metadata
			license: apple-amlr
license_name: apple-sample-code-license
license_link: LICENSE
A CLIP (Contrastive Language-Image Pre-training) model trained on DFN-2B. Data Filtering Networks (DFNs) are small networks used to automatically filter large pools of uncurated data. This model was trained on 2B images that were filtered from a pool of 12.8B uncurated image-text pairs (12.8B image-text pairs from CommonPool-12.8B).
These weights are directly usable in OpenCLIP (image + text).
Model Details
- Model Type: Contrastive Image-Text, Zero-Shot Image Classification.
- Dataset: DFN-2b
- Papers:- Data Filtering Networks: https://arxiv.org/abs/2309.17425
 
- Examples Seen: 12.8B
Model Metrics
| Dataset | Metric | 
|---|---|
| ImageNet 1k | 0.76236 | 
| Caltech-101 | 0.942894 | 
| CIFAR-10 | 0.9672 | 
| CIFAR-100 | 0.8347 | 
| CLEVR Counts | 0.232333 | 
| CLEVR Distance | 0.245267 | 
| Country211 | 0.19545 | 
| Describable Textures | 0.575532 | 
| EuroSAT | 0.54 | 
| FGVC Aircraft | 0.248503 | 
| Food-101 | 0.91303 | 
| GTSRB | 0.469913 | 
| ImageNet Sketch | 0.620684 | 
| ImageNet v2 | 0.682 | 
| ImageNet-A | 0.482133 | 
| ImageNet-O | 0.493 | 
| ImageNet-R | 0.830967 | 
| KITTI Vehicle Distance | 0.192686 | 
| MNIST | 0.782 | 
| ObjectNet | 0.631851 | 
| Oxford Flowers-102 | 0.819895 | 
| Oxford-IIIT Pet | 0.936907 | 
| Pascal VOC 2007 | 0.788528 | 
| PatchCamelyon | 0.521545 | 
| Rendered SST2 | 0.486546 | 
| RESISC45 | 0.61381 | 
| Stanford Cars | 0.90735 | 
| STL-10 | 0.97525 | 
| SUN397 | 0.714162 | 
| SVHN | 0.598955 | 
| Flickr | 0.7728 | 
| MSCOCO | 0.518773 | 
| WinoGAViL | 0.541748 | 
| iWildCam | 0.155574 | 
| Camelyon17 | 0.499283 | 
| FMoW | 0.141149 | 
| Dollar Street | 0.625 | 
| GeoDE | 0.891023 | 
| Average | 0.609232 | 
Model Usage
With OpenCLIP
import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer 
model, preprocess = create_model_from_pretrained('hf-hub:apple/DFN2B-CLIP-ViT-B-16')
tokenizer = get_tokenizer('ViT-B-16')
image = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)
labels_list = ["a dog", "a cat", "a donut", "a beignet"]
text = tokenizer(labels_list, context_length=model.context_length)
with torch.no_grad(), torch.cuda.amp.autocast():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    image_features = F.normalize(image_features, dim=-1)
    text_features = F.normalize(text_features, dim=-1)
    text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)
zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]]))
print("Label probabilities: ", zipped_list)
Citation
@article{fang2023data,
  title={Data Filtering Networks},
  author={Fang, Alex and Jose, Albin Madappally and Jain, Amit and Schmidt, Ludwig and Toshev, Alexander and Shankar, Vaishaal},
  journal={arXiv preprint arXiv:2309.17425},
  year={2023}
}

