|  |  | 
					
						
						|  | --- | 
					
						
						|  | license: bigcode-openrail-m | 
					
						
						|  | datasets: | 
					
						
						|  | - bigcode/guanaco-commits | 
					
						
						|  | metrics: | 
					
						
						|  | - code_eval | 
					
						
						|  | library_name: peft | 
					
						
						|  | tags: | 
					
						
						|  | - code | 
					
						
						|  | --- | 
					
						
						|  | # Astraios: Parameter-Efficient Instruction Tuning Code Large Language Models | 
					
						
						|  | <p align="center" width="100%"> | 
					
						
						|  | <a ><img src="https://github.com/bigcode-project/astraios/blob/main/visuals/banner.png?raw=true" alt="Astraios" style="width: 20%; min-width: 300px; display: block; margin: auto;"></a> | 
					
						
						|  | </p> | 
					
						
						|  |  | 
					
						
						|  | # Table of Contents | 
					
						
						|  |  | 
					
						
						|  | 1. [Model Summary](#model-summary) | 
					
						
						|  | 2. [Use](#use) | 
					
						
						|  | 3. [Training](#training) | 
					
						
						|  | 4. [Citation](#citation) | 
					
						
						|  |  | 
					
						
						|  | # Model Summary | 
					
						
						|  |  | 
					
						
						|  | > Astraios-7B-FFT is an instruction tuned model with 15.5B parameters created by finetuning StarCoderBase on CommitPackFT & OASST as described in the Astraios paper. | 
					
						
						|  |  | 
					
						
						|  | - **Repository:** [bigcode-project/astraios](https://github.com/bigcode-project/astraios) | 
					
						
						|  | - **Paper:** [Astraios: Parameter-Efficient Instruction Tuning Code Large Language Models]() | 
					
						
						|  | - **Languages:** 80+ Programming languages | 
					
						
						|  | - **✨Astraios:** | 
					
						
						|  | <table> | 
					
						
						|  | <tr> | 
					
						
						|  | <th>Data</t> | 
					
						
						|  | <td><a href=https://huggingface.co/datasets/bigcode/guanaco-commits>CommitPackFT+OASST</a></td> | 
					
						
						|  | <td>Filtered version of CommitPack and OASST for high-quality commit messages that resemble instructions</td> | 
					
						
						|  | </tr> | 
					
						
						|  | <tr> | 
					
						
						|  | <th>Model</t> | 
					
						
						|  | <td><a href=https://huggingface.co/collections/bigcode/astraios-1b-6576ff1b8e449026ae327c1c>Astraios-1B</a></td> | 
					
						
						|  | <td>Collection of StarCoderBase-1B models instruction tuned on CommitPackFT + OASST with different tuning methods</td> | 
					
						
						|  | </tr> | 
					
						
						|  | <tr> | 
					
						
						|  | <th></t> | 
					
						
						|  | <td><a href=https://huggingface.co/collections/bigcode/astraios-3b-6577127317ee44ff547252d3>Astraios-3B</a></td> | 
					
						
						|  | <td>Collection of StarCoderBase-3B (3B parameters) models instruction tuned on CommitPackFT + OASST with different tuning methods</td> | 
					
						
						|  | </tr> | 
					
						
						|  | <tr> | 
					
						
						|  | <th></t> | 
					
						
						|  | <td><a href=https://huggingface.co/collections/starpeft/starcoderbase-7b-650c1f028b45cfec8e72c265>Astraios-7B</a></td> | 
					
						
						|  | <td>Collection of StarCoderBase-7B (7B parameters) models instruction tuned on CommitPackFT + OASST with different tuning methods</td> | 
					
						
						|  | </tr> | 
					
						
						|  | <tr> | 
					
						
						|  | <th></t> | 
					
						
						|  | <td><a href=https://huggingface.co/collections/bigcode/astraios-16b-65788b7476b6de79781054cc>Astraios-16B</a></td> | 
					
						
						|  | <td>Collection of StarCoderBase-16B (16B parameters) models instruction tuned on CommitPackFT + OASST with different tuning methods</td> | 
					
						
						|  | </tr> | 
					
						
						|  | <tr> | 
					
						
						|  | <th>Evaluation</t> | 
					
						
						|  | <td><a href=https://huggingface.co/datasets/code_x_glue_cc_clone_detection_big_clone_bench>BigCloneBench</a></td> | 
					
						
						|  | <td>Dataset for clone detection; We use 2,000 samples for evaluation</td> | 
					
						
						|  | </tr> | 
					
						
						|  | <tr> | 
					
						
						|  | <th></t> | 
					
						
						|  | <td><a href=https://huggingface.co/datasets/code_x_glue_cc_defect_detection>Devign</a></td> | 
					
						
						|  | <td>Dataset for defect detection; We use 2,000 samples for evaluation</td> | 
					
						
						|  | </tr> | 
					
						
						|  | <tr> | 
					
						
						|  | <th></t> | 
					
						
						|  | <td><a href=https://huggingface.co/datasets/bigcode/humanevalpack>HumanEvalPack</a></td> | 
					
						
						|  | <td>Extension of OpenAI's HumanEval to cover 3 scenarios across 6 languages</td> | 
					
						
						|  | </tr> | 
					
						
						|  | <tr> | 
					
						
						|  | <th></t> | 
					
						
						|  | <td><a href=https://huggingface.co/datasets/RaymondLi/perturbed_humaneval>ReCode</a></td> | 
					
						
						|  | <td>Dataset for the robustness of code generation, covering 4 variants</td> | 
					
						
						|  | </tr> | 
					
						
						|  | <tr> | 
					
						
						|  | <th></t> | 
					
						
						|  | <td><a href=https://huggingface.co/datasets/moyix/asleep_keyboard>Asleep At The Keyboard</a></td> | 
					
						
						|  | <td>Datasets for security of code generation; We use DoW for evaluation</td> | 
					
						
						|  | </tr> | 
					
						
						|  | </table> | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | # Use | 
					
						
						|  |  | 
					
						
						|  | ## Intended use | 
					
						
						|  |  | 
					
						
						|  | The model follows instructions provided in the input. You should always preface your input with "Question: " and finish it with "Answer:", for example: "Question: Please write a function in Python that performs bubble sort. | 
					
						
						|  |  | 
					
						
						|  | Answer:" | 
					
						
						|  |  | 
					
						
						|  | **Feel free to share your generations in the Community tab!** | 
					
						
						|  |  | 
					
						
						|  | ## Generation | 
					
						
						|  | ```python | 
					
						
						|  | # pip install -q transformers | 
					
						
						|  | from transformers import AutoModelForCausalLM, AutoTokenizer | 
					
						
						|  |  | 
					
						
						|  | checkpoint = "bigcode/astraios-7b-fft" | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained(checkpoint) | 
					
						
						|  | device = "cuda" # for GPU usage or "cpu" for CPU usage | 
					
						
						|  |  | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(checkpoint) | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) | 
					
						
						|  |  | 
					
						
						|  | inputs = tokenizer.encode("Question: Please write a function in Python that performs bubble sort. | 
					
						
						|  |  | 
					
						
						|  | Answer:", return_tensors="pt").to(device) | 
					
						
						|  | outputs = model.generate(inputs) | 
					
						
						|  | print(tokenizer.decode(outputs[0])) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | # Training | 
					
						
						|  |  | 
					
						
						|  | ## Model | 
					
						
						|  |  | 
					
						
						|  | - **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective | 
					
						
						|  | - **Steps:** 250k pretraining & 200 instruction tuning | 
					
						
						|  | - **Precision:** fp32 | 
					
						
						|  |  | 
					
						
						|  | ## Hardware | 
					
						
						|  |  | 
					
						
						|  | - **Pretraining:** | 
					
						
						|  | - **GPUs:** 512 Tesla A100 | 
					
						
						|  | - **Training time:** 24 days | 
					
						
						|  | - **Instruction tuning:** | 
					
						
						|  | - **GPUs:** 8 Tesla A100 | 
					
						
						|  |  | 
					
						
						|  | ## Software | 
					
						
						|  |  | 
					
						
						|  | - **Orchestration:** [Megatron-LM/Transformers](https://github.com/bigcode-project/octopack#training) | 
					
						
						|  | - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) | 
					
						
						|  |  | 
					
						
						|  | # Citation | 
					
						
						|  |  | 
					
						
						|  | ```bibtex | 
					
						
						|  | ``` | 
					
						
						|  |  |