|  | --- | 
					
						
						|  | tags: | 
					
						
						|  | - mteb | 
					
						
						|  | model-index: | 
					
						
						|  | - name: e5-mistral-7b-instruct | 
					
						
						|  | results: | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/AFQMC | 
					
						
						|  | name: MTEB AFQMC | 
					
						
						|  | config: default | 
					
						
						|  | split: validation | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 37.863226091673866 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 38.98733013335281 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 37.51783380497874 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 38.98733012753365 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 37.26706888081721 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 38.709750161903834 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/ATEC | 
					
						
						|  | name: MTEB ATEC | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 43.33924583134623 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 42.84316155158754 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 45.62709879515238 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 42.843155921732404 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 45.4786950991229 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 42.657334751855984 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_counterfactual | 
					
						
						|  | name: MTEB AmazonCounterfactualClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: e8379541af4e31359cca9fbcf4b00f2671dba205 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 78.68656716417911 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 41.71522322900398 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.37207703532552 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_counterfactual | 
					
						
						|  | name: MTEB AmazonCounterfactualClassification (de) | 
					
						
						|  | config: de | 
					
						
						|  | split: test | 
					
						
						|  | revision: e8379541af4e31359cca9fbcf4b00f2671dba205 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.04710920770879 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 83.42622221864045 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.14388257905772 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_counterfactual | 
					
						
						|  | name: MTEB AmazonCounterfactualClassification (en-ext) | 
					
						
						|  | config: en-ext | 
					
						
						|  | split: test | 
					
						
						|  | revision: e8379541af4e31359cca9fbcf4b00f2671dba205 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.93103448275862 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 26.039284760509513 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 64.81092954450712 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_counterfactual | 
					
						
						|  | name: MTEB AmazonCounterfactualClassification (ja) | 
					
						
						|  | config: ja | 
					
						
						|  | split: test | 
					
						
						|  | revision: e8379541af4e31359cca9fbcf4b00f2671dba205 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.21627408993577 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 24.876490553983036 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 63.8773359684989 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_polarity | 
					
						
						|  | name: MTEB AmazonPolarityClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: e2d317d38cd51312af73b3d32a06d1a08b442046 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.90679999999999 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 94.32357863164454 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.90485634708557 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_reviews_multi | 
					
						
						|  | name: MTEB AmazonReviewsClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 1399c76144fd37290681b995c656ef9b2e06e26d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 55.786 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 55.31211995815146 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_reviews_multi | 
					
						
						|  | name: MTEB AmazonReviewsClassification (de) | 
					
						
						|  | config: de | 
					
						
						|  | split: test | 
					
						
						|  | revision: 1399c76144fd37290681b995c656ef9b2e06e26d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 53.26 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 52.156230111544986 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_reviews_multi | 
					
						
						|  | name: MTEB AmazonReviewsClassification (es) | 
					
						
						|  | config: es | 
					
						
						|  | split: test | 
					
						
						|  | revision: 1399c76144fd37290681b995c656ef9b2e06e26d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 50.33 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 49.195023008878145 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_reviews_multi | 
					
						
						|  | name: MTEB AmazonReviewsClassification (fr) | 
					
						
						|  | config: fr | 
					
						
						|  | split: test | 
					
						
						|  | revision: 1399c76144fd37290681b995c656ef9b2e06e26d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 49.3 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 48.434470184108 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_reviews_multi | 
					
						
						|  | name: MTEB AmazonReviewsClassification (ja) | 
					
						
						|  | config: ja | 
					
						
						|  | split: test | 
					
						
						|  | revision: 1399c76144fd37290681b995c656ef9b2e06e26d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 48.68599999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 47.62681775202072 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_reviews_multi | 
					
						
						|  | name: MTEB AmazonReviewsClassification (zh) | 
					
						
						|  | config: zh | 
					
						
						|  | split: test | 
					
						
						|  | revision: 1399c76144fd37290681b995c656ef9b2e06e26d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 46.238 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 45.014030559653705 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: arguana | 
					
						
						|  | name: MTEB ArguAna | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 36.486000000000004 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 53.076 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 53.657999999999994 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 53.659 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 48.234 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 51.121 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 37.269000000000005 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 53.335 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 53.916 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 53.918 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 48.518 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 51.406 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 36.486000000000004 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 61.882000000000005 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 64.165 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 64.203 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 52.049 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 57.199 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 36.486000000000004 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 8.982999999999999 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.9939999999999999 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.1 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 21.029 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 15.092 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 36.486000000000004 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 89.82900000000001 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 99.36 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 99.644 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 63.087 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 75.46199999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/arxiv-clustering-p2p | 
					
						
						|  | name: MTEB ArxivClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 50.45119266859667 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/arxiv-clustering-s2s | 
					
						
						|  | name: MTEB ArxivClusteringS2S | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 45.4958298992051 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/askubuntudupquestions-reranking | 
					
						
						|  | name: MTEB AskUbuntuDupQuestions | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 66.98177472838887 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 79.91854636591478 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/biosses-sts | 
					
						
						|  | name: MTEB BIOSSES | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d3fb88f8f02e40887cd149695127462bbcf29b4a | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 87.67086498650698 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 85.54773239564638 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 86.48229161588425 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 85.54773239564638 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 86.67533327742343 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 85.76099026691983 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/BQ | 
					
						
						|  | name: MTEB BQ | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 50.31998888922809 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 50.6369940530675 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 50.055544636296055 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 50.63699405154838 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 50.00739378036807 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 50.607237418676945 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/bucc-bitext-mining | 
					
						
						|  | name: MTEB BUCC (de-en) | 
					
						
						|  | config: de-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: d51519689f32196a32af33b075a01d0e7c51e252 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 99.5615866388309 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 99.49895615866389 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 99.46764091858039 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 99.5615866388309 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/bucc-bitext-mining | 
					
						
						|  | name: MTEB BUCC (fr-en) | 
					
						
						|  | config: fr-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: d51519689f32196a32af33b075a01d0e7c51e252 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 99.19656614571869 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 99.08650671362535 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 99.0314769975787 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 99.19656614571869 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/bucc-bitext-mining | 
					
						
						|  | name: MTEB BUCC (ru-en) | 
					
						
						|  | config: ru-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: d51519689f32196a32af33b075a01d0e7c51e252 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 98.0256321440942 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 97.83743216718624 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 97.74390947927492 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 98.0256321440942 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/bucc-bitext-mining | 
					
						
						|  | name: MTEB BUCC (zh-en) | 
					
						
						|  | config: zh-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: d51519689f32196a32af33b075a01d0e7c51e252 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 99.26276987888363 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 99.22766368264 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 99.21011058451816 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 99.26276987888363 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/banking77 | 
					
						
						|  | name: MTEB Banking77Classification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 88.22727272727272 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 88.17411732496673 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/biorxiv-clustering-p2p | 
					
						
						|  | name: MTEB BiorxivClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 43.530637846246975 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/biorxiv-clustering-s2s | 
					
						
						|  | name: MTEB BiorxivClusteringS2S | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 40.23505728593893 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/CLSClusteringP2P | 
					
						
						|  | name: MTEB CLSClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 44.419028279451275 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/CLSClusteringS2S | 
					
						
						|  | name: MTEB CLSClusteringS2S | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 42.5820277929776 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/CMedQAv1-reranking | 
					
						
						|  | name: MTEB CMedQAv1 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 77.67811726152972 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 80.99003968253969 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/CMedQAv2-reranking | 
					
						
						|  | name: MTEB CMedQAv2 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 78.66055354534922 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 81.66119047619047 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: BeIR/cqadupstack | 
					
						
						|  | name: MTEB CQADupstackRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 27.162333333333333 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 37.22291666666667 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 38.56733333333333 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 38.684250000000006 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 34.22858333333333 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 35.852500000000006 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 32.459833333333336 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 41.65358333333333 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 42.566916666666664 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 42.61766666666667 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 39.210499999999996 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 40.582166666666666 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 32.459833333333336 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 42.96758333333333 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 48.5065 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 50.556583333333336 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 38.004416666666664 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 40.25916666666667 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 32.459833333333336 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 7.664583333333333 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.2349999999999999 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.15966666666666668 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 17.731166666666663 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 12.575333333333335 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 27.162333333333333 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 55.44158333333334 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 79.56966666666666 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 93.45224999999999 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 41.433083333333336 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 47.31108333333333 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: climate-fever | 
					
						
						|  | name: MTEB ClimateFEVER | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 16.539 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 28.494999999999997 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 30.568 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 30.741000000000003 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 23.846999999999998 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 26.275 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 37.394 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 50.068 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 50.727 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 50.751000000000005 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 46.938 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 48.818 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 37.394 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 38.349 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 45.512 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 48.321 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 32.172 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 34.265 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 37.394 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 11.927999999999999 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.966 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.25 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 24.126 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 18.306 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 16.539 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 44.504 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 68.605 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 84.1 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 29.008 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 35.58 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/CmedqaRetrieval | 
					
						
						|  | name: MTEB CmedqaRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: dev | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 19.482 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 28.622999999999998 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 30.262 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 30.432 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 25.647 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 27.128000000000004 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 30.408 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 37.188 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 38.196000000000005 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 38.273 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 35.067 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 36.124 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 30.408 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 34.215 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 41.349999999999994 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 44.689 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 30.264999999999997 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 31.572 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 30.408 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 7.6770000000000005 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.352 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.178 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 17.213 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 12.198 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 19.482 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 42.368 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 72.694 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 95.602 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 30.101 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 34.708 | 
					
						
						|  | - task: | 
					
						
						|  | type: PairClassification | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/CMNLI | 
					
						
						|  | name: MTEB Cmnli | 
					
						
						|  | config: default | 
					
						
						|  | split: validation | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_accuracy | 
					
						
						|  | value: 71.16055321707758 | 
					
						
						|  | - type: cos_sim_ap | 
					
						
						|  | value: 80.21073839711723 | 
					
						
						|  | - type: cos_sim_f1 | 
					
						
						|  | value: 72.9740932642487 | 
					
						
						|  | - type: cos_sim_precision | 
					
						
						|  | value: 65.53136050623488 | 
					
						
						|  | - type: cos_sim_recall | 
					
						
						|  | value: 82.3240589198036 | 
					
						
						|  | - type: dot_accuracy | 
					
						
						|  | value: 71.16055321707758 | 
					
						
						|  | - type: dot_ap | 
					
						
						|  | value: 80.212299264122 | 
					
						
						|  | - type: dot_f1 | 
					
						
						|  | value: 72.9740932642487 | 
					
						
						|  | - type: dot_precision | 
					
						
						|  | value: 65.53136050623488 | 
					
						
						|  | - type: dot_recall | 
					
						
						|  | value: 82.3240589198036 | 
					
						
						|  | - type: euclidean_accuracy | 
					
						
						|  | value: 71.16055321707758 | 
					
						
						|  | - type: euclidean_ap | 
					
						
						|  | value: 80.21076298680417 | 
					
						
						|  | - type: euclidean_f1 | 
					
						
						|  | value: 72.9740932642487 | 
					
						
						|  | - type: euclidean_precision | 
					
						
						|  | value: 65.53136050623488 | 
					
						
						|  | - type: euclidean_recall | 
					
						
						|  | value: 82.3240589198036 | 
					
						
						|  | - type: manhattan_accuracy | 
					
						
						|  | value: 70.71557426337944 | 
					
						
						|  | - type: manhattan_ap | 
					
						
						|  | value: 79.93448977199749 | 
					
						
						|  | - type: manhattan_f1 | 
					
						
						|  | value: 72.83962726826877 | 
					
						
						|  | - type: manhattan_precision | 
					
						
						|  | value: 62.7407908077053 | 
					
						
						|  | - type: manhattan_recall | 
					
						
						|  | value: 86.81318681318682 | 
					
						
						|  | - type: max_accuracy | 
					
						
						|  | value: 71.16055321707758 | 
					
						
						|  | - type: max_ap | 
					
						
						|  | value: 80.212299264122 | 
					
						
						|  | - type: max_f1 | 
					
						
						|  | value: 72.9740932642487 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/CovidRetrieval | 
					
						
						|  | name: MTEB CovidRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: dev | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 60.643 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 69.011 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 69.533 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 69.545 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 67.167 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 68.12700000000001 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 60.801 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 69.111 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 69.6 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 69.611 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 67.229 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 68.214 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 60.801 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 73.128 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 75.614 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 75.92 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 69.261 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 70.973 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 60.801 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 8.662 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.9860000000000001 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.101 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 25.149 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 15.953999999999999 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 60.643 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 85.959 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 97.576 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 100.0 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 75.184 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 79.32000000000001 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: dbpedia-entity | 
					
						
						|  | name: MTEB DBPedia | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 10.183 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 23.958 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 34.354 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 36.442 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 16.345000000000002 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 19.647000000000002 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 74.25 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 80.976 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 81.256 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 81.262 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 79.958 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 80.37100000000001 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 62.0 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 48.894999999999996 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 53.867 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 61.304 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 53.688 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 50.900999999999996 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 74.25 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 39.525 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 12.323 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 2.539 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 57.49999999999999 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 49.1 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 10.183 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 29.296 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 60.394999999999996 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 83.12 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 17.495 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 22.235 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/DuRetrieval | 
					
						
						|  | name: MTEB DuRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: dev | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 26.613999999999997 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 79.77300000000001 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 82.71 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 82.75 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 55.92700000000001 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 70.085 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 90.7 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 93.438 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 93.504 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 93.50699999999999 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 93.125 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 93.34 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 90.7 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 87.023 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 90.068 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 90.43299999999999 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 86.339 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 85.013 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 90.7 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 41.339999999999996 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 4.806 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.48900000000000005 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 76.983 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 64.69 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 26.613999999999997 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 87.681 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 97.44699999999999 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 99.348 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 57.809999999999995 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 74.258 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/EcomRetrieval | 
					
						
						|  | name: MTEB EcomRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: dev | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 30.9 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 40.467 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 41.423 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 41.463 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 37.25 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 39.31 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 30.9 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 40.467 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 41.423 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 41.463 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 37.25 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 39.31 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 30.9 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 45.957 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 50.735 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 51.861999999999995 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 39.437 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 43.146 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 30.9 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 6.35 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.861 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.095 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 15.267 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 10.96 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 30.9 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 63.5 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 86.1 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 95.1 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 45.800000000000004 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 54.800000000000004 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/emotion | 
					
						
						|  | name: MTEB EmotionClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 49.765 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 45.93242203574485 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: fever | 
					
						
						|  | name: MTEB FEVER | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 75.138 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 84.21300000000001 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 84.43 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 84.441 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 83.071 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 83.853 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 80.948 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 88.175 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 88.24 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 88.241 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 87.516 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 87.997 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 80.948 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 87.84100000000001 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 88.576 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 88.75699999999999 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 86.176 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 87.214 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 80.948 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 10.632 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.123 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.11499999999999999 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 33.193 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 20.663 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 75.138 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 94.89699999999999 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 97.751 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 98.833 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 90.455 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 93.085 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: fiqa | 
					
						
						|  | name: MTEB FiQA2018 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 29.45 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 48.596000000000004 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 50.70400000000001 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 50.83800000000001 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 42.795 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 46.085 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 56.172999999999995 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 64.35300000000001 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 64.947 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 64.967 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 62.653999999999996 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 63.534 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 56.172999999999995 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 56.593 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 62.942 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 64.801 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 53.024 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 53.986999999999995 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 56.172999999999995 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 15.494 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 2.222 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.254 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 35.185 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 25.556 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 29.45 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 62.882000000000005 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 85.56099999999999 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 96.539 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 47.911 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 54.52 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: hotpotqa | 
					
						
						|  | name: MTEB HotpotQA | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 39.581 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 68.401 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 69.207 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 69.25200000000001 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 64.689 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 67.158 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 79.163 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 85.22999999999999 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 85.386 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 85.39099999999999 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 84.432 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 84.952 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 79.163 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 75.721 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 78.411 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 79.23599999999999 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 70.68799999999999 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 73.694 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 79.163 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 16.134 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.821 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.193 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 46.446 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 30.242 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 39.581 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 80.66799999999999 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 91.033 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 96.408 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 69.669 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 75.604 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/IFlyTek-classification | 
					
						
						|  | name: MTEB IFlyTek | 
					
						
						|  | config: default | 
					
						
						|  | split: validation | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 45.04809542131589 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 37.01181779071118 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/imdb | 
					
						
						|  | name: MTEB ImdbClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 94.78120000000001 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 92.52931921594387 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.77902110732532 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/JDReview-classification | 
					
						
						|  | name: MTEB JDReview | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 85.81613508442777 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 52.430320593468394 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 79.95467268178068 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/LCQMC | 
					
						
						|  | name: MTEB LCQMC | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 71.05801751913393 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 75.47954644971965 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 74.27472296759713 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 75.47954201369866 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 74.30508190186474 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 75.51326518159436 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/Mmarco-reranking | 
					
						
						|  | name: MTEB MMarcoReranking | 
					
						
						|  | config: default | 
					
						
						|  | split: dev | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 24.21110921666315 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 22.863492063492064 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/MMarcoRetrieval | 
					
						
						|  | name: MTEB MMarcoRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: dev | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 61.38400000000001 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 70.895 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 71.314 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 71.331 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 69.016 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 70.179 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 63.481 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 71.543 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 71.91300000000001 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 71.928 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 69.90899999999999 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 70.907 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 63.481 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 74.833 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 76.705 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 77.13600000000001 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 71.236 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 73.199 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 63.481 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 9.179 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.011 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.105 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 27.044 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 17.272000000000002 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 61.38400000000001 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 86.318 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 94.786 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 98.14500000000001 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 76.717 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 81.416 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: msmarco | 
					
						
						|  | name: MTEB MSMARCO | 
					
						
						|  | config: default | 
					
						
						|  | split: dev | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 23.363999999999997 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 36.022 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 37.229 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 37.274 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 32.131 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 34.391 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 24.069 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 36.620000000000005 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 37.769999999999996 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 37.809 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 32.846 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 35.02 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 24.069 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 43.056 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 48.754 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 49.829 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 35.167 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 39.168 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 24.069 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 6.762 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.96 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.105 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 14.957 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 11.023 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 23.363999999999997 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 64.696 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 90.795 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 98.892 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 43.247 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 52.86300000000001 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_domain | 
					
						
						|  | name: MTEB MTOPDomainClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.11947104423166 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.89561841159332 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_domain | 
					
						
						|  | name: MTEB MTOPDomainClassification (de) | 
					
						
						|  | config: de | 
					
						
						|  | split: test | 
					
						
						|  | revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 92.97548605240912 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 92.17133696717212 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_domain | 
					
						
						|  | name: MTEB MTOPDomainClassification (es) | 
					
						
						|  | config: es | 
					
						
						|  | split: test | 
					
						
						|  | revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 93.37224816544364 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 93.19978829237863 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_domain | 
					
						
						|  | name: MTEB MTOPDomainClassification (fr) | 
					
						
						|  | config: fr | 
					
						
						|  | split: test | 
					
						
						|  | revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 91.28719072972127 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 91.28448045979604 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_domain | 
					
						
						|  | name: MTEB MTOPDomainClassification (hi) | 
					
						
						|  | config: hi | 
					
						
						|  | split: test | 
					
						
						|  | revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 88.8131946934385 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 88.27883019362747 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_domain | 
					
						
						|  | name: MTEB MTOPDomainClassification (th) | 
					
						
						|  | config: th | 
					
						
						|  | split: test | 
					
						
						|  | revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 85.52260397830018 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 85.15528226728568 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_intent | 
					
						
						|  | name: MTEB MTOPIntentClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 86.10807113543093 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.88498219072167 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_intent | 
					
						
						|  | name: MTEB MTOPIntentClassification (de) | 
					
						
						|  | config: de | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.77120315581854 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 57.97153920153224 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_intent | 
					
						
						|  | name: MTEB MTOPIntentClassification (es) | 
					
						
						|  | config: es | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 79.93995997331554 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 58.839203810064866 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_intent | 
					
						
						|  | name: MTEB MTOPIntentClassification (fr) | 
					
						
						|  | config: fr | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.801440651425 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 58.68009647839332 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_intent | 
					
						
						|  | name: MTEB MTOPIntentClassification (hi) | 
					
						
						|  | config: hi | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.90785227680172 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 49.83760954655788 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mtop_intent | 
					
						
						|  | name: MTEB MTOPIntentClassification (th) | 
					
						
						|  | config: th | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.24050632911391 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 52.0562553541082 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (af) | 
					
						
						|  | config: af | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 66.47948890383321 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 63.334877563135485 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (am) | 
					
						
						|  | config: am | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 44.2871553463349 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 43.17658050605427 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ar) | 
					
						
						|  | config: ar | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 63.174176193678555 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 59.236659587042425 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (az) | 
					
						
						|  | config: az | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 64.226630800269 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 60.951842696956184 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (bn) | 
					
						
						|  | config: bn | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 64.94283792871555 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 61.40057652844215 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (cy) | 
					
						
						|  | config: cy | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 55.480833893745796 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 52.5298332072816 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (da) | 
					
						
						|  | config: da | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.52858103564223 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 69.3770851919204 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (de) | 
					
						
						|  | config: de | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.09213180901143 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.13518469365879 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (el) | 
					
						
						|  | config: el | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 68.31203765971756 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 66.05906970865144 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 80.57162071284465 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.7866172598823 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (es) | 
					
						
						|  | config: es | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.09414929388029 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.5712594833695 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (fa) | 
					
						
						|  | config: fa | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.20914593140553 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 68.90619124909186 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (fi) | 
					
						
						|  | config: fi | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 68.74243443174176 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 64.72743141749955 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (fr) | 
					
						
						|  | config: fr | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.11096166778749 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.61849933064694 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (he) | 
					
						
						|  | config: he | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 66.22394082044384 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 62.43648797607235 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (hi) | 
					
						
						|  | config: hi | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.44855413584399 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 66.56851670913659 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (hu) | 
					
						
						|  | config: hu | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.4149293880296 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 66.12960877904776 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (hy) | 
					
						
						|  | config: hy | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 56.916610625420304 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 54.02534600927991 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (id) | 
					
						
						|  | config: id | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.71351714862138 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 69.70227985126316 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (is) | 
					
						
						|  | config: is | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 59.91257565568257 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 57.06811572144974 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (it) | 
					
						
						|  | config: it | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.25218560860793 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.48057563104247 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ja) | 
					
						
						|  | config: ja | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.35507733691998 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 73.03024649541128 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (jv) | 
					
						
						|  | config: jv | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 57.918628110289184 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 54.75590124456177 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ka) | 
					
						
						|  | config: ka | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 52.548755884330866 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 51.5356975360209 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (km) | 
					
						
						|  | config: km | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 46.44922663080027 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 44.561114416830975 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (kn) | 
					
						
						|  | config: kn | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 53.95763281775386 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 50.68367245122476 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ko) | 
					
						
						|  | config: ko | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.20645595158035 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.78450093258185 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (lv) | 
					
						
						|  | config: lv | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 59.226630800269 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 57.53988988993337 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ml) | 
					
						
						|  | config: ml | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 51.44922663080027 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 48.58809018065056 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (mn) | 
					
						
						|  | config: mn | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 51.3752521856086 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 49.91373941436425 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ms) | 
					
						
						|  | config: ms | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.85205110961668 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 67.05660019588582 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (my) | 
					
						
						|  | config: my | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 49.1492938802959 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 46.717578025393195 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (nb) | 
					
						
						|  | config: nb | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 70.93140551445865 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 67.45406609372205 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (nl) | 
					
						
						|  | config: nl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.82851378614662 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.15951964393868 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (pl) | 
					
						
						|  | config: pl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.84868863483524 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.76056802364877 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (pt) | 
					
						
						|  | config: pt | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.27236045729657 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.48733090101163 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ro) | 
					
						
						|  | config: ro | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.63012777404168 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 66.56444015346203 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ru) | 
					
						
						|  | config: ru | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.62743779421655 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 73.82720656992142 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (sl) | 
					
						
						|  | config: sl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 67.15198386012105 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 64.41418309797744 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (sq) | 
					
						
						|  | config: sq | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 58.8399462004035 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 56.050989519693886 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (sv) | 
					
						
						|  | config: sv | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.86684599865501 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.80682480844303 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (sw) | 
					
						
						|  | config: sw | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 57.36718224613316 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 54.998746471013774 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ta) | 
					
						
						|  | config: ta | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 53.150638870208475 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 49.79179342620099 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (te) | 
					
						
						|  | config: te | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 51.50638870208473 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 49.778960742003555 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (th) | 
					
						
						|  | config: th | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 66.906523201076 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 66.75784022138245 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (tl) | 
					
						
						|  | config: tl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 68.73234700739744 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 65.75016141148413 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (tr) | 
					
						
						|  | config: tr | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.06792199058508 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 67.90334782594083 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (ur) | 
					
						
						|  | config: ur | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 62.09145931405515 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 58.88703095210731 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (vi) | 
					
						
						|  | config: vi | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.17014122394083 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 68.43676277921544 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (zh-CN) | 
					
						
						|  | config: zh-CN | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.99327505043712 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.26813373392943 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_intent | 
					
						
						|  | name: MTEB MassiveIntentClassification (zh-TW) | 
					
						
						|  | config: zh-TW | 
					
						
						|  | split: test | 
					
						
						|  | revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.13987895090787 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.29309514467575 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (af) | 
					
						
						|  | config: af | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.37256220578345 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.56456170538992 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (am) | 
					
						
						|  | config: am | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 47.205783456624076 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 45.905999859074434 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ar) | 
					
						
						|  | config: ar | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.8352387357095 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 69.43553987525273 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (az) | 
					
						
						|  | config: az | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 67.00403496973773 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 65.97477215779143 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (bn) | 
					
						
						|  | config: bn | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 68.04976462676531 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 67.24581993778398 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (cy) | 
					
						
						|  | config: cy | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 61.882985877605925 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 59.995293199988794 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (da) | 
					
						
						|  | config: da | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.75857431069267 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 76.52031675299841 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (de) | 
					
						
						|  | config: de | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 79.03496973772697 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 79.25548063175344 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (el) | 
					
						
						|  | config: el | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.96570275722931 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.19110435289122 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 82.38735709482178 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 82.34495627619785 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (es) | 
					
						
						|  | config: es | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 78.83994620040352 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 78.91526355393667 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (fa) | 
					
						
						|  | config: fa | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.7350369872226 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 75.919437344927 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (fi) | 
					
						
						|  | config: fi | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 71.21721587088096 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.82973286243262 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (fr) | 
					
						
						|  | config: fr | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 78.59784801613988 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 78.47383161087423 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (he) | 
					
						
						|  | config: he | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.64021519838602 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 68.45118053027653 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (hi) | 
					
						
						|  | config: hi | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.51042367182245 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.90013022879003 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (hu) | 
					
						
						|  | config: hu | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.0551445864156 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 73.45871761713292 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (hy) | 
					
						
						|  | config: hy | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 59.54606590450571 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 57.72711794953869 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (id) | 
					
						
						|  | config: id | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.40753194351042 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 76.8157455506521 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (is) | 
					
						
						|  | config: is | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 66.58372562205783 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 65.2654868709758 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (it) | 
					
						
						|  | config: it | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 78.39273705447208 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 78.3592956594837 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ja) | 
					
						
						|  | config: ja | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 79.62004034969739 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 79.78673754501855 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (jv) | 
					
						
						|  | config: jv | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 64.29051782111634 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 63.12502587609454 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ka) | 
					
						
						|  | config: ka | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 57.51849361129791 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 56.32320906403241 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (km) | 
					
						
						|  | config: km | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 52.41761936785474 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 49.113762010098306 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (kn) | 
					
						
						|  | config: kn | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 58.547410894418284 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 56.87580674198118 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ko) | 
					
						
						|  | config: ko | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 78.89038332212507 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 79.09210140529848 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (lv) | 
					
						
						|  | config: lv | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 63.503698722259585 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 61.45718858568352 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ml) | 
					
						
						|  | config: ml | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 54.02824478816408 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 52.732738981386504 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (mn) | 
					
						
						|  | config: mn | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 54.23671822461331 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 52.688080372545286 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ms) | 
					
						
						|  | config: ms | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.5312710154674 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 74.59368478550698 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (my) | 
					
						
						|  | config: my | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 52.192333557498316 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 50.18302290152229 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (nb) | 
					
						
						|  | config: nb | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.6960322797579 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 75.25331182714856 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (nl) | 
					
						
						|  | config: nl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 78.47679892400808 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 78.24044732352424 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (pl) | 
					
						
						|  | config: pl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.36718224613315 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.2714452985389 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (pt) | 
					
						
						|  | config: pt | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.96234028244788 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 78.21282127011372 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ro) | 
					
						
						|  | config: ro | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.19435104236717 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 73.1963711292812 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ru) | 
					
						
						|  | config: ru | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 80.52118359112306 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 80.4179964390288 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (sl) | 
					
						
						|  | config: sl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.65837256220577 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 73.07156989634905 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (sq) | 
					
						
						|  | config: sq | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 64.02824478816409 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 62.972399027713664 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (sv) | 
					
						
						|  | config: sv | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 78.87020847343645 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 78.224240866849 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (sw) | 
					
						
						|  | config: sw | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 64.6570275722932 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 63.274871811412545 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ta) | 
					
						
						|  | config: ta | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 57.760591795561524 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 56.73711528075771 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (te) | 
					
						
						|  | config: te | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 57.26967047747142 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 55.74735330863165 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (th) | 
					
						
						|  | config: th | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 72.46133154001345 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 71.9644168952811 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (tl) | 
					
						
						|  | config: tl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.70880968392737 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 73.61543141070884 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (tr) | 
					
						
						|  | config: tr | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.0437121721587 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 74.83359868879921 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (ur) | 
					
						
						|  | config: ur | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 67.05110961667788 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 66.25869819274315 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (vi) | 
					
						
						|  | config: vi | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.52118359112306 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 75.92098546052303 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (zh-CN) | 
					
						
						|  | config: zh-CN | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 79.92938802958977 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 79.79833572573796 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/amazon_massive_scenario | 
					
						
						|  | name: MTEB MassiveScenarioClassification (zh-TW) | 
					
						
						|  | config: zh-TW | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7d571f92784cd94a019292a1f45445077d0ef634 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.86617350369872 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.42645654909516 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/MedicalRetrieval | 
					
						
						|  | name: MTEB MedicalRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: dev | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 44.6 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 50.019000000000005 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 50.611 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 50.67 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 48.699999999999996 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 49.455 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 44.800000000000004 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 50.119 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 50.711 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 50.77 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 48.8 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 49.555 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 44.6 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 52.754 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 55.935 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 57.607 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 50.012 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 51.393 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 44.6 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 6.140000000000001 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.77 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.09 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 17.933 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 11.44 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 44.6 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 61.4 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 77.0 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 90.4 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 53.800000000000004 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 57.199999999999996 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/medrxiv-clustering-p2p | 
					
						
						|  | name: MTEB MedrxivClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 38.192667527616315 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/medrxiv-clustering-s2s | 
					
						
						|  | name: MTEB MedrxivClusteringS2S | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 37.44738902946689 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/mind_small | 
					
						
						|  | name: MTEB MindSmallReranking | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 32.59661273103955 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 33.82024242497473 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/MultilingualSentiment-classification | 
					
						
						|  | name: MTEB MultilingualSentiment | 
					
						
						|  | config: default | 
					
						
						|  | split: validation | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.31333333333335 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 73.0873466527602 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: nfcorpus | 
					
						
						|  | name: MTEB NFCorpus | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 5.471 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 14.142 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 18.179000000000002 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 19.772000000000002 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 9.716 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 11.763 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 51.393 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 58.814 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 59.330000000000005 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 59.35 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 56.398 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 58.038999999999994 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 49.69 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 38.615 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 35.268 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 43.745 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 43.187 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 41.528999999999996 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 51.083999999999996 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 29.474 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 9.167 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 2.2089999999999996 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 40.351 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 36.285000000000004 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 5.471 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 19.242 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 37.14 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 68.35900000000001 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 10.896 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 14.75 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: nq | 
					
						
						|  | name: MTEB NQ | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 39.499 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 55.862 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 56.667 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 56.684999999999995 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 51.534 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 54.2 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 44.351 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 58.567 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 59.099000000000004 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 59.109 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 55.218999999999994 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 57.391999999999996 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 44.322 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 63.535 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 66.654 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 66.991 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 55.701 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 60.06700000000001 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 44.322 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 10.026 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.18 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.121 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 24.865000000000002 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 17.48 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 39.499 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 84.053 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 97.11 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 99.493 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 64.091 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 74.063 | 
					
						
						|  | - task: | 
					
						
						|  | type: PairClassification | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/OCNLI | 
					
						
						|  | name: MTEB Ocnli | 
					
						
						|  | config: default | 
					
						
						|  | split: validation | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_accuracy | 
					
						
						|  | value: 61.18029236599891 | 
					
						
						|  | - type: cos_sim_ap | 
					
						
						|  | value: 64.18398769398412 | 
					
						
						|  | - type: cos_sim_f1 | 
					
						
						|  | value: 67.96347757046446 | 
					
						
						|  | - type: cos_sim_precision | 
					
						
						|  | value: 54.4529262086514 | 
					
						
						|  | - type: cos_sim_recall | 
					
						
						|  | value: 90.3907074973601 | 
					
						
						|  | - type: dot_accuracy | 
					
						
						|  | value: 61.18029236599891 | 
					
						
						|  | - type: dot_ap | 
					
						
						|  | value: 64.18393484706077 | 
					
						
						|  | - type: dot_f1 | 
					
						
						|  | value: 67.96347757046446 | 
					
						
						|  | - type: dot_precision | 
					
						
						|  | value: 54.4529262086514 | 
					
						
						|  | - type: dot_recall | 
					
						
						|  | value: 90.3907074973601 | 
					
						
						|  | - type: euclidean_accuracy | 
					
						
						|  | value: 61.18029236599891 | 
					
						
						|  | - type: euclidean_ap | 
					
						
						|  | value: 64.18395024821486 | 
					
						
						|  | - type: euclidean_f1 | 
					
						
						|  | value: 67.96347757046446 | 
					
						
						|  | - type: euclidean_precision | 
					
						
						|  | value: 54.4529262086514 | 
					
						
						|  | - type: euclidean_recall | 
					
						
						|  | value: 90.3907074973601 | 
					
						
						|  | - type: manhattan_accuracy | 
					
						
						|  | value: 61.451001624255554 | 
					
						
						|  | - type: manhattan_ap | 
					
						
						|  | value: 64.38232708763513 | 
					
						
						|  | - type: manhattan_f1 | 
					
						
						|  | value: 68.05860805860804 | 
					
						
						|  | - type: manhattan_precision | 
					
						
						|  | value: 52.10319685922602 | 
					
						
						|  | - type: manhattan_recall | 
					
						
						|  | value: 98.09926082365365 | 
					
						
						|  | - type: max_accuracy | 
					
						
						|  | value: 61.451001624255554 | 
					
						
						|  | - type: max_ap | 
					
						
						|  | value: 64.38232708763513 | 
					
						
						|  | - type: max_f1 | 
					
						
						|  | value: 68.05860805860804 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/OnlineShopping-classification | 
					
						
						|  | name: MTEB OnlineShopping | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 92.19000000000001 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 89.73918431886767 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 92.17175032574507 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/PAWSX | 
					
						
						|  | name: MTEB PAWSX | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 15.079320253752224 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 16.813772504404263 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 19.476541162041762 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 16.813772498098782 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 19.497429832915277 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 16.869600674180607 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/QBQTC | 
					
						
						|  | name: MTEB QBQTC | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 30.36139599797913 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 31.80296402851347 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 30.10387888252793 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 31.80297780103808 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 30.86720382849436 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 32.70491131366606 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: quora | 
					
						
						|  | name: MTEB QuoraRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 71.911 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 86.087 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 86.701 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 86.715 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 83.231 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 85.051 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 82.75 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 88.759 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 88.844 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 88.844 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 87.935 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 88.504 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 82.75 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 89.605 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 90.664 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 90.733 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 87.03 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 88.473 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 82.75 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 13.575000000000001 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.539 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.157 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 38.153 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 25.008000000000003 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 71.911 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 96.261 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 99.72800000000001 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 99.993 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 88.762 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 92.949 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/reddit-clustering | 
					
						
						|  | name: MTEB RedditClustering | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 24640382cdbf8abc73003fb0fa6d111a705499eb | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 57.711581165572376 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/reddit-clustering-p2p | 
					
						
						|  | name: MTEB RedditClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 282350215ef01743dc01b456c7f5241fa8937f16 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 66.48938885750297 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: scidocs | 
					
						
						|  | name: MTEB SCIDOCS | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 3.7379999999999995 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 9.261 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 11.001 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 11.262 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 6.816 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 8.0 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 18.4 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 28.755999999999997 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 29.892000000000003 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 29.961 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 25.467000000000002 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 27.332 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 18.4 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 16.296 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 23.52 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 28.504 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 15.485 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 13.471 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 18.4 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 8.469999999999999 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.8950000000000002 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.309 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 14.6 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 11.84 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 3.7379999999999995 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 17.185 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 38.397 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 62.798 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 8.896999999999998 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 12.021999999999998 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sickr-sts | 
					
						
						|  | name: MTEB SICK-R | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: a6ea5a8cab320b040a23452cc28066d9beae2cee | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 86.43977757480083 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 82.64182475199533 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 83.71756009999591 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 82.64182331395057 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 83.8028936913025 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 82.71024597804252 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts12-sts | 
					
						
						|  | name: MTEB STS12 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: a0d554a64d88156834ff5ae9920b964011b16384 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 86.85653060698912 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 79.65598885228324 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 83.1205137628455 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 79.65629387709038 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 83.71108853545837 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 80.25617619716708 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts13-sts | 
					
						
						|  | name: MTEB STS13 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 88.22921688565664 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 88.42662103041957 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 87.91679798473325 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 88.42662103041957 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 88.16927537961303 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 88.81581680062541 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts14-sts | 
					
						
						|  | name: MTEB STS14 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 86.77261424554293 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 84.53930146434155 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 85.67420491389697 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 84.53929771783851 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 85.74306784515618 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 84.7399304675314 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts15-sts | 
					
						
						|  | name: MTEB STS15 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 89.86138395166455 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 90.42577823022054 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 89.8787763797515 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 90.42577823022054 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 89.9592937492158 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 90.63535505335524 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts16-sts | 
					
						
						|  | name: MTEB STS16 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 86.5176674585941 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 87.6842917085397 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 86.70213081520711 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 87.6842917085397 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 86.83702628983627 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 87.87791000374443 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts17-crosslingual-sts | 
					
						
						|  | name: MTEB STS17 (ko-ko) | 
					
						
						|  | config: ko-ko | 
					
						
						|  | split: test | 
					
						
						|  | revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 83.86395454805867 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 83.69454595252267 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 83.04743892608313 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 83.69454026433006 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 83.4032095553322 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 84.11527379013802 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts17-crosslingual-sts | 
					
						
						|  | name: MTEB STS17 (ar-ar) | 
					
						
						|  | config: ar-ar | 
					
						
						|  | split: test | 
					
						
						|  | revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 81.80249894729546 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 81.87004960533409 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 80.0392760044179 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 81.87004960533409 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 80.38096542355912 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 82.40774679630341 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts17-crosslingual-sts | 
					
						
						|  | name: MTEB STS17 (en-ar) | 
					
						
						|  | config: en-ar | 
					
						
						|  | split: test | 
					
						
						|  | revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 77.6158201787172 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 77.934651044009 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 77.7874683895269 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 77.934651044009 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 78.36151849193052 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 78.52439586349938 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts17-crosslingual-sts | 
					
						
						|  | name: MTEB STS17 (en-de) | 
					
						
						|  | config: en-de | 
					
						
						|  | split: test | 
					
						
						|  | revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 87.04363311392207 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 87.30483659369973 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 87.62634489502616 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 87.30483659369973 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 88.02340837141445 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 87.55012003294 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts17-crosslingual-sts | 
					
						
						|  | name: MTEB STS17 (en-en) | 
					
						
						|  | config: en-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 91.69172851958248 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 91.7546879482416 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 91.84843039183963 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 91.7546879482416 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 91.72325753804357 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 91.55330259513397 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts17-crosslingual-sts | 
					
						
						|  | name: MTEB STS17 (en-tr) | 
					
						
						|  | config: en-tr | 
					
						
						|  | split: test | 
					
						
						|  | revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 73.95572901084864 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 72.56217821552626 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 74.24242980323574 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 72.56217821552626 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 74.57473362519922 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 72.76048826648497 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts17-crosslingual-sts | 
					
						
						|  | name: MTEB STS17 (es-en) | 
					
						
						|  | config: es-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 86.93329396008296 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 88.2406635486219 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 87.49687343908533 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 88.2406635486219 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 88.14088309231084 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 88.93314020908534 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts17-crosslingual-sts | 
					
						
						|  | name: MTEB STS17 (es-es) | 
					
						
						|  | config: es-es | 
					
						
						|  | split: test | 
					
						
						|  | revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 88.70124451546057 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 87.45988160052252 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 88.44395505247728 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 87.45988160052252 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 88.69269783495425 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 87.65383425621 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts17-crosslingual-sts | 
					
						
						|  | name: MTEB STS17 (fr-en) | 
					
						
						|  | config: fr-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 87.64109149761346 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 88.06459637689733 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 88.02313315797703 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 88.06459637689733 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 88.28328539133253 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 88.06605708379142 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts17-crosslingual-sts | 
					
						
						|  | name: MTEB STS17 (it-en) | 
					
						
						|  | config: it-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 88.9040028177525 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 89.68152202933464 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 89.23684469601253 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 89.68152202933464 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 89.59504307277454 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 89.88060100313582 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts17-crosslingual-sts | 
					
						
						|  | name: MTEB STS17 (nl-en) | 
					
						
						|  | config: nl-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 87.69891585325125 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 88.25252785071736 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 87.99932873748662 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 88.25252785071736 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 88.26959683009446 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 88.32583227300715 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (en) | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 67.53235909794135 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 66.97521740529574 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 68.19502223613912 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 66.97521740529574 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 68.39070714774539 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 67.1072812364868 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (de) | 
					
						
						|  | config: de | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 43.715742021204775 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 49.12255971271453 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 40.76848562610837 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 49.12255971271453 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 40.92204625614112 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 49.23333793661129 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (es) | 
					
						
						|  | config: es | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 63.35268345563588 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 66.99661626042061 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 65.85589122857066 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 66.99661626042061 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 66.78454301512294 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 67.17570330149233 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (pl) | 
					
						
						|  | config: pl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 33.36599908204445 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 39.20768331939503 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 22.16066769530468 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 39.20768331939503 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 22.386053195546022 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 39.70172817465986 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (tr) | 
					
						
						|  | config: tr | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 63.06813956986753 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 68.72065117995668 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 66.97373456344194 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 68.72065117995668 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 67.34907265771595 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 68.73705769957843 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (ar) | 
					
						
						|  | config: ar | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 47.17664865207108 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 54.115568323148864 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 48.56418162879182 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 54.115568323148864 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 48.85951643453165 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 54.13599784169052 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (ru) | 
					
						
						|  | config: ru | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 55.87514136275987 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 60.82923573674973 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 53.724183308215615 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 60.82923573674973 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 53.954305573102445 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 60.957483900644526 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (zh) | 
					
						
						|  | config: zh | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 59.55001413648593 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 63.395777040381276 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 59.869972550293305 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 63.395777040381276 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 61.16195496847885 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 63.41968682525581 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (fr) | 
					
						
						|  | config: fr | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 79.13334972675852 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 79.86263136371802 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 78.2433603592541 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 79.86263136371802 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 78.87337106318412 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 80.31230584758441 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (de-en) | 
					
						
						|  | config: de-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 63.559700748242356 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 60.92342109509558 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 66.07256437521119 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 60.92342109509558 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 67.72769744612663 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 59.64714507774168 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (es-en) | 
					
						
						|  | config: es-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 73.93491616145891 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 75.84242594400156 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 74.87279745626121 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 75.84242594400156 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 76.47764144677505 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 77.08411157845183 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (it) | 
					
						
						|  | config: it | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 72.75624124540954 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 75.8667941654703 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 73.74314588451925 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 75.8667941654703 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 73.99641425871518 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 76.1982840205817 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (pl-en) | 
					
						
						|  | config: pl-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 75.20898141298767 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 73.18060375331436 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 75.44489280944619 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 73.18060375331436 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 75.65451039552286 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 72.97744006123156 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (zh-en) | 
					
						
						|  | config: zh-en | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 72.04278252247816 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 71.8846446821539 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 73.16043307050612 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 71.8846446821539 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 74.76905116839777 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 72.66237093518471 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (es-it) | 
					
						
						|  | config: es-it | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 71.71033173838558 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 75.043122881885 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 72.77579680345087 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 75.043122881885 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 72.99901534854922 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 75.15418335015957 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (de-fr) | 
					
						
						|  | config: de-fr | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 55.75733447190482 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 61.38968334176681 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 55.479231520643744 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 61.38968334176681 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 56.05230571465244 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 62.69383054007398 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (de-pl) | 
					
						
						|  | config: de-pl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 41.72244325050302 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 54.47476909084119 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 43.94629756436873 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 54.47476909084119 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 46.36533046394657 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 54.87509243633636 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sts22-crosslingual-sts | 
					
						
						|  | name: MTEB STS22 (fr-pl) | 
					
						
						|  | config: fr-pl | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 70.75183711835146 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 84.51542547285167 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 71.84188960126669 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 84.51542547285167 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 73.94847166379994 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 84.51542547285167 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/STSB | 
					
						
						|  | name: MTEB STSB | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 81.78690149086131 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 81.81202616916873 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 80.98792254251062 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 81.81202616916873 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 81.46953021346732 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 82.34259562492315 | 
					
						
						|  | - task: | 
					
						
						|  | type: STS | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stsbenchmark-sts | 
					
						
						|  | name: MTEB STSBenchmark | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 87.68273341294419 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 88.59927164210958 | 
					
						
						|  | - type: euclidean_pearson | 
					
						
						|  | value: 88.10745681818025 | 
					
						
						|  | - type: euclidean_spearman | 
					
						
						|  | value: 88.59927164210958 | 
					
						
						|  | - type: manhattan_pearson | 
					
						
						|  | value: 88.25166703784649 | 
					
						
						|  | - type: manhattan_spearman | 
					
						
						|  | value: 88.85343247873482 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/scidocs-reranking | 
					
						
						|  | name: MTEB SciDocsRR | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 86.3340463345719 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 96.5182611506141 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: scifact | 
					
						
						|  | name: MTEB SciFact | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 60.967000000000006 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 71.873 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 72.271 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 72.292 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 69.006 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 70.856 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 63.666999999999994 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 72.929 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 73.26 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 73.282 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 71.111 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 72.328 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 63.666999999999994 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 76.414 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 78.152 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 78.604 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 71.841 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 74.435 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 63.666999999999994 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 10.067 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 1.097 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.11299999999999999 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 27.667 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 18.467 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 60.967000000000006 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 88.922 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 96.667 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 100.0 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 77.228 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 83.428 | 
					
						
						|  | - task: | 
					
						
						|  | type: PairClassification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/sprintduplicatequestions-pairclassification | 
					
						
						|  | name: MTEB SprintDuplicateQuestions | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_accuracy | 
					
						
						|  | value: 99.82277227722773 | 
					
						
						|  | - type: cos_sim_ap | 
					
						
						|  | value: 95.66279851444406 | 
					
						
						|  | - type: cos_sim_f1 | 
					
						
						|  | value: 90.9367088607595 | 
					
						
						|  | - type: cos_sim_precision | 
					
						
						|  | value: 92.1025641025641 | 
					
						
						|  | - type: cos_sim_recall | 
					
						
						|  | value: 89.8 | 
					
						
						|  | - type: dot_accuracy | 
					
						
						|  | value: 99.82277227722773 | 
					
						
						|  | - type: dot_ap | 
					
						
						|  | value: 95.66279851444406 | 
					
						
						|  | - type: dot_f1 | 
					
						
						|  | value: 90.9367088607595 | 
					
						
						|  | - type: dot_precision | 
					
						
						|  | value: 92.1025641025641 | 
					
						
						|  | - type: dot_recall | 
					
						
						|  | value: 89.8 | 
					
						
						|  | - type: euclidean_accuracy | 
					
						
						|  | value: 99.82277227722773 | 
					
						
						|  | - type: euclidean_ap | 
					
						
						|  | value: 95.66279851444406 | 
					
						
						|  | - type: euclidean_f1 | 
					
						
						|  | value: 90.9367088607595 | 
					
						
						|  | - type: euclidean_precision | 
					
						
						|  | value: 92.1025641025641 | 
					
						
						|  | - type: euclidean_recall | 
					
						
						|  | value: 89.8 | 
					
						
						|  | - type: manhattan_accuracy | 
					
						
						|  | value: 99.82673267326733 | 
					
						
						|  | - type: manhattan_ap | 
					
						
						|  | value: 95.86094873177069 | 
					
						
						|  | - type: manhattan_f1 | 
					
						
						|  | value: 91.26788357178096 | 
					
						
						|  | - type: manhattan_precision | 
					
						
						|  | value: 90.06815968841285 | 
					
						
						|  | - type: manhattan_recall | 
					
						
						|  | value: 92.5 | 
					
						
						|  | - type: max_accuracy | 
					
						
						|  | value: 99.82673267326733 | 
					
						
						|  | - type: max_ap | 
					
						
						|  | value: 95.86094873177069 | 
					
						
						|  | - type: max_f1 | 
					
						
						|  | value: 91.26788357178096 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stackexchange-clustering | 
					
						
						|  | name: MTEB StackExchangeClustering | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 73.09533925852372 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stackexchange-clustering-p2p | 
					
						
						|  | name: MTEB StackExchangeClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 815ca46b2622cec33ccafc3735d572c266efdb44 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 45.90745648090035 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/stackoverflowdupquestions-reranking | 
					
						
						|  | name: MTEB StackOverflowDupQuestions | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 54.91147686504404 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 56.03900082760377 | 
					
						
						|  | - task: | 
					
						
						|  | type: Summarization | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/summeval | 
					
						
						|  | name: MTEB SummEval | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_pearson | 
					
						
						|  | value: 31.46908662038217 | 
					
						
						|  | - type: cos_sim_spearman | 
					
						
						|  | value: 31.40325730367437 | 
					
						
						|  | - type: dot_pearson | 
					
						
						|  | value: 31.469083969291894 | 
					
						
						|  | - type: dot_spearman | 
					
						
						|  | value: 31.40325730367437 | 
					
						
						|  | - task: | 
					
						
						|  | type: Reranking | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/T2Reranking | 
					
						
						|  | name: MTEB T2Reranking | 
					
						
						|  | config: default | 
					
						
						|  | split: dev | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map | 
					
						
						|  | value: 66.90300783402137 | 
					
						
						|  | - type: mrr | 
					
						
						|  | value: 77.06451972574179 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/T2Retrieval | 
					
						
						|  | name: MTEB T2Retrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: dev | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 25.82 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 72.32300000000001 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 76.198 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 76.281 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 50.719 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 62.326 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 86.599 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 89.751 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 89.876 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 89.88000000000001 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 89.151 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 89.519 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 86.599 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 80.676 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 85.03 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 85.854 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 82.057 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 80.537 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 86.599 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 40.373 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 4.95 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.514 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 71.918 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 60.246 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 25.82 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 79.905 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 93.88499999999999 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 98.073 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 52.623 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 66.233 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/TNews-classification | 
					
						
						|  | name: MTEB TNews | 
					
						
						|  | config: default | 
					
						
						|  | split: validation | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 47.050000000000004 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 45.704071498353294 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: trec-covid | 
					
						
						|  | name: MTEB TRECCOVID | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 0.243 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 2.278 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 14.221 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 33.474 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 0.7270000000000001 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 1.183 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 94.0 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 97.0 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 97.0 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 97.0 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 97.0 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 97.0 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 90.0 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 87.249 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 67.876 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 59.205 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 90.12299999999999 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 89.126 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 94.0 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 90.8 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 69.28 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 25.85 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 94.667 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 92.80000000000001 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 0.243 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 2.392 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 16.982 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 55.214 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 0.745 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 1.2229999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (sqi-eng) | 
					
						
						|  | config: sqi-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 70.5 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 67.05501804646966 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 65.73261904761904 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 70.5 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (fry-eng) | 
					
						
						|  | config: fry-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.14450867052022 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.98265895953759 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 69.26782273603082 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 75.14450867052022 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (kur-eng) | 
					
						
						|  | config: kur-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 33.170731707317074 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 29.92876500193573 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 28.669145894755648 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 33.170731707317074 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tur-eng) | 
					
						
						|  | config: tur-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.5 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.13333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 93.46666666666667 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.5 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (deu-eng) | 
					
						
						|  | config: deu-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 99.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 99.46666666666665 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 99.4 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 99.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (nld-eng) | 
					
						
						|  | config: nld-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.2 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 96.39999999999999 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 96.0 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.2 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ron-eng) | 
					
						
						|  | config: ron-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 94.5 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 92.99666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 92.31666666666666 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 94.5 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ang-eng) | 
					
						
						|  | config: ang-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 85.82089552238806 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 81.59203980099502 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 79.60199004975124 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 85.82089552238806 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ido-eng) | 
					
						
						|  | config: ido-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 79.5 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 75.11246031746032 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 73.38734126984127 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 79.5 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (jav-eng) | 
					
						
						|  | config: jav-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 44.390243902439025 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 38.48896631823461 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 36.57220286488579 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 44.390243902439025 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (isl-eng) | 
					
						
						|  | config: isl-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 90.2 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 87.57333333333334 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 86.34166666666665 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 90.2 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (slv-eng) | 
					
						
						|  | config: slv-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 88.82138517618469 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 85.98651854423423 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 84.79257073424753 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 88.82138517618469 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (cym-eng) | 
					
						
						|  | config: cym-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.04347826086956 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.32108147606868 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 70.37207357859532 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 77.04347826086956 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (kaz-eng) | 
					
						
						|  | config: kaz-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 53.04347826086957 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 46.88868184955141 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 44.71730105643149 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 53.04347826086957 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (est-eng) | 
					
						
						|  | config: est-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 68.0 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 62.891813186813195 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 61.037906162464985 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 68.0 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (heb-eng) | 
					
						
						|  | config: heb-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 86.3 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 82.82000000000001 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 81.25690476190475 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 86.3 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (gla-eng) | 
					
						
						|  | config: gla-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 68.87816646562122 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 63.53054933272062 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 61.47807816331196 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 68.87816646562122 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (mar-eng) | 
					
						
						|  | config: mar-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 74.4 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 68.99388888888889 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 66.81035714285713 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 74.4 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (lat-eng) | 
					
						
						|  | config: lat-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 90.5 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 87.93666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 86.825 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 90.5 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (bel-eng) | 
					
						
						|  | config: bel-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 90.7 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 88.09 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 86.85833333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 90.7 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (pms-eng) | 
					
						
						|  | config: pms-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 67.61904761904762 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 62.30239247214037 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 60.340702947845806 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 67.61904761904762 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (gle-eng) | 
					
						
						|  | config: gle-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.9 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 73.81285714285714 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 72.21570818070818 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 77.9 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (pes-eng) | 
					
						
						|  | config: pes-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 91.8 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 89.66666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 88.66666666666666 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 91.8 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (nob-eng) | 
					
						
						|  | config: nob-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 96.85666666666665 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 96.50833333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (bul-eng) | 
					
						
						|  | config: bul-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.39999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 93.98333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 93.30000000000001 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.39999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (cbk-eng) | 
					
						
						|  | config: cbk-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 85.0 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 81.31538461538462 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 79.70666666666666 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 85.0 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (hun-eng) | 
					
						
						|  | config: hun-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 91.60000000000001 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 89.81888888888888 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 89.08583333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 91.60000000000001 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (uig-eng) | 
					
						
						|  | config: uig-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 44.3 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 38.8623088023088 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 37.03755623461505 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 44.3 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (rus-eng) | 
					
						
						|  | config: rus-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.19999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 93.75 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 93.05 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.19999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (spa-eng) | 
					
						
						|  | config: spa-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 99.1 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 98.8 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 98.65 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 99.1 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (hye-eng) | 
					
						
						|  | config: hye-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.6765498652291 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 63.991785393402644 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 61.7343729944808 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 69.6765498652291 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tel-eng) | 
					
						
						|  | config: tel-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 50.0 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 42.79341029341029 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 40.25098358431692 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 50.0 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (afr-eng) | 
					
						
						|  | config: afr-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 89.7 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 87.19023809523809 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 86.12595238095237 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 89.7 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (mon-eng) | 
					
						
						|  | config: mon-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 42.72727272727273 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 37.78789518562245 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 36.24208471267295 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 42.72727272727273 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (arz-eng) | 
					
						
						|  | config: arz-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.26205450733752 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.72842833849123 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 68.93256464011182 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 75.26205450733752 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (hrv-eng) | 
					
						
						|  | config: hrv-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.19999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 93.96666666666668 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 93.42 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.19999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (nov-eng) | 
					
						
						|  | config: nov-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 76.26459143968872 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.40190419178747 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 70.84954604409856 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 76.26459143968872 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (gsw-eng) | 
					
						
						|  | config: gsw-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 59.82905982905983 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 52.2100122100122 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 49.52516619183286 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 59.82905982905983 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (nds-eng) | 
					
						
						|  | config: nds-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 81.69999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 77.41714285714286 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 75.64833333333334 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 81.69999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ukr-eng) | 
					
						
						|  | config: ukr-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.5 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.45 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 93.93333333333334 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.5 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (uzb-eng) | 
					
						
						|  | config: uzb-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 58.41121495327103 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 52.73495974430554 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 50.717067200712066 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 58.41121495327103 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (lit-eng) | 
					
						
						|  | config: lit-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.3 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 69.20371794871795 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 67.6597557997558 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 73.3 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ina-eng) | 
					
						
						|  | config: ina-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.5 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.51666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 95.05 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.5 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (lfn-eng) | 
					
						
						|  | config: lfn-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 78.4 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 73.88856643356644 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 72.01373015873016 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 78.4 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (zsm-eng) | 
					
						
						|  | config: zsm-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.3 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.09666666666668 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 93.53333333333332 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.3 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ita-eng) | 
					
						
						|  | config: ita-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 93.7 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 91.94 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 91.10833333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 93.7 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (cmn-eng) | 
					
						
						|  | config: cmn-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.8 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.89999999999999 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 95.46666666666668 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.8 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (lvs-eng) | 
					
						
						|  | config: lvs-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 70.5 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 66.00635642135641 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 64.36345238095238 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 70.5 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (glg-eng) | 
					
						
						|  | config: glg-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 92.4 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 90.44388888888889 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 89.5767857142857 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 92.4 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ceb-eng) | 
					
						
						|  | config: ceb-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 48.0 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 43.15372775372776 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 41.53152510162313 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 48.0 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (bre-eng) | 
					
						
						|  | config: bre-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 16.7 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 14.198431372549017 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 13.411765873015872 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 16.7 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ben-eng) | 
					
						
						|  | config: ben-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 85.7 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 81.81666666666666 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 80.10833333333332 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 85.7 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (swg-eng) | 
					
						
						|  | config: swg-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.64285714285714 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 64.745670995671 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 62.916666666666664 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 69.64285714285714 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (arq-eng) | 
					
						
						|  | config: arq-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 54.665203073545555 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 48.55366630916923 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 46.35683318998357 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 54.665203073545555 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (kab-eng) | 
					
						
						|  | config: kab-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 4.8 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 3.808587223587223 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 3.5653174603174604 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 4.8 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (fra-eng) | 
					
						
						|  | config: fra-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.77333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 95.39166666666667 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (por-eng) | 
					
						
						|  | config: por-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.39999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.44 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 93.975 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.39999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tat-eng) | 
					
						
						|  | config: tat-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 42.0 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 37.024908424908425 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 35.365992063492065 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 42.0 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (oci-eng) | 
					
						
						|  | config: oci-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 66.7 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 62.20460835058661 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 60.590134587634594 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 66.7 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (pol-eng) | 
					
						
						|  | config: pol-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 97.3 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 96.46666666666667 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 96.06666666666668 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 97.3 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (war-eng) | 
					
						
						|  | config: war-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 47.3 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 41.96905408317173 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 40.18741402116402 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 47.3 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (aze-eng) | 
					
						
						|  | config: aze-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 80.2 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 76.22690476190476 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 74.63539682539682 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 80.2 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (vie-eng) | 
					
						
						|  | config: vie-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.0 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.83333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 94.26666666666668 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.0 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (nno-eng) | 
					
						
						|  | config: nno-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 89.7 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 87.24333333333334 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 86.17 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 89.7 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (cha-eng) | 
					
						
						|  | config: cha-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 50.36496350364964 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 44.795520780922246 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 43.09002433090024 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 50.36496350364964 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (mhr-eng) | 
					
						
						|  | config: mhr-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 18.8 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 16.242864357864356 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 15.466596638655464 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 18.8 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (dan-eng) | 
					
						
						|  | config: dan-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.19999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 93.92333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 93.30833333333332 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.19999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ell-eng) | 
					
						
						|  | config: ell-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 93.4 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 91.42333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 90.50833333333334 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 93.4 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (amh-eng) | 
					
						
						|  | config: amh-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 26.190476190476193 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 22.05208151636723 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 21.09292328042328 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 26.190476190476193 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (pam-eng) | 
					
						
						|  | config: pam-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 17.2 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 14.021009731460952 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 13.1389886698243 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 17.2 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (hsb-eng) | 
					
						
						|  | config: hsb-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 78.67494824016563 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 74.24430641821947 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 72.50747642051991 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 78.67494824016563 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (srp-eng) | 
					
						
						|  | config: srp-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 94.19999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 92.54 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 91.75833333333334 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 94.19999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (epo-eng) | 
					
						
						|  | config: epo-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 90.2 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 87.78666666666666 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 86.69833333333334 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 90.2 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (kzj-eng) | 
					
						
						|  | config: kzj-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 14.7 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 12.19206214842218 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 11.526261904761904 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 14.7 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (awa-eng) | 
					
						
						|  | config: awa-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 73.16017316017316 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 67.44858316286889 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 65.23809523809523 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 73.16017316017316 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (fao-eng) | 
					
						
						|  | config: fao-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 75.19083969465649 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 70.33078880407125 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 68.3969465648855 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 75.19083969465649 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (mal-eng) | 
					
						
						|  | config: mal-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 62.154294032023294 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 55.86030821838681 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 53.53509623160277 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 62.154294032023294 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ile-eng) | 
					
						
						|  | config: ile-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 86.8 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 83.9652380952381 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 82.84242424242424 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 86.8 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (bos-eng) | 
					
						
						|  | config: bos-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 93.50282485875707 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 91.54425612052731 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 90.65442561205272 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 93.50282485875707 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (cor-eng) | 
					
						
						|  | config: cor-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 11.4 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 9.189775870222714 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 8.66189886502811 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 11.4 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (cat-eng) | 
					
						
						|  | config: cat-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 93.4 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 91.88666666666666 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 91.21444444444444 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 93.4 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (eus-eng) | 
					
						
						|  | config: eus-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 46.0 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 40.51069226095542 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 38.57804926010808 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 46.0 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (yue-eng) | 
					
						
						|  | config: yue-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 91.0 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 89.11333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 88.27000000000001 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 91.0 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (swe-eng) | 
					
						
						|  | config: swe-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 94.39999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 92.95 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 92.27000000000001 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 94.39999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (dtp-eng) | 
					
						
						|  | config: dtp-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 14.2 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 11.73701698770113 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 11.079207014736676 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 14.2 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (kat-eng) | 
					
						
						|  | config: kat-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 65.14745308310992 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 59.665707393589415 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 57.560853653346946 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 65.14745308310992 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (jpn-eng) | 
					
						
						|  | config: jpn-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.39999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.0 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 93.33333333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.39999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (csb-eng) | 
					
						
						|  | config: csb-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.56521739130434 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 62.92490118577074 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 60.27009222661397 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 69.56521739130434 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (xho-eng) | 
					
						
						|  | config: xho-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 40.140845070422536 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 35.96411804158283 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 34.89075869357559 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 40.140845070422536 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (orv-eng) | 
					
						
						|  | config: orv-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 65.86826347305389 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 59.646248628284546 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 57.22982606216139 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 65.86826347305389 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ind-eng) | 
					
						
						|  | config: ind-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 94.89999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 93.48333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 92.83666666666667 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 94.89999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tuk-eng) | 
					
						
						|  | config: tuk-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 47.783251231527096 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 42.006447302013804 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 40.12747105111637 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 47.783251231527096 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (max-eng) | 
					
						
						|  | config: max-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.71830985915493 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 64.80266212660578 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 63.08098591549296 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 69.71830985915493 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (swh-eng) | 
					
						
						|  | config: swh-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 67.94871794871796 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 61.59912309912309 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 59.17338217338218 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 67.94871794871796 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (hin-eng) | 
					
						
						|  | config: hin-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.39999999999999 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 95.28333333333335 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 94.75 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.39999999999999 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (dsb-eng) | 
					
						
						|  | config: dsb-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 70.14613778705638 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 65.4349338900487 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 63.57599255302805 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 70.14613778705638 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ber-eng) | 
					
						
						|  | config: ber-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 9.2 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 7.622184434339607 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 7.287048159682417 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 9.2 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tam-eng) | 
					
						
						|  | config: tam-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 77.85016286644951 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 72.83387622149837 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 70.58450959102424 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 77.85016286644951 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (slk-eng) | 
					
						
						|  | config: slk-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 90.8 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 88.84333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 87.96666666666665 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 90.8 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tgl-eng) | 
					
						
						|  | config: tgl-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 94.6 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 93.14 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 92.49833333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 94.6 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ast-eng) | 
					
						
						|  | config: ast-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 84.25196850393701 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 80.94488188976378 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 79.65879265091863 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 84.25196850393701 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (mkd-eng) | 
					
						
						|  | config: mkd-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 89.5 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 86.89666666666666 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 85.7 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 89.5 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (khm-eng) | 
					
						
						|  | config: khm-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 42.797783933518005 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 37.30617360155193 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 35.34933825792552 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 42.797783933518005 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ces-eng) | 
					
						
						|  | config: ces-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 96.1 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 94.93333333333332 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 94.38333333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 96.1 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tzl-eng) | 
					
						
						|  | config: tzl-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 54.807692307692314 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 49.506903353057204 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 47.54807692307693 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 54.807692307692314 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (urd-eng) | 
					
						
						|  | config: urd-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 87.1 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 83.61857142857143 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 81.975 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 87.1 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (ara-eng) | 
					
						
						|  | config: ara-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 91.10000000000001 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 88.76333333333332 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 87.67 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 91.10000000000001 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (kor-eng) | 
					
						
						|  | config: kor-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 93.10000000000001 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 91.28999999999999 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 90.44500000000001 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 93.10000000000001 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (yid-eng) | 
					
						
						|  | config: yid-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 39.97641509433962 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 33.12271889998028 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 30.95185381542554 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 39.97641509433962 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (fin-eng) | 
					
						
						|  | config: fin-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 92.60000000000001 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 90.69 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 89.84500000000001 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 92.60000000000001 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (tha-eng) | 
					
						
						|  | config: tha-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 95.07299270072993 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 93.64355231143554 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 92.94403892944038 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 95.07299270072993 | 
					
						
						|  | - task: | 
					
						
						|  | type: BitextMining | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tatoeba-bitext-mining | 
					
						
						|  | name: MTEB Tatoeba (wuu-eng) | 
					
						
						|  | config: wuu-eng | 
					
						
						|  | split: test | 
					
						
						|  | revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 91.9 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 89.61333333333333 | 
					
						
						|  | - type: precision | 
					
						
						|  | value: 88.53333333333333 | 
					
						
						|  | - type: recall | 
					
						
						|  | value: 91.9 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/ThuNewsClusteringP2P | 
					
						
						|  | name: MTEB ThuNewsClusteringP2P | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 64.68478289806511 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/ThuNewsClusteringS2S | 
					
						
						|  | name: MTEB ThuNewsClusteringS2S | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 57.53010296184097 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: webis-touche2020 | 
					
						
						|  | name: MTEB Touche2020 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 2.519 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 10.31 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 16.027 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 17.827 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 5.721 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 7.7829999999999995 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 34.694 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 52.642999999999994 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 53.366 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 53.366 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 48.638999999999996 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 50.578 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 31.633 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 26.394000000000002 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 36.41 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 49.206 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 31.694 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 29.529 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 34.694 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 23.469 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 7.286 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 1.5610000000000002 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 34.014 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 29.796 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 2.519 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 17.091 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 45.429 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 84.621 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 7.208 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 10.523 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/toxic_conversations_50k | 
					
						
						|  | name: MTEB ToxicConversationsClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 69.58659999999999 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 14.735696532619 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 54.23517220069903 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/tweet_sentiment_extraction | 
					
						
						|  | name: MTEB TweetSentimentExtractionClassification | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: d604517c81ca91fe16a244d1248fc021f9ecee7a | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 63.723825693265425 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 64.02405729449103 | 
					
						
						|  | - task: | 
					
						
						|  | type: Clustering | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/twentynewsgroups-clustering | 
					
						
						|  | name: MTEB TwentyNewsgroupsClustering | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: v_measure | 
					
						
						|  | value: 54.310161547491006 | 
					
						
						|  | - task: | 
					
						
						|  | type: PairClassification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/twittersemeval2015-pairclassification | 
					
						
						|  | name: MTEB TwitterSemEval2015 | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_accuracy | 
					
						
						|  | value: 88.77630088812064 | 
					
						
						|  | - type: cos_sim_ap | 
					
						
						|  | value: 81.61725457333809 | 
					
						
						|  | - type: cos_sim_f1 | 
					
						
						|  | value: 74.91373801916932 | 
					
						
						|  | - type: cos_sim_precision | 
					
						
						|  | value: 72.63940520446097 | 
					
						
						|  | - type: cos_sim_recall | 
					
						
						|  | value: 77.33509234828496 | 
					
						
						|  | - type: dot_accuracy | 
					
						
						|  | value: 88.77630088812064 | 
					
						
						|  | - type: dot_ap | 
					
						
						|  | value: 81.61725317476251 | 
					
						
						|  | - type: dot_f1 | 
					
						
						|  | value: 74.91373801916932 | 
					
						
						|  | - type: dot_precision | 
					
						
						|  | value: 72.63940520446097 | 
					
						
						|  | - type: dot_recall | 
					
						
						|  | value: 77.33509234828496 | 
					
						
						|  | - type: euclidean_accuracy | 
					
						
						|  | value: 88.77630088812064 | 
					
						
						|  | - type: euclidean_ap | 
					
						
						|  | value: 81.61724596869566 | 
					
						
						|  | - type: euclidean_f1 | 
					
						
						|  | value: 74.91373801916932 | 
					
						
						|  | - type: euclidean_precision | 
					
						
						|  | value: 72.63940520446097 | 
					
						
						|  | - type: euclidean_recall | 
					
						
						|  | value: 77.33509234828496 | 
					
						
						|  | - type: manhattan_accuracy | 
					
						
						|  | value: 88.67497168742922 | 
					
						
						|  | - type: manhattan_ap | 
					
						
						|  | value: 81.430251048948 | 
					
						
						|  | - type: manhattan_f1 | 
					
						
						|  | value: 74.79593118171543 | 
					
						
						|  | - type: manhattan_precision | 
					
						
						|  | value: 71.3635274382938 | 
					
						
						|  | - type: manhattan_recall | 
					
						
						|  | value: 78.57519788918206 | 
					
						
						|  | - type: max_accuracy | 
					
						
						|  | value: 88.77630088812064 | 
					
						
						|  | - type: max_ap | 
					
						
						|  | value: 81.61725457333809 | 
					
						
						|  | - type: max_f1 | 
					
						
						|  | value: 74.91373801916932 | 
					
						
						|  | - task: | 
					
						
						|  | type: PairClassification | 
					
						
						|  | dataset: | 
					
						
						|  | type: mteb/twitterurlcorpus-pairclassification | 
					
						
						|  | name: MTEB TwitterURLCorpus | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf | 
					
						
						|  | metrics: | 
					
						
						|  | - type: cos_sim_accuracy | 
					
						
						|  | value: 89.85136026700819 | 
					
						
						|  | - type: cos_sim_ap | 
					
						
						|  | value: 87.74656687446567 | 
					
						
						|  | - type: cos_sim_f1 | 
					
						
						|  | value: 80.3221673073403 | 
					
						
						|  | - type: cos_sim_precision | 
					
						
						|  | value: 76.56871640957633 | 
					
						
						|  | - type: cos_sim_recall | 
					
						
						|  | value: 84.46258084385587 | 
					
						
						|  | - type: dot_accuracy | 
					
						
						|  | value: 89.85136026700819 | 
					
						
						|  | - type: dot_ap | 
					
						
						|  | value: 87.74656471395072 | 
					
						
						|  | - type: dot_f1 | 
					
						
						|  | value: 80.3221673073403 | 
					
						
						|  | - type: dot_precision | 
					
						
						|  | value: 76.56871640957633 | 
					
						
						|  | - type: dot_recall | 
					
						
						|  | value: 84.46258084385587 | 
					
						
						|  | - type: euclidean_accuracy | 
					
						
						|  | value: 89.85136026700819 | 
					
						
						|  | - type: euclidean_ap | 
					
						
						|  | value: 87.74656885754466 | 
					
						
						|  | - type: euclidean_f1 | 
					
						
						|  | value: 80.3221673073403 | 
					
						
						|  | - type: euclidean_precision | 
					
						
						|  | value: 76.56871640957633 | 
					
						
						|  | - type: euclidean_recall | 
					
						
						|  | value: 84.46258084385587 | 
					
						
						|  | - type: manhattan_accuracy | 
					
						
						|  | value: 89.86300306593705 | 
					
						
						|  | - type: manhattan_ap | 
					
						
						|  | value: 87.78807479093082 | 
					
						
						|  | - type: manhattan_f1 | 
					
						
						|  | value: 80.31663429471911 | 
					
						
						|  | - type: manhattan_precision | 
					
						
						|  | value: 76.63472970137772 | 
					
						
						|  | - type: manhattan_recall | 
					
						
						|  | value: 84.3701878657222 | 
					
						
						|  | - type: max_accuracy | 
					
						
						|  | value: 89.86300306593705 | 
					
						
						|  | - type: max_ap | 
					
						
						|  | value: 87.78807479093082 | 
					
						
						|  | - type: max_f1 | 
					
						
						|  | value: 80.3221673073403 | 
					
						
						|  | - task: | 
					
						
						|  | type: Retrieval | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/VideoRetrieval | 
					
						
						|  | name: MTEB VideoRetrieval | 
					
						
						|  | config: default | 
					
						
						|  | split: dev | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: map_at_1 | 
					
						
						|  | value: 32.4 | 
					
						
						|  | - type: map_at_10 | 
					
						
						|  | value: 40.961999999999996 | 
					
						
						|  | - type: map_at_100 | 
					
						
						|  | value: 41.660000000000004 | 
					
						
						|  | - type: map_at_1000 | 
					
						
						|  | value: 41.721000000000004 | 
					
						
						|  | - type: map_at_3 | 
					
						
						|  | value: 38.550000000000004 | 
					
						
						|  | - type: map_at_5 | 
					
						
						|  | value: 40.06 | 
					
						
						|  | - type: mrr_at_1 | 
					
						
						|  | value: 32.4 | 
					
						
						|  | - type: mrr_at_10 | 
					
						
						|  | value: 40.961999999999996 | 
					
						
						|  | - type: mrr_at_100 | 
					
						
						|  | value: 41.660000000000004 | 
					
						
						|  | - type: mrr_at_1000 | 
					
						
						|  | value: 41.721000000000004 | 
					
						
						|  | - type: mrr_at_3 | 
					
						
						|  | value: 38.550000000000004 | 
					
						
						|  | - type: mrr_at_5 | 
					
						
						|  | value: 40.06 | 
					
						
						|  | - type: ndcg_at_1 | 
					
						
						|  | value: 32.4 | 
					
						
						|  | - type: ndcg_at_10 | 
					
						
						|  | value: 45.388 | 
					
						
						|  | - type: ndcg_at_100 | 
					
						
						|  | value: 49.012 | 
					
						
						|  | - type: ndcg_at_1000 | 
					
						
						|  | value: 50.659 | 
					
						
						|  | - type: ndcg_at_3 | 
					
						
						|  | value: 40.47 | 
					
						
						|  | - type: ndcg_at_5 | 
					
						
						|  | value: 43.232 | 
					
						
						|  | - type: precision_at_1 | 
					
						
						|  | value: 32.4 | 
					
						
						|  | - type: precision_at_10 | 
					
						
						|  | value: 5.94 | 
					
						
						|  | - type: precision_at_100 | 
					
						
						|  | value: 0.769 | 
					
						
						|  | - type: precision_at_1000 | 
					
						
						|  | value: 0.09 | 
					
						
						|  | - type: precision_at_3 | 
					
						
						|  | value: 15.333 | 
					
						
						|  | - type: precision_at_5 | 
					
						
						|  | value: 10.56 | 
					
						
						|  | - type: recall_at_1 | 
					
						
						|  | value: 32.4 | 
					
						
						|  | - type: recall_at_10 | 
					
						
						|  | value: 59.4 | 
					
						
						|  | - type: recall_at_100 | 
					
						
						|  | value: 76.9 | 
					
						
						|  | - type: recall_at_1000 | 
					
						
						|  | value: 90.0 | 
					
						
						|  | - type: recall_at_3 | 
					
						
						|  | value: 46.0 | 
					
						
						|  | - type: recall_at_5 | 
					
						
						|  | value: 52.800000000000004 | 
					
						
						|  | - task: | 
					
						
						|  | type: Classification | 
					
						
						|  | dataset: | 
					
						
						|  | type: C-MTEB/waimai-classification | 
					
						
						|  | name: MTEB Waimai | 
					
						
						|  | config: default | 
					
						
						|  | split: test | 
					
						
						|  | revision: None | 
					
						
						|  | metrics: | 
					
						
						|  | - type: accuracy | 
					
						
						|  | value: 86.94000000000001 | 
					
						
						|  | - type: ap | 
					
						
						|  | value: 70.57373468481975 | 
					
						
						|  | - type: f1 | 
					
						
						|  | value: 85.26264784928323 | 
					
						
						|  | language: | 
					
						
						|  | - en | 
					
						
						|  | license: mit | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | ## E5-mistral-7b-instruct | 
					
						
						|  |  | 
					
						
						|  | [Improving Text Embeddings with Large Language Models](https://arxiv.org/pdf/2401.00368.pdf). Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, Furu Wei, arXiv 2024 | 
					
						
						|  |  | 
					
						
						|  | This model has 32 layers and the embedding size is 4096. | 
					
						
						|  |  | 
					
						
						|  | ## Usage | 
					
						
						|  |  | 
					
						
						|  | Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  |  | 
					
						
						|  | from torch import Tensor | 
					
						
						|  | from transformers import AutoTokenizer, AutoModel | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def last_token_pool(last_hidden_states: Tensor, | 
					
						
						|  | attention_mask: Tensor) -> Tensor: | 
					
						
						|  | left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) | 
					
						
						|  | if left_padding: | 
					
						
						|  | return last_hidden_states[:, -1] | 
					
						
						|  | else: | 
					
						
						|  | sequence_lengths = attention_mask.sum(dim=1) - 1 | 
					
						
						|  | batch_size = last_hidden_states.shape[0] | 
					
						
						|  | return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_detailed_instruct(task_description: str, query: str) -> str: | 
					
						
						|  | return f'Instruct: {task_description}\nQuery: {query}' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | # Each query must come with a one-sentence instruction that describes the task | 
					
						
						|  | task = 'Given a web search query, retrieve relevant passages that answer the query' | 
					
						
						|  | queries = [ | 
					
						
						|  | get_detailed_instruct(task, 'how much protein should a female eat'), | 
					
						
						|  | get_detailed_instruct(task, 'summit define') | 
					
						
						|  | ] | 
					
						
						|  | # No need to add instruction for retrieval documents | 
					
						
						|  | documents = [ | 
					
						
						|  | "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", | 
					
						
						|  | "Definition of summit for English Language Learners. : 1  the highest point of a mountain : the top of a mountain. : 2  the highest level. : 3  a meeting or series of meetings between the leaders of two or more governments." | 
					
						
						|  | ] | 
					
						
						|  | input_texts = queries + documents | 
					
						
						|  |  | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct') | 
					
						
						|  | model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct') | 
					
						
						|  |  | 
					
						
						|  | max_length = 4096 | 
					
						
						|  | # Tokenize the input texts | 
					
						
						|  | batch_dict = tokenizer(input_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True) | 
					
						
						|  | # append eos_token_id to every input_ids | 
					
						
						|  | batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']] | 
					
						
						|  | batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt') | 
					
						
						|  |  | 
					
						
						|  | outputs = model(**batch_dict) | 
					
						
						|  | embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) | 
					
						
						|  |  | 
					
						
						|  | # normalize embeddings | 
					
						
						|  | embeddings = F.normalize(embeddings, p=2, dim=1) | 
					
						
						|  | scores = (embeddings[:2] @ embeddings[2:].T) * 100 | 
					
						
						|  | print(scores.tolist()) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Supported Languages | 
					
						
						|  |  | 
					
						
						|  | This model is initialized from [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 
					
						
						|  | and fine-tuned on a mixture of multilingual datasets. | 
					
						
						|  | As a result, it has some multilingual capability. | 
					
						
						|  | However, since Mistral-7B-v0.1 is mainly trained on English data, we recommend using this model for English only. | 
					
						
						|  | For multilingual use cases, please refer to [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large). | 
					
						
						|  |  | 
					
						
						|  | ## MTEB Benchmark Evaluation | 
					
						
						|  |  | 
					
						
						|  | Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results | 
					
						
						|  | on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). | 
					
						
						|  |  | 
					
						
						|  | ## FAQ | 
					
						
						|  |  | 
					
						
						|  | **1. Do I need to add instructions to the query?** | 
					
						
						|  |  | 
					
						
						|  | Yes, this is how the model is trained, otherwise you will see a performance degradation. | 
					
						
						|  | The task definition should be a one-sentence instruction that describes the task. | 
					
						
						|  | This is a way to customize text embeddings for different scenarios through natural language instructions. | 
					
						
						|  |  | 
					
						
						|  | Please check out [unilm/e5/utils.py](https://github.com/microsoft/unilm/blob/9c0f1ff7ca53431fe47d2637dfe253643d94185b/e5/utils.py#L106) for instructions we used for evaluation. | 
					
						
						|  |  | 
					
						
						|  | On the other hand, there is no need to add instructions to the document side. | 
					
						
						|  |  | 
					
						
						|  | **2. Why are my reproduced results slightly different from reported in the model card?** | 
					
						
						|  |  | 
					
						
						|  | Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. | 
					
						
						|  |  | 
					
						
						|  | **3. Where are the LoRA-only weights?** | 
					
						
						|  |  | 
					
						
						|  | You can find the LoRA-only weights at [https://huggingface.co/intfloat/e5-mistral-7b-instruct/tree/main/lora](https://huggingface.co/intfloat/e5-mistral-7b-instruct/tree/main/lora). | 
					
						
						|  |  | 
					
						
						|  | ## Citation | 
					
						
						|  |  | 
					
						
						|  | If you find our paper or models helpful, please consider cite as follows: | 
					
						
						|  |  | 
					
						
						|  | ```bibtex | 
					
						
						|  | @article{wang2023improving, | 
					
						
						|  | title={Improving Text Embeddings with Large Language Models}, | 
					
						
						|  | author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Yang, Linjun and Majumder, Rangan and Wei, Furu}, | 
					
						
						|  | journal={arXiv preprint arXiv:2401.00368}, | 
					
						
						|  | year={2023} | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | @article{wang2022text, | 
					
						
						|  | title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, | 
					
						
						|  | author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, | 
					
						
						|  | journal={arXiv preprint arXiv:2212.03533}, | 
					
						
						|  | year={2022} | 
					
						
						|  | } | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Limitations | 
					
						
						|  |  | 
					
						
						|  | Using this model for inputs longer than 4096 tokens is not recommended. | 
					
						
						|  |  | 
					
						
						|  | This model's multilingual capability is still inferior to [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) for some cases. | 
					
						
						|  |  | 
					
						
						|  |  |