CodeGenDetect-BERT_Classifier

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0975
  • Accuracy: 0.9767
  • F1: 0.9767
  • Precision: 0.9768
  • Recall: 0.9767

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.1206 0.096 3000 0.9503 0.9503 0.1452 0.9515 0.9503
0.1659 0.192 6000 0.9580 0.9581 0.1326 0.9584 0.9580
0.1468 0.288 9000 0.9631 0.9632 0.1131 0.9634 0.9631
0.072 0.384 12000 0.9645 0.9645 0.1199 0.9651 0.9645
0.1184 0.48 15000 0.9656 0.9656 0.1093 0.9661 0.9656
0.2584 0.576 18000 0.9681 0.9681 0.0996 0.9684 0.9681
0.1833 0.672 21000 0.9624 0.9624 0.1154 0.9624 0.9624
0.0551 0.768 24000 0.9694 0.9694 0.1059 0.9700 0.9694
0.1545 0.864 27000 0.9705 0.9705 0.0960 0.9710 0.9705
0.1006 0.96 30000 0.9733 0.9733 0.0884 0.9735 0.9733
0.0941 1.056 33000 0.9696 0.9696 0.1021 0.9704 0.9696
0.1786 1.152 36000 0.9727 0.9727 0.0988 0.9728 0.9727
0.0231 1.248 39000 0.9740 0.9740 0.0923 0.9741 0.9740
0.0131 1.3440 42000 0.9735 0.9735 0.0924 0.9739 0.9735
0.1303 1.44 45000 0.9742 0.9742 0.0959 0.9742 0.9742
0.0637 1.536 48000 0.9753 0.9753 0.0877 0.9754 0.9753
0.1373 1.6320 51000 0.9741 0.9742 0.0977 0.9745 0.9741
0.1152 1.728 54000 0.9755 0.9755 0.1035 0.9756 0.9755
0.0728 1.8240 57000 0.9751 0.9752 0.0922 0.9754 0.9751
0.007 1.92 60000 0.9763 0.9763 0.0814 0.9764 0.9763
0.0043 2.016 63000 0.9768 0.9768 0.0991 0.9769 0.9768
0.0429 2.112 66000 0.9759 0.9759 0.0925 0.9760 0.9759
0.0061 2.208 69000 0.9765 0.9765 0.0930 0.9766 0.9765
0.0774 2.304 72000 0.9761 0.9761 0.0868 0.9763 0.9761
0.0166 2.4 75000 0.0927 0.9775 0.9775 0.9777 0.9775
0.0035 2.496 78000 0.0859 0.9777 0.9777 0.9779 0.9777
0.0891 2.592 81000 0.0898 0.9752 0.9752 0.9752 0.9752
0.093 2.6880 84000 0.0848 0.9777 0.9777 0.9779 0.9777
0.0056 2.784 87000 0.0933 0.9770 0.9770 0.9771 0.9770
0.124 2.88 90000 0.1115 0.9774 0.9774 0.9775 0.9774
0.0861 2.976 93000 0.0975 0.9767 0.9767 0.9768 0.9767

Framework versions

  • Transformers 4.45.0
  • Pytorch 2.6.0+cu124
  • Datasets 4.4.1
  • Tokenizers 0.20.3
Downloads last month
207
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for azherali/CodeGenDetect-BERT_Classifier

Finetuned
(6269)
this model

Evaluation results