(RLHell) DQN Agent Playing LunarLander-v3
The model was trained by using rlhell.
Command to reproduce the training
curl -OL https://huggingface.co/alperenunlu/LunarLander-v3-dqn/raw/main/dqn.py
curl -OL https://huggingface.co/alperenunlu/LunarLander-v3-dqn/raw/main/pyproject.toml
curl -OL https://huggingface.co/alperenunlu/LunarLander-v3-dqn/raw/main/uv.lock
uv run dqn.py --env-id LunarLander-v3 --n-envs 32 --total-timesteps 2_000_000 --learning-start 100_000 --buffer-size 100_000 --batch-size 1024 --final-exploration 0.01
Hyperparameters
{'batch_size': 1_024,
'buffer_size': 100_000,
'env_id': 'LunarLander-v3',
'eval_episodes': 10,
'evaluate': True,
'exp_name': 'dqn',
'exploration_fraction': 0.5,
'final_exploration': 0.01,
'gamma': 0.99,
'hf_entity': 'alperenunlu',
'initial_exploration': 1,
'learning_rate': 0.00025,
'learning_start': 100_000,
'log_interval': 100,
'n_envs': 32,
'push_model': True,
'save_times': 10,
'seed': 0,
'target_network_update_frequency': 500,
'tau': 1.0,
'total_timesteps': 2_000_000,
'train_frequency': 10,
'video_capture_frequency': 5}
Evaluation results
- mean_reward on LunarLander-v3self-reported279.13 +/- 16.75