anuragrawal's picture
End of training
fd50ca4
|
raw
history blame
3.02 kB
metadata
license: apache-2.0
base_model: google/flan-t5-base
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: flan-t5-base-YT-transcript-sum
    results: []

flan-t5-base-YT-transcript-sum

This model is a fine-tuned version of google/flan-t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4118
  • Rouge1: 25.4884
  • Rouge2: 12.9544
  • Rougel: 21.8085
  • Rougelsum: 23.7402
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 216 1.5856 23.6948 11.0722 20.1382 22.2371 18.9722
No log 2.0 432 1.4956 23.9099 11.6734 20.4638 22.2083 19.0
1.7743 3.0 648 1.4517 24.8274 12.1689 21.0773 23.1354 19.0
1.7743 4.0 864 1.4334 25.0091 12.4359 21.3687 23.3004 18.9769
1.4377 5.0 1080 1.4175 25.4136 12.792 21.5903 23.5516 18.9815
1.4377 6.0 1296 1.4118 25.4884 12.9544 21.8085 23.7402 19.0
1.2819 7.0 1512 1.4144 25.6073 13.4263 22.1348 24.0203 19.0
1.2819 8.0 1728 1.4181 25.8727 13.5153 22.2189 24.211 19.0
1.2819 9.0 1944 1.4174 25.8817 13.9496 22.4955 24.3655 19.0
1.1716 10.0 2160 1.4193 26.2123 13.7931 22.4856 24.6381 19.0
1.1716 11.0 2376 1.4188 25.7062 13.6106 22.1476 24.1384 19.0
1.0947 12.0 2592 1.4243 26.0097 13.9708 22.4699 24.4448 19.0
1.0947 13.0 2808 1.4307 26.0922 14.1617 22.5681 24.513 18.9954
1.0566 14.0 3024 1.4311 25.9908 13.8775 22.448 24.4268 18.9954
1.0566 15.0 3240 1.4347 26.1238 13.9542 22.5653 24.5333 18.9954

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3