Alright — let’s go deep into Advanced RAG (Retrieval-Augmented Generation) and Fine-Tuning with Transformers, with both theory and code so you’ll understand not just what to do, but why it works.
We’ll break this into 5 layers of understanding:
1. Advanced RAG: What It Is and Why It’s Used
Retrieval-Augmented Generation (RAG) is an LLM technique that:
Combines retrieval (from external data sources) with generation (from a transformer-based language model).
Allows your LLM to answer with knowledge it didn’t train on, while keeping the model small and up-to-date.
Reduces hallucinations by grounding responses in retrieved documents.
Pipeline:
Query → Embed Query → Vector Search → Retrieve Relevant Chunks → Context Merge → LLM Generates Answer
Core Components:
Document Store — FAISS, Milvus, Pinecone, Weaviate.
Embedding Model — e.g., sentence-transformers or OpenAI's text-embedding-ada-002.
Retriever — converts query to vector and finds top-k matches.
= Generator (LLM) — e.g., LLaMA-2, GPT, Mistral.
Advanced RAG vs Basic RAG:
Feature | Basic RAG | Advanced RAG |
---|---|---|
Retrieval | Static embeddings | Dynamic embeddings + query rewriting |
Ranking | Vector similarity | Hybrid search (vector + keyword) |
Context | Fixed-size chunk | Adaptive chunking & reranking |
LLM Usage | Plain prompt | Structured prompts + reasoning |
2. Advanced Fine-Tuning
Fine-tuning is different from RAG:
RAG: Doesn’t change model weights, adds external data at inference.
Fine-tuning: Updates model weights to adapt to your data.
Types of fine-tuning with Transformers:
Full fine-tuning — retrain all weights (costly).
LoRA (Low-Rank Adaptation) — add small trainable adapters to layers.
PEFT (Parameter-Efficient Fine-Tuning) — train small subset of weights.
Prefix Tuning / Prompt Tuning — learn continuous prompt vectors.
When to fine-tune instead of RAG:
Domain-specific language or style (e.g., medical reports).
Adding reasoning patterns.
Reducing prompt length for frequent queries.
3. Code: Advanced RAG with Transformers + FAISS
Here’s a minimal but advanced RAG pipeline using Hugging Face + FAISS + Transformers.
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
# 1. Load embedding model
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
# 2. Create FAISS index
dimension = embed_model.get_sentence_embedding_dimension()
index = faiss.IndexFlatL2(dimension)
# 3. Example documents
docs = [
"RAG combines retrieval and generation to enhance LLM capabilities.",
"Fine-tuning updates model weights to adapt to specific data.",
"FAISS enables efficient similarity search for embeddings."
]
# 4. Embed documents and store in FAISS
doc_embeddings = embed_model.encode(docs)
index.add(np.array(doc_embeddings))
# 5. Load LLM
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large")
generator = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
# 6. RAG query
def rag_query(query, top_k=2):
query_vec = embed_model.encode([query])
scores, ids = index.search(np.array(query_vec), top_k)
retrieved = [docs[i] for i in ids[0]]
context = "\n".join(retrieved)
prompt = f"Answer based on the context:\n{context}\nQuestion: {query}"
return generator(prompt, max_length=200)[0]['generated_text']
print(rag_query("What is the difference between RAG and fine-tuning?"))
4. Code: Fine-Tuning a Transformer with LoRA (PEFT)
Here’s LoRA-based fine-tuning for efficiency.
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
from peft import LoraConfig, get_peft_model
from datasets import load_dataset
# 1. Load dataset
dataset = load_dataset("json", data_files="train_data.json")
# 2. Load tokenizer and model
model_name = "EleutherAI/gpt-neo-1.3B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# 3. LoRA config
lora_config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
# 4. Tokenize data
def tokenize(batch):
return tokenizer(batch['text'], truncation=True, padding="max_length", max_length=512)
dataset = dataset.map(tokenize, batched=True)
# 5. Training setup
training_args = TrainingArguments(
output_dir="./lora-finetuned",
per_device_train_batch_size=2,
num_train_epochs=3,
logging_dir="./logs",
logging_steps=10,
save_strategy="epoch"
)
# 6. Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"]
)
trainer.train()
5. Combining Advanced RAG + Fine-Tuning
You can fine-tune your LLM for retrieval-augmented prompts:
Use LoRA to teach the LLM how to interpret retrieved chunks effectively.
Keep FAISS or Pinecone for dynamic retrieval.
This creates a retrieval-aware LLM — it won’t just parrot the chunks, but summarize, reason, and filter.
Workflow:
Build a RAG pipeline.
Log real user queries + retrieved documents + correct answers.
Fine-tune the LLM on these (instruction tuning).
Deploy with the same retrieval pipeline.
If you want, I can next write you a full working example of an advanced Retrieval-Aware Fine-Tuned Transformer, where LoRA fine-tuning is specifically trained to reason over FAISS-retrieved chunks. That’s the level where RAG + fine-tuning becomes enterprise-grade.
Do you want me to go ahead and make that combined advanced example?
Model tree for ankitkushwaha90/Advanced_Rag_Lora_Finetune
Base model
openai/gpt-oss-20b