amentaphd commited on
Commit
62a9df1
·
verified ·
1 Parent(s): 37116f4

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,773 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:46338
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Snowflake/snowflake-arctic-embed-m-v2.0
11
+ widget:
12
+ - source_sentence: What is the definition of 'Union processing capacity' and how does
13
+ it relate to the location of processing operations for strategic raw materials?
14
+ sentences:
15
+ - '(9)
16
+
17
+
18
+ ‘Union processing capacity’ means an aggregate of the maximum annual production
19
+ volumes of processing operations for strategic raw materials, excluding such operations
20
+ that are typically located at or near the extraction site, located in the Union;
21
+
22
+
23
+ (10)
24
+
25
+
26
+ ‘recycling’ means recycling as defined in Article 3, point (17), of Directive
27
+ 2008/98/EC;
28
+
29
+
30
+ (11)
31
+
32
+
33
+ ‘Union recycling capacity’ means an aggregate of the maximum annual production
34
+ volume of recycling operations for strategic raw materials after re- processing,
35
+ including the sorting and pre-treatment of waste, and its processing into secondary
36
+ raw materials, located in the Union;
37
+
38
+
39
+ (12)'
40
+ - 206-44-0 205-912-4 Fluoranthene (16) 118-74-1 204-273-9 Hexachlorobenzene X (17)
41
+ 87-68-3 201-765-5 Hexachlorobutadiene X (18) 608-73-1 210-168-9 Hexachlorocyclohexane
42
+ X (19) 34123-59-6 251-835-4 Isoproturon (20) 7439-92-1 231-100-4 Lead and its
43
+ compounds (21) 7439-97-6 231-106-7 Mercury and its compounds X (22) 91-20-3 202-049-5
44
+ Naphthalene (23) 7440-02-0 231-111-4 Nickel and its compounds (24) not applicable
45
+ not applicable Nonylphenols X (5) (25) not applicable not applicable Octylphenols
46
+ (6) (26) 608-93-5 210-172-0 Pentachlorobenzene X (27) 87-86-5 201-778-6 Pentachlorophenol
47
+ (28) not applicable not applicable Polyaromatic hydrocarbons (PAH) (7) X (29)
48
+ 122-34-9 204-535-2 Simazine (30) not applicable not applicable Tributyltin compounds
49
+ X
50
+ - '7.
51
+
52
+
53
+ The principles governing public procurement procedures, including the principles
54
+ of proportionality, non-discrimination, equal treatment, transparency and competition,
55
+ shall be observed as regards all economic operators involved in the public procurement
56
+ procedure. The investigation of foreign subsidies pursuant to this Regulation
57
+ shall not result in the contracting authority or the contracting entity treating
58
+ the economic operators concerned in a way that is contrary to those principles.
59
+ Environmental, social and labour requirements shall apply to economic operators
60
+ in accordance with Directives 2014/23/EU, 2014/24/EU and 2014/25/EU, or other
61
+ Union law.
62
+
63
+
64
+ 8.'
65
+ - source_sentence: What types of services are one-stop shops or similar mechanisms
66
+ expected to provide to households and small non-household entities regarding energy
67
+ efficiency?
68
+ sentences:
69
+ - Low boiling point cat-reformed naphtha; 649-302-00-X 270-687-1 68476-47-1 P Residues
70
+ (petroleum), C6-8 catalytic reformer; Low boiling point cat-reformed naphtha;
71
+ [A complex residuum from the catalytic reforming of C6-8 feed. It consists of
72
+ hydrocarbons having carbon numbers predominantly in the range of C2 through C6.]
73
+ 649-303-00-5 270-794-3 68478-15-9 P Naphtha (petroleum), light catalytic reformed,
74
+ arom.-free; Low boiling point cat-reformed naphtha; [A complex combination of
75
+ hydrocarbons obtained from distillation of products from a catalytic reforming
76
+ process. It consists predominantly of hydrocarbons having carbon numbers predominantly
77
+ in the range of C5 through C8 and boiling in the range of approximately 35 °C
78
+ to 120 °C (95 °F to
79
+ - 'The undertaking may disclose by head count or full time equivalent (FTE) the
80
+ following information:
81
+
82
+
83
+ (a)
84
+
85
+
86
+ full-time employees , and breakdowns by gender and by region; and
87
+
88
+
89
+ (b)
90
+
91
+
92
+ part-time employees, and breakdowns by gender and by region.
93
+
94
+
95
+ Disclosure Requirement S1-7 – Characteristics of non-employees in the undertaking’s
96
+ own workforce
97
+
98
+
99
+ The undertaking shall describe key characteristics of non-employees in its own
100
+ workforce.'
101
+ - (a) the creation of one-stop shops or similar mechanisms for the provision of
102
+ technical, administrative and financial advice and assistance on energy efficiency,
103
+ such as energy checks for households, energy renovations of buildings, information
104
+ on the replacement of old and inefficient heating systems with modern and more
105
+ efficient appliances and the take-up of renewable energy and energy storage for
106
+ buildings to final customers and final users, especially household and small non-household
107
+ ones, including SMEs and microenterprises; (b) cooperation with private actors
108
+ that provide services such as energy audits and energy consumption assessments,
109
+ financing solutions and execution of energy renovations; --- --- (c) the communication
110
+ of
111
+ - source_sentence: What procedures must competent authorities follow to verify compliance
112
+ of operators and traders with the specified regulations regarding products they
113
+ place or intend to place on the market?
114
+ sentences:
115
+ - '1.
116
+
117
+
118
+ The competent authorities shall carry out checks within their territory to establish
119
+ whether operators and traders established in the Union comply with this Regulation.
120
+ The competent authorities shall carry out checks within their territory to establish
121
+ whether the relevant products that the operator or trader has placed or intends
122
+ to place on the market, has made available or intends to make available on the
123
+ market or has exported or intends to export comply with this Regulation.
124
+
125
+
126
+ 2.
127
+
128
+
129
+ The checks referred to in paragraph 1 of this Article shall be carried out in
130
+ accordance with Articles 18 and 19.
131
+
132
+
133
+ 3.'
134
+ - '▼M2 —————
135
+
136
+
137
+ ▼B
138
+
139
+
140
+ 7.
141
+
142
+
143
+ Implementing bodies, other than executive agencies, and entities to which the
144
+ management of the Innovation Fund revenues has been delegated pursuant Article
145
+ 20(3) shall provide the Commission with the following:
146
+
147
+
148
+ (a)
149
+
150
+
151
+ by 15 February, unaudited financial statements covering the preceding financial
152
+ year, which shall run from 1 January to 31 December, in respect of the activities
153
+ delegated to those implementing bodies and entities;
154
+
155
+
156
+ (b)
157
+
158
+
159
+ by 15 March of the year of the transmission of the unaudited financial statements,
160
+ the audited financial statements covering the preceding financial year, which
161
+ shall run from 1 January to 31 December, in respect of the activities delegated
162
+ to those implementing bodies and entities.'
163
+ - (44) Where a company cannot prevent, mitigate, bring to an end or minimise the
164
+ extent of all the identified actual and potential adverse impacts at the same
165
+ time to the full extent, it should prioritise the adverse impacts based on their
166
+ severity and likelihood. The severity of an adverse impact should be assessed
167
+ based on the scale, scope or irremediable character of the adverse impact, taking
168
+ into account the gravity of the impact, including the number of individuals that
169
+ are or will be affected, the extent to which the environment is or may be damaged
170
+ or otherwise affected, its irreversibility and the limits on the ability to restore
171
+ affected individuals or the environment to a situation equivalent to their situation
172
+ prior to the impact
173
+ - source_sentence: What are the possible outcomes for a testing proposal that does
174
+ not comply with the requirements outlined in Annexes IX, X, and XI?
175
+ sentences:
176
+ - '3.
177
+
178
+
179
+ Where the competent authority of the Member State of reference considers that
180
+ an authorised non-EU AIFM is in breach of its obligations under this Directive,
181
+ it shall notify ESMA, setting out full reasons as soon as possible.
182
+
183
+
184
+ 4.
185
+
186
+
187
+ Member States shall ensure that the competent authorities have the powers necessary
188
+ to take all measures required in order to ensure the orderly functioning of markets
189
+ in those cases where the activity of one or more AIFs in the market for a financial
190
+ instrument could jeopardise the orderly functioning of that market.
191
+
192
+
193
+ Article 47
194
+
195
+
196
+ Powers and competences of ESMA
197
+
198
+
199
+ 1.'
200
+ - '40.
201
+
202
+
203
+ not chemically modified substance: means a substance whose chemical structure
204
+ remains unchanged, even if it has undergone a chemical process or treatment, or
205
+ a physical mineralogical transformation, for instance to remove impurities;
206
+
207
+
208
+ 41.
209
+
210
+
211
+ alloy: means a metallic material, homogenous on a macroscopic scale, consisting
212
+ of two or more elements so combined that they cannot be readily separated by mechanical
213
+ means.
214
+
215
+
216
+ Article 4
217
+
218
+
219
+ General provision'
220
+ - '(c)
221
+
222
+
223
+ a decision in accordance with points (a), (b) or (d) but requiring registrant(s)
224
+ or downstream user(s) to carry out one or more additional tests in cases of non-compliance
225
+ of the testing proposal with Annexes IX, X and XI;
226
+
227
+
228
+ (d)
229
+
230
+
231
+ a decision rejecting the testing proposal;
232
+
233
+
234
+ (e)'
235
+ - source_sentence: What conditions must a new registrant meet in order to refer to
236
+ previously submitted study summaries for a substance that has already been registered?
237
+ sentences:
238
+ - '5.
239
+
240
+
241
+ If a substance has already been registered, a new registrant shall be entitled
242
+ to refer to the study summaries or robust study summaries, for the same substance
243
+ submitted earlier, provided that he can show that the substance that he is now
244
+ registering is the same as the one previously registered, including the degree
245
+ of purity and the nature of impurities, and that the previous registrant(s) have
246
+ given permission to refer to the full study reports for the purpose of registration.
247
+
248
+
249
+ A new registrant shall not refer to such studies in order to provide the information
250
+ required in Section 2 of Annex VI.
251
+
252
+
253
+ Article 14
254
+
255
+
256
+ Chemical safety report and duty to apply and recommend risk reduction measures
257
+
258
+
259
+ 1.'
260
+ - of high boiling fractions from bituminous coal high temperature tar and/or pitch
261
+ coke oil, with a softening point of 140 to 170 °C according to DIN 52025. Composed
262
+ primarily of tri- and polynuclear aromatic compounds which also contain heteroatoms.)
263
+ 648-057-00-6 302-650-3 94114-13-3 M Residues (coal tar), pitch distillation; Pitch
264
+ redistillate (Residue from the fractional distillation of pitch distillate boiling
265
+ in the range of approximately 400 to 470 °C. Composed primarily of polynuclear
266
+ aromatic hydrocarbons, and heterocyclic compounds.) 648-058-00-1 295-507-9 92061-94-4
267
+ M Tar, coal, high-temperature, distillation and storage residues; Coal tar solids
268
+ residue (Coke- and ash-containing solid residues that separate on distillation
269
+ and thermal treatment of bituminous coal high temperature tar in distillation
270
+ installations and storage vessels. Consists predominantly of carbon and contains
271
+ a small quantity of hetero compounds as well as ash components.) 648-059-00-7
272
+ 295-535-1 92062-20-9 M Tar, coal, storage residues; Coal tar solids residue (The
273
+ deposit removed from crude coal tar storages. Composed primarily of coal tar and
274
+ carbonaceous particulate matter.) 648-060-00-2 293-764-1 91082-50-7 M Tar, coal,
275
+ high-temperature, residues; Coal tar solids residue (Solids formed during the
276
+ coking of bituminous coal to produce crude bituminous coal high temperature tar.
277
+ Composed primarily of coke and coal particles, highly aromatised compounds and
278
+ mineral substances.) 648-061-00-8 309-726-5 100684-51-3 M Tar, coal, high-temperature,
279
+ high-solids; Coal tar solids residue (The condensation product obtained by cooling,
280
+ to approximately ambient temperature, the gas evolved in the high temperature
281
+ (greater than 700 °C) destructive distillation of coal. Composed primarily of
282
+ a complex mixture of condensed ring aromatic hydrocarbons with a high solid content
283
+ of coal-type materials.) 648-062-00-3 273-615-7 68990-61-4 M Waste solids, coal-tar
284
+ pitch coking; Coal tar solids residue (The combination of wastes formed by the
285
+ coking of bituminous coal tar pitch. It consists predominantly of carbon.) 648-063-00-9
286
+ 295-549-8 92062-34-5 M Extract residues (coal), brown; Coal tar extract (The residue
287
+ from extraction of dried coal.)
288
+ - '4. Member States shall establish a network of experts from various sectors such
289
+ as the health, building and social sectors, or entrust an existing network, to
290
+ develop strategies to support local and national decision makers in implementing
291
+ energy efficiency improvement measures, technical assistance and financial tools
292
+ aiming to alleviate energy poverty. Member States shall strive to ensure that
293
+ the composition of the network of experts ensures gender balance and reflects
294
+ the perspectives of all people.
295
+
296
+
297
+ Member States may entrust the network of experts to offer advice on:'
298
+ pipeline_tag: sentence-similarity
299
+ library_name: sentence-transformers
300
+ metrics:
301
+ - cosine_accuracy@1
302
+ - cosine_accuracy@3
303
+ - cosine_accuracy@5
304
+ - cosine_accuracy@10
305
+ - cosine_precision@1
306
+ - cosine_precision@3
307
+ - cosine_precision@5
308
+ - cosine_precision@10
309
+ - cosine_recall@1
310
+ - cosine_recall@3
311
+ - cosine_recall@5
312
+ - cosine_recall@10
313
+ - cosine_ndcg@10
314
+ - cosine_mrr@10
315
+ - cosine_map@100
316
+ model-index:
317
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-v2.0
318
+ results:
319
+ - task:
320
+ type: information-retrieval
321
+ name: Information Retrieval
322
+ dataset:
323
+ name: Unknown
324
+ type: unknown
325
+ metrics:
326
+ - type: cosine_accuracy@1
327
+ value: 0.7203521491455205
328
+ name: Cosine Accuracy@1
329
+ - type: cosine_accuracy@3
330
+ value: 0.923701018470568
331
+ name: Cosine Accuracy@3
332
+ - type: cosine_accuracy@5
333
+ value: 0.9554634904194718
334
+ name: Cosine Accuracy@5
335
+ - type: cosine_accuracy@10
336
+ value: 0.9796305886414638
337
+ name: Cosine Accuracy@10
338
+ - type: cosine_precision@1
339
+ value: 0.7203521491455205
340
+ name: Cosine Precision@1
341
+ - type: cosine_precision@3
342
+ value: 0.3079003394901893
343
+ name: Cosine Precision@3
344
+ - type: cosine_precision@5
345
+ value: 0.1910926980838943
346
+ name: Cosine Precision@5
347
+ - type: cosine_precision@10
348
+ value: 0.09796305886414639
349
+ name: Cosine Precision@10
350
+ - type: cosine_recall@1
351
+ value: 0.7203521491455205
352
+ name: Cosine Recall@1
353
+ - type: cosine_recall@3
354
+ value: 0.923701018470568
355
+ name: Cosine Recall@3
356
+ - type: cosine_recall@5
357
+ value: 0.9554634904194718
358
+ name: Cosine Recall@5
359
+ - type: cosine_recall@10
360
+ value: 0.9796305886414638
361
+ name: Cosine Recall@10
362
+ - type: cosine_ndcg@10
363
+ value: 0.8635032698612493
364
+ name: Cosine Ndcg@10
365
+ - type: cosine_mrr@10
366
+ value: 0.8247555204831233
367
+ name: Cosine Mrr@10
368
+ - type: cosine_map@100
369
+ value: 0.8257385664756074
370
+ name: Cosine Map@100
371
+ ---
372
+
373
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-v2.0
374
+
375
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
376
+
377
+ ## Model Details
378
+
379
+ ### Model Description
380
+ - **Model Type:** Sentence Transformer
381
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0) <!-- at revision 0d1661ceed1cb456c85726749d5be61ebb30d4f1 -->
382
+ - **Maximum Sequence Length:** 8192 tokens
383
+ - **Output Dimensionality:** 768 dimensions
384
+ - **Similarity Function:** Cosine Similarity
385
+ <!-- - **Training Dataset:** Unknown -->
386
+ <!-- - **Language:** Unknown -->
387
+ <!-- - **License:** Unknown -->
388
+
389
+ ### Model Sources
390
+
391
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
392
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
393
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
394
+
395
+ ### Full Model Architecture
396
+
397
+ ```
398
+ SentenceTransformer(
399
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: GteModel
400
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
401
+ (2): Normalize()
402
+ )
403
+ ```
404
+
405
+ ## Usage
406
+
407
+ ### Direct Usage (Sentence Transformers)
408
+
409
+ First install the Sentence Transformers library:
410
+
411
+ ```bash
412
+ pip install -U sentence-transformers
413
+ ```
414
+
415
+ Then you can load this model and run inference.
416
+ ```python
417
+ from sentence_transformers import SentenceTransformer
418
+
419
+ # Download from the 🤗 Hub
420
+ model = SentenceTransformer("sentence_transformers_model_id")
421
+ # Run inference
422
+ sentences = [
423
+ 'What conditions must a new registrant meet in order to refer to previously submitted study summaries for a substance that has already been registered?',
424
+ '5.\n\nIf a substance has already been registered, a new registrant shall be entitled to refer to the study summaries or robust study summaries, for the same substance submitted earlier, provided that he can show that the substance that he is now registering is the same as the one previously registered, including the degree of purity and the nature of impurities, and that the previous registrant(s) have given permission to refer to the full study reports for the purpose of registration.\n\nA new registrant shall not refer to such studies in order to provide the information required in Section 2 of Annex VI.\n\nArticle 14\n\nChemical safety report and duty to apply and recommend risk reduction measures\n\n1.',
425
+ 'of high boiling fractions from bituminous coal high temperature tar and/or pitch coke oil, with a softening point of 140 to 170 °C according to DIN 52025. Composed primarily of tri- and polynuclear aromatic compounds which also contain heteroatoms.) 648-057-00-6 302-650-3 94114-13-3 M Residues (coal tar), pitch distillation; Pitch redistillate (Residue from the fractional distillation of pitch distillate boiling in the range of approximately 400 to 470 °C. Composed primarily of polynuclear aromatic hydrocarbons, and heterocyclic compounds.) 648-058-00-1 295-507-9 92061-94-4 M Tar, coal, high-temperature, distillation and storage residues; Coal tar solids residue (Coke- and ash-containing solid residues that separate on distillation and thermal treatment of bituminous coal high temperature tar in distillation installations and storage vessels. Consists predominantly of carbon and contains a small quantity of hetero compounds as well as ash components.) 648-059-00-7 295-535-1 92062-20-9 M Tar, coal, storage residues; Coal tar solids residue (The deposit removed from crude coal tar storages. Composed primarily of coal tar and carbonaceous particulate matter.) 648-060-00-2 293-764-1 91082-50-7 M Tar, coal, high-temperature, residues; Coal tar solids residue (Solids formed during the coking of bituminous coal to produce crude bituminous coal high temperature tar. Composed primarily of coke and coal particles, highly aromatised compounds and mineral substances.) 648-061-00-8 309-726-5 100684-51-3 M Tar, coal, high-temperature, high-solids; Coal tar solids residue (The condensation product obtained by cooling, to approximately ambient temperature, the gas evolved in the high temperature (greater than 700 °C) destructive distillation of coal. Composed primarily of a complex mixture of condensed ring aromatic hydrocarbons with a high solid content of coal-type materials.) 648-062-00-3 273-615-7 68990-61-4 M Waste solids, coal-tar pitch coking; Coal tar solids residue (The combination of wastes formed by the coking of bituminous coal tar pitch. It consists predominantly of carbon.) 648-063-00-9 295-549-8 92062-34-5 M Extract residues (coal), brown; Coal tar extract (The residue from extraction of dried coal.)',
426
+ ]
427
+ embeddings = model.encode(sentences)
428
+ print(embeddings.shape)
429
+ # [3, 768]
430
+
431
+ # Get the similarity scores for the embeddings
432
+ similarities = model.similarity(embeddings, embeddings)
433
+ print(similarities.shape)
434
+ # [3, 3]
435
+ ```
436
+
437
+ <!--
438
+ ### Direct Usage (Transformers)
439
+
440
+ <details><summary>Click to see the direct usage in Transformers</summary>
441
+
442
+ </details>
443
+ -->
444
+
445
+ <!--
446
+ ### Downstream Usage (Sentence Transformers)
447
+
448
+ You can finetune this model on your own dataset.
449
+
450
+ <details><summary>Click to expand</summary>
451
+
452
+ </details>
453
+ -->
454
+
455
+ <!--
456
+ ### Out-of-Scope Use
457
+
458
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
459
+ -->
460
+
461
+ ## Evaluation
462
+
463
+ ### Metrics
464
+
465
+ #### Information Retrieval
466
+
467
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
468
+
469
+ | Metric | Value |
470
+ |:--------------------|:-----------|
471
+ | cosine_accuracy@1 | 0.7204 |
472
+ | cosine_accuracy@3 | 0.9237 |
473
+ | cosine_accuracy@5 | 0.9555 |
474
+ | cosine_accuracy@10 | 0.9796 |
475
+ | cosine_precision@1 | 0.7204 |
476
+ | cosine_precision@3 | 0.3079 |
477
+ | cosine_precision@5 | 0.1911 |
478
+ | cosine_precision@10 | 0.098 |
479
+ | cosine_recall@1 | 0.7204 |
480
+ | cosine_recall@3 | 0.9237 |
481
+ | cosine_recall@5 | 0.9555 |
482
+ | cosine_recall@10 | 0.9796 |
483
+ | **cosine_ndcg@10** | **0.8635** |
484
+ | cosine_mrr@10 | 0.8248 |
485
+ | cosine_map@100 | 0.8257 |
486
+
487
+ <!--
488
+ ## Bias, Risks and Limitations
489
+
490
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
491
+ -->
492
+
493
+ <!--
494
+ ### Recommendations
495
+
496
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
497
+ -->
498
+
499
+ ## Training Details
500
+
501
+ ### Training Dataset
502
+
503
+ #### Unnamed Dataset
504
+
505
+ * Size: 46,338 training samples
506
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
507
+ * Approximate statistics based on the first 1000 samples:
508
+ | | sentence_0 | sentence_1 |
509
+ |:--------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
510
+ | type | string | string |
511
+ | details | <ul><li>min: 12 tokens</li><li>mean: 42.34 tokens</li><li>max: 246 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 260.86 tokens</li><li>max: 2053 tokens</li></ul> |
512
+ * Samples:
513
+ | sentence_0 | sentence_1 |
514
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
515
+ | <code>What actions can a Member State take if it believes urgent measures are necessary to protect human health or the environment regarding a substance, and what are the requirements for informing other entities about these actions?</code> | <code>1.<br><br>Where a Member State has justifiable grounds for believing that urgent action is essential to protect human health or the environment in respect of a substance, on its own, in a ►M3 mixture ◄ or in an article, even if satisfying the requirements of this Regulation, it may take appropriate provisional measures. The Member State shall immediately inform the Commission, the Agency and the other Member States thereof, giving reasons for its decision and submitting the scientific or technical information on which the provisional measure is based.<br><br>2.</code> |
516
+ | <code>Under what circumstances can Member States extend the time limits for the permit-granting process for Strategic Projects, and what is the maximum extension period allowed?</code> | <code>(b)<br><br>12 months for Strategic Projects involving only processing or recycling.<br><br>3.<br><br>Where an environmental impact assessment is required pursuant to Directive 2011/92/EU, the step of the assessment referred to in Article 1(2), point (g)(i), of that Directive shall not be included in the duration for permit- granting process referred to in paragraphs 1 and 2 of this Article.<br><br>4.<br><br>In exceptional cases, where the nature, complexity, location or size of the Strategic Project so require, Member States may extend, before their expiry and on a case-by-case basis, the time limits referred to in:<br><br>(a)<br><br>paragraph 1, point (a), and paragraph 2, point (a), by a maximum of six months;<br><br>(b)</code> |
517
+ | <code>What types of compounds primarily compose the distillates mentioned in the context?</code> | <code>(86 °F to 572 °F). Composed primarily of partly hydrogenated condensed-ring aromatic hydrocarbons, aromatic compounds containing nitrogen, oxygen and sulfur, and their alkyl derivatives having carbon numbers predominantly in the range of C4 through C14.] 648-148-00-0 302-688-0 94114-52-0 J Distillates (coal), solvent extn., hydrocracked; [Distillate obtained by hydrocracking of coal extract or solution produced by the liquid solvent extraction or supercritical gas extraction processes and boiling in the range of approximately 30 °C to 300 °C (86 °F to 572 °F). Composed primarily of aromatic, hydrogenated aromatic and naphthenic compounds, their alkyl derivatives and alkanes with carbon numbers predominantly in the range of C4 through C14.</code> |
518
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
519
+ ```json
520
+ {
521
+ "loss": "MultipleNegativesRankingLoss",
522
+ "matryoshka_dims": [
523
+ 768,
524
+ 512,
525
+ 256,
526
+ 128,
527
+ 64
528
+ ],
529
+ "matryoshka_weights": [
530
+ 1,
531
+ 1,
532
+ 1,
533
+ 1,
534
+ 1
535
+ ],
536
+ "n_dims_per_step": -1
537
+ }
538
+ ```
539
+
540
+ ### Training Hyperparameters
541
+ #### Non-Default Hyperparameters
542
+
543
+ - `eval_strategy`: steps
544
+ - `multi_dataset_batch_sampler`: round_robin
545
+
546
+ #### All Hyperparameters
547
+ <details><summary>Click to expand</summary>
548
+
549
+ - `overwrite_output_dir`: False
550
+ - `do_predict`: False
551
+ - `eval_strategy`: steps
552
+ - `prediction_loss_only`: True
553
+ - `per_device_train_batch_size`: 8
554
+ - `per_device_eval_batch_size`: 8
555
+ - `per_gpu_train_batch_size`: None
556
+ - `per_gpu_eval_batch_size`: None
557
+ - `gradient_accumulation_steps`: 1
558
+ - `eval_accumulation_steps`: None
559
+ - `torch_empty_cache_steps`: None
560
+ - `learning_rate`: 5e-05
561
+ - `weight_decay`: 0.0
562
+ - `adam_beta1`: 0.9
563
+ - `adam_beta2`: 0.999
564
+ - `adam_epsilon`: 1e-08
565
+ - `max_grad_norm`: 1
566
+ - `num_train_epochs`: 3
567
+ - `max_steps`: -1
568
+ - `lr_scheduler_type`: linear
569
+ - `lr_scheduler_kwargs`: {}
570
+ - `warmup_ratio`: 0.0
571
+ - `warmup_steps`: 0
572
+ - `log_level`: passive
573
+ - `log_level_replica`: warning
574
+ - `log_on_each_node`: True
575
+ - `logging_nan_inf_filter`: True
576
+ - `save_safetensors`: True
577
+ - `save_on_each_node`: False
578
+ - `save_only_model`: False
579
+ - `restore_callback_states_from_checkpoint`: False
580
+ - `no_cuda`: False
581
+ - `use_cpu`: False
582
+ - `use_mps_device`: False
583
+ - `seed`: 42
584
+ - `data_seed`: None
585
+ - `jit_mode_eval`: False
586
+ - `use_ipex`: False
587
+ - `bf16`: False
588
+ - `fp16`: False
589
+ - `fp16_opt_level`: O1
590
+ - `half_precision_backend`: auto
591
+ - `bf16_full_eval`: False
592
+ - `fp16_full_eval`: False
593
+ - `tf32`: None
594
+ - `local_rank`: 0
595
+ - `ddp_backend`: None
596
+ - `tpu_num_cores`: None
597
+ - `tpu_metrics_debug`: False
598
+ - `debug`: []
599
+ - `dataloader_drop_last`: False
600
+ - `dataloader_num_workers`: 0
601
+ - `dataloader_prefetch_factor`: None
602
+ - `past_index`: -1
603
+ - `disable_tqdm`: False
604
+ - `remove_unused_columns`: True
605
+ - `label_names`: None
606
+ - `load_best_model_at_end`: False
607
+ - `ignore_data_skip`: False
608
+ - `fsdp`: []
609
+ - `fsdp_min_num_params`: 0
610
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
611
+ - `fsdp_transformer_layer_cls_to_wrap`: None
612
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
613
+ - `deepspeed`: None
614
+ - `label_smoothing_factor`: 0.0
615
+ - `optim`: adamw_torch
616
+ - `optim_args`: None
617
+ - `adafactor`: False
618
+ - `group_by_length`: False
619
+ - `length_column_name`: length
620
+ - `ddp_find_unused_parameters`: None
621
+ - `ddp_bucket_cap_mb`: None
622
+ - `ddp_broadcast_buffers`: False
623
+ - `dataloader_pin_memory`: True
624
+ - `dataloader_persistent_workers`: False
625
+ - `skip_memory_metrics`: True
626
+ - `use_legacy_prediction_loop`: False
627
+ - `push_to_hub`: False
628
+ - `resume_from_checkpoint`: None
629
+ - `hub_model_id`: None
630
+ - `hub_strategy`: every_save
631
+ - `hub_private_repo`: None
632
+ - `hub_always_push`: False
633
+ - `gradient_checkpointing`: False
634
+ - `gradient_checkpointing_kwargs`: None
635
+ - `include_inputs_for_metrics`: False
636
+ - `include_for_metrics`: []
637
+ - `eval_do_concat_batches`: True
638
+ - `fp16_backend`: auto
639
+ - `push_to_hub_model_id`: None
640
+ - `push_to_hub_organization`: None
641
+ - `mp_parameters`:
642
+ - `auto_find_batch_size`: False
643
+ - `full_determinism`: False
644
+ - `torchdynamo`: None
645
+ - `ray_scope`: last
646
+ - `ddp_timeout`: 1800
647
+ - `torch_compile`: False
648
+ - `torch_compile_backend`: None
649
+ - `torch_compile_mode`: None
650
+ - `dispatch_batches`: None
651
+ - `split_batches`: None
652
+ - `include_tokens_per_second`: False
653
+ - `include_num_input_tokens_seen`: False
654
+ - `neftune_noise_alpha`: None
655
+ - `optim_target_modules`: None
656
+ - `batch_eval_metrics`: False
657
+ - `eval_on_start`: False
658
+ - `use_liger_kernel`: False
659
+ - `eval_use_gather_object`: False
660
+ - `average_tokens_across_devices`: False
661
+ - `prompts`: None
662
+ - `batch_sampler`: batch_sampler
663
+ - `multi_dataset_batch_sampler`: round_robin
664
+
665
+ </details>
666
+
667
+ ### Training Logs
668
+ | Epoch | Step | Training Loss | cosine_ndcg@10 |
669
+ |:------:|:-----:|:-------------:|:--------------:|
670
+ | 0.0863 | 500 | 0.2243 | 0.8154 |
671
+ | 0.1726 | 1000 | 0.1242 | 0.8270 |
672
+ | 0.2589 | 1500 | 0.0877 | 0.8298 |
673
+ | 0.3452 | 2000 | 0.0823 | 0.8284 |
674
+ | 0.4316 | 2500 | 0.0627 | 0.8351 |
675
+ | 0.5179 | 3000 | 0.0636 | 0.8385 |
676
+ | 0.6042 | 3500 | 0.0587 | 0.8356 |
677
+ | 0.6905 | 4000 | 0.0746 | 0.8398 |
678
+ | 0.7768 | 4500 | 0.05 | 0.8440 |
679
+ | 0.8631 | 5000 | 0.0495 | 0.8441 |
680
+ | 0.9494 | 5500 | 0.0569 | 0.8451 |
681
+ | 1.0 | 5793 | - | 0.8432 |
682
+ | 1.0357 | 6000 | 0.0368 | 0.8458 |
683
+ | 1.1220 | 6500 | 0.0267 | 0.8501 |
684
+ | 1.2084 | 7000 | 0.0402 | 0.8451 |
685
+ | 1.2947 | 7500 | 0.0261 | 0.8524 |
686
+ | 1.3810 | 8000 | 0.0304 | 0.8503 |
687
+ | 1.4673 | 8500 | 0.0345 | 0.8521 |
688
+ | 1.5536 | 9000 | 0.0337 | 0.8551 |
689
+ | 1.6399 | 9500 | 0.0221 | 0.8525 |
690
+ | 1.7262 | 10000 | 0.0287 | 0.8560 |
691
+ | 1.8125 | 10500 | 0.0291 | 0.8549 |
692
+ | 1.8988 | 11000 | 0.0315 | 0.8577 |
693
+ | 1.9852 | 11500 | 0.0226 | 0.8577 |
694
+ | 2.0 | 11586 | - | 0.8578 |
695
+ | 2.0715 | 12000 | 0.0162 | 0.8552 |
696
+ | 2.1578 | 12500 | 0.0161 | 0.8561 |
697
+ | 2.2441 | 13000 | 0.0224 | 0.8550 |
698
+ | 2.3304 | 13500 | 0.0277 | 0.8601 |
699
+ | 2.4167 | 14000 | 0.0238 | 0.8591 |
700
+ | 2.5030 | 14500 | 0.0155 | 0.8593 |
701
+ | 2.5893 | 15000 | 0.0164 | 0.8598 |
702
+ | 2.6756 | 15500 | 0.0259 | 0.8624 |
703
+ | 2.7620 | 16000 | 0.0114 | 0.8617 |
704
+ | 2.8483 | 16500 | 0.025 | 0.8635 |
705
+
706
+
707
+ ### Framework Versions
708
+ - Python: 3.10.15
709
+ - Sentence Transformers: 3.4.1
710
+ - Transformers: 4.49.0
711
+ - PyTorch: 2.6.0+cu126
712
+ - Accelerate: 1.5.2
713
+ - Datasets: 3.4.1
714
+ - Tokenizers: 0.21.1
715
+
716
+ ## Citation
717
+
718
+ ### BibTeX
719
+
720
+ #### Sentence Transformers
721
+ ```bibtex
722
+ @inproceedings{reimers-2019-sentence-bert,
723
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
724
+ author = "Reimers, Nils and Gurevych, Iryna",
725
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
726
+ month = "11",
727
+ year = "2019",
728
+ publisher = "Association for Computational Linguistics",
729
+ url = "https://arxiv.org/abs/1908.10084",
730
+ }
731
+ ```
732
+
733
+ #### MatryoshkaLoss
734
+ ```bibtex
735
+ @misc{kusupati2024matryoshka,
736
+ title={Matryoshka Representation Learning},
737
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
738
+ year={2024},
739
+ eprint={2205.13147},
740
+ archivePrefix={arXiv},
741
+ primaryClass={cs.LG}
742
+ }
743
+ ```
744
+
745
+ #### MultipleNegativesRankingLoss
746
+ ```bibtex
747
+ @misc{henderson2017efficient,
748
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
749
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
750
+ year={2017},
751
+ eprint={1705.00652},
752
+ archivePrefix={arXiv},
753
+ primaryClass={cs.CL}
754
+ }
755
+ ```
756
+
757
+ <!--
758
+ ## Glossary
759
+
760
+ *Clearly define terms in order to be accessible across audiences.*
761
+ -->
762
+
763
+ <!--
764
+ ## Model Card Authors
765
+
766
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
767
+ -->
768
+
769
+ <!--
770
+ ## Model Card Contact
771
+
772
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
773
+ -->
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-m-v2.0",
3
+ "architectures": [
4
+ "GteModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "Snowflake/snowflake-arctic-embed-m-v2.0--configuration_hf_alibaba_nlp_gte.GteConfig",
9
+ "AutoModel": "Snowflake/snowflake-arctic-embed-m-v2.0--modeling_hf_alibaba_nlp_gte.GteModel"
10
+ },
11
+ "classifier_dropout": 0.1,
12
+ "hidden_act": "gelu",
13
+ "hidden_dropout_prob": 0.1,
14
+ "hidden_size": 768,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "layer_norm_eps": 1e-12,
18
+ "layer_norm_type": "layer_norm",
19
+ "logn_attention_clip1": false,
20
+ "logn_attention_scale": false,
21
+ "max_position_embeddings": 8192,
22
+ "model_type": "gte",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pack_qkv": true,
26
+ "pad_token_id": 1,
27
+ "position_embedding_type": "rope",
28
+ "rope_scaling": null,
29
+ "rope_theta": 160000,
30
+ "torch_dtype": "float32",
31
+ "transformers_version": "4.49.0",
32
+ "type_vocab_size": 1,
33
+ "unpad_inputs": "true",
34
+ "use_memory_efficient_attention": "true",
35
+ "vocab_size": 250048
36
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu126"
6
+ },
7
+ "prompts": {
8
+ "query": "query: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
eval/Information-Retrieval_evaluation_results.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
+ 1.0,5793,0.6839288796823753,0.9043673398929742,0.9463145175211463,0.9742793026065941,0.6839288796823753,0.6839288796823753,0.30145577996432477,0.9043673398929742,0.18926290350422917,0.9463145175211463,0.0974279302606594,0.9742793026065941,0.7996501661830521,0.843232600005104,0.8010071925816513
3
+ 2.0,11586,0.7106853098567236,0.917831866045227,0.9523562920766442,0.9785948558605213,0.7106853098567236,0.7106853098567236,0.305943955348409,0.917831866045227,0.19047125841532886,0.9523562920766442,0.09785948558605213,0.9785948558605213,0.8176601344260588,0.8578383394153352,0.8186906537015176
4
+ 3.0,17379,0.719489038494735,0.9226652856896254,0.9544277576385293,0.979975832901778,0.719489038494735,0.719489038494735,0.3075550952298752,0.9226652856896254,0.1908855515277058,0.9544277576385293,0.09799758329017778,0.979975832901778,0.8243939730216276,0.8633048282743945,0.8253656185197572
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4ca472a94fad8607a728f4d9b685ec77fcd95a91ceeaf196b62a4827de87e8b
3
+ size 1221487872
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa7a6ad87a7ce8fe196787355f6af7d03aee94d19c54a5eb1392ed18c8ef451a
3
+ size 17082988
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 512,
51
+ "model_max_length": 32768,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizerFast",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }