File size: 36,878 Bytes
62a9df1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
---

tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:46338
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-m-v2.0
widget:
- source_sentence: What is the definition of 'Union processing capacity' and how does
    it relate to the location of processing operations for strategic raw materials?
  sentences:
  - '(9)





    ‘Union processing capacity’ means an aggregate of the maximum annual production

    volumes of processing operations for strategic raw materials, excluding such operations

    that are typically located at or near the extraction site, located in the Union;





    (10)





    ‘recycling’ means recycling as defined in Article 3, point (17), of Directive

    2008/98/EC;





    (11)





    ‘Union recycling capacity’ means an aggregate of the maximum annual production

    volume of recycling operations for strategic raw materials after re- processing,

    including the sorting and pre-treatment of waste, and its processing into secondary

    raw materials, located in the Union;





    (12)'
  - 206-44-0 205-912-4 Fluoranthene (16) 118-74-1 204-273-9 Hexachlorobenzene X (17)
    87-68-3 201-765-5 Hexachlorobutadiene X (18) 608-73-1 210-168-9 Hexachlorocyclohexane
    X (19) 34123-59-6 251-835-4 Isoproturon (20) 7439-92-1 231-100-4 Lead and its
    compounds (21) 7439-97-6 231-106-7 Mercury and its compounds X (22) 91-20-3 202-049-5
    Naphthalene (23) 7440-02-0 231-111-4 Nickel and its compounds (24) not applicable
    not applicable Nonylphenols X (5) (25) not applicable not applicable Octylphenols
    (6) (26) 608-93-5 210-172-0 Pentachlorobenzene X (27) 87-86-5 201-778-6 Pentachlorophenol
    (28) not applicable not applicable Polyaromatic hydrocarbons (PAH) (7) X (29)
    122-34-9 204-535-2 Simazine (30) not applicable not applicable Tributyltin compounds
    X
  - '7.





    The principles governing public procurement procedures, including the principles

    of proportionality, non-discrimination, equal treatment, transparency and competition,

    shall be observed as regards all economic operators involved in the public procurement

    procedure. The investigation of foreign subsidies pursuant to this Regulation

    shall not result in the contracting authority or the contracting entity treating

    the economic operators concerned in a way that is contrary to those principles.

    Environmental, social and labour requirements shall apply to economic operators

    in accordance with Directives 2014/23/EU, 2014/24/EU and 2014/25/EU, or other

    Union law.





    8.'
- source_sentence: What types of services are one-stop shops or similar mechanisms
    expected to provide to households and small non-household entities regarding energy
    efficiency?
  sentences:
  - Low boiling point cat-reformed naphtha; 649-302-00-X 270-687-1 68476-47-1 P Residues
    (petroleum), C6-8 catalytic reformer; Low boiling point cat-reformed naphtha;
    [A complex residuum from the catalytic reforming of C6-8 feed. It consists of
    hydrocarbons having carbon numbers predominantly in the range of C2 through C6.]
    649-303-00-5 270-794-3 68478-15-9 P Naphtha (petroleum), light catalytic reformed,
    arom.-free; Low boiling point cat-reformed naphtha; [A complex combination of
    hydrocarbons obtained from distillation of products from a catalytic reforming
    process. It consists predominantly of hydrocarbons having carbon numbers predominantly
    in the range of C5 through C8 and boiling in the range of approximately 35 °C
    to 120 °C (95 °F to
  - 'The undertaking may disclose by head count or full time equivalent (FTE) the

    following information:





    (a)





    full-time employees , and breakdowns by gender and by region; and





    (b)





    part-time employees, and breakdowns by gender and by region.





    Disclosure Requirement S1-7 – Characteristics of non-employees in the undertaking’s

    own workforce





    The undertaking shall describe key characteristics of non-employees in its own

    workforce.'
  - (a) the creation of one-stop shops or similar mechanisms for the provision of
    technical, administrative and financial advice and assistance on energy efficiency,
    such as energy checks for households, energy renovations of buildings, information
    on the replacement of old and inefficient heating systems with modern and more
    efficient appliances and the take-up of renewable energy and energy storage for
    buildings to final customers and final users, especially household and small non-household
    ones, including SMEs and microenterprises; (b) cooperation with private actors
    that provide services such as energy audits and energy consumption assessments,
    financing solutions and execution of energy renovations; --- --- (c) the communication
    of
- source_sentence: What procedures must competent authorities follow to verify compliance
    of operators and traders with the specified regulations regarding products they
    place or intend to place on the market?
  sentences:
  - '1.





    The competent authorities shall carry out checks within their territory to establish

    whether operators and traders established in the Union comply with this Regulation.

    The competent authorities shall carry out checks within their territory to establish

    whether the relevant products that the operator or trader has placed or intends

    to place on the market, has made available or intends to make available on the

    market or has exported or intends to export comply with this Regulation.





    2.





    The checks referred to in paragraph 1 of this Article shall be carried out in

    accordance with Articles 18 and 19.





    3.'
  - '▼M2 —————





    ▼B





    7.





    Implementing bodies, other than executive agencies, and entities to which the

    management of the Innovation Fund revenues has been delegated pursuant Article

    20(3) shall provide the Commission with the following:





    (a)





    by 15 February, unaudited financial statements covering the preceding financial

    year, which shall run from 1 January to 31 December, in respect of the activities

    delegated to those implementing bodies and entities;





    (b)





    by 15 March of the year of the transmission of the unaudited financial statements,

    the audited financial statements covering the preceding financial year, which

    shall run from 1 January to 31 December, in respect of the activities delegated

    to those implementing bodies and entities.'
  - (44) Where a company cannot prevent, mitigate, bring to an end or minimise the
    extent of all the identified actual and potential adverse impacts at the same
    time to the full extent, it should prioritise the adverse impacts based on their
    severity and likelihood. The severity of an adverse impact should be assessed
    based on the scale, scope or irremediable character of the adverse impact, taking
    into account the gravity of the impact, including the number of individuals that
    are or will be affected, the extent to which the environment is or may be damaged
    or otherwise affected, its irreversibility and the limits on the ability to restore
    affected individuals or the environment to a situation equivalent to their situation
    prior to the impact
- source_sentence: What are the possible outcomes for a testing proposal that does
    not comply with the requirements outlined in Annexes IX, X, and XI?
  sentences:
  - '3.





    Where the competent authority of the Member State of reference considers that

    an authorised non-EU AIFM is in breach of its obligations under this Directive,

    it shall notify ESMA, setting out full reasons as soon as possible.





    4.





    Member States shall ensure that the competent authorities have the powers necessary

    to take all measures required in order to ensure the orderly functioning of markets

    in those cases where the activity of one or more AIFs in the market for a financial

    instrument could jeopardise the orderly functioning of that market.





    Article 47





    Powers and competences of ESMA





    1.'
  - '40.





    not chemically modified substance: means a substance whose chemical structure

    remains unchanged, even if it has undergone a chemical process or treatment, or

    a physical mineralogical transformation, for instance to remove impurities;





    41.





    alloy: means a metallic material, homogenous on a macroscopic scale, consisting

    of two or more elements so combined that they cannot be readily separated by mechanical

    means.





    Article 4





    General provision'
  - '(c)





    a decision in accordance with points (a), (b) or (d) but requiring registrant(s)

    or downstream user(s) to carry out one or more additional tests in cases of non-compliance

    of the testing proposal with Annexes IX, X and XI;





    (d)





    a decision rejecting the testing proposal;





    (e)'
- source_sentence: What conditions must a new registrant meet in order to refer to
    previously submitted study summaries for a substance that has already been registered?
  sentences:
  - '5.





    If a substance has already been registered, a new registrant shall be entitled

    to refer to the study summaries or robust study summaries, for the same substance

    submitted earlier, provided that he can show that the substance that he is now

    registering is the same as the one previously registered, including the degree

    of purity and the nature of impurities, and that the previous registrant(s) have

    given permission to refer to the full study reports for the purpose of registration.





    A new registrant shall not refer to such studies in order to provide the information

    required in Section 2 of Annex VI.





    Article 14





    Chemical safety report and duty to apply and recommend risk reduction measures





    1.'
  - of high boiling fractions from bituminous coal high temperature tar and/or pitch
    coke oil, with a softening point of 140 to 170 °C according to DIN 52025. Composed
    primarily of tri- and polynuclear aromatic compounds which also contain heteroatoms.)
    648-057-00-6 302-650-3 94114-13-3 M Residues (coal tar), pitch distillation; Pitch
    redistillate (Residue from the fractional distillation of pitch distillate boiling
    in the range of approximately 400 to 470 °C. Composed primarily of polynuclear
    aromatic hydrocarbons, and heterocyclic compounds.) 648-058-00-1 295-507-9 92061-94-4
    M Tar, coal, high-temperature, distillation and storage residues; Coal tar solids
    residue (Coke- and ash-containing solid residues that separate on distillation
    and thermal treatment of bituminous coal high temperature tar in distillation
    installations and storage vessels. Consists predominantly of carbon and contains
    a small quantity of hetero compounds as well as ash components.) 648-059-00-7
    295-535-1 92062-20-9 M Tar, coal, storage residues; Coal tar solids residue (The
    deposit removed from crude coal tar storages. Composed primarily of coal tar and
    carbonaceous particulate matter.) 648-060-00-2 293-764-1 91082-50-7 M Tar, coal,
    high-temperature, residues; Coal tar solids residue (Solids formed during the
    coking of bituminous coal to produce crude bituminous coal high temperature tar.
    Composed primarily of coke and coal particles, highly aromatised compounds and
    mineral substances.) 648-061-00-8 309-726-5 100684-51-3 M Tar, coal, high-temperature,
    high-solids; Coal tar solids residue (The condensation product obtained by cooling,
    to approximately ambient temperature, the gas evolved in the high temperature
    (greater than 700 °C) destructive distillation of coal. Composed primarily of
    a complex mixture of condensed ring aromatic hydrocarbons with a high solid content
    of coal-type materials.) 648-062-00-3 273-615-7 68990-61-4 M Waste solids, coal-tar
    pitch coking; Coal tar solids residue (The combination of wastes formed by the
    coking of bituminous coal tar pitch. It consists predominantly of carbon.) 648-063-00-9
    295-549-8 92062-34-5 M Extract residues (coal), brown; Coal tar extract (The residue
    from extraction of dried coal.)
  - '4. Member States shall establish a network of experts from various sectors such

    as the health, building and social sectors, or entrust an existing network, to

    develop strategies to support local and national decision makers in implementing

    energy efficiency improvement measures, technical assistance and financial tools

    aiming to alleviate energy poverty. Member States shall strive to ensure that

    the composition of the network of experts ensures gender balance and reflects

    the perspectives of all people.





    Member States may entrust the network of experts to offer advice on:'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-v2.0
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.7203521491455205
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.923701018470568
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9554634904194718
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9796305886414638
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7203521491455205
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3079003394901893
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1910926980838943
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09796305886414639
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7203521491455205
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.923701018470568
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9554634904194718
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9796305886414638
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8635032698612493
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8247555204831233
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8257385664756074
      name: Cosine Map@100
---


# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-v2.0

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0) <!-- at revision 0d1661ceed1cb456c85726749d5be61ebb30d4f1 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: GteModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (2): Normalize()

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("sentence_transformers_model_id")

# Run inference

sentences = [

    'What conditions must a new registrant meet in order to refer to previously submitted study summaries for a substance that has already been registered?',

    '5.\n\nIf a substance has already been registered, a new registrant shall be entitled to refer to the study summaries or robust study summaries, for the same substance submitted earlier, provided that he can show that the substance that he is now registering is the same as the one previously registered, including the degree of purity and the nature of impurities, and that the previous registrant(s) have given permission to refer to the full study reports for the purpose of registration.\n\nA new registrant shall not refer to such studies in order to provide the information required in Section 2 of Annex VI.\n\nArticle 14\n\nChemical safety report and duty to apply and recommend risk reduction measures\n\n1.',

    'of high boiling fractions from bituminous coal high temperature tar and/or pitch coke oil, with a softening point of 140 to 170 °C according to DIN 52025. Composed primarily of tri- and polynuclear aromatic compounds which also contain heteroatoms.) 648-057-00-6 302-650-3 94114-13-3 M Residues (coal tar), pitch distillation; Pitch redistillate (Residue from the fractional distillation of pitch distillate boiling in the range of approximately 400 to 470 °C. Composed primarily of polynuclear aromatic hydrocarbons, and heterocyclic compounds.) 648-058-00-1 295-507-9 92061-94-4 M Tar, coal, high-temperature, distillation and storage residues; Coal tar solids residue (Coke- and ash-containing solid residues that separate on distillation and thermal treatment of bituminous coal high temperature tar in distillation installations and storage vessels. Consists predominantly of carbon and contains a small quantity of hetero compounds as well as ash components.) 648-059-00-7 295-535-1 92062-20-9 M Tar, coal, storage residues; Coal tar solids residue (The deposit removed from crude coal tar storages. Composed primarily of coal tar and carbonaceous particulate matter.) 648-060-00-2 293-764-1 91082-50-7 M Tar, coal, high-temperature, residues; Coal tar solids residue (Solids formed during the coking of bituminous coal to produce crude bituminous coal high temperature tar. Composed primarily of coke and coal particles, highly aromatised compounds and mineral substances.) 648-061-00-8 309-726-5 100684-51-3 M Tar, coal, high-temperature, high-solids; Coal tar solids residue (The condensation product obtained by cooling, to approximately ambient temperature, the gas evolved in the high temperature (greater than 700 °C) destructive distillation of coal. Composed primarily of a complex mixture of condensed ring aromatic hydrocarbons with a high solid content of coal-type materials.) 648-062-00-3 273-615-7 68990-61-4 M Waste solids, coal-tar pitch coking; Coal tar solids residue (The combination of wastes formed by the coking of bituminous coal tar pitch. It consists predominantly of carbon.) 648-063-00-9 295-549-8 92062-34-5 M Extract residues (coal), brown; Coal tar extract (The residue from extraction of dried coal.)',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7204     |

| cosine_accuracy@3   | 0.9237     |
| cosine_accuracy@5   | 0.9555     |

| cosine_accuracy@10  | 0.9796     |
| cosine_precision@1  | 0.7204     |

| cosine_precision@3  | 0.3079     |
| cosine_precision@5  | 0.1911     |

| cosine_precision@10 | 0.098      |
| cosine_recall@1     | 0.7204     |

| cosine_recall@3     | 0.9237     |
| cosine_recall@5     | 0.9555     |

| cosine_recall@10    | 0.9796     |
| **cosine_ndcg@10**  | **0.8635** |

| cosine_mrr@10       | 0.8248     |

| cosine_map@100      | 0.8257     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### Unnamed Dataset



* Size: 46,338 training samples

* Columns: <code>sentence_0</code> and <code>sentence_1</code>

* Approximate statistics based on the first 1000 samples:

  |         | sentence_0                                                                          | sentence_1                                                                           |

  |:--------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|

  | type    | string                                                                              | string                                                                               |

  | details | <ul><li>min: 12 tokens</li><li>mean: 42.34 tokens</li><li>max: 246 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 260.86 tokens</li><li>max: 2053 tokens</li></ul> |

* Samples:

  | sentence_0                                                                                                                                                                                                                                       | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>What actions can a Member State take if it believes urgent measures are necessary to protect human health or the environment regarding a substance, and what are the requirements for informing other entities about these actions?</code> | <code>1.<br><br>Where a Member State has justifiable grounds for believing that urgent action is essential to protect human health or the environment in respect of a substance, on its own, in a ►M3 mixture ◄ or in an article, even if satisfying the requirements of this Regulation, it may take appropriate provisional measures. The Member State shall immediately inform the Commission, the Agency and the other Member States thereof, giving reasons for its decision and submitting the scientific or technical information on which the provisional measure is based.<br><br>2.</code>                                                                                                                                                                                      |

  | <code>Under what circumstances can Member States extend the time limits for the permit-granting process for Strategic Projects, and what is the maximum extension period allowed?</code>                                                         | <code>(b)<br><br>12 months for Strategic Projects involving only processing or recycling.<br><br>3.<br><br>Where an environmental impact assessment is required pursuant to Directive 2011/92/EU, the step of the assessment referred to in Article 1(2), point (g)(i), of that Directive shall not be included in the duration for permit- granting process referred to in paragraphs 1 and 2 of this Article.<br><br>4.<br><br>In exceptional cases, where the nature, complexity, location or size of the Strategic Project so require, Member States may extend, before their expiry and on a case-by-case basis, the time limits referred to in:<br><br>(a)<br><br>paragraph 1, point (a), and paragraph 2, point (a), by a maximum of six months;<br><br>(b)</code>                 |

  | <code>What types of compounds primarily compose the distillates mentioned in the context?</code>                                                                                                                                                 | <code>(86 °F to 572 °F). Composed primarily of partly hydrogenated condensed-ring aromatic hydrocarbons, aromatic compounds containing nitrogen, oxygen and sulfur, and their alkyl derivatives having carbon numbers predominantly in the range of C4 through C14.] 648-148-00-0 302-688-0 94114-52-0 J Distillates (coal), solvent extn., hydrocracked; [Distillate obtained by hydrocracking of coal extract or solution produced by the liquid solvent extraction or supercritical gas extraction processes and boiling in the range of approximately 30 °C to 300 °C (86 °F to 572 °F). Composed primarily of aromatic, hydrogenated aromatic and naphthenic compounds, their alkyl derivatives and alkanes with carbon numbers predominantly in the range of C4 through C14.</code> |

* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:

  ```json

  {

      "loss": "MultipleNegativesRankingLoss",

      "matryoshka_dims": [

          768,

          512,

          256,

          128,

          64

      ],

      "matryoshka_weights": [

          1,

          1,

          1,

          1,

          1

      ],

      "n_dims_per_step": -1

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `multi_dataset_batch_sampler`: round_robin



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 8

- `per_device_eval_batch_size`: 8

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `torch_empty_cache_steps`: None

- `learning_rate`: 5e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1

- `num_train_epochs`: 3

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.0

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: False

- `fp16`: False

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: False

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `include_for_metrics`: []

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `dispatch_batches`: None

- `split_batches`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `eval_on_start`: False

- `use_liger_kernel`: False

- `eval_use_gather_object`: False

- `average_tokens_across_devices`: False

- `prompts`: None

- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: round_robin



</details>



### Training Logs

| Epoch  | Step  | Training Loss | cosine_ndcg@10 |

|:------:|:-----:|:-------------:|:--------------:|

| 0.0863 | 500   | 0.2243        | 0.8154         |

| 0.1726 | 1000  | 0.1242        | 0.8270         |

| 0.2589 | 1500  | 0.0877        | 0.8298         |

| 0.3452 | 2000  | 0.0823        | 0.8284         |

| 0.4316 | 2500  | 0.0627        | 0.8351         |

| 0.5179 | 3000  | 0.0636        | 0.8385         |

| 0.6042 | 3500  | 0.0587        | 0.8356         |

| 0.6905 | 4000  | 0.0746        | 0.8398         |

| 0.7768 | 4500  | 0.05          | 0.8440         |

| 0.8631 | 5000  | 0.0495        | 0.8441         |

| 0.9494 | 5500  | 0.0569        | 0.8451         |

| 1.0    | 5793  | -             | 0.8432         |

| 1.0357 | 6000  | 0.0368        | 0.8458         |

| 1.1220 | 6500  | 0.0267        | 0.8501         |

| 1.2084 | 7000  | 0.0402        | 0.8451         |

| 1.2947 | 7500  | 0.0261        | 0.8524         |

| 1.3810 | 8000  | 0.0304        | 0.8503         |

| 1.4673 | 8500  | 0.0345        | 0.8521         |

| 1.5536 | 9000  | 0.0337        | 0.8551         |

| 1.6399 | 9500  | 0.0221        | 0.8525         |

| 1.7262 | 10000 | 0.0287        | 0.8560         |

| 1.8125 | 10500 | 0.0291        | 0.8549         |

| 1.8988 | 11000 | 0.0315        | 0.8577         |

| 1.9852 | 11500 | 0.0226        | 0.8577         |

| 2.0    | 11586 | -             | 0.8578         |

| 2.0715 | 12000 | 0.0162        | 0.8552         |

| 2.1578 | 12500 | 0.0161        | 0.8561         |

| 2.2441 | 13000 | 0.0224        | 0.8550         |

| 2.3304 | 13500 | 0.0277        | 0.8601         |

| 2.4167 | 14000 | 0.0238        | 0.8591         |

| 2.5030 | 14500 | 0.0155        | 0.8593         |

| 2.5893 | 15000 | 0.0164        | 0.8598         |

| 2.6756 | 15500 | 0.0259        | 0.8624         |

| 2.7620 | 16000 | 0.0114        | 0.8617         |

| 2.8483 | 16500 | 0.025         | 0.8635         |





### Framework Versions

- Python: 3.10.15

- Sentence Transformers: 3.4.1

- Transformers: 4.49.0

- PyTorch: 2.6.0+cu126

- Accelerate: 1.5.2

- Datasets: 3.4.1

- Tokenizers: 0.21.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MatryoshkaLoss

```bibtex

@misc{kusupati2024matryoshka,

    title={Matryoshka Representation Learning},

    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},

    year={2024},

    eprint={2205.13147},

    archivePrefix={arXiv},

    primaryClass={cs.LG}

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply},

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->