See axolotl config
axolotl version: 0.10.0.dev0
base_model: Qwen/Qwen3-32B
# Automatically upload checkpoint and final model to HF
hub_model_id: ctitools/neurocti-qwen3-32b-orion10k-instruct-fb16-r16-lr0.0002-sl2048-e5-v2
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
datasets:
- path: ctitools/orion_10k
type: chat_template
field_messages: messages
split: train[:1%]
message_property_mappings:
role: role
content: content
roles:
user:
- user
assistant:
- assistant
val_set_size: 0.01
output_dir: ./outputs/out
dataset_prepared_path: last_run_prepared
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
#load_in_4bit: false
#load_in_8bit: true
adapter: lora
lora_r: 16
lora_alpha: 32
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lora_mlp_kernel: true
lora_qkv_kernel: true
lora_o_kernel: true
bf16: auto
tf32: true
wandb_project: neurocti-hunting
wandb_entity: aaronkaplan
wandb_watch:
wandb_name: neurocti-hunting_lora_neurocti-qwen3-32b-orion10k-instruct-fb16-r16-lr0.0002-sl2048-e5-v2
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 5
#optimizer: adamw_torch_4bit
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
# multi-gpu setups:
deepspeed: deepspeed_configs/zero2.json
neurocti-qwen3-32b-orion10k-instruct-fb16-r16-lr0.0002-sl2048-e5-v2
This model is a fine-tuned version of Qwen/Qwen3-32B on the ctitools/orion_10k dataset. It achieves the following results on the evaluation set:
- Loss: 0.2664
Model description
More information needed
Intended uses & limitations
See our github repo There you can also find, how to use the model.
Example output:
<think>
Okay, actionable? Not actionable? Let's see. The report mentions specific file paths and a domain. For actionable, I need indicators like strings, hashes, domains, IPs, or specific file paths.
The file paths `C:\ProgramData\file.txt`, `%LOCALAPPDATA%\Packages\Bay0NsQIzx\p.txt`, and the archive `output.zip` are mentioned. These paths could be used in malware code for reading/writing files. Also, the domain `wetransfers.io` is used for exfiltration. The string `uplo.php` is part of the URL path.
Actionable items:
- File paths (especially the unique ones like Bay0NsQIzx)
- Domain name `wetransfers.io`
- URL path `/uplo.php`
- Archive name `output.zip` (though less unique)
Not actionable items:
- The general concept of stealing browser data (too common)
- Telegram usage (common in malware)
- Compression into ZIP (common technique)
So actionable: Yes. Create rules for the specific file paths, domain, URL path, and archive name.
</think>
rule Bitter_Whale_File_Paths {
meta:
author = "cti.tools"
description = "Detects specific file paths used by Bitter-Whale for storing stolen data and output."
reference = "AI generated rule from the ORKL10K dataset"
strings:
$path1 = "C:\\ProgramData\\file.txt" wide ascii
$path2 = "%LOCALAPPDATA%\\Packages\\Bay0NsQIzx\\p.txt" wide ascii
$path3 = "output.zip" wide ascii
$path4 = "%LOCALAPPDATA%\\Packages\\Bay0NsQIzx" wide ascii
condition:
(uint16(0) == 0x5a4d or uint32(0) == 0x464c457f) and (1 of ($path*))
}
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 115
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8526 | 0.0426 | 1 | 6.5215 |
1.7964 | 0.2553 | 6 | 4.9077 |
1.1975 | 0.5106 | 12 | 0.6092 |
0.7366 | 0.7660 | 18 | 0.3202 |
0.6753 | 1.0 | 24 | 0.3063 |
0.7945 | 1.2553 | 30 | 0.2814 |
0.8882 | 1.5106 | 36 | 0.2780 |
0.5997 | 1.7660 | 42 | 0.3090 |
0.5288 | 2.0 | 48 | 0.2671 |
0.6918 | 2.2553 | 54 | 0.2669 |
0.8042 | 2.5106 | 60 | 0.2635 |
0.5136 | 2.7660 | 66 | 0.2684 |
0.3987 | 3.0 | 72 | 0.2623 |
0.6158 | 3.2553 | 78 | 0.2665 |
0.7359 | 3.5106 | 84 | 0.2724 |
0.453 | 3.7660 | 90 | 0.2618 |
0.3249 | 4.0 | 96 | 0.2621 |
0.5681 | 4.2553 | 102 | 0.2646 |
0.7036 | 4.5106 | 108 | 0.2661 |
0.4334 | 4.7660 | 114 | 0.2664 |
Framework versions
- PEFT 0.15.2
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for ctitools/neurocti-qwen3-32b-orion10k-instruct-fp16-v2
Base model
Qwen/Qwen3-32B