CodeGenDetect-CodeBert_Lora

This model is a fine-tuned version of microsoft/codebert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0384
  • Accuracy: 0.9907
  • F1: 0.9907
  • Precision: 0.9907
  • Recall: 0.9907

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.1381 0.128 4000 0.9586 0.9586 0.1627 0.9599 0.9586
0.0821 0.256 8000 0.9761 0.9761 0.1081 0.9761 0.9761
0.0667 0.384 12000 0.9786 0.9786 0.1008 0.9787 0.9786
0.0754 0.512 16000 0.9820 0.9820 0.0779 0.9821 0.9820
0.0776 0.64 20000 0.9846 0.9846 0.0617 0.9847 0.9846
0.0643 0.768 24000 0.9831 0.9831 0.0761 0.9832 0.9831
0.064 0.896 28000 0.9878 0.9878 0.0495 0.9878 0.9878
0.0477 1.024 32000 0.9879 0.9879 0.0480 0.9880 0.9879
0.0427 1.152 36000 0.9894 0.9894 0.0424 0.9894 0.9894
0.0381 1.28 40000 0.9880 0.9880 0.0484 0.9880 0.9880
0.0423 1.408 44000 0.9901 0.9901 0.0399 0.9901 0.9901
0.0389 1.536 48000 0.9888 0.9888 0.0513 0.9889 0.9888
0.0416 1.6640 52000 0.9908 0.9908 0.0358 0.9908 0.9908
0.0374 1.792 56000 0.0370 0.9905 0.9905 0.9905 0.9905
0.0441 1.92 60000 0.0355 0.9905 0.9905 0.9905 0.9905
0.0358 2.048 64000 0.0384 0.9907 0.9907 0.9907 0.9907

Framework versions

  • PEFT 0.18.0
  • Transformers 4.57.3
  • Pytorch 2.9.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
199
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for azherali/CodeGenDetect-CodeBert_Lora

Adapter
(5)
this model

Evaluation results