image
imagewidth (px) 600
600
| labels
class label 2
classes |
---|---|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
|
0charts
|
📊 Vision Filtering Dataset
A high-quality, labeled image dataset designed to benchmark computer vision models for filtering noisy image data—especially relevant for pretraining and curating datasets for vision-language models (VLMs).
📌 Overview
This dataset contains 6 image categories curated from online and public datasets:
- 📈
charts
: Graphs, bar charts, line charts, pie charts - 🧠
diagrams
: Schematics, flowcharts, technical illustrations - 📐
geometry
: Geometric shapes, figures, and math visuals - 🏥
medical
: Annotated scans, X-rays, and medical diagrams - 🔤
ocr
: Images containing printed text or handwriting - 🌀
random
: Miscellaneous, non-relevant/noisy images
The dataset is intended for training and evaluating classification models to automatically filter relevant images from large-scale scraped datasets.
🧩 Datasets by Category (with Hugging Face Links)
📊 Dataset Distribution
The dataset is well-balanced across six image categories, with slightly more samples in the ocr
and random
classes.


🧾 Dataset Structure
The dataset is organized in a standard image classification folder format:
vision-filtering-dataset/
├── train/
│ ├── charts/
│ ├── diagrams/
│ ├── geometry/
│ ├── medical/
│ ├── ocr/
│ └── random/
└── test/
├── charts/
├── diagrams/
├── geometry/
├── medical/
├── ocr/
└── random/
Each subfolder contains .jpg
or .png
image files.
🧪 Use Cases
- Vision model training (CNNs, Transformers, ViTs)
- Image filtering for web-scraped datasets
- Preprocessing for multimodal or OCR-based tasks
- Benchmarking classification models on mixed visual domains
🧠 Loading with 🤗 Datasets
from datasets import load_dataset
dataset = load_dataset("AbdulazizAlshamsi/VLM_Dataset_classification")
train = dataset["train"]
test = dataset["test"]
Each sample contains: • image: the image data (PIL object) • label: the class label (charts, diagrams, etc.)
⸻
📚 Citation
If you use this dataset, please cite it as follows:
@misc{visionfiltering2025,
title={Vision Filtering Dataset},
author={Abdulaziz Alshamsi},
year={2025},
howpublished={\url{https://huggingface.co/datasets/AbdulazizAlshamsi/VLM_Dataset_classification}},
note={Image classification dataset for visual filtering}
}
⸻
🙋♂️ Author
Abdulaziz Alshamsi AI Researcher — The University of Manchester 📧 [email protected] 🔗 LinkedIn
⸻
❤️ Contributions
Feel free to open issues or submit pull requests to improve the dataset!
- Downloads last month
- 41