|
--- |
|
license: mit |
|
language: |
|
- de |
|
base_model: |
|
- deepset/gbert-large |
|
--- |
|
# Autor-Regulatory Focus Classifier (German) |
|
|
|
This model is a fine-tuned transformer-based classifier that detects the **regulatory focus** in German-language text, classifying whether the language expresses a **promotion** (aspirational, growth-oriented) or **prevention** (safety, obligation-oriented) focus. |
|
|
|
It is fine-tuned on top of a German-language base model for the task of binary text classification. |
|
|
|
## Model Details |
|
|
|
- **Base model**: `deepset/gbert-large` |
|
- **Fine-tuned for**: Binary classification (Regulatory Focus) |
|
- **Language**: German |
|
- **Framework**: Hugging Face Transformers |
|
- **Model format**: `safetensors` |
|
|
|
## Use Cases |
|
|
|
- Social psychology and communication research |
|
- Marketing and consumer behavior analysis |
|
- Literary or political discourse analysis |
|
- Behavioral modeling and goal orientation profiling |
|
|
|
## Example Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("aveluth/author_regulatory_focus_classifier") |
|
tokenizer = AutoTokenizer.from_pretrained("aveluth/author_regulatory_focus_classifier") |
|
|
|
text = "Wir müssen sicherstellen, dass keine Fehler passieren. Sicherheit hat höchste Priorität." |
|
inputs = tokenizer(text, return_tensors="pt") |
|
outputs = model(**inputs) |
|
predicted_class = torch.argmax(outputs.logits).item() |
|
|
|
print("Predicted class:", "prevention" if predicted_class == 0 else "promotion") |
|
``` |
|
|
|
## Labels |
|
|
|
| Class | Description | |
|
|-------------|----------------------------------------| |
|
| `0` | Prevention-focused language | |
|
| `1` | Promotion-focused language | |
|
|
|
## Training Details |
|
|
|
- **Training data**: Custom labeled corpus based on psychological framing |
|
- **Loss function**: Cross-entropy |
|
- **Optimizer**: AdamW |
|
- **Epochs**: 4 |
|
- **Learning rate**: 3e-5 |
|
|
|
## Limitations |
|
|
|
- Trained on German-language data only |
|
- Performance may vary on out-of-domain text (e.g., technical manuals, poetry) |
|
- May not generalize across all cultural framings of regulatory focus |
|
|
|
## License |
|
|
|
[MIT](LICENSE) |
|
|
|
## Citation |
|
|
|
If you use this model in your research, please cite: |
|
|
|
```bibtex |
|
@article{velutharambath2023prevention, |
|
title={Prevention or Promotion? Predicting Author's Regulatory Focus}, |
|
author={Velutharambath, Aswathy and Sassenberg, Kai and Klinger, Roman}, |
|
journal={Northern European Journal of Language Technology}, |
|
volume={9}, |
|
number={1}, |
|
year={2023} |
|
} |
|
``` |
|
|