You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Built with Axolotl

See axolotl config

axolotl version: 0.10.0.dev0


base_model: Qwen/Qwen3-32B
# Automatically upload checkpoint and final model to HF
hub_model_id: ctitools/neurocti-qwen3-32b-orion10k-instruct-fb16-r16-lr0.0002-sl2048-e5-v2

plugins:
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false

chat_template: qwen3
datasets:
  - path: ctitools/orion_10k
    type: chat_template
    field_messages: messages
    split: train[:1%]
    message_property_mappings:
      role: role
      content: content
    roles:
      user:
        - user
      assistant:
        - assistant

val_set_size: 0.01
output_dir: ./outputs/out
dataset_prepared_path: last_run_prepared

sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

#load_in_4bit: false
#load_in_8bit: true
adapter: lora
lora_r: 16
lora_alpha: 32
lora_target_modules:
  - q_proj
  - k_proj
  - v_proj
  - o_proj
  - down_proj
  - up_proj
lora_mlp_kernel: true
lora_qkv_kernel: true
lora_o_kernel: true

bf16: auto
tf32: true

wandb_project: neurocti-hunting
wandb_entity: aaronkaplan
wandb_watch: 
wandb_name: neurocti-hunting_lora_neurocti-qwen3-32b-orion10k-instruct-fb16-r16-lr0.0002-sl2048-e5-v2
wandb_log_model: 

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 5
#optimizer: adamw_torch_4bit
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002

gradient_checkpointing: offload
gradient_checkpointing_kwargs:
  use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:

# multi-gpu setups:
deepspeed: deepspeed_configs/zero2.json


neurocti-qwen3-32b-orion10k-instruct-fb16-r16-lr0.0002-sl2048-e5-v2

This model is a fine-tuned version of Qwen/Qwen3-32B on the ctitools/orion_10k dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2664

Model description

More information needed

Intended uses & limitations

See our github repo There you can also find, how to use the model.

Example output:

<think>
Okay, actionable? Not actionable? Let's see. The report mentions specific file paths and a domain. For actionable, I need indicators like strings, hashes, domains, IPs, or specific file paths.

The file paths `C:\ProgramData\file.txt`, `%LOCALAPPDATA%\Packages\Bay0NsQIzx\p.txt`, and the archive `output.zip` are mentioned. These paths could be used in malware code for reading/writing files. Also, the domain `wetransfers.io` is used for exfiltration. The string `uplo.php` is part of the URL path.

Actionable items:
- File paths (especially the unique ones like Bay0NsQIzx)
- Domain name `wetransfers.io`
- URL path `/uplo.php`
- Archive name `output.zip` (though less unique)

Not actionable items:
- The general concept of stealing browser data (too common)
- Telegram usage (common in malware)
- Compression into ZIP (common technique)

So actionable: Yes. Create rules for the specific file paths, domain, URL path, and archive name.
</think>

rule Bitter_Whale_File_Paths {
  meta:
    author = "cti.tools"
    description = "Detects specific file paths used by Bitter-Whale for storing stolen data and output."
    reference = "AI generated rule from the ORKL10K dataset"
  strings:
    $path1 = "C:\\ProgramData\\file.txt" wide ascii
    $path2 = "%LOCALAPPDATA%\\Packages\\Bay0NsQIzx\\p.txt" wide ascii
    $path3 = "output.zip" wide ascii
    $path4 = "%LOCALAPPDATA%\\Packages\\Bay0NsQIzx" wide ascii
  condition:
    (uint16(0) == 0x5a4d or uint32(0) == 0x464c457f) and (1 of ($path*))
}

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 115

Training results

Training Loss Epoch Step Validation Loss
1.8526 0.0426 1 6.5215
1.7964 0.2553 6 4.9077
1.1975 0.5106 12 0.6092
0.7366 0.7660 18 0.3202
0.6753 1.0 24 0.3063
0.7945 1.2553 30 0.2814
0.8882 1.5106 36 0.2780
0.5997 1.7660 42 0.3090
0.5288 2.0 48 0.2671
0.6918 2.2553 54 0.2669
0.8042 2.5106 60 0.2635
0.5136 2.7660 66 0.2684
0.3987 3.0 72 0.2623
0.6158 3.2553 78 0.2665
0.7359 3.5106 84 0.2724
0.453 3.7660 90 0.2618
0.3249 4.0 96 0.2621
0.5681 4.2553 102 0.2646
0.7036 4.5106 108 0.2661
0.4334 4.7660 114 0.2664

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ctitools/neurocti-qwen3-32b-orion10k-instruct-fp16-v2

Base model

Qwen/Qwen3-32B
Adapter
(75)
this model