cs2764's picture
Upload MLX converted model with quantization settings
5097ccc verified
metadata
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-Coder-480B-A35B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
base_model: Qwen/Qwen3-Coder-480B-A35B-Instruct
tags:
  - mlx

cs2764/Qwen3-Coder-480B-A35B-Instruct-mlx-mixed_4_6

The Model cs2764/Qwen3-Coder-480B-A35B-Instruct-mlx-mixed_4_6 was converted to MLX format from Qwen/Qwen3-Coder-480B-A35B-Instruct using mlx-lm version 0.28.0.

Quantization Details

This model was converted with the following quantization settings:

  • Quantization Strategy: mixed_4_6 (Mixed precision)
  • Average bits per weight: 4.819

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("cs2764/Qwen3-Coder-480B-A35B-Instruct-mlx-mixed_4_6")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)