuite | 13 |
|
| 80 |
+
| qut_dexterous_manpulation | 16 |
|
| 81 |
+
| robo_set | 1979 |
|
| 82 |
+
| dlr_edan_shared_control_converted_externally_to_rlds | 18 |
|
| 83 |
+
| **Summary** | 6522 |
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
### Raw Dataset for Trajectory
|
| 88 |
+
|
| 89 |
+
| Raw Dataset | Number of Raws |
|
| 90 |
+
|:-------------------------------------------------------------:| -------------:|
|
| 91 |
+
| utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds | 35 |
|
| 92 |
+
| utokyo_xarm_pick_and_place_converted_externally_to_rlds | 36 |
|
| 93 |
+
| ucsd_kitchen_dataset_converted_externally_to_rlds | 19 |
|
| 94 |
+
| dlr_sara_grid_clamp_converted_externally_to_rlds | 1 |
|
| 95 |
+
| ucsd_pick_and_place_dataset_converted_externally_to_rlds | 109 |
|
| 96 |
+
| nyu_door_opening_surprising_effectiveness | 74 |
|
| 97 |
+
| jaco_play | 175 |
|
| 98 |
+
| utokyo_xarm_bimanual_converted_externally_to_rlds | 7 |
|
| 99 |
+
| bridge | 2986 |
|
| 100 |
+
| utokyo_pr2_opening_fridge_converted_externally_to_rlds | 12 |
|
| 101 |
+
| asu_table_top_converted_externally_to_rlds | 22 |
|
| 102 |
+
| berkeley_autolab_ur5 | 164 |
|
| 103 |
+
| dobbe | 759 |
|
| 104 |
+
| fmb | 48 |
|
| 105 |
+
| qut_dexterous_manpulation | 29 |
|
| 106 |
+
| robo_set | 2374 |
|
| 107 |
+
| dlr_sara_pour_converted_externally_to_rlds | 3 |
|
| 108 |
+
| dlr_edan_shared_control_converted_externally_to_rlds | 17 |
|
| 109 |
+
| **Summary** | 6870 |
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
## Data Format
|
| 114 |
+
|
| 115 |
+
### Planning
|
| 116 |
+
|
| 117 |
+

|
| 118 |
+
|
| 119 |
+
```json
|
| 120 |
+
{
|
| 121 |
+
"id"{
|
| 122 |
+
"id": 0,
|
| 123 |
+
"task": "Future_Prediction_Task",
|
| 124 |
+
"selected_step": 3,
|
| 125 |
+
"conversations": [
|
| 126 |
+
{
|
| 127 |
+
"from": "human",
|
| 128 |
+
"value": "<image 0-25> After <move the grasped banana towards the mug>, what's the most probable next event?"
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"from": "gpt",
|
| 132 |
+
"value": "<place the banana into the mug>"
|
| 133 |
+
}
|
| 134 |
+
],
|
| 135 |
+
"image": [
|
| 136 |
+
"/path/to/image_0-25"
|
| 137 |
+
]
|
| 138 |
+
}
|
| 139 |
+
}
|
| 140 |
+
```
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
### Affordance
|
| 147 |
+
|
| 148 |
+
<!---->
|
| 149 |
+
<div style="display: flex; gap: 10px;">
|
| 150 |
+
<img src="./images/2d94d985-d47e-4899-9760-c1cb8f19cd89.png" style="width: 300px;" />
|
| 151 |
+
<img src="./images/a7817c0b-04b1-4a7c-9535-f9ff7801a689.png" style="width: 300px;" />
|
| 152 |
+
</div>
|
| 153 |
+
|
| 154 |
+
```json
|
| 155 |
+
{
|
| 156 |
+
|
| 157 |
+
"id": 2486,
|
| 158 |
+
"meta_data": {
|
| 159 |
+
"original_dataset": "bridge",
|
| 160 |
+
"original_width": 640,
|
| 161 |
+
"original_height": 480
|
| 162 |
+
},
|
| 163 |
+
"instruction": "place the red fork to the left of the left burner",
|
| 164 |
+
"affordance": {
|
| 165 |
+
"x": 352.87425387858815,
|
| 166 |
+
"y": 186.47871614766484,
|
| 167 |
+
"width": 19.296008229513156,
|
| 168 |
+
"height": 14.472006172134865
|
| 169 |
+
}
|
| 170 |
+
```
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
#### Visualize Code
|
| 175 |
+
|
| 176 |
+
```python
|
| 177 |
+
import json
|
| 178 |
+
import os
|
| 179 |
+
import cv2
|
| 180 |
+
import numpy as np
|
| 181 |
+
|
| 182 |
+
img_dir = '/path/to/your/original/images/dir'
|
| 183 |
+
affordance_json = '/path/to/your/affordances/json'
|
| 184 |
+
output_img_dir = '/path/to/your/visualized/images/dir'
|
| 185 |
+
|
| 186 |
+
with open(affordance_json, 'r') as f:
|
| 187 |
+
data = json.load(f)
|
| 188 |
+
for item in data:
|
| 189 |
+
filepath = os.path.join(img_dir, item['id'])
|
| 190 |
+
|
| 191 |
+
image = cv2.imread(filepath)
|
| 192 |
+
color = (255, 0, 0)
|
| 193 |
+
thickness = 2
|
| 194 |
+
|
| 195 |
+
x_min,y_min = item['affordance']['x'], item['affordance']['y']
|
| 196 |
+
x_max,y_max = item['affordance']['x']+item['affordance']['width'], item['affordance']['y']+item['affordance']['height']
|
| 197 |
+
|
| 198 |
+
# 定义矩形的四个顶点坐标
|
| 199 |
+
pts = np.array([
|
| 200 |
+
[x_min, y_min], # 左上角
|
| 201 |
+
[x_max, y_min], # 右上角
|
| 202 |
+
[x_max, y_max], # 右下角
|
| 203 |
+
[x_min, y_max] # 左下角
|
| 204 |
+
], dtype=np.float32)
|
| 205 |
+
|
| 206 |
+
# 绘制矩形框
|
| 207 |
+
cv2.polylines(image, [pts.astype(int)], isClosed=True, color=color, thickness=thickness)
|
| 208 |
+
|
| 209 |
+
# 获取相对路径并拼接目标路径
|
| 210 |
+
relative_path = os.path.relpath(filepath, img_dir) # 获取相对于 img_dir 的相对路径
|
| 211 |
+
output_img_path = os.path.join(output_img_dir, relative_path) # 拼接目标路径
|
| 212 |
+
|
| 213 |
+
# 创建目标文件夹
|
| 214 |
+
output_directory = os.path.dirname(output_img_path)
|
| 215 |
+
if not os.path.exists(output_directory):
|
| 216 |
+
os.makedirs(output_directory)
|
| 217 |
+
|
| 218 |
+
# 打印调试信息
|
| 219 |
+
print(f"Input filepath: {filepath}")
|
| 220 |
+
print(f"Output image path: {output_img_path}")
|
| 221 |
+
print(f"Output directory: {output_directory}")
|
| 222 |
+
|
| 223 |
+
# 保存图像
|
| 224 |
+
cv2.imwrite(output_img_path, image)
|
| 225 |
+
|
| 226 |
+
```
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
|
| 230 |
|
|
|
|
| 231 |
|
| 232 |
+
### Trajectory
|
| 233 |
|
| 234 |
+
<!-- -->
|
| 235 |
+
<div style="display: flex; gap: 10px;">
|
| 236 |
+
<img src="./images/5b923b31-dbbf-470f-af09-5125f5b91ab0.png" style="width: 300px;" />
|
| 237 |
+
<img src="./images/1af4535a-acc3-4417-ae33-675f4301f560.png" style="width: 300px;" />
|
| 238 |
+
</div>
|
| 239 |
|
| 240 |
+
```json
|
| 241 |
+
{
|
| 242 |
+
"id": 456,
|
| 243 |
+
"meta_data": {
|
| 244 |
+
"original_dataset": "bridge",
|
| 245 |
+
"original_width": 640,
|
| 246 |
+
"original_height": 480
|
| 247 |
+
},
|
| 248 |
+
"instruction": "reach for the carrot",
|
| 249 |
+
"points": [
|
| 250 |
+
[
|
| 251 |
+
265.45454545454544,
|
| 252 |
+
120.0
|
| 253 |
+
],
|
| 254 |
+
[
|
| 255 |
+
275.1515151515152,
|
| 256 |
+
162.42424242424244
|
| 257 |
+
],
|
| 258 |
+
[
|
| 259 |
+
280.0,
|
| 260 |
+
213.33333333333331
|
| 261 |
+
],
|
| 262 |
+
[
|
| 263 |
+
280.0,
|
| 264 |
+
259.3939393939394
|
| 265 |
+
]
|
| 266 |
+
]
|
| 267 |
+
},
|
| 268 |
+
```
|
| 269 |
|
| 270 |
+
#### Visualize Code
|
| 271 |
|
| 272 |
+
```python
|
| 273 |
+
import json
|
| 274 |
+
import os
|
| 275 |
+
from PIL import Image, ImageDraw
|
| 276 |
|
| 277 |
+
trajectory_final = '/path/to/your/trajectory_json'
|
| 278 |
+
img_dir = '/path/to/your/original/images/dir'
|
| 279 |
+
output_img_dir = '/path/to/your/visualzed/images/dir'
|
| 280 |
|
| 281 |
+
with open(trajectory_final, 'r') as f:
|
| 282 |
+
data = json.load(f)
|
| 283 |
+
for item in data:
|
| 284 |
+
filepath = os.path.join(img_dir, item['id'])
|
| 285 |
+
points = item['points']
|
| 286 |
|
| 287 |
+
image = Image.open(filepath).convert("RGB") # 确保图像是 RGB 模式
|
| 288 |
+
draw = ImageDraw.Draw(image) # 创建绘图对象
|
| 289 |
+
# 定���颜色和线宽
|
| 290 |
+
color = (255, 0, 0) # 红色 (RGB 格式)
|
| 291 |
+
thickness = 2
|
| 292 |
|
|
|
|
| 293 |
|
| 294 |
+
scaled_points = [
|
| 295 |
+
(point[0], point[1])
|
| 296 |
+
for point in points
|
| 297 |
+
]
|
| 298 |
+
# 按照顺序连接相邻的点
|
| 299 |
+
for i in range(len(scaled_points) - 1):
|
| 300 |
+
draw.line([scaled_points[i], scaled_points[i + 1]], fill=color, width=thickness)
|
| 301 |
|
| 302 |
+
# 获取相对路径并拼接目标路径
|
| 303 |
+
relative_path = os.path.relpath(filepath, img_dir)
|
| 304 |
+
output_img_path = os.path.join(output_img_dir, relative_path)
|
| 305 |
|
| 306 |
+
# 创建目标文件夹
|
| 307 |
+
output_directory = os.path.dirname(output_img_path)
|
| 308 |
+
if not os.path.exists(output_directory):
|
| 309 |
+
os.makedirs(output_directory)
|
| 310 |
|
| 311 |
+
# 打印调试信息
|
| 312 |
+
print(f"Input filepath: {filepath}")
|
| 313 |
+
print(f"Output image path: {output_img_path}")
|
| 314 |
+
print(f"Output directory: {output_directory}")
|
| 315 |
|
| 316 |
+
# 保存图像
|
| 317 |
+
image.save(output_img_path)
|
| 318 |
+
```
|
| 319 |
|
|
|
|
| 320 |
|
|
|
|
| 321 |
|
| 322 |
+
## Evaluation
|
| 323 |
|
|
|
|
| 324 |
|
|
|
|
| 325 |
|
|
|
|
| 326 |
|
|
|
|
| 327 |
|
| 328 |
+
## Reference
|
| 329 |
|
| 330 |
+
[1] Pierre Sermanet, Tianli Ding, Jeffrey Zhao, Fei Xia, Debidatta Dwibedi, Keerthana Gopalakrishnan, Christine Chan,Gabriel Dulac-Arnold, Sharath Maddineni, Nikhil J Joshi,et al. Robovqa: Multimodal long-horizon reasoning forrobotics. In ICRA, pages 645–652, 2024.
|
| 331 |
+
|
| 332 |
+
[2] Abby O’Neill, Abdul Rehman, Abhinav Gupta, AbhiramMaddukuri, Abhishek Gupta, Abhishek Padalkar, AbrahamLee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, et al.Open x-embodiment: Robotic learning datasets and rt-xmodels. arXiv preprint arXiv:2310.08864, 2023.
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
## Citation
|
| 337 |
+
```
|
| 338 |
+
@article{ji2025robobrain,
|
| 339 |
+
title={RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete},
|
| 340 |
+
author={Ji, Yuheng and Tan, Huajie and Shi, Jiayu and Hao, Xiaoshuai and Zhang, Yuan and Zhang, Hengyuan and Wang, Pengwei and Zhao, Mengdi and Mu, Yao and An, Pengju and others},
|
| 341 |
+
journal={arXiv preprint arXiv:2502.21257},
|
| 342 |
+
year={2025}
|
| 343 |
+
}
|
| 344 |
+
```
|