id
stringlengths
9
16
submitter
stringlengths
2
51
title
stringlengths
5
243
categories
stringlengths
5
69
abstract
stringlengths
23
3.66k
labels
stringlengths
5
184
domain
stringclasses
9 values
2302.13319
Matth\"aus Kleindessner
Efficient fair PCA for fair representation learning
stat.ML cs.CY cs.LG
We revisit the problem of fair principal component analysis (PCA), where the goal is to learn the best low-rank linear approximation of the data that obfuscates demographic information. We propose a conceptually simple approach that allows for an analytic solution similar to standard PCA and can be kernelized. Our methods have the same complexity as standard PCA, or kernel PCA, and run much faster than existing methods for fair PCA based on semidefinite programming or manifold optimization, while achieving similar results.
Machine Learning, Computers and Society, Machine Learning
Statistics
2105.04087
Pengcheng Ren
Latency Analysis of Consortium Blockchained Federated Learning
stat.ML cs.DC cs.LG
A decentralized federated learning architecture is proposed to apply to the Businesses-to-Businesses scenarios by introducing the consortium blockchain in this paper. We introduce a model verification mechanism to ensure the quality of local models trained by participators. To analyze the latency of the system, a latency model is constructed by considering the work flow of the architecture. Finally the experiment results show that our latency model does well in quantifying the actual delays.
Machine Learning, Distributed, Parallel, and Cluster Computing, Machine Learning
Statistics
1912.07820
Sainyam Galhotra Mr
Balancing the Tradeoff Between Clustering Value and Interpretability
stat.ML cs.DS cs.LG
Graph clustering groups entities -- the vertices of a graph -- based on their similarity, typically using a complex distance function over a large number of features. Successful integration of clustering approaches in automated decision-support systems hinges on the interpretability of the resulting clusters. This paper addresses the problem of generating interpretable clusters, given features of interest that signify interpretability to an end-user, by optimizing interpretability in addition to common clustering objectives. We propose a $\beta$-interpretable clustering algorithm that ensures that at least $\beta$ fraction of nodes in each cluster share the same feature value. The tunable parameter $\beta$ is user-specified. We also present a more efficient algorithm for scenarios with $\beta\!=\!1$ and analyze the theoretical guarantees of the two algorithms. Finally, we empirically demonstrate the benefits of our approaches in generating interpretable clusters using four real-world datasets. The interpretability of the clusters is complemented by generating simple explanations denoting the feature values of the nodes in the clusters, using frequent pattern mining.
Machine Learning, Data Structures and Algorithms, Machine Learning
Statistics
1505.05007
Paul Blomstedt PhD
Modelling-based experiment retrieval: A case study with gene expression clustering
stat.ML cs.IR cs.LG
Motivation: Public and private repositories of experimental data are growing to sizes that require dedicated methods for finding relevant data. To improve on the state of the art of keyword searches from annotations, methods for content-based retrieval have been proposed. In the context of gene expression experiments, most methods retrieve gene expression profiles, requiring each experiment to be expressed as a single profile, typically of case vs. control. A more general, recently suggested alternative is to retrieve experiments whose models are good for modelling the query dataset. However, for very noisy and high-dimensional query data, this retrieval criterion turns out to be very noisy as well. Results: We propose doing retrieval using a denoised model of the query dataset, instead of the original noisy dataset itself. To this end, we introduce a general probabilistic framework, where each experiment is modelled separately and the retrieval is done by finding related models. For retrieval of gene expression experiments, we use a probabilistic model called product partition model, which induces a clustering of genes that show similar expression patterns across a number of samples. The suggested metric for retrieval using clusterings is the normalized information distance. Empirical results finally suggest that inference for the full probabilistic model can be approximated with good performance using computationally faster heuristic clustering approaches (e.g. $k$-means). The method is highly scalable and straightforward to apply to construct a general-purpose gene expression experiment retrieval method. Availability: The method can be implemented using standard clustering algorithms and normalized information distance, available in many statistical software packages.
Machine Learning, Information Retrieval, Machine Learning
Statistics
2206.14278
Karan Srivastava
A Perturbation Bound on the Subspace Estimator from Canonical Projections
stat.ML cs.IT cs.LG math.IT
This paper derives a perturbation bound on the optimal subspace estimator obtained from a subset of its canonical projections contaminated by noise. This fundamental result has important implications in matrix completion, subspace clustering, and related problems.
Machine Learning, Information Theory, Machine Learning, Information Theory
Statistics
2006.00402
Boris Landa
Doubly-Stochastic Normalization of the Gaussian Kernel is Robust to Heteroskedastic Noise
stat.ML cs.IT cs.LG math.IT
A fundamental step in many data-analysis techniques is the construction of an affinity matrix describing similarities between data points. When the data points reside in Euclidean space, a widespread approach is to from an affinity matrix by the Gaussian kernel with pairwise distances, and to follow with a certain normalization (e.g. the row-stochastic normalization or its symmetric variant). We demonstrate that the doubly-stochastic normalization of the Gaussian kernel with zero main diagonal (i.e., no self loops) is robust to heteroskedastic noise. That is, the doubly-stochastic normalization is advantageous in that it automatically accounts for observations with different noise variances. Specifically, we prove that in a suitable high-dimensional setting where heteroskedastic noise does not concentrate too much in any particular direction in space, the resulting (doubly-stochastic) noisy affinity matrix converges to its clean counterpart with rate $m^{-1/2}$, where $m$ is the ambient dimension. We demonstrate this result numerically, and show that in contrast, the popular row-stochastic and symmetric normalizations behave unfavorably under heteroskedastic noise. Furthermore, we provide examples of simulated and experimental single-cell RNA sequence data with intrinsic heteroskedasticity, where the advantage of the doubly-stochastic normalization for exploratory analysis is evident.
Machine Learning, Information Theory, Machine Learning, Information Theory
Statistics
2009.06966
Sattar Vakili
On Information Gain and Regret Bounds in Gaussian Process Bandits
stat.ML cs.IT cs.LG math.IT
Consider the sequential optimization of an expensive to evaluate and possibly non-convex objective function $f$ from noisy feedback, that can be considered as a continuum-armed bandit problem. Upper bounds on the regret performance of several learning algorithms (GP-UCB, GP-TS, and their variants) are known under both a Bayesian (when $f$ is a sample from a Gaussian process (GP)) and a frequentist (when $f$ lives in a reproducing kernel Hilbert space) setting. The regret bounds often rely on the maximal information gain $\gamma_T$ between $T$ observations and the underlying GP (surrogate) model. We provide general bounds on $\gamma_T$ based on the decay rate of the eigenvalues of the GP kernel, whose specialisation for commonly used kernels, improves the existing bounds on $\gamma_T$, and subsequently the regret bounds relying on $\gamma_T$ under numerous settings. For the Mat\'ern family of kernels, where the lower bounds on $\gamma_T$, and regret under the frequentist setting, are known, our results close a huge polynomial in $T$ gap between the upper and lower bounds (up to logarithmic in $T$ factors).
Machine Learning, Information Theory, Machine Learning, Information Theory
Statistics
2212.09396
Daesung Kim
Rank-1 Matrix Completion with Gradient Descent and Small Random Initialization
stat.ML cs.IT cs.LG math.IT
The nonconvex formulation of matrix completion problem has received significant attention in recent years due to its affordable complexity compared to the convex formulation. Gradient descent (GD) is the simplest yet efficient baseline algorithm for solving nonconvex optimization problems. The success of GD has been witnessed in many different problems in both theory and practice when it is combined with random initialization. However, previous works on matrix completion require either careful initialization or regularizers to prove the convergence of GD. In this work, we study the rank-1 symmetric matrix completion and prove that GD converges to the ground truth when small random initialization is used. We show that in logarithmic amount of iterations, the trajectory enters the region where local convergence occurs. We provide an upper bound on the initialization size that is sufficient to guarantee the convergence and show that a larger initialization can be used as more samples are available. We observe that implicit regularization effect of GD plays a critical role in the analysis, and for the entire trajectory, it prevents each entry from becoming much larger than the others.
Machine Learning, Information Theory, Machine Learning, Information Theory
Statistics
1810.11571
Puning Zhao
Analysis of KNN Information Estimators for Smooth Distributions
stat.ML cs.IT cs.LG math.IT math.ST stat.TH
KSG mutual information estimator, which is based on the distances of each sample to its k-th nearest neighbor, is widely used to estimate mutual information between two continuous random variables. Existing work has analyzed the convergence rate of this estimator for random variables whose densities are bounded away from zero in its support. In practice, however, KSG estimator also performs well for a much broader class of distributions, including not only those with bounded support and densities bounded away from zero, but also those with bounded support but densities approaching zero, and those with unbounded support. In this paper, we analyze the convergence rate of the error of KSG estimator for smooth distributions, whose support of density can be both bounded and unbounded. As KSG mutual information estimator can be viewed as an adaptive recombination of KL entropy estimators, in our analysis, we also provide convergence analysis of KL entropy estimator for a broad class of distributions.
Machine Learning, Information Theory, Machine Learning, Information Theory, Statistics Theory, Statistics Theory
Statistics
1508.07648
Mehdi Korki
Dictionary Learning for Blind One Bit Compressed Sensing
stat.ML cs.IT math.IT
This letter proposes a dictionary learning algorithm for blind one bit compressed sensing. In the blind one bit compressed sensing framework, the original signal to be reconstructed from one bit linear random measurements is sparse in an unknown domain. In this context, the multiplication of measurement matrix $\Ab$ and sparse domain matrix $\Phi$, \ie $\Db=\Ab\Phi$, should be learned. Hence, we use dictionary learning to train this matrix. Towards that end, an appropriate continuous convex cost function is suggested for one bit compressed sensing and a simple steepest-descent method is exploited to learn the rows of the matrix $\Db$. Experimental results show the effectiveness of the proposed algorithm against the case of no dictionary learning, specially with increasing the number of training signals and the number of sign measurements.
Machine Learning, Information Theory, Information Theory
Statistics
2005.11770
Junjie Liang
Longitudinal Deep Kernel Gaussian Process Regression
stat.ML cs.LG
Gaussian processes offer an attractive framework for predictive modeling from longitudinal data, i.e., irregularly sampled, sparse observations from a set of individuals over time. However, such methods have two key shortcomings: (i) They rely on ad hoc heuristics or expensive trial and error to choose the effective kernels, and (ii) They fail to handle multilevel correlation structure in the data. We introduce Longitudinal deep kernel Gaussian process regression (L-DKGPR), which to the best of our knowledge, is the only method to overcome these limitations by fully automating the discovery of complex multilevel correlation structure from longitudinal data. Specifically, L-DKGPR eliminates the need for ad hoc heuristics or trial and error using a novel adaptation of deep kernel learning that combines the expressive power of deep neural networks with the flexibility of non-parametric kernel methods. L-DKGPR effectively learns the multilevel correlation with a novel addictive kernel that simultaneously accommodates both time-varying and the time-invariant effects. We derive an efficient algorithm to train L-DKGPR using latent space inducing points and variational inference. Results of extensive experiments on several benchmark data sets demonstrate that L-DKGPR significantly outperforms the state-of-the-art longitudinal data analysis (LDA) methods.
Machine Learning, Machine Learning
Statistics
1406.1853
Ian Osband
Model-based Reinforcement Learning and the Eluder Dimension
stat.ML cs.LG
We consider the problem of learning to optimize an unknown Markov decision process (MDP). We show that, if the MDP can be parameterized within some known function class, we can obtain regret bounds that scale with the dimensionality, rather than cardinality, of the system. We characterize this dependence explicitly as $\tilde{O}(\sqrt{d_K d_E T})$ where $T$ is time elapsed, $d_K$ is the Kolmogorov dimension and $d_E$ is the \emph{eluder dimension}. These represent the first unified regret bounds for model-based reinforcement learning and provide state of the art guarantees in several important settings. Moreover, we present a simple and computationally efficient algorithm \emph{posterior sampling for reinforcement learning} (PSRL) that satisfies these bounds.
Machine Learning, Machine Learning
Statistics
1805.06595
Kevin He
Covariance-Insured Screening
stat.ML cs.LG
Modern bio-technologies have produced a vast amount of high-throughput data with the number of predictors far greater than the sample size. In order to identify more novel biomarkers and understand biological mechanisms, it is vital to detect signals weakly associated with outcomes among ultrahigh-dimensional predictors. However, existing screening methods, which typically ignore correlation information, are likely to miss these weak signals. By incorporating the inter-feature dependence, we propose a covariance-insured screening methodology to identify predictors that are jointly informative but only marginally weakly associated with outcomes. The validity of the method is examined via extensive simulations and real data studies for selecting potential genetic factors related to the onset of cancer.
Machine Learning, Machine Learning
Statistics
1905.07540
Jungtaek Kim
Practical Bayesian Optimization with Threshold-Guided Marginal Likelihood Maximization
stat.ML cs.LG
We propose a practical Bayesian optimization method using Gaussian process regression, of which the marginal likelihood is maximized where the number of model selection steps is guided by a pre-defined threshold. Since Bayesian optimization consumes a large portion of its execution time in finding the optimal free parameters for Gaussian process regression, our simple, but straightforward method is able to mitigate the time complexity and speed up the overall Bayesian optimization procedure. Finally, the experimental results show that our method is effective to reduce the execution time in most of cases, with less loss of optimization quality.
Machine Learning, Machine Learning
Statistics
2210.05737
Miros{\l}awa {\L}ukawska
Context-aware Bayesian Mixed Multinomial Logit Model
stat.ML cs.LG
The mixed multinomial logit model assumes constant preference parameters of a decision-maker throughout different choice situations, which may be considered too strong for certain choice modelling applications. This paper proposes an effective approach to model context-dependent intra-respondent heterogeneity, thereby introducing the concept of the Context-aware Bayesian mixed multinomial logit model, where a neural network maps contextual information to interpretable shifts in the preference parameters of each individual in each choice occasion. The proposed model offers several key advantages. First, it supports both continuous and discrete variables, as well as complex non-linear interactions between both types of variables. Secondly, each context specification is considered jointly as a whole by the neural network rather than each variable being considered independently. Finally, since the neural network parameters are shared across all decision-makers, it can leverage information from other decision-makers to infer the effect of a particular context on a particular decision-maker. Even though the context-aware Bayesian mixed multinomial logit model allows for flexible interactions between attributes, the increase in computational complexity is minor, compared to the mixed multinomial logit model. We illustrate the concept and interpretation of the proposed model in a simulation study. We furthermore present a real-world case study from the travel behaviour domain - a bicycle route choice model, based on a large-scale, crowdsourced dataset of GPS trajectories including 119,448 trips made by 8,555 cyclists.
Machine Learning, Machine Learning
Statistics
1210.4276
Bertrand Lebichot
Semi-Supervised Classification Through the Bag-of-Paths Group Betweenness
stat.ML cs.LG
This paper introduces a novel, well-founded, betweenness measure, called the Bag-of-Paths (BoP) betweenness, as well as its extension, the BoP group betweenness, to tackle semisupervised classification problems on weighted directed graphs. The objective of semi-supervised classification is to assign a label to unlabeled nodes using the whole topology of the graph and the labeled nodes at our disposal. The BoP betweenness relies on a bag-of-paths framework assigning a Boltzmann distribution on the set of all possible paths through the network such that long (high-cost) paths have a low probability of being picked from the bag, while short (low-cost) paths have a high probability of being picked. Within that context, the BoP betweenness of node j is defined as the sum of the a posteriori probabilities that node j lies in-between two arbitrary nodes i, k, when picking a path starting in i and ending in k. Intuitively, a node typically receives a high betweenness if it has a large probability of appearing on paths connecting two arbitrary nodes of the network. This quantity can be computed in closed form by inverting a n x n matrix where n is the number of nodes. For the group betweenness, the paths are constrained to start and end in nodes within the same class, therefore defining a group betweenness for each class. Unlabeled nodes are then classified according to the class showing the highest group betweenness. Experiments on various real-world data sets show that BoP group betweenness outperforms all the tested state of-the-art methods. The benefit of the BoP betweenness is particularly noticeable when only a few labeled nodes are available.
Machine Learning, Machine Learning
Statistics
2009.03017
Pierre Alquier
Non-exponentially weighted aggregation: regret bounds for unbounded loss functions
stat.ML cs.LG
We tackle the problem of online optimization with a general, possibly unbounded, loss function. It is well known that when the loss is bounded, the exponentially weighted aggregation strategy (EWA) leads to a regret in $\sqrt{T}$ after $T$ steps. In this paper, we study a generalized aggregation strategy, where the weights no longer depend exponentially on the losses. Our strategy is based on Follow The Regularized Leader (FTRL): we minimize the expected losses plus a regularizer, that is here a $\phi$-divergence. When the regularizer is the Kullback-Leibler divergence, we obtain EWA as a special case. Using alternative divergences enables unbounded losses, at the cost of a worst regret bound in some cases.
Machine Learning, Machine Learning
Statistics
2404.18769
Fanghui Liu
Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks
stat.ML cs.LG
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks as the curse of dimensionality (CoD) cannot be evaded when trying to approximate even a single ReLU neuron (Bach, 2017). In this paper, we study a suitable function space for over-parameterized two-layer neural networks with bounded norms (e.g., the path norm, the Barron norm) in the perspective of sample complexity and generalization properties. First, we show that the path norm (as well as the Barron norm) is able to obtain width-independence sample complexity bounds, which allows for uniform convergence guarantees. Based on this result, we derive the improved result of metric entropy for $\epsilon$-covering up to $O(\epsilon^{-\frac{2d}{d+2}})$ ($d$ is the input dimension and the depending constant is at most linear order of $d$) via the convex hull technique, which demonstrates the separation with kernel methods with $\Omega(\epsilon^{-d})$ to learn the target function in a Barron space. Second, this metric entropy result allows for building a sharper generalization bound under a general moment hypothesis setting, achieving the rate at $O(n^{-\frac{d+2}{2d+2}})$. Our analysis is novel in that it offers a sharper and refined estimation for metric entropy with a linear dimension dependence and unbounded sampling in the estimation of the sample error and the output error.
Machine Learning, Machine Learning
Statistics
1805.10965
Kevin Scaman
Lipschitz regularity of deep neural networks: analysis and efficient estimation
stat.ML cs.LG
Deep neural networks are notorious for being sensitive to small well-chosen perturbations, and estimating the regularity of such architectures is of utmost importance for safe and robust practical applications. In this paper, we investigate one of the key characteristics to assess the regularity of such methods: the Lipschitz constant of deep learning architectures. First, we show that, even for two layer neural networks, the exact computation of this quantity is NP-hard and state-of-art methods may significantly overestimate it. Then, we both extend and improve previous estimation methods by providing AutoLip, the first generic algorithm for upper bounding the Lipschitz constant of any automatically differentiable function. We provide a power method algorithm working with automatic differentiation, allowing efficient computations even on large convolutions. Second, for sequential neural networks, we propose an improved algorithm named SeqLip that takes advantage of the linear computation graph to split the computation per pair of consecutive layers. Third we propose heuristics on SeqLip in order to tackle very large networks. Our experiments show that SeqLip can significantly improve on the existing upper bounds. Finally, we provide an implementation of AutoLip in the PyTorch environment that may be used to better estimate the robustness of a given neural network to small perturbations or regularize it using more precise Lipschitz estimations.
Machine Learning, Machine Learning
Statistics
2209.07787
Pawe{\l} Teisseyre
Double logistic regression approach to biased positive-unlabeled data
stat.ML cs.LG
Positive and unlabelled learning is an important problem which arises naturally in many applications. The significant limitation of almost all existing methods lies in assuming that the propensity score function is constant (SCAR assumption), which is unrealistic in many practical situations. Avoiding this assumption, we consider parametric approach to the problem of joint estimation of posterior probability and propensity score functions. We show that under mild assumptions when both functions have the same parametric form (e.g. logistic with different parameters) the corresponding parameters are identifiable. Motivated by this, we propose two approaches to their estimation: joint maximum likelihood method and the second approach based on alternating maximization of two Fisher consistent expressions. Our experimental results show that the proposed methods are comparable or better than the existing methods based on Expectation-Maximisation scheme.
Machine Learning, Machine Learning
Statistics
2106.06573
Xiang Wang
Understanding Deflation Process in Over-parametrized Tensor Decomposition
stat.ML cs.LG
In this paper we study the training dynamics for gradient flow on over-parametrized tensor decomposition problems. Empirically, such training process often first fits larger components and then discovers smaller components, which is similar to a tensor deflation process that is commonly used in tensor decomposition algorithms. We prove that for orthogonally decomposable tensor, a slightly modified version of gradient flow would follow a tensor deflation process and recover all the tensor components. Our proof suggests that for orthogonal tensors, gradient flow dynamics works similarly as greedy low-rank learning in the matrix setting, which is a first step towards understanding the implicit regularization effect of over-parametrized models for low-rank tensors.
Machine Learning, Machine Learning
Statistics
2011.12651
Stefan Klus
Feature space approximation for kernel-based supervised learning
stat.ML cs.LG
We propose a method for the approximation of high- or even infinite-dimensional feature vectors, which play an important role in supervised learning. The goal is to reduce the size of the training data, resulting in lower storage consumption and computational complexity. Furthermore, the method can be regarded as a regularization technique, which improves the generalizability of learned target functions. We demonstrate significant improvements in comparison to the computation of data-driven predictions involving the full training data set. The method is applied to classification and regression problems from different application areas such as image recognition, system identification, and oceanographic time series analysis.
Machine Learning, Machine Learning
Statistics
2406.09567
Carlos Fern\'andez-Lor\'ia
Causal Fine-Tuning and Effect Calibration of Non-Causal Predictive Models
stat.ML cs.LG
This paper proposes techniques to enhance the performance of non-causal models for causal inference using data from randomized experiments. In domains like advertising, customer retention, and precision medicine, non-causal models that predict outcomes under no intervention are often used to score individuals and rank them according to the expected effectiveness of an intervention (e.g, an ad, a retention incentive, a nudge). However, these scores may not perfectly correspond to intervention effects due to the inherent non-causal nature of the models. To address this limitation, we propose causal fine-tuning and effect calibration, two techniques that leverage experimental data to refine the output of non-causal models for different causal tasks, including effect estimation, effect ordering, and effect classification. They are underpinned by two key advantages. First, they can effectively integrate the predictive capabilities of general non-causal models with the requirements of a causal task in a specific context, allowing decision makers to support diverse causal applications with a "foundational" scoring model. Second, through simulations and an empirical example, we demonstrate that they can outperform the alternative of building a causal-effect model from scratch, particularly when the available experimental data is limited and the non-causal scores already capture substantial information about the relative sizes of causal effects. Overall, this research underscores the practical advantages of combining experimental data with non-causal models to support causal applications.
Machine Learning, Machine Learning
Statistics
2004.10629
Stefan T. Radev
Amortized Bayesian model comparison with evidential deep learning
stat.ML cs.LG
Comparing competing mathematical models of complex natural processes is a shared goal among many branches of science. The Bayesian probabilistic framework offers a principled way to perform model comparison and extract useful metrics for guiding decisions. However, many interesting models are intractable with standard Bayesian methods, as they lack a closed-form likelihood function or the likelihood is computationally too expensive to evaluate. With this work, we propose a novel method for performing Bayesian model comparison using specialized deep learning architectures. Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset. Moreover, it requires no hand-crafted summary statistics of the data and is designed to amortize the cost of simulation over multiple models and observable datasets. This makes the method particularly effective in scenarios where model fit needs to be assessed for a large number of datasets, so that per-dataset inference is practically infeasible.Finally, we propose a novel way to measure epistemic uncertainty in model comparison problems. We demonstrate the utility of our method on toy examples and simulated data from non-trivial models from cognitive science and single-cell neuroscience. We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work. We argue that our framework can enhance and enrich model-based analysis and inference in many fields dealing with computational models of natural processes. We further argue that the proposed measure of epistemic uncertainty provides a unique proxy to quantify absolute evidence even in a framework which assumes that the true data-generating model is within a finite set of candidate models.
Machine Learning, Machine Learning
Statistics
2002.07246
Huijie Feng
Regularized Training and Tight Certification for Randomized Smoothed Classifier with Provable Robustness
stat.ML cs.LG
Recently smoothing deep neural network based classifiers via isotropic Gaussian perturbation is shown to be an effective and scalable way to provide state-of-the-art probabilistic robustness guarantee against $\ell_2$ norm bounded adversarial perturbations. However, how to train a good base classifier that is accurate and robust when smoothed has not been fully investigated. In this work, we derive a new regularized risk, in which the regularizer can adaptively encourage the accuracy and robustness of the smoothed counterpart when training the base classifier. It is computationally efficient and can be implemented in parallel with other empirical defense methods. We discuss how to implement it under both standard (non-adversarial) and adversarial training scheme. At the same time, we also design a new certification algorithm, which can leverage the regularization effect to provide tighter robustness lower bound that holds with high probability. Our extensive experimentation demonstrates the effectiveness of the proposed training and certification approaches on CIFAR-10 and ImageNet datasets.
Machine Learning, Machine Learning
Statistics
1811.10154
Cynthia Rudin
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead
stat.ML cs.LG
Black box machine learning models are currently being used for high stakes decision-making throughout society, causing problems throughout healthcare, criminal justice, and in other domains. People have hoped that creating methods for explaining these black box models will alleviate some of these problems, but trying to \textit{explain} black box models, rather than creating models that are \textit{interpretable} in the first place, is likely to perpetuate bad practices and can potentially cause catastrophic harm to society. There is a way forward -- it is to design models that are inherently interpretable. This manuscript clarifies the chasm between explaining black boxes and using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where interpretable models could potentially replace black box models in criminal justice, healthcare, and computer vision.
Machine Learning, Machine Learning
Statistics
2111.00034
Alexander Atanasov
Neural Networks as Kernel Learners: The Silent Alignment Effect
stat.ML cs.LG
Neural networks in the lazy training regime converge to kernel machines. Can neural networks in the rich feature learning regime learn a kernel machine with a data-dependent kernel? We demonstrate that this can indeed happen due to a phenomenon we term silent alignment, which requires that the tangent kernel of a network evolves in eigenstructure while small and before the loss appreciably decreases, and grows only in overall scale afterwards. We show that such an effect takes place in homogenous neural networks with small initialization and whitened data. We provide an analytical treatment of this effect in the linear network case. In general, we find that the kernel develops a low-rank contribution in the early phase of training, and then evolves in overall scale, yielding a function equivalent to a kernel regression solution with the final network's tangent kernel. The early spectral learning of the kernel depends on the depth. We also demonstrate that non-whitened data can weaken the silent alignment effect.
Machine Learning, Machine Learning
Statistics
2206.01163
Chen Xu
Invertible Neural Networks for Graph Prediction
stat.ML cs.LG
Graph prediction problems prevail in data analysis and machine learning. The inverse prediction problem, namely to infer input data from given output labels, is of emerging interest in various applications. In this work, we develop \textit{invertible graph neural network} (iGNN), a deep generative model to tackle the inverse prediction problem on graphs by casting it as a conditional generative task. The proposed model consists of an invertible sub-network that maps one-to-one from data to an intermediate encoded feature, which allows forward prediction by a linear classification sub-network as well as efficient generation from output labels via a parametric mixture model. The invertibility of the encoding sub-network is ensured by a Wasserstein-2 regularization which allows free-form layers in the residual blocks. The model is scalable to large graphs by a factorized parametric mixture model of the encoded feature and is computationally scalable by using GNN layers. The existence of invertible flow mapping is backed by theories of optimal transport and diffusion process, and we prove the expressiveness of graph convolution layers to approximate the theoretical flows of graph data. The proposed iGNN model is experimentally examined on synthetic data, including the example on large graphs, and the empirical advantage is also demonstrated on real-application datasets of solar ramping event data and traffic flow anomaly detection.
Machine Learning, Machine Learning
Statistics
2003.14286
Nicolas Donati
Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence
stat.ML cs.LG
We present a novel learning-based approach for computing correspondences between non-rigid 3D shapes. Unlike previous methods that either require extensive training data or operate on handcrafted input descriptors and thus generalize poorly across diverse datasets, our approach is both accurate and robust to changes in shape structure. Key to our method is a feature-extraction network that learns directly from raw shape geometry, combined with a novel regularized map extraction layer and loss, based on the functional map representation. We demonstrate through extensive experiments in challenging shape matching scenarios that our method can learn from less training data than existing supervised approaches and generalizes significantly better than current descriptor-based learning methods. Our source code is available at: https://github.com/LIX-shape-analysis/GeomFmaps.
Machine Learning, Machine Learning
Statistics
1910.05534
Ian Gallagher
Spectral embedding of weighted graphs
stat.ML cs.LG
When analyzing weighted networks using spectral embedding, a judicious transformation of the edge weights may produce better results. To formalize this idea, we consider the asymptotic behavior of spectral embedding for different edge-weight representations, under a generic low rank model. We measure the quality of different embeddings -- which can be on entirely different scales -- by how easy it is to distinguish communities, in an information-theoretic sense. For common types of weighted graphs, such as count networks or p-value networks, we find that transformations such as tempering or thresholding can be highly beneficial, both in theory and in practice.
Machine Learning, Machine Learning
Statistics
1809.02157
Dino Oglic
Scalable Learning in Reproducing Kernel Krein Spaces
stat.ML cs.LG
We provide the first mathematically complete derivation of the Nystr\"om method for low-rank approximation of indefinite kernels and propose an efficient method for finding an approximate eigendecomposition of such kernel matrices. Building on this result, we devise highly scalable methods for learning in reproducing kernel Kre\u{\i}n spaces. The devised approaches provide a principled and theoretically well-founded means to tackle large scale learning problems with indefinite kernels. The main motivation for our work comes from problems with structured representations (e.g., graphs, strings, time-series), where it is relatively easy to devise a pairwise (dis)similarity function based on intuition and/or knowledge of domain experts. Such functions are typically not positive definite and it is often well beyond the expertise of practitioners to verify this condition. The effectiveness of the devised approaches is evaluated empirically using indefinite kernels defined on structured and vectorial data representations.
Machine Learning, Machine Learning
Statistics
2108.00230
Flore Sentenac
Pure Exploration and Regret Minimization in Matching Bandits
stat.ML cs.LG
Finding an optimal matching in a weighted graph is a standard combinatorial problem. We consider its semi-bandit version where either a pair or a full matching is sampled sequentially. We prove that it is possible to leverage a rank-1 assumption on the adjacency matrix to reduce the sample complexity and the regret of off-the-shelf algorithms up to reaching a linear dependency in the number of vertices (up to poly log terms).
Machine Learning, Machine Learning
Statistics
2310.11431
David Klindt
Identifying Interpretable Visual Features in Artificial and Biological Neural Systems
stat.ML cs.LG
Single neurons in neural networks are often interpretable in that they represent individual, intuitively meaningful features. However, many neurons exhibit $\textit{mixed selectivity}$, i.e., they represent multiple unrelated features. A recent hypothesis proposes that features in deep networks may be represented in $\textit{superposition}$, i.e., on non-orthogonal axes by multiple neurons, since the number of possible interpretable features in natural data is generally larger than the number of neurons in a given network. Accordingly, we should be able to find meaningful directions in activation space that are not aligned with individual neurons. Here, we propose (1) an automated method for quantifying visual interpretability that is validated against a large database of human psychophysics judgments of neuron interpretability, and (2) an approach for finding meaningful directions in network activation space. We leverage these methods to discover directions in convolutional neural networks that are more intuitively meaningful than individual neurons, as we confirm and investigate in a series of analyses. Moreover, we apply the same method to three recent datasets of visual neural responses in the brain and find that our conclusions largely transfer to real neural data, suggesting that superposition might be deployed by the brain. This also provides a link with disentanglement and raises fundamental questions about robust, efficient and factorized representations in both artificial and biological neural systems.
Machine Learning, Machine Learning
Statistics
1611.06534
Marc Abeille
Linear Thompson Sampling Revisited
stat.ML cs.LG
We derive an alternative proof for the regret of Thompson sampling (\ts) in the stochastic linear bandit setting. While we obtain a regret bound of order $\widetilde{O}(d^{3/2}\sqrt{T})$ as in previous results, the proof sheds new light on the functioning of the \ts. We leverage on the structure of the problem to show how the regret is related to the sensitivity (i.e., the gradient) of the objective function and how selecting optimal arms associated to \textit{optimistic} parameters does control it. Thus we show that \ts can be seen as a generic randomized algorithm where the sampling distribution is designed to have a fixed probability of being optimistic, at the cost of an additional $\sqrt{d}$ regret factor compared to a UCB-like approach. Furthermore, we show that our proof can be readily applied to regularized linear optimization and generalized linear model problems.
Machine Learning, Machine Learning
Statistics
2209.07230
Chen Amiraz
Recovery Guarantees for Distributed-OMP
stat.ML cs.LG
We study distributed schemes for high-dimensional sparse linear regression, based on orthogonal matching pursuit (OMP). Such schemes are particularly suited for settings where a central fusion center is connected to end machines, that have both computation and communication limitations. We prove that under suitable assumptions, distributed-OMP schemes recover the support of the regression vector with communication per machine linear in its sparsity and logarithmic in the dimension. Remarkably, this holds even at low signal-to-noise-ratios, where individual machines are unable to detect the support. Our simulations show that distributed-OMP schemes are competitive with more computationally intensive methods, and in some cases even outperform them.
Machine Learning, Machine Learning
Statistics
2303.15074
Francisco Caldas
Conjunction Data Messages for Space Collision Behave as a Poisson Process
stat.ML cs.LG
Space debris is a major problem in space exploration. International bodies continuously monitor a large database of orbiting objects and emit warnings in the form of conjunction data messages. An important question for satellite operators is to estimate when fresh information will arrive so that they can react timely but sparingly with satellite maneuvers. We propose a statistical learning model of the message arrival process, allowing us to answer two important questions: (1) Will there be any new message in the next specified time interval? (2) When exactly and with what uncertainty will the next message arrive? The average prediction error for question (2) of our Bayesian Poisson process model is smaller than the baseline in more than 4 hours in a test set of 50k close encounter events.
Machine Learning, Machine Learning
Statistics
2304.04258
Jiachen T. Wang
A Note on "Efficient Task-Specific Data Valuation for Nearest Neighbor Algorithms"
stat.ML cs.LG
Data valuation is a growing research field that studies the influence of individual data points for machine learning (ML) models. Data Shapley, inspired by cooperative game theory and economics, is an effective method for data valuation. However, it is well-known that the Shapley value (SV) can be computationally expensive. Fortunately, Jia et al. (2019) showed that for K-Nearest Neighbors (KNN) models, the computation of Data Shapley is surprisingly simple and efficient. In this note, we revisit the work of Jia et al. (2019) and propose a more natural and interpretable utility function that better reflects the performance of KNN models. We derive the corresponding calculation procedure for the Data Shapley of KNN classifiers/regressors with the new utility functions. Our new approach, dubbed soft-label KNN-SV, achieves the same time complexity as the original method. We further provide an efficient approximation algorithm for soft-label KNN-SV based on locality sensitive hashing (LSH). Our experimental results demonstrate that Soft-label KNN-SV outperforms the original method on most datasets in the task of mislabeled data detection, making it a better baseline for future work on data valuation.
Machine Learning, Machine Learning
Statistics
1905.12407
Ayman Boustati
Non-linear Multitask Learning with Deep Gaussian Processes
stat.ML cs.LG
We present a multi-task learning formulation for Deep Gaussian processes (DGPs), through non-linear mixtures of latent processes. The latent space is composed of private processes that capture within-task information and shared processes that capture across-task dependencies. We propose two different methods for segmenting the latent space: through hard coding shared and task-specific processes or through soft sharing with Automatic Relevance Determination kernels. We show that our formulation is able to improve the learning performance and transfer information between the tasks, outperforming other probabilistic multi-task learning models across real-world and benchmarking settings.
Machine Learning, Machine Learning
Statistics
1708.05789
Kumar Sricharan
Semi-supervised Conditional GANs
stat.ML cs.LG
We introduce a new model for building conditional generative models in a semi-supervised setting to conditionally generate data given attributes by adapting the GAN framework. The proposed semi-supervised GAN (SS-GAN) model uses a pair of stacked discriminators to learn the marginal distribution of the data, and the conditional distribution of the attributes given the data respectively. In the semi-supervised setting, the marginal distribution (which is often harder to learn) is learned from the labeled + unlabeled data, and the conditional distribution is learned purely from the labeled data. Our experimental results demonstrate that this model performs significantly better compared to existing semi-supervised conditional GAN models.
Machine Learning, Machine Learning
Statistics
2011.05231
Elliott Gordon-Rodriguez
Uses and Abuses of the Cross-Entropy Loss: Case Studies in Modern Deep Learning
stat.ML cs.LG
Modern deep learning is primarily an experimental science, in which empirical advances occasionally come at the expense of probabilistic rigor. Here we focus on one such example; namely the use of the categorical cross-entropy loss to model data that is not strictly categorical, but rather takes values on the simplex. This practice is standard in neural network architectures with label smoothing and actor-mimic reinforcement learning, amongst others. Drawing on the recently discovered continuous-categorical distribution, we propose probabilistically-inspired alternatives to these models, providing an approach that is more principled and theoretically appealing. Through careful experimentation, including an ablation study, we identify the potential for outperformance in these models, thereby highlighting the importance of a proper probabilistic treatment, as well as illustrating some of the failure modes thereof.
Machine Learning, Machine Learning
Statistics
1704.07352
Pratik Jawanpuria
Structured low-rank matrix learning: algorithms and applications
stat.ML cs.LG
We consider the problem of learning a low-rank matrix, constrained to lie in a linear subspace, and introduce a novel factorization for modeling such matrices. A salient feature of the proposed factorization scheme is it decouples the low-rank and the structural constraints onto separate factors. We formulate the optimization problem on the Riemannian spectrahedron manifold, where the Riemannian framework allows to develop computationally efficient conjugate gradient and trust-region algorithms. Experiments on problems such as standard/robust/non-negative matrix completion, Hankel matrix learning and multi-task learning demonstrate the efficacy of our approach. A shorter version of this work has been published in ICML'18.
Machine Learning, Machine Learning
Statistics
1907.02571
Stefano Trac\`a
Reducing Exploration of Dying Arms in Mortal Bandits
stat.ML cs.LG
Mortal bandits have proven to be extremely useful for providing news article recommendations, running automated online advertising campaigns, and for other applications where the set of available options changes over time. Previous work on this problem showed how to regulate exploration of new arms when they have recently appeared, but they do not adapt when the arms are about to disappear. Since in most applications we can determine either exactly or approximately when arms will disappear, we can leverage this information to improve performance: we should not be exploring arms that are about to disappear. We provide adaptations of algorithms, regret bounds, and experiments for this study, showing a clear benefit from regulating greed (exploration/exploitation) for arms that will soon disappear. We illustrate numerical performance on the Yahoo! Front Page Today Module User Click Log Dataset.
Machine Learning, Machine Learning
Statistics
1906.11426
Prashant Shekhar
Hierarchical Data Reduction and Learning
stat.ML cs.LG
This paper describes a hierarchical learning strategy for generating sparse representations of multivariate datasets. The hierarchy arises from approximation spaces considered at successively finer scales. A detailed analysis of stability, convergence and behavior of error functionals associated with the approximations are presented, along with a well chosen set of applications. Results show the performance of the approach as a data reduction mechanism for both synthetic (univariate and multivariate) and real datasets (geospatial and numerical model outcomes). The sparse representation generated is shown to efficiently reconstruct data and minimize error in prediction.
Machine Learning, Machine Learning
Statistics
1811.12323
C\'edric Beaulac
A Deep Latent-Variable Model Application to Select Treatment Intensity in Survival Analysis
stat.ML cs.LG
In the following short article we adapt a new and popular machine learning model for inference on medical data sets. Our method is based on the Variational AutoEncoder (VAE) framework that we adapt to survival analysis on small data sets with missing values. In our model, the true health status appears as a set of latent variables that affects the observed covariates and the survival chances. We show that this flexible model allows insightful decision-making using a predicted distribution and outperforms a classic survival analysis model.
Machine Learning, Machine Learning
Statistics
1303.3664
Weicong Ding
Topic Discovery through Data Dependent and Random Projections
stat.ML cs.LG
We present algorithms for topic modeling based on the geometry of cross-document word-frequency patterns. This perspective gains significance under the so called separability condition. This is a condition on existence of novel-words that are unique to each topic. We present a suite of highly efficient algorithms based on data-dependent and random projections of word-frequency patterns to identify novel words and associated topics. We will also discuss the statistical guarantees of the data-dependent projections method based on two mild assumptions on the prior density of topic document matrix. Our key insight here is that the maximum and minimum values of cross-document frequency patterns projected along any direction are associated with novel words. While our sample complexity bounds for topic recovery are similar to the state-of-art, the computational complexity of our random projection scheme scales linearly with the number of documents and the number of words per document. We present several experiments on synthetic and real-world datasets to demonstrate qualitative and quantitative merits of our scheme.
Machine Learning, Machine Learning
Statistics
2006.07036
Yohan Jung
Approximate Inference for Spectral Mixture Kernel
stat.ML cs.LG
A spectral mixture (SM) kernel is a flexible kernel used to model any stationary covariance function. Although it is useful in modeling data, the learning of the SM kernel is generally difficult because optimizing a large number of parameters for the SM kernel typically induces an over-fitting, particularly when a gradient-based optimization is used. Also, a longer training time is required. To improve the training, we propose an approximate Bayesian inference for the SM kernel. Specifically, we employ the variational distribution of the spectral points to approximate SM kernel with a random Fourier feature. We optimize the variational parameters by applying a sampling-based variational inference to the derived evidence lower bound (ELBO) estimator constructed from the approximate kernel. To improve the inference, we further propose two additional strategies: (1) a sampling strategy of spectral points to estimate the ELBO estimator reliably and thus its associated gradient, and (2) an approximate natural gradient to accelerate the convergence of the parameters. The proposed inference combined with two strategies accelerates the convergence of the parameters and leads to better optimal parameters.
Machine Learning, Machine Learning
Statistics
2404.01883
Yanyan Dong
Adversarial Combinatorial Bandits with Switching Costs
stat.ML cs.LG
We study the problem of adversarial combinatorial bandit with a switching cost $\lambda$ for a switch of each selected arm in each round, considering both the bandit feedback and semi-bandit feedback settings. In the oblivious adversarial case with $K$ base arms and time horizon $T$, we derive lower bounds for the minimax regret and design algorithms to approach them. To prove these lower bounds, we design stochastic loss sequences for both feedback settings, building on an idea from previous work in Dekel et al. (2014). The lower bound for bandit feedback is $ \tilde{\Omega}\big( (\lambda K)^{\frac{1}{3}} (TI)^{\frac{2}{3}}\big)$ while that for semi-bandit feedback is $ \tilde{\Omega}\big( (\lambda K I)^{\frac{1}{3}} T^{\frac{2}{3}}\big)$ where $I$ is the number of base arms in the combinatorial arm played in each round. To approach these lower bounds, we design algorithms that operate in batches by dividing the time horizon into batches to restrict the number of switches between actions. For the bandit feedback setting, where only the total loss of the combinatorial arm is observed, we introduce the Batched-Exp2 algorithm which achieves a regret upper bound of $\tilde{O}\big((\lambda K)^{\frac{1}{3}}T^{\frac{2}{3}}I^{\frac{4}{3}}\big)$ as $T$ tends to infinity. In the semi-bandit feedback setting, where all losses for the combinatorial arm are observed, we propose the Batched-BROAD algorithm which achieves a regret upper bound of $\tilde{O}\big( (\lambda K)^{\frac{1}{3}} (TI)^{\frac{2}{3}}\big)$.
Machine Learning, Machine Learning
Statistics
1606.00856
Jesus Malo
Sequential Principal Curves Analysis
stat.ML cs.LG
This work includes all the technical details of the Sequential Principal Curves Analysis (SPCA) in a single document. SPCA is an unsupervised nonlinear and invertible feature extraction technique. The identified curvilinear features can be interpreted as a set of nonlinear sensors: the response of each sensor is the projection onto the corresponding feature. Moreover, it can be easily tuned for different optimization criteria; e.g. infomax, error minimization, decorrelation; by choosing the right way to measure distances along each curvilinear feature. Even though proposed in [Laparra et al. Neural Comp. 12] and shown to work in multiple modalities in [Laparra and Malo Frontiers Hum. Neuro. 15], the SPCA framework has its original roots in the nonlinear ICA algorithm in [Malo and Gutierrez Network 06]. Later on, the SPCA philosophy for nonlinear generalization of PCA originated substantially faster alternatives at the cost of introducing different constraints in the model. Namely, the Principal Polynomial Analysis (PPA) [Laparra et al. IJNS 14], and the Dimensionality Reduction via Regression (DRR) [Laparra et al. IEEE TGRS 15]. This report illustrates the reasons why we developed such family and is the appropriate technical companion for the missing details in [Laparra et al., NeCo 12, Laparra and Malo, Front.Hum.Neuro. 15]. See also the data, code and examples in the dedicated sites http://isp.uv.es/spca.html and http://isp.uv.es/after effects.html
Machine Learning, Machine Learning
Statistics
2203.13911
Benyamin Ghojogh
Theoretical Connection between Locally Linear Embedding, Factor Analysis, and Probabilistic PCA
stat.ML cs.LG
Locally Linear Embedding (LLE) is a nonlinear spectral dimensionality reduction and manifold learning method. It has two main steps which are linear reconstruction and linear embedding of points in the input space and embedding space, respectively. In this work, we look at the linear reconstruction step from a stochastic perspective where it is assumed that every data point is conditioned on its linear reconstruction weights as latent factors. The stochastic linear reconstruction of LLE is solved using expectation maximization. We show that there is a theoretical connection between three fundamental dimensionality reduction methods, i.e., LLE, factor analysis, and probabilistic Principal Component Analysis (PCA). The stochastic linear reconstruction of LLE is formulated similar to the factor analysis and probabilistic PCA. It is also explained why factor analysis and probabilistic PCA are linear and LLE is a nonlinear method. This work combines and makes a bridge between two broad approaches of dimensionality reduction, i.e., the spectral and probabilistic algorithms.
Machine Learning, Machine Learning
Statistics
1808.03253
Adarsh Subbaswamy
Counterfactual Normalization: Proactively Addressing Dataset Shift and Improving Reliability Using Causal Mechanisms
stat.ML cs.LG
Predictive models can fail to generalize from training to deployment environments because of dataset shift, posing a threat to model reliability and the safety of downstream decisions made in practice. Instead of using samples from the target distribution to reactively correct dataset shift, we use graphical knowledge of the causal mechanisms relating variables in a prediction problem to proactively remove relationships that do not generalize across environments, even when these relationships may depend on unobserved variables (violations of the "no unobserved confounders" assumption). To accomplish this, we identify variables with unstable paths of statistical influence and remove them from the model. We also augment the causal graph with latent counterfactual variables that isolate unstable paths of statistical influence, allowing us to retain stable paths that would otherwise be removed. Our experiments demonstrate that models that remove vulnerable variables and use estimates of the latent variables transfer better, often outperforming in the target domain despite some accuracy loss in the training domain.
Machine Learning, Machine Learning
Statistics
1202.5514
Simplice Dossou-Gb\'et\'e
Classification approach based on association rules mining for unbalanced data
stat.ML cs.LG
This paper deals with the binary classification task when the target class has the lower probability of occurrence. In such situation, it is not possible to build a powerful classifier by using standard methods such as logistic regression, classification tree, discriminant analysis, etc. To overcome this short-coming of these methods which yield classifiers with low sensibility, we tackled the classification problem here through an approach based on the association rules learning. This approach has the advantage of allowing the identification of the patterns that are well correlated with the target class. Association rules learning is a well known method in the area of data-mining. It is used when dealing with large database for unsupervised discovery of local patterns that expresses hidden relationships between input variables. In considering association rules from a supervised learning point of view, a relevant set of weak classifiers is obtained from which one derives a classifier that performs well.
Machine Learning, Machine Learning
Statistics
2403.10929
Aidan Scannell
Function-space Parameterization of Neural Networks for Sequential Learning
stat.ML cs.LG
Sequential learning paradigms pose challenges for gradient-based deep learning due to difficulties incorporating new data and retaining prior knowledge. While Gaussian processes elegantly tackle these problems, they struggle with scalability and handling rich inputs, such as images. To address these issues, we introduce a technique that converts neural networks from weight space to function space, through a dual parameterization. Our parameterization offers: (i) a way to scale function-space methods to large data sets via sparsification, (ii) retention of prior knowledge when access to past data is limited, and (iii) a mechanism to incorporate new data without retraining. Our experiments demonstrate that we can retain knowledge in continual learning and incorporate new data efficiently. We further show its strengths in uncertainty quantification and guiding exploration in model-based RL. Further information and code is available on the project website.
Machine Learning, Machine Learning
Statistics
1409.0797
Jian Yang
Feature Engineering for Map Matching of Low-Sampling-Rate GPS Trajectories in Road Network
stat.ML cs.LG
Map matching of GPS trajectories from a sequence of noisy observations serves the purpose of recovering the original routes in a road network. In this work in progress, we attempt to share our experience of feature construction in a spatial database by reporting our ongoing experiment of feature extrac-tion in Conditional Random Fields (CRFs) for map matching. Our preliminary results are obtained from real-world taxi GPS trajectories.
Machine Learning, Machine Learning
Statistics
2404.17442
Benjamin Dupuis
Uniform Generalization Bounds on Data-Dependent Hypothesis Sets via PAC-Bayesian Theory on Random Sets
stat.ML cs.LG
We propose data-dependent uniform generalization bounds by approaching the problem from a PAC-Bayesian perspective. We first apply the PAC-Bayesian framework on `random sets' in a rigorous way, where the training algorithm is assumed to output a data-dependent hypothesis set after observing the training data. This approach allows us to prove data-dependent bounds, which can be applicable in numerous contexts. To highlight the power of our approach, we consider two main applications. First, we propose a PAC-Bayesian formulation of the recently developed fractal-dimension-based generalization bounds. The derived results are shown to be tighter and they unify the existing results around one simple proof technique. Second, we prove uniform bounds over the trajectories of continuous Langevin dynamics and stochastic gradient Langevin dynamics. These results provide novel information about the generalization properties of noisy algorithms.
Machine Learning, Machine Learning
Statistics
2307.05789
Mihaela Rosca
Implicit regularisation in stochastic gradient descent: from single-objective to two-player games
stat.ML cs.LG
Recent years have seen many insights on deep learning optimisation being brought forward by finding implicit regularisation effects of commonly used gradient-based optimisers. Understanding implicit regularisation can not only shed light on optimisation dynamics, but it can also be used to improve performance and stability across problem domains, from supervised learning to two-player games such as Generative Adversarial Networks. An avenue for finding such implicit regularisation effects has been quantifying the discretisation errors of discrete optimisers via continuous-time flows constructed by backward error analysis (BEA). The current usage of BEA is not without limitations, since not all the vector fields of continuous-time flows obtained using BEA can be written as a gradient, hindering the construction of modified losses revealing implicit regularisers. In this work, we provide a novel approach to use BEA, and show how our approach can be used to construct continuous-time flows with vector fields that can be written as gradients. We then use this to find previously unknown implicit regularisation effects, such as those induced by multiple stochastic gradient descent steps while accounting for the exact data batches used in the updates, and in generally differentiable two-player games.
Machine Learning, Machine Learning
Statistics
2202.02943
Kunwoong Kim
Learning fair representation with a parametric integral probability metric
stat.ML cs.LG
As they have a vital effect on social decision-making, AI algorithms should be not only accurate but also fair. Among various algorithms for fairness AI, learning fair representation (LFR), whose goal is to find a fair representation with respect to sensitive variables such as gender and race, has received much attention. For LFR, the adversarial training scheme is popularly employed as is done in the generative adversarial network type algorithms. The choice of a discriminator, however, is done heuristically without justification. In this paper, we propose a new adversarial training scheme for LFR, where the integral probability metric (IPM) with a specific parametric family of discriminators is used. The most notable result of the proposed LFR algorithm is its theoretical guarantee about the fairness of the final prediction model, which has not been considered yet. That is, we derive theoretical relations between the fairness of representation and the fairness of the prediction model built on the top of the representation (i.e., using the representation as the input). Moreover, by numerical experiments, we show that our proposed LFR algorithm is computationally lighter and more stable, and the final prediction model is competitive or superior to other LFR algorithms using more complex discriminators.
Machine Learning, Machine Learning
Statistics
1506.07721
Kazuto Fukuchi
Fairness-Aware Learning with Restriction of Universal Dependency using f-Divergences
stat.ML cs.LG
Fairness-aware learning is a novel framework for classification tasks. Like regular empirical risk minimization (ERM), it aims to learn a classifier with a low error rate, and at the same time, for the predictions of the classifier to be independent of sensitive features, such as gender, religion, race, and ethnicity. Existing methods can achieve low dependencies on given samples, but this is not guaranteed on unseen samples. The existing fairness-aware learning algorithms employ different dependency measures, and each algorithm is specifically designed for a particular one. Such diversity makes it difficult to theoretically analyze and compare them. In this paper, we propose a general framework for fairness-aware learning that uses f-divergences and that covers most of the dependency measures employed in the existing methods. We introduce a way to estimate the f-divergences that allows us to give a unified analysis for the upper bound of the estimation error; this bound is tighter than that of the existing convergence rate analysis of the divergence estimation. With our divergence estimate, we propose a fairness-aware learning algorithm, and perform a theoretical analysis of its generalization error. Our analysis reveals that, under mild assumptions and even with enforcement of fairness, the generalization error of our method is $O(\sqrt{1/n})$, which is the same as that of the regular ERM. In addition, and more importantly, we show that, for any f-divergence, the upper bound of the estimation error of the divergence is $O(\sqrt{1/n})$. This indicates that our fairness-aware learning algorithm guarantees low dependencies on unseen samples for any dependency measure represented by an f-divergence.
Machine Learning, Machine Learning
Statistics
2206.05828
Mathieu Molina
Bounding and Approximating Intersectional Fairness through Marginal Fairness
stat.ML cs.LG
Discrimination in machine learning often arises along multiple dimensions (a.k.a. protected attributes); it is then desirable to ensure \emph{intersectional fairness} -- i.e., that no subgroup is discriminated against. It is known that ensuring \emph{marginal fairness} for every dimension independently is not sufficient in general. Due to the exponential number of subgroups, however, directly measuring intersectional fairness from data is impossible. In this paper, our primary goal is to understand in detail the relationship between marginal and intersectional fairness through statistical analysis. We first identify a set of sufficient conditions under which an exact relationship can be obtained. Then, we prove bounds (easily computable through marginal fairness and other meaningful statistical quantities) in high-probability on intersectional fairness in the general case. Beyond their descriptive value, we show that these theoretical bounds can be leveraged to derive a heuristic improving the approximation and bounds of intersectional fairness by choosing, in a relevant manner, protected attributes for which we describe intersectional subgroups. Finally, we test the performance of our approximations and bounds on real and synthetic data-sets.
Machine Learning, Machine Learning
Statistics
2307.06406
Luke Duttweiler
Testing Sparsity Assumptions in Bayesian Networks
stat.ML cs.LG
Bayesian network (BN) structure discovery algorithms typically either make assumptions about the sparsity of the true underlying network, or are limited by computational constraints to networks with a small number of variables. While these sparsity assumptions can take various forms, frequently the assumptions focus on an upper bound for the maximum in-degree of the underlying graph $\nabla_G$. Theorem 2 in Duttweiler et. al. (2023) demonstrates that the largest eigenvalue of the normalized inverse covariance matrix ($\Omega$) of a linear BN is a lower bound for $\nabla_G$. Building on this result, this paper provides the asymptotic properties of, and a debiasing procedure for, the sample eigenvalues of $\Omega$, leading to a hypothesis test that may be used to determine if the BN has max in-degree greater than 1. A linear BN structure discovery workflow is suggested in which the investigator uses this hypothesis test to aid in selecting an appropriate structure discovery algorithm. The hypothesis test performance is evaluated through simulations and the workflow is demonstrated on data from a human psoriasis study.
Machine Learning, Machine Learning
Statistics
2112.06760
Jianhua Zhao
Robust factored principal component analysis for matrix-valued outlier accommodation and detection
stat.ML cs.LG
Principal component analysis (PCA) is a popular dimension reduction technique for vector data. Factored PCA (FPCA) is a probabilistic extension of PCA for matrix data, which can substantially reduce the number of parameters in PCA while yield satisfactory performance. However, FPCA is based on the Gaussian assumption and thereby susceptible to outliers. Although the multivariate $t$ distribution as a robust modeling tool for vector data has a very long history, its application to matrix data is very limited. The main reason is that the dimension of the vectorized matrix data is often very high and the higher the dimension, the lower the breakdown point that measures the robustness. To solve the robustness problem suffered by FPCA and make it applicable to matrix data, in this paper we propose a robust extension of FPCA (RFPCA), which is built upon a $t$-type distribution called matrix-variate $t$ distribution. Like the multivariate $t$ distribution, the matrix-variate $t$ distribution can adaptively down-weight outliers and yield robust estimates. We develop a fast EM-type algorithm for parameter estimation. Experiments on synthetic and real-world datasets reveal that RFPCA is compared favorably with several related methods and RFPCA is a simple but powerful tool for matrix-valued outlier detection.
Machine Learning, Machine Learning
Statistics
1810.10425
Gaetano Manzo
A Deep Learning Mechanism for Efficient Information Dissemination in Vehicular Floating Content
stat.ML cs.LG
Handling the tremendous amount of network data, produced by the explosive growth of mobile traffic volume, is becoming of main priority to achieve desired performance targets efficiently. Opportunistic communication such as FloatingContent (FC), can be used to offload part of the cellular traffic volume to vehicular-to-vehicular communication (V2V), leaving the infrastructure the task of coordinating the communication. Existing FC dimensioning approaches have limitations, mainly due to unrealistic assumptions and on a coarse partitioning of users, which results in over-dimensioning. Shaping the opportunistic communication area is a crucial task to achieve desired application performance efficiently. In this work, we propose a solution for this open challenge. In particular, the broadcasting areas called Anchor Zone (AZ), are selected via a deep learning approach to minimize communication resources achieving desired message availability. No assumption required to fit the classifier in both synthetic and real mobility. A numerical study is made to validate the effectiveness and efficiency of the proposed method. The predicted AZ configuration can achieve an accuracy of 89.7%within 98% of confidence level. By cause of the learning approach, the method performs even better in real scenarios, saving up to 27% of resources compared to previous work analytically modelled
Machine Learning, Machine Learning
Statistics
1802.04865
Terrance DeVries
Learning Confidence for Out-of-Distribution Detection in Neural Networks
stat.ML cs.LG
Modern neural networks are very powerful predictive models, but they are often incapable of recognizing when their predictions may be wrong. Closely related to this is the task of out-of-distribution detection, where a network must determine whether or not an input is outside of the set on which it is expected to safely perform. To jointly address these issues, we propose a method of learning confidence estimates for neural networks that is simple to implement and produces intuitively interpretable outputs. We demonstrate that on the task of out-of-distribution detection, our technique surpasses recently proposed techniques which construct confidence based on the network's output distribution, without requiring any additional labels or access to out-of-distribution examples. Additionally, we address the problem of calibrating out-of-distribution detectors, where we demonstrate that misclassified in-distribution examples can be used as a proxy for out-of-distribution examples.
Machine Learning, Machine Learning
Statistics
1905.00507
Antoine Dedieu
Learning higher-order sequential structure with cloned HMMs
stat.ML cs.LG
Variable order sequence modeling is an important problem in artificial and natural intelligence. While overcomplete Hidden Markov Models (HMMs), in theory, have the capacity to represent long-term temporal structure, they often fail to learn and converge to local minima. We show that by constraining HMMs with a simple sparsity structure inspired by biology, we can make it learn variable order sequences efficiently. We call this model cloned HMM (CHMM) because the sparsity structure enforces that many hidden states map deterministically to the same emission state. CHMMs with over 1 billion parameters can be efficiently trained on GPUs without being severely affected by the credit diffusion problem of standard HMMs. Unlike n-grams and sequence memoizers, CHMMs can model temporal dependencies at arbitrarily long distances and recognize contexts with 'holes' in them. Compared to Recurrent Neural Networks and their Long Short-Term Memory extensions (LSTMs), CHMMs are generative models that can natively deal with uncertainty. Moreover, CHMMs return a higher-order graph that represents the temporal structure of the data which can be useful for community detection, and for building hierarchical models. Our experiments show that CHMMs can beat n-grams, sequence memoizers, and LSTMs on character-level language modeling tasks. CHMMs can be a viable alternative to these methods in some tasks that require variable order sequence modeling and the handling of uncertainty.
Machine Learning, Machine Learning
Statistics
2110.10518
Alejandro David De La Concha Duarte
Online non-parametric change-point detection for heterogeneous data streams observed over graph nodes
stat.ML cs.LG
Consider a heterogeneous data stream being generated by the nodes of a graph. The data stream is in essence composed by multiple streams, possibly of different nature that depends on each node. At a given moment $\tau$, a change-point occurs for a subset of nodes $C$, signifying the change in the probability distribution of their associated streams. In this paper we propose an online non-parametric method to infer $\tau$ based on the direct estimation of the likelihood-ratio between the post-change and the pre-change distribution associated with the data stream of each node. We propose a kernel-based method, under the hypothesis that connected nodes of the graph are expected to have similar likelihood-ratio estimates when there is no change-point. We demonstrate the quality of our method on synthetic experiments and real-world applications.
Machine Learning, Machine Learning
Statistics
1702.01824
Franziska Horn
Predicting Pairwise Relations with Neural Similarity Encoders
stat.ML cs.LG
Matrix factorization is at the heart of many machine learning algorithms, for example, dimensionality reduction (e.g. kernel PCA) or recommender systems relying on collaborative filtering. Understanding a singular value decomposition (SVD) of a matrix as a neural network optimization problem enables us to decompose large matrices efficiently while dealing naturally with missing values in the given matrix. But most importantly, it allows us to learn the connection between data points' feature vectors and the matrix containing information about their pairwise relations. In this paper we introduce a novel neural network architecture termed Similarity Encoder (SimEc), which is designed to simultaneously factorize a given target matrix while also learning the mapping to project the data points' feature vectors into a similarity preserving embedding space. This makes it possible to, for example, easily compute out-of-sample solutions for new data points. Additionally, we demonstrate that SimEc can preserve non-metric similarities and even predict multiple pairwise relations between data points at once.
Machine Learning, Machine Learning
Statistics
1806.04577
Abhishek Bansal
Using Inherent Structures to design Lean 2-layer RBMs
stat.ML cs.LG
Understanding the representational power of Restricted Boltzmann Machines (RBMs) with multiple layers is an ill-understood problem and is an area of active research. Motivated from the approach of \emph{Inherent Structure formalism} (Stillinger & Weber, 1982), extensively used in analysing Spin Glasses, we propose a novel measure called \emph{Inherent Structure Capacity} (ISC), which characterizes the representation capacity of a fixed architecture RBM by the expected number of modes of distributions emanating from the RBM with parameters drawn from a prior distribution. Though ISC is intractable, we show that for a single layer RBM architecture ISC approaches a finite constant as number of hidden units are increased and to further improve the ISC, one needs to add a second layer. Furthermore, we introduce \emph{Lean} RBMs, which are multi-layer RBMs where each layer can have at-most $O(n)$ units with the number of visible units being n. We show that for every single layer RBM with $\Omega(n^{2+r}), r \ge 0$, hidden units there exists a two-layered \emph{lean} RBM with $\Theta(n^2)$ parameters with the same ISC, establishing that 2 layer RBMs can achieve the same representational power as single-layer RBMs but using far fewer number of parameters. To the best of our knowledge, this is the first result which quantitatively establishes the need for layering.
Machine Learning, Machine Learning
Statistics
2110.13891
Virginia Aglietti
Dynamic Causal Bayesian Optimization
stat.ML cs.LG
This paper studies the problem of performing a sequence of optimal interventions in a causal dynamical system where both the target variable of interest and the inputs evolve over time. This problem arises in a variety of domains e.g. system biology and operational research. Dynamic Causal Bayesian Optimization (DCBO) brings together ideas from sequential decision making, causal inference and Gaussian process (GP) emulation. DCBO is useful in scenarios where all causal effects in a graph are changing over time. At every time step DCBO identifies a local optimal intervention by integrating both observational and past interventional data collected from the system. We give theoretical results detailing how one can transfer interventional information across time steps and define a dynamic causal GP model which can be used to quantify uncertainty and find optimal interventions in practice. We demonstrate how DCBO identifies optimal interventions faster than competing approaches in multiple settings and applications.
Machine Learning, Machine Learning
Statistics
1807.02089
Claire Vernade
Linear Bandits with Stochastic Delayed Feedback
stat.ML cs.LG
Stochastic linear bandits are a natural and well-studied model for structured exploration/exploitation problems and are widely used in applications such as online marketing and recommendation. One of the main challenges faced by practitioners hoping to apply existing algorithms is that usually the feedback is randomly delayed and delays are only partially observable. For example, while a purchase is usually observable some time after the display, the decision of not buying is never explicitly sent to the system. In other words, the learner only observes delayed positive events. We formalize this problem as a novel stochastic delayed linear bandit and propose ${\tt OTFLinUCB}$ and ${\tt OTFLinTS}$, two computationally efficient algorithms able to integrate new information as it becomes available and to deal with the permanently censored feedback. We prove optimal $\tilde O(\smash{d\sqrt{T}})$ bounds on the regret of the first algorithm and study the dependency on delay-dependent parameters. Our model, assumptions and results are validated by experiments on simulated and real data.
Machine Learning, Machine Learning
Statistics
2007.05627
Shaofeng Deng
A Performance Guarantee for Spectral Clustering
stat.ML cs.LG
The two-step spectral clustering method, which consists of the Laplacian eigenmap and a rounding step, is a widely used method for graph partitioning. It can be seen as a natural relaxation to the NP-hard minimum ratio cut problem. In this paper we study the central question: when is spectral clustering able to find the global solution to the minimum ratio cut problem? First we provide a condition that naturally depends on the intra- and inter-cluster connectivities of a given partition under which we may certify that this partition is the solution to the minimum ratio cut problem. Then we develop a deterministic two-to-infinity norm perturbation bound for the the invariant subspace of the graph Laplacian that corresponds to the $k$ smallest eigenvalues. Finally by combining these two results we give a condition under which spectral clustering is guaranteed to output the global solution to the minimum ratio cut problem, which serves as a performance guarantee for spectral clustering.
Machine Learning, Machine Learning
Statistics
2210.07278
Marvin Schmitt
Meta-Uncertainty in Bayesian Model Comparison
stat.ML cs.LG
Bayesian model comparison (BMC) offers a principled probabilistic approach to study and rank competing models. In standard BMC, we construct a discrete probability distribution over the set of possible models, conditional on the observed data of interest. These posterior model probabilities (PMPs) are measures of uncertainty, but -- when derived from a finite number of observations -- are also uncertain themselves. In this paper, we conceptualize distinct levels of uncertainty which arise in BMC. We explore a fully probabilistic framework for quantifying meta-uncertainty, resulting in an applied method to enhance any BMC workflow. Drawing on both Bayesian and frequentist techniques, we represent the uncertainty over the uncertain PMPs via meta-models which combine simulated and observed data into a predictive distribution for PMPs on new data. We demonstrate the utility of the proposed method in the context of conjugate Bayesian regression, likelihood-based inference with Markov chain Monte Carlo, and simulation-based inference with neural networks.
Machine Learning, Machine Learning
Statistics
1702.06832
Jernej Kos
Adversarial examples for generative models
stat.ML cs.LG
We explore methods of producing adversarial examples on deep generative models such as the variational autoencoder (VAE) and the VAE-GAN. Deep learning architectures are known to be vulnerable to adversarial examples, but previous work has focused on the application of adversarial examples to classification tasks. Deep generative models have recently become popular due to their ability to model input data distributions and generate realistic examples from those distributions. We present three classes of attacks on the VAE and VAE-GAN architectures and demonstrate them against networks trained on MNIST, SVHN and CelebA. Our first attack leverages classification-based adversaries by attaching a classifier to the trained encoder of the target generative model, which can then be used to indirectly manipulate the latent representation. Our second attack directly uses the VAE loss function to generate a target reconstruction image from the adversarial example. Our third attack moves beyond relying on classification or the standard loss for the gradient and directly optimizes against differences in source and target latent representations. We also motivate why an attacker might be interested in deploying such techniques against a target generative network.
Machine Learning, Machine Learning
Statistics
1701.02386
Ilya Tolstikhin
AdaGAN: Boosting Generative Models
stat.ML cs.LG
Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) are an effective method for training generative models of complex data such as natural images. However, they are notoriously hard to train and can suffer from the problem of missing modes where the model is not able to produce examples in certain regions of the space. We propose an iterative procedure, called AdaGAN, where at every step we add a new component into a mixture model by running a GAN algorithm on a reweighted sample. This is inspired by boosting algorithms, where many potentially weak individual predictors are greedily aggregated to form a strong composite predictor. We prove that such an incremental procedure leads to convergence to the true distribution in a finite number of steps if each step is optimal, and convergence at an exponential rate otherwise. We also illustrate experimentally that this procedure addresses the problem of missing modes.
Machine Learning, Machine Learning
Statistics
2003.13491
Giuseppe Di Benedetto
Non-exchangeable feature allocation models with sublinear growth of the feature sizes
stat.ML cs.LG
Feature allocation models are popular models used in different applications such as unsupervised learning or network modeling. In particular, the Indian buffet process is a flexible and simple one-parameter feature allocation model where the number of features grows unboundedly with the number of objects. The Indian buffet process, like most feature allocation models, satisfies a symmetry property of exchangeability: the distribution is invariant under permutation of the objects. While this property is desirable in some cases, it has some strong implications. Importantly, the number of objects sharing a particular feature grows linearly with the number of objects. In this article, we describe a class of non-exchangeable feature allocation models where the number of objects sharing a given feature grows sublinearly, where the rate can be controlled by a tuning parameter. We derive the asymptotic properties of the model, and show that such model provides a better fit and better predictive performances on various datasets.
Machine Learning, Machine Learning
Statistics
1705.10924
Feng Nan
Sequential Dynamic Decision Making with Deep Neural Nets on a Test-Time Budget
stat.ML cs.LG
Deep neural network (DNN) based approaches hold significant potential for reinforcement learning (RL) and have already shown remarkable gains over state-of-art methods in a number of applications. The effectiveness of DNN methods can be attributed to leveraging the abundance of supervised data to learn value functions, Q-functions, and policy function approximations without the need for feature engineering. Nevertheless, the deployment of DNN-based predictors with very deep architectures can pose an issue due to computational and other resource constraints at test-time in a number of applications. We propose a novel approach for reducing the average latency by learning a computationally efficient gating function that is capable of recognizing states in a sequential decision process for which policy prescriptions of a shallow network suffices and deeper layers of the DNN have little marginal utility. The overall system is adaptive in that it dynamically switches control actions based on state-estimates in order to reduce average latency without sacrificing terminal performance. We experiment with a number of alternative loss-functions to train gating functions and shallow policies and show that in a number of applications a speed-up of up to almost 5X can be obtained with little loss in performance.
Machine Learning, Machine Learning
Statistics
1807.09089
Sattar Vakili
Decision Variance in Online Learning
stat.ML cs.LG
Online learning has traditionally focused on the expected rewards. In this paper, a risk-averse online learning problem under the performance measure of the mean-variance of the rewards is studied. Both the bandit and full information settings are considered. The performance of several existing policies is analyzed, and new fundamental limitations on risk-averse learning is established. In particular, it is shown that although a logarithmic distribution-dependent regret in time $T$ is achievable (similar to the risk-neutral problem), the worst-case (i.e. minimax) regret is lower bounded by $\Omega(T)$ (in contrast to the $\Omega(\sqrt{T})$ lower bound in the risk-neutral problem). This sharp difference from the risk-neutral counterpart is caused by the the variance in the player's decisions, which, while absent in the regret under the expected reward criterion, contributes to excess mean-variance due to the non-linearity of this risk measure. The role of the decision variance in regret performance reflects a risk-averse player's desire for robust decisions and outcomes.
Machine Learning, Machine Learning
Statistics
2005.09047
Saeed Saremi
Learning and Inference in Imaginary Noise Models
stat.ML cs.LG
Inspired by recent developments in learning smoothed densities with empirical Bayes, we study variational autoencoders with a decoder that is tailored for the random variable $Y=X+N(0,\sigma^2 I_d)$. A notion of smoothed variational inference emerges where the smoothing is implicitly enforced by the noise model of the decoder; "implicit", since during training the encoder only sees clean samples. This is the concept of imaginary noise model, where the noise model dictates the functional form of the variational lower bound $\mathcal{L}(\sigma)$, but the noisy data are never seen during learning. The model is named $\sigma$-VAE. We prove that all $\sigma$-VAEs are equivalent to each other via a simple $\beta$-VAE expansion: $\mathcal{L}(\sigma_2) \equiv \mathcal{L}(\sigma_1,\beta)$, where $\beta=\sigma_2^2/\sigma_1^2$. We prove a similar result for the Laplace distribution in exponential families. Empirically, we report an intriguing power law $\mathcal{D}_{\rm KL} \sim \sigma^{-\nu}$ for the learned models and we study the inference in the $\sigma$-VAE for unseen noisy data. The experiments were performed on MNIST, where we show that quite remarkably the model can make reasonable inferences on extremely noisy samples even though it has not seen any during training. The vanilla VAE completely breaks down in this regime. We finish with a hypothesis (the XYZ hypothesis) on the findings here.
Machine Learning, Machine Learning
Statistics
2206.09513
Yuka Hashimoto
$C^*$-algebra Net: A New Approach Generalizing Neural Network Parameters to $C^*$-algebra
stat.ML cs.LG
We propose a new framework that generalizes the parameters of neural network models to $C^*$-algebra-valued ones. $C^*$-algebra is a generalization of the space of complex numbers. A typical example is the space of continuous functions on a compact space. This generalization enables us to combine multiple models continuously and use tools for functions such as regression and integration. Consequently, we can learn features of data efficiently and adapt the models to problems continuously. We apply our framework to practical problems such as density estimation and few-shot learning and show that our framework enables us to learn features of data even with a limited number of samples. Our new framework highlights the potential possibility of applying the theory of $C^*$-algebra to general neural network models.
Machine Learning, Machine Learning
Statistics
2112.12194
Martin Jankowiak
Surrogate Likelihoods for Variational Annealed Importance Sampling
stat.ML cs.LG
Variational inference is a powerful paradigm for approximate Bayesian inference with a number of appealing properties, including support for model learning and data subsampling. By contrast MCMC methods like Hamiltonian Monte Carlo do not share these properties but remain attractive since, contrary to parametric methods, MCMC is asymptotically unbiased. For these reasons researchers have sought to combine the strengths of both classes of algorithms, with recent approaches coming closer to realizing this vision in practice. However, supporting data subsampling in these hybrid methods can be a challenge, a shortcoming that we address by introducing a surrogate likelihood that can be learned jointly with other variational parameters. We argue theoretically that the resulting algorithm permits the user to make an intuitive trade-off between inference fidelity and computational cost. In an extensive empirical comparison we show that our method performs well in practice and that it is well-suited for black-box inference in probabilistic programming frameworks.
Machine Learning, Machine Learning
Statistics
2110.14800
Chengkuan Hong
Convolutional Deep Exponential Families
stat.ML cs.LG
We describe convolutional deep exponential families (CDEFs) in this paper. CDEFs are built based on deep exponential families, deep probabilistic models that capture the hierarchical dependence between latent variables. CDEFs greatly reduce the number of free parameters by tying the weights of DEFs. Our experiments show that CDEFs are able to uncover time correlations with a small amount of data.
Machine Learning, Machine Learning
Statistics
2302.11294
Seunghwan An
Distributional Learning of Variational AutoEncoder: Application to Synthetic Data Generation
stat.ML cs.LG
The Gaussianity assumption has been consistently criticized as a main limitation of the Variational Autoencoder (VAE) despite its efficiency in computational modeling. In this paper, we propose a new approach that expands the model capacity (i.e., expressive power of distributional family) without sacrificing the computational advantages of the VAE framework. Our VAE model's decoder is composed of an infinite mixture of asymmetric Laplace distribution, which possesses general distribution fitting capabilities for continuous variables. Our model is represented by a special form of a nonparametric M-estimator for estimating general quantile functions, and we theoretically establish the relevance between the proposed model and quantile estimation. We apply the proposed model to synthetic data generation, and particularly, our model demonstrates superiority in easily adjusting the level of data privacy.
Machine Learning, Machine Learning
Statistics
2009.11285
Kazuma Tsuji
Estimation error analysis of deep learning on the regression problem on the variable exponent Besov space
stat.ML cs.LG
Deep learning has achieved notable success in various fields, including image and speech recognition. One of the factors in the successful performance of deep learning is its high feature extraction ability. In this study, we focus on the adaptivity of deep learning; consequently, we treat the variable exponent Besov space, which has a different smoothness depending on the input location $x$. In other words, the difficulty of the estimation is not uniform within the domain. We analyze the general approximation error of the variable exponent Besov space and the approximation and estimation errors of deep learning. We note that the improvement based on adaptivity is remarkable when the region upon which the target function has less smoothness is small and the dimension is large. Moreover, the superiority to linear estimators is shown with respect to the convergence rate of the estimation error.
Machine Learning, Machine Learning
Statistics
2107.12783
Drona Khurana
Statistical Guarantees for Fairness Aware Plug-In Algorithms
stat.ML cs.LG
A plug-in algorithm to estimate Bayes Optimal Classifiers for fairness-aware binary classification has been proposed in (Menon & Williamson, 2018). However, the statistical efficacy of their approach has not been established. We prove that the plug-in algorithm is statistically consistent. We also derive finite sample guarantees associated with learning the Bayes Optimal Classifiers via the plug-in algorithm. Finally, we propose a protocol that modifies the plug-in approach, so as to simultaneously guarantee fairness and differential privacy with respect to a binary feature deemed sensitive.
Machine Learning, Machine Learning
Statistics
1512.08887
Farhad Pourkamali-Anaraki
Estimation of the sample covariance matrix from compressive measurements
stat.ML cs.LG
This paper focuses on the estimation of the sample covariance matrix from low-dimensional random projections of data known as compressive measurements. In particular, we present an unbiased estimator to extract the covariance structure from compressive measurements obtained by a general class of random projection matrices consisting of i.i.d. zero-mean entries and finite first four moments. In contrast to previous works, we make no structural assumptions about the underlying covariance matrix such as being low-rank. In fact, our analysis is based on a non-Bayesian data setting which requires no distributional assumptions on the set of data samples. Furthermore, inspired by the generality of the projection matrices, we propose an approach to covariance estimation that utilizes sparse Rademacher matrices. Therefore, our algorithm can be used to estimate the covariance matrix in applications with limited memory and computation power at the acquisition devices. Experimental results demonstrate that our approach allows for accurate estimation of the sample covariance matrix on several real-world data sets, including video data.
Machine Learning, Machine Learning
Statistics
2011.07607
Uri Shaham
Deep Ordinal Regression using Optimal Transport Loss and Unimodal Output Probabilities
stat.ML cs.LG
It is often desired that ordinal regression models yield unimodal predictions. However, in many recent works this characteristic is either absent, or implemented using soft targets, which do not guarantee unimodal outputs at inference. In addition, we argue that the standard maximum likelihood objective is not suitable for ordinal regression problems, and that optimal transport is better suited for this task, as it naturally captures the order of the classes. In this work, we propose a framework for deep ordinal regression, based on unimodal output distribution and optimal transport loss. Inspired by the well-known Proportional Odds model, we propose to modify its design by using an architectural mechanism which guarantees that the model output distribution will be unimodal. We empirically analyze the different components of our proposed approach and demonstrate their contribution to the performance of the model. Experimental results on eight real-world datasets demonstrate that our proposed approach consistently performs on par with and often better than several recently proposed deep learning approaches for deep ordinal regression with unimodal output probabilities, while having guarantee on the output unimodality. In addition, we demonstrate that proposed approach is less overconfident than current baselines.
Machine Learning, Machine Learning
Statistics
1312.5921
Arto Klami
Group-sparse Embeddings in Collective Matrix Factorization
stat.ML cs.LG
CMF is a technique for simultaneously learning low-rank representations based on a collection of matrices with shared entities. A typical example is the joint modeling of user-item, item-property, and user-feature matrices in a recommender system. The key idea in CMF is that the embeddings are shared across the matrices, which enables transferring information between them. The existing solutions, however, break down when the individual matrices have low-rank structure not shared with others. In this work we present a novel CMF solution that allows each of the matrices to have a separate low-rank structure that is independent of the other matrices, as well as structures that are shared only by a subset of them. We compare MAP and variational Bayesian solutions based on alternating optimization algorithms and show that the model automatically infers the nature of each factor using group-wise sparsity. Our approach supports in a principled way continuous, binary and count observations and is efficient for sparse matrices involving missing data. We illustrate the solution on a number of examples, focusing in particular on an interesting use-case of augmented multi-view learning.
Machine Learning, Machine Learning
Statistics
1810.09184
Peter Bloem
Learning sparse transformations through backpropagation
stat.ML cs.LG
Many transformations in deep learning architectures are sparsely connected. When such transformations cannot be designed by hand, they can be learned, even through plain backpropagation, for instance in attention mechanisms. However, during learning, such sparse structures are often represented in a dense form, as we do not know beforehand which elements will eventually become non-zero. We introduce the adaptive, sparse hyperlayer, a method for learning a sparse transformation, paramatrized sparsely: as index-tuples with associated values. To overcome the lack of gradients from such a discrete structure, we introduce a method of randomly sampling connections, and backpropagating over the randomly wired computation graph. To show that this approach allows us to train a model to competitive performance on real data, we use it to build two architectures. First, an attention mechanism for visual classification. Second, we implement a method for differentiable sorting: specifically, learning to sort unlabeled MNIST digits, given only the correct order.
Machine Learning, Machine Learning
Statistics
1905.04654
Shi Dong
On the Performance of Thompson Sampling on Logistic Bandits
stat.ML cs.LG
We study the logistic bandit, in which rewards are binary with success probability $\exp(\beta a^\top \theta) / (1 + \exp(\beta a^\top \theta))$ and actions $a$ and coefficients $\theta$ are within the $d$-dimensional unit ball. While prior regret bounds for algorithms that address the logistic bandit exhibit exponential dependence on the slope parameter $\beta$, we establish a regret bound for Thompson sampling that is independent of $\beta$. Specifically, we establish that, when the set of feasible actions is identical to the set of possible coefficient vectors, the Bayesian regret of Thompson sampling is $\tilde{O}(d\sqrt{T})$. We also establish a $\tilde{O}(\sqrt{d\eta T}/\lambda)$ bound that applies more broadly, where $\lambda$ is the worst-case optimal log-odds and $\eta$ is the "fragility dimension," a new statistic we define to capture the degree to which an optimal action for one model fails to satisfice for others. We demonstrate that the fragility dimension plays an essential role by showing that, for any $\epsilon > 0$, no algorithm can achieve $\mathrm{poly}(d, 1/\lambda)\cdot T^{1-\epsilon}$ regret.
Machine Learning, Machine Learning
Statistics
1806.01619
Changyong Oh
BOCK : Bayesian Optimization with Cylindrical Kernels
stat.ML cs.LG
A major challenge in Bayesian Optimization is the boundary issue (Swersky, 2017) where an algorithm spends too many evaluations near the boundary of its search space. In this paper, we propose BOCK, Bayesian Optimization with Cylindrical Kernels, whose basic idea is to transform the ball geometry of the search space using a cylindrical transformation. Because of the transformed geometry, the Gaussian Process-based surrogate model spends less budget searching near the boundary, while concentrating its efforts relatively more near the center of the search region, where we expect the solution to be located. We evaluate BOCK extensively, showing that it is not only more accurate and efficient, but it also scales successfully to problems with a dimensionality as high as 500. We show that the better accuracy and scalability of BOCK even allows optimizing modestly sized neural network layers, as well as neural network hyperparameters.
Machine Learning, Machine Learning
Statistics
1702.07552
Muhammad Farooq
Learning Rates for Kernel-Based Expectile Regression
stat.ML cs.LG
Conditional expectiles are becoming an increasingly important tool in finance as well as in other areas of applications. We analyse a support vector machine type approach for estimating conditional expectiles and establish learning rates that are minimax optimal modulo a logarithmic factor if Gaussian RBF kernels are used and the desired expectile is smooth in a Besov sense. As a special case, our learning rates improve the best known rates for kernel-based least squares regression in this scenario. Key ingredients of our statistical analysis are a general calibration inequality for the asymmetric least squares loss, a corresponding variance bound as well as an improved entropy number bound for Gaussian RBF kernels.
Machine Learning, Machine Learning
Statistics
1909.09621
Elena Smirnova
On the Convergence of Approximate and Regularized Policy Iteration Schemes
stat.ML cs.LG
Entropy regularized algorithms such as Soft Q-learning and Soft Actor-Critic, recently showed state-of-the-art performance on a number of challenging reinforcement learning (RL) tasks. The regularized formulation modifies the standard RL objective and thus generally converges to a policy different from the optimal greedy policy of the original RL problem. Practically, it is important to control the sub-optimality of the regularized optimal policy. In this paper, we establish sufficient conditions for convergence of a large class of regularized dynamic programming algorithms, unified under regularized modified policy iteration (MPI) and conservative value iteration (VI) schemes. We provide explicit convergence rates to the optimality depending on the decrease rate of the regularization parameter. Our experiments show that the empirical error closely follows the established theoretical convergence rates. In addition to optimality, we demonstrate two desirable behaviours of the regularized algorithms even in the absence of approximations: robustness to stochasticity of environment and safety of trajectories induced by the policy iterates.
Machine Learning, Machine Learning
Statistics
2310.11837
Jonathan So
Optimising Distributions with Natural Gradient Surrogates
stat.ML cs.LG
Natural gradient methods have been used to optimise the parameters of probability distributions in a variety of settings, often resulting in fast-converging procedures. Unfortunately, for many distributions of interest, computing the natural gradient has a number of challenges. In this work we propose a novel technique for tackling such issues, which involves reframing the optimisation as one with respect to the parameters of a surrogate distribution, for which computing the natural gradient is easy. We give several examples of existing methods that can be interpreted as applying this technique, and propose a new method for applying it to a wide variety of problems. Our method expands the set of distributions that can be efficiently targeted with natural gradients. Furthermore, it is fast, easy to understand, simple to implement using standard autodiff software, and does not require lengthy model-specific derivations. We demonstrate our method on maximum likelihood estimation and variational inference tasks.
Machine Learning, Machine Learning
Statistics
2302.04759
Matias Altamirano
Robust and Scalable Bayesian Online Changepoint Detection
stat.ML cs.LG
This paper proposes an online, provably robust, and scalable Bayesian approach for changepoint detection. The resulting algorithm has key advantages over previous work: it provides provable robustness by leveraging the generalised Bayesian perspective, and also addresses the scalability issues of previous attempts. Specifically, the proposed generalised Bayesian formalism leads to conjugate posteriors whose parameters are available in closed form by leveraging diffusion score matching. The resulting algorithm is exact, can be updated through simple algebra, and is more than 10 times faster than its closest competitor.
Machine Learning, Machine Learning
Statistics
2007.12420
Lorena Romero-Medrano
Multinomial Sampling for Hierarchical Change-Point Detection
stat.ML cs.LG
Bayesian change-point detection, together with latent variable models, allows to perform segmentation over high-dimensional time-series. We assume that change-points lie on a lower-dimensional manifold where we aim to infer subsets of discrete latent variables. For this model, full inference is computationally unfeasible and pseudo-observations based on point-estimates are used instead. However, if estimation is not certain enough, change-point detection gets affected. To circumvent this problem, we propose a multinomial sampling methodology that improves the detection rate and reduces the delay while keeping complexity stable and inference analytically tractable. Our experiments show results that outperform the baseline method and we also provide an example oriented to a human behavior study.
Machine Learning, Machine Learning
Statistics
1903.07082
Maryam Aziz
On Multi-Armed Bandit Designs for Dose-Finding Clinical Trials
stat.ML cs.LG
We study the problem of finding the optimal dosage in early stage clinical trials through the multi-armed bandit lens. We advocate the use of the Thompson Sampling principle, a flexible algorithm that can accommodate different types of monotonicity assumptions on the toxicity and efficacy of the doses. For the simplest version of Thompson Sampling, based on a uniform prior distribution for each dose, we provide finite-time upper bounds on the number of sub-optimal dose selections, which is unprecedented for dose-finding algorithms. Through a large simulation study, we then show that variants of Thompson Sampling based on more sophisticated prior distributions outperform state-of-the-art dose identification algorithms in different types of dose-finding studies that occur in phase I or phase I/II trials.
Machine Learning, Machine Learning
Statistics
2103.12866
Deividas Eringis
PAC-Bayesian theory for stochastic LTI systems
stat.ML cs.LG
In this paper we derive a PAC-Bayesian error bound for autonomous stochastic LTI state-space models. The motivation for deriving such error bounds is that they will allow deriving similar error bounds for more general dynamical systems, including recurrent neural networks. In turn, PACBayesian error bounds are known to be useful for analyzing machine learning algorithms and for deriving new ones.
Machine Learning, Machine Learning
Statistics
2107.07494
Tian Zhou
Mid-flight Forecasting for CPA Lines in Online Advertising
stat.ML cs.LG
For Verizon MediaDemand Side Platform(DSP), forecasting of ad campaign performance not only feeds key information to the optimization server to allow the system to operate on a high-performance mode, but also produces actionable insights to the advertisers. In this paper, the forecasting problem for CPA lines in the middle of the flight is investigated by taking the bidding mechanism into account. The proposed methodology generates relationships between various key performance metrics and optimization signals. It can also be used to estimate the sensitivity of ad campaign performance metrics to the adjustments of optimization signal, which is important to the design of a campaign management system. The relationship between advertiser spends and effective Cost Per Action(eCPA) is also characterized, which serves as a guidance for mid-flight line adjustment to the advertisers. Several practical issues in implementation, such as downsampling of the dataset, are also discussed in the paper. At last, the forecasting results are validated against actual deliveries and demonstrates promising accuracy.
Machine Learning, Machine Learning
Statistics
1905.12090
Geoffrey Roeder
Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems
stat.ML cs.LG
We introduce a flexible, scalable Bayesian inference framework for nonlinear dynamical systems characterised by distinct and hierarchical variability at the individual, group, and population levels. Our model class is a generalisation of nonlinear mixed-effects (NLME) dynamical systems, the statistical workhorse for many experimental sciences. We cast parameter inference as stochastic optimisation of an end-to-end differentiable, block-conditional variational autoencoder. We specify the dynamics of the data-generating process as an ordinary differential equation (ODE) such that both the ODE and its solver are fully differentiable. This model class is highly flexible: the ODE right-hand sides can be a mixture of user-prescribed or "white-box" sub-components and neural network or "black-box" sub-components. Using stochastic optimisation, our amortised inference algorithm could seamlessly scale up to massive data collection pipelines (common in labs with robotic automation). Finally, our framework supports interpretability with respect to the underlying dynamics, as well as predictive generalization to unseen combinations of group components (also called "zero-shot" learning). We empirically validate our method by predicting the dynamic behaviour of bacteria that were genetically engineered to function as biosensors. Our implementation of the framework, the dataset, and all code to reproduce the experimental results is available at https://www.github.com/Microsoft/vi-hds .
Machine Learning, Machine Learning
Statistics
2405.06727
Owen Davis
Approximation Error and Complexity Bounds for ReLU Networks on Low-Regular Function Spaces
stat.ML cs.LG
In this work, we consider the approximation of a large class of bounded functions, with minimal regularity assumptions, by ReLU neural networks. We show that the approximation error can be bounded from above by a quantity proportional to the uniform norm of the target function and inversely proportional to the product of network width and depth. We inherit this approximation error bound from Fourier features residual networks, a type of neural network that uses complex exponential activation functions. Our proof is constructive and proceeds by conducting a careful complexity analysis associated with the approximation of a Fourier features residual network by a ReLU network.
Machine Learning, Machine Learning
Statistics
2307.16452
Mihir Dhanakshirur
A continuous Structural Intervention Distance to compare Causal Graphs
stat.ML cs.LG
Understanding and adequately assessing the difference between a true and a learnt causal graphs is crucial for causal inference under interventions. As an extension to the graph-based structural Hamming distance and structural intervention distance, we propose a novel continuous-measured metric that considers the underlying data in addition to the graph structure for its calculation of the difference between a true and a learnt causal graph. The distance is based on embedding intervention distributions over each pair of nodes as conditional mean embeddings into reproducing kernel Hilbert spaces and estimating their difference by the maximum (conditional) mean discrepancy. We show theoretical results which we validate with numerical experiments on synthetic data.
Machine Learning, Machine Learning
Statistics
1609.03544
Xin Jiang
Online Data Thinning via Multi-Subspace Tracking
stat.ML cs.LG
In an era of ubiquitous large-scale streaming data, the availability of data far exceeds the capacity of expert human analysts. In many settings, such data is either discarded or stored unprocessed in datacenters. This paper proposes a method of online data thinning, in which large-scale streaming datasets are winnowed to preserve unique, anomalous, or salient elements for timely expert analysis. At the heart of this proposed approach is an online anomaly detection method based on dynamic, low-rank Gaussian mixture models. Specifically, the high-dimensional covariances matrices associated with the Gaussian components are associated with low-rank models. According to this model, most observations lie near a union of subspaces. The low-rank modeling mitigates the curse of dimensionality associated with anomaly detection for high-dimensional data, and recent advances in subspace clustering and subspace tracking allow the proposed method to adapt to dynamic environments. Furthermore, the proposed method allows subsampling, is robust to missing data, and uses a mini-batch online optimization approach. The resulting algorithms are scalable, efficient, and are capable of operating in real time. Experiments on wide-area motion imagery and e-mail databases illustrate the efficacy of the proposed approach.
Machine Learning, Machine Learning
Statistics