A newer version of this model is available:
microsoft/llava-med-v1.5-mistral-7b
llava-med-v1.5-mistral-7b-hf
This repository contains a drop-in, Hugging Face–compatible checkpoint converted from
https://huggingface.co/microsoft/llava-med-v1.5-mistral-7b.
You can load it with the exact same code you use for the original model—no extra conversion steps required.
Quick Start
from transformers import LlavaForConditionalGeneration, AutoProcessor
import torch
model_path = "chaoyinshe/llava-med-v1.5-mistral-7b-hf"
model = LlavaForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2", # requires FA2
device_map="auto" # multi-GPU ready
)
processor = AutoProcessor.from_pretrained(model_path)
# Example inference
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is the main finding in this chest X-ray?"}
]
}
]
prompt = processor.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = processor(
images=[image], text=prompt, return_tensors="pt"
).to(model.device, torch.bfloat16)
with torch.inference_mode():
out = model.generate(**inputs, max_new_tokens=256)
print(processor.decode(out[0], skip_special_tokens=True))
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for chaoyinshe/llava-med-v1.5-mistral-7b-hf
Base model
microsoft/llava-med-v1.5-mistral-7b