SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("cahya/last-sts")
sentences = [
'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
'A man plays the guitar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
sts-dev |
sts-test |
| pearson_cosine |
0.7982 |
0.7554 |
| spearman_cosine |
0.813 |
0.7644 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
stsb
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
num_train_epochs: 10
warmup_ratio: 0.1
bf16: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 10
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: True
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch |
Step |
Training Loss |
Validation Loss |
sts-dev_spearman_cosine |
sts-test_spearman_cosine |
| 0.0362 |
100 |
0.0019 |
0.1114 |
0.8115 |
- |
| 0.0724 |
200 |
0.0021 |
0.0882 |
0.8177 |
- |
| 0.1085 |
300 |
0.0015 |
0.0748 |
0.8125 |
- |
| 0.1447 |
400 |
0.0012 |
0.0679 |
0.8086 |
- |
| 0.1809 |
500 |
0.0012 |
0.0608 |
0.8069 |
- |
| 0.2171 |
600 |
0.001 |
0.0596 |
0.7986 |
- |
| 0.2533 |
700 |
0.0011 |
0.0547 |
0.7946 |
- |
| 0.2894 |
800 |
0.0011 |
0.0492 |
0.7870 |
- |
| 0.3256 |
900 |
0.0009 |
0.0522 |
0.7862 |
- |
| 0.3618 |
1000 |
0.0008 |
0.0519 |
0.7880 |
- |
| 0.3980 |
1100 |
0.0009 |
0.0529 |
0.7962 |
- |
| 0.4342 |
1200 |
0.0008 |
0.0469 |
0.7954 |
- |
| 0.4703 |
1300 |
0.0009 |
0.0506 |
0.7928 |
- |
| 0.5065 |
1400 |
0.0009 |
0.0466 |
0.7873 |
- |
| 0.5427 |
1500 |
0.001 |
0.0495 |
0.7999 |
- |
| 0.5789 |
1600 |
0.0008 |
0.0506 |
0.7861 |
- |
| 0.6151 |
1700 |
0.0008 |
0.0522 |
0.7873 |
- |
| 0.6512 |
1800 |
0.0009 |
0.0582 |
0.7843 |
- |
| 0.6874 |
1900 |
0.0009 |
0.0585 |
0.7888 |
- |
| 0.7236 |
2000 |
0.001 |
0.0508 |
0.8040 |
- |
| 0.7598 |
2100 |
0.001 |
0.0483 |
0.8018 |
- |
| 0.7959 |
2200 |
0.0008 |
0.0520 |
0.7841 |
- |
| 0.8321 |
2300 |
0.0009 |
0.0519 |
0.7896 |
- |
| 0.8683 |
2400 |
0.001 |
0.0514 |
0.7906 |
- |
| 0.9045 |
2500 |
0.0009 |
0.0521 |
0.7946 |
- |
| 0.9407 |
2600 |
0.0009 |
0.0496 |
0.7920 |
- |
| 0.9768 |
2700 |
0.001 |
0.0566 |
0.7956 |
- |
| 1.0130 |
2800 |
0.0009 |
0.0511 |
0.8044 |
- |
| 1.0492 |
2900 |
0.0009 |
0.0622 |
0.8197 |
- |
| 1.0854 |
3000 |
0.001 |
0.0504 |
0.8113 |
- |
| 1.1216 |
3100 |
0.001 |
0.0550 |
0.8005 |
- |
| 1.1577 |
3200 |
0.001 |
0.0549 |
0.7821 |
- |
| 1.1939 |
3300 |
0.0009 |
0.0578 |
0.7758 |
- |
| 1.2301 |
3400 |
0.0009 |
0.0543 |
0.7860 |
- |
| 1.2663 |
3500 |
0.0008 |
0.0575 |
0.7891 |
- |
| 1.3025 |
3600 |
0.0009 |
0.0567 |
0.7995 |
- |
| 1.3386 |
3700 |
0.001 |
0.0488 |
0.7985 |
- |
| 1.3748 |
3800 |
0.0009 |
0.0514 |
0.7789 |
- |
| 1.4110 |
3900 |
0.001 |
0.0584 |
0.7765 |
- |
| 1.4472 |
4000 |
0.001 |
0.0554 |
0.7888 |
- |
| 1.4834 |
4100 |
0.001 |
0.0659 |
0.7959 |
- |
| 1.5195 |
4200 |
0.0009 |
0.0511 |
0.7816 |
- |
| 1.5557 |
4300 |
0.0009 |
0.0555 |
0.7826 |
- |
| 1.5919 |
4400 |
0.001 |
0.0525 |
0.7944 |
- |
| 1.6281 |
4500 |
0.0009 |
0.0553 |
0.7941 |
- |
| 1.6643 |
4600 |
0.001 |
0.0588 |
0.7984 |
- |
| 1.7004 |
4700 |
0.001 |
0.0579 |
0.8004 |
- |
| 1.7366 |
4800 |
0.0009 |
0.0540 |
0.7916 |
- |
| 1.7728 |
4900 |
0.0009 |
0.0557 |
0.7963 |
- |
| 1.8090 |
5000 |
0.0008 |
0.0536 |
0.8044 |
- |
| 1.8452 |
5100 |
0.0009 |
0.0541 |
0.7870 |
- |
| 1.8813 |
5200 |
0.0009 |
0.0594 |
0.7989 |
- |
| 1.9175 |
5300 |
0.001 |
0.0558 |
0.8000 |
- |
| 1.9537 |
5400 |
0.0009 |
0.0538 |
0.7905 |
- |
| 1.9899 |
5500 |
0.0008 |
0.0555 |
0.7944 |
- |
| 2.0260 |
5600 |
0.0009 |
0.0557 |
0.8127 |
- |
| 2.0622 |
5700 |
0.0007 |
0.0542 |
0.8146 |
- |
| 2.0984 |
5800 |
0.0008 |
0.0517 |
0.7990 |
- |
| 2.1346 |
5900 |
0.0009 |
0.0500 |
0.8051 |
- |
| 2.1708 |
6000 |
0.0009 |
0.0521 |
0.8019 |
- |
| 2.2069 |
6100 |
0.0009 |
0.0511 |
0.8101 |
- |
| 2.2431 |
6200 |
0.0008 |
0.0578 |
0.8087 |
- |
| 2.2793 |
6300 |
0.0008 |
0.0585 |
0.8012 |
- |
| 2.3155 |
6400 |
0.0008 |
0.0566 |
0.8083 |
- |
| 2.3517 |
6500 |
0.0007 |
0.0535 |
0.8036 |
- |
| 2.3878 |
6600 |
0.0008 |
0.0531 |
0.7988 |
- |
| 2.4240 |
6700 |
0.0007 |
0.0574 |
0.8102 |
- |
| 2.4602 |
6800 |
0.0007 |
0.0566 |
0.7944 |
- |
| 2.4964 |
6900 |
0.0008 |
0.0528 |
0.8058 |
- |
| 2.5326 |
7000 |
0.0007 |
0.0528 |
0.8056 |
- |
| 2.5687 |
7100 |
0.0007 |
0.0506 |
0.8002 |
- |
| 2.6049 |
7200 |
0.0007 |
0.0526 |
0.8038 |
- |
| 2.6411 |
7300 |
0.0007 |
0.0554 |
0.8054 |
- |
| 2.6773 |
7400 |
0.0007 |
0.0505 |
0.7928 |
- |
| 2.7135 |
7500 |
0.0007 |
0.0505 |
0.8070 |
- |
| 2.7496 |
7600 |
0.0007 |
0.0535 |
0.7977 |
- |
| 2.7858 |
7700 |
0.0007 |
0.0536 |
0.8019 |
- |
| 2.8220 |
7800 |
0.0006 |
0.0546 |
0.7989 |
- |
| 2.8582 |
7900 |
0.0007 |
0.0543 |
0.8042 |
- |
| 2.8944 |
8000 |
0.0007 |
0.0542 |
0.8105 |
- |
| 2.9305 |
8100 |
0.0007 |
0.0541 |
0.8053 |
- |
| 2.9667 |
8200 |
0.0007 |
0.0545 |
0.8135 |
- |
| 3.0029 |
8300 |
0.0007 |
0.0598 |
0.8201 |
- |
| 3.0391 |
8400 |
0.0008 |
0.0558 |
0.8050 |
- |
| 3.0753 |
8500 |
0.0007 |
0.0510 |
0.7965 |
- |
| 3.1114 |
8600 |
0.0006 |
0.0564 |
0.8042 |
- |
| 3.1476 |
8700 |
0.0006 |
0.0559 |
0.7932 |
- |
| 3.1838 |
8800 |
0.0006 |
0.0529 |
0.8028 |
- |
| 3.2200 |
8900 |
0.0006 |
0.0542 |
0.8142 |
- |
| 3.2562 |
9000 |
0.0006 |
0.0532 |
0.8055 |
- |
| 3.2923 |
9100 |
0.0006 |
0.0506 |
0.7930 |
- |
| 3.3285 |
9200 |
0.0007 |
0.0542 |
0.7927 |
- |
| 3.3647 |
9300 |
0.0006 |
0.0523 |
0.8033 |
- |
| 3.4009 |
9400 |
0.0006 |
0.0530 |
0.8079 |
- |
| 3.4370 |
9500 |
0.0006 |
0.0544 |
0.7977 |
- |
| 3.4732 |
9600 |
0.0005 |
0.0515 |
0.8019 |
- |
| 3.5094 |
9700 |
0.0006 |
0.0481 |
0.8037 |
- |
| 3.5456 |
9800 |
0.0005 |
0.0557 |
0.8007 |
- |
| 3.5818 |
9900 |
0.0006 |
0.0495 |
0.8087 |
- |
| 3.6179 |
10000 |
0.0006 |
0.0555 |
0.7991 |
- |
| 3.6541 |
10100 |
0.0005 |
0.0560 |
0.7973 |
- |
| 3.6903 |
10200 |
0.0007 |
0.0581 |
0.7945 |
- |
| 3.7265 |
10300 |
0.0006 |
0.0546 |
0.8098 |
- |
| 3.7627 |
10400 |
0.0006 |
0.0539 |
0.8074 |
- |
| 3.7988 |
10500 |
0.0005 |
0.0501 |
0.8051 |
- |
| 3.8350 |
10600 |
0.0005 |
0.0531 |
0.8032 |
- |
| 3.8712 |
10700 |
0.0005 |
0.0502 |
0.8077 |
- |
| 3.9074 |
10800 |
0.0006 |
0.0537 |
0.8131 |
- |
| 3.9436 |
10900 |
0.0005 |
0.0510 |
0.8115 |
- |
| 3.9797 |
11000 |
0.0006 |
0.0525 |
0.8173 |
- |
| 4.0159 |
11100 |
0.0005 |
0.0513 |
0.8106 |
- |
| 4.0521 |
11200 |
0.0006 |
0.0594 |
0.8061 |
- |
| 4.0883 |
11300 |
0.0005 |
0.0514 |
0.8150 |
- |
| 4.1245 |
11400 |
0.0005 |
0.0537 |
0.8168 |
- |
| 4.1606 |
11500 |
0.0005 |
0.0571 |
0.8176 |
- |
| 4.1968 |
11600 |
0.0005 |
0.0546 |
0.8159 |
- |
| 4.2330 |
11700 |
0.0005 |
0.0496 |
0.8115 |
- |
| 4.2692 |
11800 |
0.0005 |
0.0526 |
0.8072 |
- |
| 4.3054 |
11900 |
0.0005 |
0.0512 |
0.8081 |
- |
| 4.3415 |
12000 |
0.0005 |
0.0517 |
0.8025 |
- |
| 4.3777 |
12100 |
0.0005 |
0.0533 |
0.8128 |
- |
| 4.4139 |
12200 |
0.0005 |
0.0501 |
0.8121 |
- |
| 4.4501 |
12300 |
0.0005 |
0.0507 |
0.8079 |
- |
| 4.4863 |
12400 |
0.0005 |
0.0501 |
0.8070 |
- |
| 4.5224 |
12500 |
0.0004 |
0.0537 |
0.8019 |
- |
| 4.5586 |
12600 |
0.0004 |
0.0541 |
0.8005 |
- |
| 4.5948 |
12700 |
0.0005 |
0.0525 |
0.8117 |
- |
| 4.6310 |
12800 |
0.0004 |
0.0523 |
0.8070 |
- |
| 4.6671 |
12900 |
0.0005 |
0.0526 |
0.8099 |
- |
| 4.7033 |
13000 |
0.0004 |
0.0518 |
0.8166 |
- |
| 4.7395 |
13100 |
0.0004 |
0.0547 |
0.8129 |
- |
| 4.7757 |
13200 |
0.0005 |
0.0523 |
0.8130 |
- |
| 4.8119 |
13300 |
0.0004 |
0.0504 |
0.8129 |
- |
| 4.8480 |
13400 |
0.0005 |
0.0539 |
0.8113 |
- |
| 4.8842 |
13500 |
0.0004 |
0.0523 |
0.8169 |
- |
| 4.9204 |
13600 |
0.0005 |
0.0521 |
0.8164 |
- |
| 4.9566 |
13700 |
0.0004 |
0.0575 |
0.8115 |
- |
| 4.9928 |
13800 |
0.0004 |
0.0538 |
0.8186 |
- |
| 5.0289 |
13900 |
0.0004 |
0.0530 |
0.8095 |
- |
| 5.0651 |
14000 |
0.0003 |
0.0537 |
0.8162 |
- |
| 5.1013 |
14100 |
0.0004 |
0.0560 |
0.8112 |
- |
| 5.1375 |
14200 |
0.0004 |
0.0528 |
0.8125 |
- |
| 5.1737 |
14300 |
0.0004 |
0.0533 |
0.8137 |
- |
| 5.2098 |
14400 |
0.0003 |
0.0537 |
0.8198 |
- |
| 5.2460 |
14500 |
0.0004 |
0.0530 |
0.8102 |
- |
| 5.2822 |
14600 |
0.0004 |
0.0562 |
0.8099 |
- |
| 5.3184 |
14700 |
0.0004 |
0.0522 |
0.8084 |
- |
| 5.3546 |
14800 |
0.0004 |
0.0515 |
0.8128 |
- |
| 5.3907 |
14900 |
0.0004 |
0.0555 |
0.8107 |
- |
| 5.4269 |
15000 |
0.0004 |
0.0533 |
0.8113 |
- |
| 5.4631 |
15100 |
0.0003 |
0.0538 |
0.8135 |
- |
| 5.4993 |
15200 |
0.0004 |
0.0552 |
0.8139 |
- |
| 5.5355 |
15300 |
0.0003 |
0.0513 |
0.8102 |
- |
| 5.5716 |
15400 |
0.0004 |
0.0542 |
0.8108 |
- |
| 5.6078 |
15500 |
0.0003 |
0.0541 |
0.8041 |
- |
| 5.6440 |
15600 |
0.0004 |
0.0512 |
0.8074 |
- |
| 5.6802 |
15700 |
0.0003 |
0.0553 |
0.8100 |
- |
| 5.7164 |
15800 |
0.0003 |
0.0539 |
0.8088 |
- |
| 5.7525 |
15900 |
0.0004 |
0.0527 |
0.8094 |
- |
| 5.7887 |
16000 |
0.0004 |
0.0524 |
0.8080 |
- |
| 5.8249 |
16100 |
0.0003 |
0.0525 |
0.8112 |
- |
| 5.8611 |
16200 |
0.0003 |
0.0537 |
0.8109 |
- |
| 5.8973 |
16300 |
0.0003 |
0.0539 |
0.8129 |
- |
| 5.9334 |
16400 |
0.0003 |
0.0543 |
0.8052 |
- |
| 5.9696 |
16500 |
0.0003 |
0.0544 |
0.8093 |
- |
| 6.0058 |
16600 |
0.0004 |
0.0532 |
0.8109 |
- |
| 6.0420 |
16700 |
0.0002 |
0.0558 |
0.8108 |
- |
| 6.0781 |
16800 |
0.0002 |
0.0529 |
0.8089 |
- |
| 6.1143 |
16900 |
0.0003 |
0.0539 |
0.8074 |
- |
| 6.1505 |
17000 |
0.0003 |
0.0534 |
0.8118 |
- |
| 6.1867 |
17100 |
0.0003 |
0.0539 |
0.8048 |
- |
| 6.2229 |
17200 |
0.0003 |
0.0537 |
0.8049 |
- |
| 6.2590 |
17300 |
0.0003 |
0.0553 |
0.8102 |
- |
| 6.2952 |
17400 |
0.0002 |
0.0533 |
0.8053 |
- |
| 6.3314 |
17500 |
0.0003 |
0.0550 |
0.8071 |
- |
| 6.3676 |
17600 |
0.0002 |
0.0530 |
0.8128 |
- |
| 6.4038 |
17700 |
0.0003 |
0.0547 |
0.8159 |
- |
| 6.4399 |
17800 |
0.0002 |
0.0539 |
0.8120 |
- |
| 6.4761 |
17900 |
0.0003 |
0.0540 |
0.8107 |
- |
| 6.5123 |
18000 |
0.0003 |
0.0535 |
0.8069 |
- |
| 6.5485 |
18100 |
0.0003 |
0.0541 |
0.8129 |
- |
| 6.5847 |
18200 |
0.0003 |
0.0522 |
0.8132 |
- |
| 6.6208 |
18300 |
0.0002 |
0.0539 |
0.8135 |
- |
| 6.6570 |
18400 |
0.0002 |
0.0542 |
0.8142 |
- |
| 6.6932 |
18500 |
0.0003 |
0.0529 |
0.8101 |
- |
| 6.7294 |
18600 |
0.0003 |
0.0533 |
0.8073 |
- |
| 6.7656 |
18700 |
0.0003 |
0.0525 |
0.8095 |
- |
| 6.8017 |
18800 |
0.0003 |
0.0534 |
0.8089 |
- |
| 6.8379 |
18900 |
0.0002 |
0.0519 |
0.8134 |
- |
| 6.8741 |
19000 |
0.0002 |
0.0536 |
0.8141 |
- |
| 6.9103 |
19100 |
0.0002 |
0.0535 |
0.8115 |
- |
| 6.9465 |
19200 |
0.0002 |
0.0519 |
0.8107 |
- |
| 6.9826 |
19300 |
0.0002 |
0.0546 |
0.8093 |
- |
| 7.0188 |
19400 |
0.0002 |
0.0532 |
0.8112 |
- |
| 7.0550 |
19500 |
0.0002 |
0.0526 |
0.8145 |
- |
| 7.0912 |
19600 |
0.0002 |
0.0529 |
0.8111 |
- |
| 7.1274 |
19700 |
0.0002 |
0.0540 |
0.8090 |
- |
| 7.1635 |
19800 |
0.0002 |
0.0525 |
0.8116 |
- |
| 7.1997 |
19900 |
0.0002 |
0.0534 |
0.8115 |
- |
| 7.2359 |
20000 |
0.0002 |
0.0526 |
0.8123 |
- |
| 7.2721 |
20100 |
0.0002 |
0.0524 |
0.8143 |
- |
| 7.3082 |
20200 |
0.0002 |
0.0526 |
0.8059 |
- |
| 7.3444 |
20300 |
0.0002 |
0.0535 |
0.8091 |
- |
| 7.3806 |
20400 |
0.0002 |
0.0532 |
0.8094 |
- |
| 7.4168 |
20500 |
0.0002 |
0.0529 |
0.8108 |
- |
| 7.4530 |
20600 |
0.0002 |
0.0542 |
0.8108 |
- |
| 7.4891 |
20700 |
0.0002 |
0.0525 |
0.8102 |
- |
| 7.5253 |
20800 |
0.0002 |
0.0541 |
0.8106 |
- |
| 7.5615 |
20900 |
0.0002 |
0.0538 |
0.8095 |
- |
| 7.5977 |
21000 |
0.0003 |
0.0523 |
0.8136 |
- |
| 7.6339 |
21100 |
0.0002 |
0.0544 |
0.8108 |
- |
| 7.6700 |
21200 |
0.0002 |
0.0525 |
0.8090 |
- |
| 7.7062 |
21300 |
0.0002 |
0.0528 |
0.8108 |
- |
| 7.7424 |
21400 |
0.0002 |
0.0531 |
0.8115 |
- |
| 7.7786 |
21500 |
0.0002 |
0.0541 |
0.8107 |
- |
| 7.8148 |
21600 |
0.0001 |
0.0525 |
0.8117 |
- |
| 7.8509 |
21700 |
0.0002 |
0.0534 |
0.8115 |
- |
| 7.8871 |
21800 |
0.0002 |
0.0541 |
0.8105 |
- |
| 7.9233 |
21900 |
0.0002 |
0.0538 |
0.8094 |
- |
| 7.9595 |
22000 |
0.0002 |
0.0530 |
0.8106 |
- |
| 7.9957 |
22100 |
0.0002 |
0.0527 |
0.8104 |
- |
| 8.0318 |
22200 |
0.0001 |
0.0534 |
0.8098 |
- |
| 8.0680 |
22300 |
0.0002 |
0.0537 |
0.8090 |
- |
| 8.1042 |
22400 |
0.0001 |
0.0533 |
0.8103 |
- |
| 8.1404 |
22500 |
0.0002 |
0.0528 |
0.8099 |
- |
| 8.1766 |
22600 |
0.0001 |
0.0531 |
0.8106 |
- |
| 8.2127 |
22700 |
0.0001 |
0.0534 |
0.8116 |
- |
| 8.2489 |
22800 |
0.0001 |
0.0538 |
0.8102 |
- |
| 8.2851 |
22900 |
0.0001 |
0.0530 |
0.8108 |
- |
| 8.3213 |
23000 |
0.0002 |
0.0529 |
0.8112 |
- |
| 8.3575 |
23100 |
0.0001 |
0.0533 |
0.8099 |
- |
| 8.3936 |
23200 |
0.0001 |
0.0534 |
0.8107 |
- |
| 8.4298 |
23300 |
0.0002 |
0.0535 |
0.8110 |
- |
| 8.4660 |
23400 |
0.0001 |
0.0543 |
0.8108 |
- |
| 8.5022 |
23500 |
0.0001 |
0.0530 |
0.8119 |
- |
| 8.5384 |
23600 |
0.0001 |
0.0530 |
0.8132 |
- |
| 8.5745 |
23700 |
0.0001 |
0.0531 |
0.8128 |
- |
| 8.6107 |
23800 |
0.0002 |
0.0532 |
0.8119 |
- |
| 8.6469 |
23900 |
0.0002 |
0.0531 |
0.8120 |
- |
| 8.6831 |
24000 |
0.0001 |
0.0531 |
0.8121 |
- |
| 8.7192 |
24100 |
0.0001 |
0.0525 |
0.8134 |
- |
| 8.7554 |
24200 |
0.0002 |
0.0524 |
0.8133 |
- |
| 8.7916 |
24300 |
0.0001 |
0.0535 |
0.8141 |
- |
| 8.8278 |
24400 |
0.0002 |
0.0529 |
0.8118 |
- |
| 8.8640 |
24500 |
0.0001 |
0.0529 |
0.8115 |
- |
| 8.9001 |
24600 |
0.0001 |
0.0528 |
0.8127 |
- |
| 8.9363 |
24700 |
0.0002 |
0.0527 |
0.8111 |
- |
| 8.9725 |
24800 |
0.0001 |
0.0536 |
0.8114 |
- |
| 9.0087 |
24900 |
0.0001 |
0.0531 |
0.8124 |
- |
| 9.0449 |
25000 |
0.0001 |
0.0532 |
0.8123 |
- |
| 9.0810 |
25100 |
0.0001 |
0.0534 |
0.8130 |
- |
| 9.1172 |
25200 |
0.0001 |
0.0533 |
0.8121 |
- |
| 9.1534 |
25300 |
0.0002 |
0.0534 |
0.8119 |
- |
| 9.1896 |
25400 |
0.0001 |
0.0532 |
0.8118 |
- |
| 9.2258 |
25500 |
0.0001 |
0.0532 |
0.8112 |
- |
| 9.2619 |
25600 |
0.0001 |
0.0532 |
0.8121 |
- |
| 9.2981 |
25700 |
0.0002 |
0.0537 |
0.8120 |
- |
| 9.3343 |
25800 |
0.0001 |
0.0535 |
0.8127 |
- |
| 9.3705 |
25900 |
0.0001 |
0.0529 |
0.8133 |
- |
| 9.4067 |
26000 |
0.0001 |
0.0529 |
0.8138 |
- |
| 9.4428 |
26100 |
0.0001 |
0.0534 |
0.8131 |
- |
| 9.4790 |
26200 |
0.0001 |
0.0529 |
0.8137 |
- |
| 9.5152 |
26300 |
0.0002 |
0.0529 |
0.8135 |
- |
| 9.5514 |
26400 |
0.0001 |
0.0528 |
0.8129 |
- |
| 9.5876 |
26500 |
0.0001 |
0.0530 |
0.8124 |
- |
| 9.6237 |
26600 |
0.0001 |
0.0529 |
0.8132 |
- |
| 9.6599 |
26700 |
0.0001 |
0.0530 |
0.8128 |
- |
| 9.6961 |
26800 |
0.0001 |
0.0530 |
0.8132 |
- |
| 9.7323 |
26900 |
0.0001 |
0.0529 |
0.8129 |
- |
| 9.7685 |
27000 |
0.0002 |
0.0528 |
0.8131 |
- |
| 9.8046 |
27100 |
0.0001 |
0.0529 |
0.8131 |
- |
| 9.8408 |
27200 |
0.0002 |
0.0531 |
0.8128 |
- |
| 9.8770 |
27300 |
0.0001 |
0.0532 |
0.8130 |
- |
| 9.9132 |
27400 |
0.0001 |
0.0531 |
0.8129 |
- |
| 9.9493 |
27500 |
0.0001 |
0.0531 |
0.8129 |
- |
| 9.9855 |
27600 |
0.0001 |
0.0531 |
0.8130 |
- |
| -1 |
-1 |
- |
- |
- |
0.7644 |
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu124
- Accelerate: 0.34.2
- Datasets: 2.19.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}